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Preface

If some 30 years ago we had been told that we would write a large book on
quantification in nonclassical logic, none of us would have taken it seriously: first
— because at that time there was no hope of our effective collaboration; second
— because in nonclassical logic too much had to be done in the propositional
area, and few people could find the energy for active research in predicate logic.

In the new century the situation is completely different. Connections be-
tween Moscow and London became easy. The title of the book is not surprising,
and we are now late with the first big monograph in this field. Indeed, at first
we did not expect we had enough material for two (or more) volumes. But we
hope readers will be able to learn the subject from our book and find it quite
fascinating.

Let us now give a very brief overview of the existing systematic expositions
of nonclassical first-order logic. None of them aims at covering the whole of
this large field. The first book on the subject was [Rasiowa and Sikorski, 1963],
where the approach used by the authors was purely algebraic. Many important
aspects of superintuitionistic first-order logics can be found in the books written
in the 1970–80s: [Dragalin, 1988] (proof theory; algebraic, topological, and rela-
tional models; realisability semantics); [Gabbay, 1981] (model theory; decision
problem); [van Dalen, 1973], [Troelstra and van Dalen, 1988] (realisability and
model theory). The book of Novikov [Novikov, 1977] (the major part of which is
a lecture course from the 1950s) addresses semantics of superintuitionistic logics
and also includes some material on modal logic.

Still, predicate modal logic was partly neglected until the late 1980s. The
book [Harel, 1979] and its later extended version [Harel and Tiuryn, 2000] study
particular dynamic modal logics. [Goldblatt, 1984] is devoted to topos seman-
tics; its main emphasis is on intuitionistic logic, although modal logic is also
considered. The book [Hughes and Cresswell, 1996] makes a thorough study
of Kripke semantics for first-order modal logics, but it does not consider other
semantics or intermediate logics. Finally, there is a monograph [Gabbay et al.,
2002], which, among other topics, investigates first-order modal and intermedi-
ate logics from the ‘many-dimensional’ viewpoint. It contains recent profound
results on decidable fragments of predicate logics.

The lack of unifying monographs became crucial in the 1990s, to the extent
that in the recent book [Fitting and Mendelsohn, 1998] the area of first-order
modal logic was unfairly called ‘under-developed’. That original book contains

v



vi Preface

interesting material on the history and philosophy of modal logic, but due to its
obvious philosophical flavour, it leaves many fundamental mathematical prob-
lems and results unaddressed. Still there the reader can find various approaches
to quantification, tableaux systems and corresponding completeness theorems.
So there remains the need for a foundational monograph not only addressing
areas untouched by all current publications, but also presenting a unifying point
of view.

A detailed description of this Volume can be found in the Introduction below.
It is worth mentioning that the major part of the material has never been
presented in monographs. One of its sources is the paper on completeness and
incompleteness, a brief version of which is [Shehtman and Skvortsov, 1990]; the
full version (written in 1983) has not been published for technical reasons. The
second basic paper incorporated in our book is [Skvortsov and Shehtman, 1993],
where so-called metaframe (or simplicial) semantics was introduced and studied.
We also include some of the results obtained after 1980 by G. Corsi, S. Ghilardi,
H. Ono, T. Shimura, D. Skvortsov, N.-Y. Suzuki, and others.

However, because of the lack of space, we had to exclude some interesting
material, such as a big chapter on simplicial semantics, completeness theorems
for topological semantics, hyperdoctrines, and many other important matters.
Other important omissions are the historical and the bibliographical overviews
and the discussion of application fields and many open problems. Moreover,
the cooperation between the authors was not easy, because of the different
viewpoints on the presentation.1 There may be also other shortcomings, like
gaps in proofs, wrong notation, wrong or missing references, misprints etc., that
remain uncorrected — but this is all our responsibility.

We would be glad to receive comments and remarks on all the defects from
the readers. As we are planning to continue our work in Volume 2, we still hope
to make all necessary corrections and additions in the real future.

At present the reader can find the list of corrections on our webpages
http://www.dcs.kcl.ac.uk/staff/dg/
http://lpcs.math.msu.su/∼shehtman

Acknowledgements

The second and the third author are grateful to their late teacher and friend
Albert Dragalin, one of the pioneers in the field, who stimulated and encouraged
their research.

We thank all our colleagues, with whom we discussed the contents of this
book at different stages — Sergey Artemov, Lev Beklemishev, Johan van Ben-
them, Giovanna Corsi, Leo Esakia, Silvio Ghilardi, Dick De Johng, Rosalie
Iemhoff, Marcus Kracht, Vladimir Krupski, Grigori Mints, Hiroakira Ono, Nobu-
Yuki Suzuki, Albert Visser, Michael Zakharyaschev. Nobu-Yuki and Marcus
also kindly sent us Latex-files of their papers; we used them in the process of
typing the text.

1One of the authors points out that he disagrees with some of the notation and the style
of some proofs in the final version.



Preface vii

We would like to thank different institutions for help and support — King’s
College of London; Institute for Information Transmission Problems, VINITI,
Department of Mathematical Logic and Theory of Algorithms at Moscow State
University, Poncelet Mathematical Laboratory, Steklov Mathematical Institute
in Moscow; IRIT in Toulouse; EPSRC, RFBR, CNRS, and NWO.

We add personal thanks to our teacher Professor Vladimir A. Uspensky, to
Academician Sergey I. Adian, and to our friend and colleague Michael Tsfasman
who encouraged and supported our work.

We are very grateful to Jane Spurr for her enormous work and patience
in preparation of the manuscript — typing the whole text in Latex (several
times!), correcting our mistakes, reading multiple pages (with hardly under-
standable handwriting), making pictures, arranging styles etc. etc. We thank
all those people who also essentially helped us in this difficult process — Ilya
Shapirovsky, Alexey Romanov, Stanislav Kikot for correcting mistakes and typ-
ing, Ilya Vorontsov and Daniel Vorontsov for scanning many hundreds of pages.

We thank all other people for their help and encouragement — our wives
Lydia, Marina, Elena, families, friends and colleagues.



viii Preface



Introduction

Quantification and modalities have always been topics of great interest for lo-
gicians. These two themes emerged from philosophy and language in ancient
times; they were studied by traditional informal methods until the 20th century.
Then the tools became highly mathematical, as in the other areas of logic, and
modal logic as well as quantification (mainly on the basis of classical first-order
logic) found numerous applications in Computer Science.

At the same time many other kinds of nonclassical logics were investigated.
In particular, intuitionistic logic was created by L. Brouwer at the beginning of
the century as a new basis for mathematical reasoning. This logic, as well as its
extensions (superintuitionistic logics), is also very useful for Computer Science
and turns out to be closely related to modal logics.

(A) The introduction of quantifier axioms to classical logic is fairly straight-
forward. We simply add the following obvious postulates to the propositional
logic:

1. ∀xA(x) ⊃ A(t),

where t is ‘properly’ substituted for x

2.
A ⊃ B(x)

A ⊃ ∀xB(x)
,

where x is not free in A

3. A(t) ⊃ ∃xA(x),

4.
B(t) ⊃ A

∃xB(x) ⊃ A
,

where x is not free in A.

The passage from the propositional case of a logic L to its quantifier case
works for many logics by adding the above axioms to the respective propositional
axioms — for example, the intuitionistic logic, standard modal logics S4,S5,K
etc. We may need in some cases to make some adjustment to account for
constant domains, ∀x(A ∨ B(x)) ⊃ (A ∨ ∀xB(x)) in case of intuitionistic logic
and the Barcan formula, ∀x�A(x) ⊃ �∀xA(x) in the case of modal logics. On
the whole the correspondence seems to be working.

ix



x Introduction

The recipe goes on as follows:
take the propositional semantics and put a domain Du in each world u or take
the axiomatic formulation and add the above axioms and you maintain corre-
spondence and completeness.

There were some surprises however. Unexpectedly, this method fails for very
simple and well-known modal and intermediate logics: the ‘Euclidean logic’
K5 = K + ✸�p ⊃ �p (see Chapter 6 of this volume), the ‘confluence logic’
S4.2 = S4 + ✸�p ⊃ �✸p and for the intermediate logic KC = H + ¬p ∨ ¬¬p
with constant domains, nonclassical intermediate logics of finite depth [Ono,
1983], etc. All these logics are incomplete in the standard Kripke semantics.

In some other cases, completeness theorems hold, but their proofs require
nontrivial extra work — for example, this happens for the logic of linear Kripke
frames S4.3 [Corsi, 1989].

This situation puts at least two difficult questions to us: (1) how should
we change semantics in order to restore completeness of ‘popular’ logics? (2)
how should we extend these logics by new axioms to make them complete in
the standard Kripke semantics? These questions will be studied in our book,
especially in Volume 2, but we are still very far from final answers.

Apparently when we systematically introduce natural axioms and ask for
the corresponding semantics, we may not be able to see what are the natural
semantical conditions (which may not be expressible in first-order logic) and
conversely some natural conditions on the semantics require complex and some-
times non-axiomatisable logics.

The community did not realize all these difficulties. A serious surprise was
the case of relevance logic, where the additional axioms were complex and
seemed purely technical. See [Mares and Goldblatt, 2006], [Fine, 1988], [Fine,
1989]. For some well-known logics there were no attempts of going first-order,
especially for resource logics such as Lambek Calculus.

(B) There are other reasons why we may have difficulties with quantifiers,
for example, in the case of superintuitionistic logics. Conditions on the possible
worlds such as discrete ordering or finiteness may give the connectives them-
selves quantificational power of their own (note that the truth condition for
A ⊃ B has a hidden world quantifier), which combined with the power of the
explicit quantifiers may yield some pretty complex systems [Skvortsov, 2006].

(C) In fact, a new approach is required to deal with quantifiers in possible
world systems. The standard approach associates domains with each possible
world and what is in the domain depends only on the nature of the world, i.e.
if u is a world, P a predicate, θ a valuation, then θu(P ) is not dependent on
other θu′(P ), except for some very simple conditions as in intuitionistic logic.

There are no interactive conditions between existence of elements in the
domain and satisfaction in other domains. If we look at some axioms like the
Markov principle

¬¬∃xA(x) ⊃ ∃x¬¬A(x),

we see that we need to pay attention on how the domain is constructed. This
is reminiscent of the Herbrand universe in classical logic.
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(D) There are other questions which we can ask. Given a classical theory Γ
(e.g. a theory of rings or Peano arithmetic), we can investigate what happens
if we change the underlying logic to intuitionistic or modal or relevant. Then
what kind of theory do we get and what kind of semantics? Note we are not
dealing now with a variety of logics (modal or superintuitionistic), but with a
fixed nonclassical logic (say intuitionistic logic itself) and a variety of theories.

If intuitionistic predicate semantics is built up from classical models, would
the intuitionistic predicate theory of rings have semantics built up from classical
rings? How does it depend on the formulation (Γ may be classically equivalent
to Γ′, but not intuitionistically) and what can happen to different formulations?
See [Gabbay, 1981].

(E) One can have questions with quantifiers arising from a completely dif-
ferent angle. E.g. in resource logics we pay attention to which assumptions are
used to proving a formula A.

For example in linear or Lambek logic we have that

(1) A

(2) A

(3) A→ (A→ B).

can prove B but (2) and (3) alone cannot prove B; because of resource consider-
ations, we need two copies of A. Such logics are very applicable to the analysis
and modelling of natural language [van Benthem, 1991]. So what shall we do
with ∀xA(x)? Do we divide our resource between all instances A(t1), A(t2), . . .
of A? These are design questions which translate into technical axiomatic and
semantical questions.

How do we treat systems which contain more than one type of nonclassical
connective? Any special problems with regard to adding quantifiers? See, for
example, the theory of bunched implications [O’Hearn and Pym, 1999].

(F) The most complex systems with regards to quantifiers are LDS, Labelled
Deductive Systems (this is a methodology for logic, cf. [Gabbay, 1996; Gabbay,
1998]). In LDS formulas have labels, so we write t : A, where t is a label and A is
a formula. Think of t as a world or a context. (This label can be integrated and
in itself be a formula, etc.) Elements now have visa rules for migrating between
labels and need to be annotated, for example as at

s, the element a exists at
world s, but was first created (or instantiated) in world t. Surprisingly, this
actually helps with the proof theory and semantics for quantifiers, since part of
the semantics is brought into the syntax. See [Viganò, 2000]. So it is easier to
develop, say, theories of Hilbert ε-symbol using labels. ε-symbols axioms cannot
be added simple mindedly to intuitionistic logic, it will collapse [Bell, 2001].

(G) Similarly, we must be careful with modal logic. We have not even
begun thinking about ε-symbols in resource logics (consider εx.A(x), if there
is sensitivity for the number of copies of A, then are we to be sensitive also to
copies of elements?).

(H) In classical logic there is another direction to go with quantifiers, namely
the so-called generalised quantifiers, for example (many x)A(x) (‘there are many
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x such that A(x)’), or (uncountably many x)A(x) or many others. Some of
these can be translated as modalities as van Lambalgen has shown [Alechina,
van Lambalgen, 1994], [van Lambalgen, 1996]. Such quantifiers (at least for the
finite case) exist in natural language. They are very important and they have
not been exported yet to nonclassical logics (only through the modalities e.g.
✸nA (‘A is true in n possible worlds’), see [Gabbay, Reynolds and Finger, 2000],
[Peters and Westerstahl, 2006]).

Volume 1 of these books concentrates on the landscape described in (A)
above, i.e., correspondence between axioms for modal or intuitionistic logic and
semantical conditions and vice versa.

Even for such seemingly simple questions we have our hands full. The table
of contents for future volumes shows what to be addressed in connection with
(B)-(H). It is time for nonclassical logic to pay full attention to quantification.
Up to now the focus was mainly propositional. Now the era of the quantifier
has begun!

This Volume includes results in nonclassical first-order logic obtained during
the past 40 years. The main emphasis is model-theoretic, and we confine our-
selves with only two kinds of logics: modal and superintuitionistic. Thus many
interesting and important topics are not included, and there remains enough
material for future volumes and future authors.

Figure 1. Chapters dependency structure

Let us now briefly describe the contents of Volume 1. It consists of three
parts. Part I includes basic material on propositional logic and first-order syn-
tax.

Chapter 1 contains definitions and results on syntax and semantics of non-
classical propositional logics. All the material can be found elsewhere, so the
proofs are either sketched or skipped.

Chapter 2 contains the necessary syntactic background for the remaining
parts of the book. Here an important issue is the notion of a substitution in a
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formula based on re-naming of variables. This classical topic is well known to
all students in logic. However, our intention in this book is to give precise and
rather simple soundness proofs for different semantics of predicate logics, and
the existing definitions of a substitution do not fit well for that purpose. Our
approach is based on the idea that re-naming of bound variables creates differ-
ent synonymous (or ‘congruent’) versions of the same predicate formula. These
versions are generated by a ‘scheme’ showing the reference structure of quanti-
fiers. Now variable substitutions (acting on schemes or congruence classes) can
be easily arranged in an appropriate congruent version.

Note that the notions of a scheme and congruence are certainly not new.
They can be found (implicitly) in [Kleene, 1963] and (explicitly) in [Kolmogorov
and Dragalin, 2004]. Schemes are also quite similar to ‘formulas’ in the sense of
[Bourbaki, 1968]. But so far these notions have not been studied in books on
first-order logic in a systematic way.

After this preparation we introduce two main types of first-order logics to
be studied in the book — modal and superintuitionistic, and prove syntactic
results that do not require involved proof theory, such as deduction theorems,
Glivenko theorem etc.

In Part II (Chapters 3 – 5) we describe different semantics for our logics and
prove soundness results.

Chapter 3 considers the simplest kinds of relational semantics. We begin
with the standard Kripke semantics and then introduce two its generalisations,
which are equivalent: Kripke frames with equality and Kripke sheaves. The first
one (for the intuitionistic case) is due to [Dragalin, 1973], and the second version
was first introduced in [Shehtman and Skvortsov, 1990]. Soundness proofs in
that chapter are not obvious, but rather easy. We mention simple incomplete-
ness results showing that Kripke semantics is weaker than these generalisations.
Further incompleteness theorems are postponed until Volume 2. We also prove
results on Löwenheim – Skolem property and recursive axiomatisability using
translations to classical logic from [Ono, 1972/73] and [van Benthem, 1983].

Chapter 4 studies algebraic semantics. Here the main objects are Heyting-
valued (or modal-valued) sets. In the intuitionistic case this semantics was stud-
ied by many authors, see [Dragalin, 1988], [Fourman and Scott, 1979], [Gold-
blatt, 1984]. Nevertheless, our soundness proof seems to be new. Then we show
that algebraic semantics can be also obtained from presheaves over Heyting (or
modal) algebras. We also show that for the case of topological spaces the same
semantics is given by sheaves and can be defined via so-called ‘fibrewise mod-
els’. These results were first stated in [Shehtman and Skvortsov, 1990], but the
proofs have never been published so far.2 They resemble the well-known results
in topos theory, but do not directly follow from them.

In Chapter 5 we study Kripke metaframes, which are a many-dimensional
generalisation of Kripke frames from [Skvortsov and Shehtman, 1993] (where
they were called ‘Cartesian metaframes’). The crucial difference between frames

2The first author is happy to fulfill his promise given in the preface of [Gabbay, 1981]: “It
would require further research to be able to present a general theory [of topological models,
second order Beth and Kripke models] possibly using sheaves”.
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and metaframes is in treatment of individuals. We begin with two particular
cases of Kripke metaframes: Kripke bundles [Shehtman and Skvortsov, 1990]

and C-sets (sheaves of sets over (pre)categories) [Ghilardi, 1989]. Their prede-
cessor in philosophical logic is ‘counterpart theory’ [Lewis, 1968]. In a Kripke
bundle individuals may have several ‘inheritors’ in the same possible world,
while in a C-set instead of an inheritance relation there is a family of maps. In
Kripke metaframes there are additional inheritance relations between tuples of
individuals.

The proof of soundness for metaframes is rather laborious (especially for
the intuitionistic case) and is essentially based on the approach to substitutions
from Chapter 2. This proof has never been published in full detail. Then we
apply soundness theorem to Kripke bundle and functor semantics. The last
section of Chapter 5 gives a brief introduction to an important generalisation of
metaframe semantics – so called ’simplicial semantics’. The detailed exposition
of this semantics is postponed until Volume 2.

Part III (Chapters 6–7) is devoted to completeness results in Kripke seman-
tics. In Kripke semantics many logics are incomplete, and there is no general
powerful method for completeness proofs, but still we describe some approaches.

In Chapter 6 we study Kripke frames with varying domains. First, we in-
troduce different types of canonical models. The simplest kind is rather well-
known, cf. [Hughes and Cresswell, 1996], but the others are original (due to
D. Skvorstov). We prove completeness for intermediate logics of finite depth
[Yokota, 1989], directed frames [Corsi and Ghilardi, 1989], linear frames [Corsi,
1992]. Then we elucidate the methods from [Skvortsov, 1995] for axiomatising
some ‘tabular’ logics (i.e., those with a fixed frame of possible worlds).

Chapter 7 considers logics with constant domains. We again present dif-
ferent canonical models constructions and prove completeness theorems from
[Hughes and Cresswell, 1996]. Then we prove general completeness results for
subframe and cofinal subframe logics from [Tanaka and Ono, 1999], [Shimura,
1993], [Shimura, 2001], Takano’s theorem on logics of linearly ordered frames
[Takano, 1987] and other related results.

Here are chapter headings in preparation for later volumes:

Chapter 8. Simplicial semantics

Chapter 9. Hyperdoctrines

Chapter 10. Completeness in algebraic and topological semantics

Chapter 11. Translations

Chapter 12. Definability

Chapter 13. Incompleteness

Chapter 14. Simulation of classical models

Chapter 15. Applications of semantical methods
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Chapter 16. Axiomatisable logics

Chapter 17. Further results on Kripke-completeness

Chapter 18. Fragments of first-order logics

Chapter 19. Propositional quantification

Chapter 20. Free logics

Chapter 21. Skolemisation

Chapter 22. Conceptual quantification

Chapter 23. Categorical logic and toposes

Chapter 24. Quantification in resource logic

Chapter 25. Quantification in labelled logics.

Chapter 26. ε-symbols and variable dependency

Chapter 27. Proof theory

Some guidelines for the readers. Reading of this book may be not so easy.
Parts II, III are the most important, but they cannot be understood without
Part I.

For the readers who only start learning the field, we recommend to begin with
sections 1.1–1.5, then move to sections 2.1, 2.2, the beginning parts of sections
2.3, 2.6, and next to 2.16. After that they can read Part II and sometimes go
back to Chapters 1, 2 if necessary. We do not recommend them to go to Chapter
5 before they learn about Kripke sheaves. Those who are only interested in
Kripke semantics can move directly from Chapter 3 to Part III.

An experienced reader can look through Chapter 1 and go to sections 2.1–2.5
and the basic definitions in 2.6, 2.7. Then he will be able to read later Chapters
starting from Chapter 3.
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Notation convention

We use logical symbols both in our formal languages and in the meta-language.
The notation slightly differs, so the formal symbols ∧, ⊃, ≡ correspond to
the metasymbols &, ⇒, ⇔; and the formal symbols ∨, ∃, ∀ are also used as
metasymbols.

In our terminology we distinguish functions and maps. A function from A
to B is a binary relation F ⊆ A×B with domain A satisfying the functionality
condition (xFy & xFz ⇒ x = z), and the triple f = (F,A,B) is then called a
map from A to B. In this case we use the notation f : A −→ B.

Here is some other set-theoretic notation and terminology.

• 2X denotes the power set of a set X ;

• we use ⊆ for inclusion, ⊂ for proper inclusion;

• R ◦ S denotes the composition of binary relations R and S:

R ◦ S := {(x, y) | ∃z (xRz & zSy)};

• R−1 is the converse of a relation R;

• IdW is the equality relation in a set W ;

• idW is the identity map on a set W (i.e. the triple (IdW ,W,W ));

• for a relation R ⊆W ×W , R(V ), or just RV , denotes the image of a set
V ⊆W under R, i.e. {y | ∃x ∈ V xRy}; R(x) or Rx abbreviates R({x});

• dom(R), or pr1(R), denotes the domain of a relation R, i.e., {x | ∃y xRy};

• rng(R), or pr2(R), denotes the range of a relation R, i.e., {y | ∃x xRy};

• for a subset X ⊆ Y there is the inclusion map jXY : X −→ Y (which is
usually denoted just by j) sending every x ∈ X to itself;

• R ↾ V denotes the restriction of a relation R to a subset V, i.e.
R ↾ V = R ∩ (V × V ), and f ↾ V denotes the restriction of a map f to V ;

• for a relation R on a set X R− := R− IdX is the ‘irreflixivisation’ of R;

• |X | denotes the cardinality of a set X ;

• In denotes the set {1, . . . , n}; I0 := ∅;

• X∞ denotes the set of all finite sequences with elements in X ;

• (Xi | i ∈ I) (or (Xi)i∈I ) denotes the family of sets Xi with indices in the
set I;

•
⊔
i∈I

Xi denotes the disjoint union of the family (Xi)i∈I , i.e.
⋃
i∈I

Xi × {i};
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• ω is the set of natural numbers, and Tω denotes ω∞;

• Σmn = (In)Im denotes the set of all maps σ : Im −→ In (for m,n ∈ ω);

• Υmn denotes the set of all injective maps in Σmn;

• Υn is the abbreviation for Υnn, the set of all permutations of In.

Note that we use two different notations for composition of maps: the compo-
sition of f : A −→ B and g : B −→ C is denoted by either g · f or f ◦ g. So
(f ◦ g)(x) = (g · f)(x) = g(f(x)).

Obviously,
Σmn 6= ∅ iff n > 0 or m = 0,
Υmn 6= ∅ iff n ≥ m.

A map f : Im −→ In (for fixed n) is presented by the table

(
1 . . . m

f(1) . . . f(m)

)

We use a special notation for some particular maps.

• Transpositions σn
ij ∈ Υn for n ≥ 2, 1 ≤ i < j ≤ n.

σn
ij :=

(
1 . . . i . . . j . . . n
1 . . . j . . . i . . . n

)

In particular, simple transpositions are σn
i := σn

1i for 1 < i ≤ n;

• Standard embeddings (inclusion maps).

σmn
+ ∈ Υmn, for 0 ≤ m ≤ n is defined by the table

(
1 . . . m
1 . . . m

)

In particular, there are simple embeddings σm
+ := σm,m+1

+ for m ≥ 0;
∅n := σ0n

+ is the empty map I0 −→ In (and obviously, Σ0n = {∅n}).

• Facet embeddings δn
i ∈ Υn−1,n for n > 0.

δn
i :=

(
1 . . . i− 1 i . . . n− 1
1 . . . i− 1 i+ 1 . . . n

)

In particular, δn
n = σn−1

+ .

• Standard projections σmn
− ∈ Σmn for m ≥ n > 0.

σmn
− :=

(
1 . . . n . . . m
1 . . . n . . . n

)

In particular, simple projections are σn
− := σn+1,n

− for n > 0.
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It is well-known that (for n > 1) every permutation σ ∈ Υn is a composition
of (simple) transpositions. One also can easily show that every map from Σmn

is a composition of simple transpositions, simple embeddings, and simple pro-
jections. In particular, every injection (from Υmn) is a composition of simple
transpositions and simple embeddings, and every surjection is a composition of
simple transpositions and simple projections, cf. [Gabriel and Zisman, 1967].

The identity map in Σnn is idn := idIn
= σnn

+ = σnn
− , and it is obvious that

idn = σn
ji ◦ σ

n
ji whenever n ≥ 2, j < i.

Let also λn
i ∈ Σ1n be the map sending 1 to i; let λn

ij ∈ Σ2n be the map with
the table (

1 2
i j

)

For every σ ∈ Σmn we define its simple extension σ+ ∈ Σm+1,n+1 such that

σ+(i) :=

{
σ(i) for i ∈ Im,

n+ 1 if i = m+ 1.

In particular, for any n we have (σn
+)+ = δn+2

n+1 ∈ Σn+1,n+2:

(σn
+)+(i) =

{
i for i ∈ In,

n+ 2 if i = n+ 1.

We do not make any difference between words of length n in an alphabet D
and n-tuples from Dn. So we write down a tuple (a1, . . . , an) also as a1 . . . an.

• f denotes the void sequence;

• l(α) (or |α|) denotes the length of a sequence α;

• αβ denotes the join (the concatenation) of sequences α, β; we often write
x1 . . . xn rather than (x1, . . . , xn) (especially if n = 1), and also αx or
(α, x) rather than the dubious notation α(x);

• For a letter c put
ck := c . . . c︸ ︷︷ ︸

k

.

For an arbitrary set S, every tuple a = (a1, . . . , an) ∈ Sn can be regarded as
a function In −→ S. We usually denote the range of this function, i.e. the set
{a1, . . . , an} as r(a). Sometimes we write b ∈ a instead of b ∈ r(a). Every map
σ : Im −→ In acts on Sn via composition:

a · σ = σ ◦ a = (aσ(1), . . . , aσ(m)).

Thus every map σ ∈ Σmn gives rise to the map πσ : Sn −→ Sm sending a to
a · σ. In the particular case, when σ = δn

i is a facet embedding and a ∈ Sn, we
also use the notation πn

i := πδn
i

and

πn
i a := a − ai := âi := a · δn

i = (a1, . . . , ai−1, ai+1, . . . , an).

Hence we obtain
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Lemma 0.0.1 (1)
πτ · πσ = πσ·τ ,

whenever a ∈ Sn, σ ∈ Σmn, τ ∈ Σkm.

(2) If σ is a permutation (σ ∈ Υn), then πσ is a permutation of Sn and
πσ−1 = (πσ)−1.

Proof (1) Since composition of maps is associative, we have

a · (σ · τ) = (a · σ) · τ.

(2) πσ · πσ−1 = πσ−1 · πσ = πidn
= idSn . �

We use the following relations on n-tuples:

(σ) a subb iff ∀i, j (ai = aj ⇒ bi = bj).

Lemma 0.0.2 Let S 6= ∅, σ ∈ Σmn. Then

πσ[Sn] = {a ∈ Sm | σ sub a},

where σ sub a denotes the property ∀i, j (σ(i) = σ(j) ⇒ ai = aj), cf. (σ).

Proof In fact, if a = b · σ, then obviously σ(j) = σ(k) implies aj = ak. On
the other hand, if σ sub a, then a = b · σ for some b; just put bσ(i) := ai and
add arbitrary bk for k 6∈ r(σ). �

Lemma 0.0.3 For |S| > 1, σ ∈ Σmn, σ is injective iff πσ : Sn −→ Sm is
surjective.3

Proof If σ is injective, then for any a ∈ Sn, σ(i) = σ(j) ⇒ i = j ⇒ ai = aj ,
i.e. σ sub a. Hence by Lemma 0.0.2, πσ is surjective.

The other way round, if σ(i) = σ(j) for some i 6= j, take a ∈ Sm such that
ai 6= aj . Then σ sub a is not true, i.e. a 6∈ πσ[Sn] by 0.0.2. �

Lemma 0.0.4 For |S| > 1, σ ∈ Σmn, σ is surjective iff πσ is injective.

Proof Suppose σ : Im −→ In is surjective and a,b ∈ Sn, πσa 6= πσb. If πσa
and πσb differ at the j th component, then ai 6= bi for i ∈ In such that σ(i) = j.
On the other hand, let σ ∈ Σmn be non-surjective, j ∈ Im − rng(σ). Let
c, d ∈ S, c 6= d. Take a = cn; b = cj−1dcn−j . Then a 6= b and πσa = πσb = cm.

�

Hence we obtain

Lemma 0.0.5 For |S| > 1, σ ∈ Σmn, σ is bijective iff πσ : Sn −→ Sm is
bijective.

3Clearly, if |S| = 1, then πσ is bijective for every σ ∈ Σmn.
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We further simplify notation in some particular cases. Let πn
i := πδn

i
, so

facet embedding δn
i eliminates the i th component from an n-tuple a ∈ Sn. Let

also
πn
− := πσn

−
, πn

+ := πσn
+
,

where σn
− ∈ Σn+1,n is a simple projection, σn

+ ∈ Σn,n+1 is a simple embedding.
Thus

πn
−(a1, . . . , an) = (a1, . . . , an, an) for n > 0,
πn

+(a) = a − an+1 = (a1, . . . , an) for a = (a1, . . . , an, an+1) ∈ Dn+1, n ≥ 0.

We say that a sequence a ∈ Dn is distinct, if all its components ai are
different.

Lemma 0.0.6 If σ, τ : Im −→ In, σ 6= τ and |S| ≥ n, then a ·σ 6= a · τ for any
distinct a ∈ Sn.

Proof If for some i, τ(i) 6= σ(i), then aσ(i) 6= aτ(i). �

Lemma 0.0.7 (1) For τ ∈ Σmn, σ ∈ Σkm,
(τ · σ)+ = τ+ · σ+.

(2) For σ ∈ Σmn,
σ+ · σm

+ = σn
+ · σ.

Proof Straightforward. �

Lemma 0.0.8 (1) Let a ∈ Sn, b ∈ Sm, r(b) ⊆ r(a). Then b = a · σ for
some σ ∈ Σmn.

(2) Moreover, if b is distinct,4 then σ is an injection.

Proof Put σ(i) = j for some j such that bi = aj . �

4In other words, b is obtained by renumbering a subsequence of a.
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Chapter 1

Basic propositional logic

This chapter contains necessary information about propositional logics. We
give all the definitions and formulate results, but many proofs are sketched or
skipped. For more details we address the reader to textbooks and monographs
in propositional logic: [Goldblatt, 1987], [Chagrov and Zakharyaschev, 1997],
[Blackburn, de Rijke and Venema, 2001], also see [Gabbay, 1981], [Dragalin,
1988], [van Benthem, 1983].

1.1 Propositional syntax

1.1.1 Formulas

We consider N-modal (propositional) formulas1 built from the denumerable set
PL = {p1, p2, . . . } of proposition letters, the classical propositional connectives
∧, ∨, ⊃, ⊥ and the unary modal connectives �1, . . . ,�N ; the derived connec-
tives are introduced in a standard way as abbreviations:

¬A := (A ⊃ ⊥), ⊤ := (⊥ ⊃ ⊥),
(A ≡ B) := ((A ⊃ B) ∧ (B ⊃ A)),
✸iA := ¬�i¬A for i = 1, . . . , N.

To simplify notation, we write p, q, r instead of p1, p2, p3. We also use standard
agreements about bracketing: the principal brackets are omitted; ∧ is stronger
than ∨, which is stronger than ⊃ and ≡. Sometimes we use dots instead of
brackets; so, e.g. A ⊃• B ⊃ C stands for (A ⊃ (B ⊃ C)).

For a sequence of natural numbers α = k1 . . . kr from I∞N , �α abbreviates
�k1 . . .�kr

. �f denotes the identity operator, i.e. �fA = A for every formula
A. If α = k . . . k︸ ︷︷ ︸

r

, �α is also denoted by �r
k (for r ≥ 0 ).

Similarly, we use the notations ✸α, ✸
r
k.

11-modal formulas are also called monomodal, 2-modal formulas are called bimodal. Some
authors prefer the term ‘unimodal’ to ‘monomodal’.

3
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As usual, for a finite set of formulas Γ,
∧

Γ denotes its conjunction and
∨

Γ
its disjunction; the empty conjunction is ⊤ and the empty disjunction is ⊥. We
also use the notation (for arbitrary Γ)

�αΓ := {�αA | A ∈ Γ}.

If n = 1, we write � instead of �1 and ✸ instead of ✸1.

The degree (or the depth) of a modal formula A (denoted by d(A)) is defined
by induction:

d(pk) = d(⊥) = 0,
d(A ∧B) = d(A ∨B) = d(A ⊃ B) = max (d(A), d(B)),
d(�iA) = d(A) + 1.

LPN denotes the set of allN -modal formulas; LP0 denotes the set of all formulas
without modal connectives; they are called classical (or intuitionistic2).

An N-modal (propositional) substitution is a map S : LPN −→ LPN pre-
serving ⊥ and all but finitely many proposition letters and commuting with all
connectives, i.e. such that

• S(⊥) = ⊥;

• {k | S(pk) 6= pk} is finite;

• S(A ∧B) = S(A) ∧ S(B);

• S(A ∨B) = S(A) ∨ S(B);

• S(A ⊃ B) = S(A) ⊃ S(B);

• S(�iA) = �iS(A).

Let q1, . . . , qk be different proposition letters. A substitution S such that
S(qi) = Ai for i ≤ k and S(q) = q for any other q ∈ PL, is denoted by
[A1, . . . , Ak/q1, . . . , qk]. A substitution of the form [A/q] is called simple. It is
rather clear that every substitution can be presented as a composition of simple
substitutions.

We often write SA instead of S(A); this formula is called the substitution
instance of A under S, or the S-instance of A. For a set of formulas Γ, Sub(Γ) (or
SubN (Γ), if we want to specify the language) denotes the set of all substitution
instances of formulas from Γ.

An intuitionistic substitution is nothing but a 0-modal substitution.

2In this book intuitionistic and classical formulas are syntactically the same; the only
difference between them is in semantics.



1.1. PROPOSITIONAL SYNTAX 5

1.1.2 Logics

In this book a logic (in a formal sense) is a set of formulas. We say that a logic
L is closed under the rule

A1, . . . , An

B

(or that this rule is admissible in L) if B ∈ L, whenever A1, . . . , An ∈ L. A
(normal propositional) N -modal logic is a subset of LPN closed under arbitrary

N -modal substitutions, modus ponens3
(
A, A ⊃ B

B

)
, necessitation

(
A

�iA

)

and containing all classical tautologies and all the formulas

AKi := �i(p ⊃ q) ⊃ (�ip ⊃ �iq),

where 1 ≤ i ≤ N.

KN denotes the minimal N -modal logic, and K denotes K1. Sometimes we
call N -modal logics (or formulas) just ‘modal’, if N is clear from the context.

The smallest N -modal logic containing a given N -modal logic Λ and a set
of N -modal formulas Γ is denoted by Λ + Γ; for a formula A, Λ + A is an
abbreviation for Λ+{A}. We say that the logic KN +Γ is axiomatised by the set
Γ. A logic is called finitely axiomatisable (respectively, recursively axiomatisable)
if it can be axiomatised by a finite (respectively, recursive) set of formulas.
It is well-known that a logic is recursively axiomatisable iff it is recursively
enumerable. A logic Λ is consistent if ⊥ 6∈ Λ.

Here is a list of some frequently used modal formulas and modal logics:

AT := �p ⊃ p,
A4 := �p ⊃ ��p,
AD := ��p ⊃ �p,
AM := �✸p ⊃ ✸�p (McKinsey formula),
A2 := ✸�p ⊃ �✸p,
A3 := �(p ∧�p ⊃ q) ∨�(q ∧�q ⊃ p),
AGrz := �(�(p ⊃ �p) ⊃ p) ⊃ p (Grzegorczyk formula),
AL := �(�p ⊃ p) ⊃ �p (Löb formula),
A5 := ✸�p ⊃ �p,
AB := ✸�p ⊃ p,
At1 := ✸1�2p ⊃ p,
At2 := ✸2�1p ⊃ p,

AWn :=
n∨

i=0

�

(
pi ∧�pi ⊃

∨
j 6=i

pj

)
,

Altn :=
n∨

i=0

�

(
pi ⊃

∨
j 6=i

pj

)
.

3This rule is denoted by MP.
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D := K + ✸⊤, T := K +AT,
K4 := K +A4,
S4 := K4 +AT, D4 := D +A4,
S4.1 := S4 +AM, D4.1 := D4 +AM,
S4.2 := S4 +A2, S4.3 := S4 +�(�p ⊃ q) ∨�(�q ⊃ p),
K4.3 := K4 +A3, Grz := S4 +AGrz (Grzegorczyk logic),
S5 := S4 +AB, GL := K +AL, (Gödel–Löb logic),
K5 := K +A5, K.t := K2 +At1 +At2.

The corresponding N -modal versions are denoted by DN , TN etc.; so for ex-
ample,

DN := KN + {✸i⊤ | 1 ≤ i ≤ N},

and so on.
A superintuitionistic logic is a set of intuitionistic formulas closed under

intuitionistic substitutions and modus ponens, and containing the following well-
known axioms:

(Ax1) p ⊃ (q ⊃ p),

(Ax2) (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)),

(Ax3) p ∧ q ⊃ p,

(Ax4) p ∧ q ⊃ q,

(Ax5) p ⊃ (q ⊃ p ∧ q),

(Ax6) p ⊃ p ∨ q,

(Ax7) q ⊃ p ∨ q,

(Ax8) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ (p ∨ q ⊃ r)),

(Ax9) ⊥ ⊃ p.

The smallest superintuitionistic logic is exactly the intuitionistic (or Heyting)
propositional logic; it is denoted by H.

The notation Λ + Γ and the notions of finite axiomatisability, etc. are used
for superintuitionistic logics as well.

An m-formula is a formula without occurrences of letters pi for i > m.
LPN⌈m denotes the set of all N -modal m-formulas. If Λ is a modal or a
superintuitionistic logic, Λ⌈m denotes its restriction to m-formulas. The sets
Λ⌈m are called bounded logics.

An extension of anN -modal logic Λ is an arbitraryN -modal logic containing
Λ; extensions of a logic Λ are also called Λ-logics.

Members of a logic are also called its theorems; moreover, we use the notation
Λ ⊢ A as synonymous for A ∈ Λ. A formula A in the language of a logic Λ
is Λ-consistent if ¬A 6∈ Λ. An N -modal propositional theory is a set of N -
modal propositional formulas. Such a theory is Λ-consistent if all conjunctions
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over its finite subsets are Λ-consistent and Λ-complete if it is maximal among
Λ-consistent theories (in the same language).

In the intuitionistic case we also consider double theories that are pairs of
sets of intuitionistic formulas. For a superintuitionistic logic Λ, a double theory
(Γ,∆) is called Λ-consistent if for any finite sets Γ0 ⊆ Γ, ∆0 ⊆ ∆, Λ 6⊢

∧
Γ0 ⊃∨

∆0. A Λ-consistent double theory (Γ,∆) is called Λ-complete if Γ∪∆ = LP0.

The following is well known (cf. [Chagrov and Zakharyaschev, 1997], [Ra-
siowa and Sikorski, 1963]):

Lemma 1.1.1 (Lindenbaum lemma) (1) If Λ is an N -modal propositional
logic, Γ is a Λ-consistent N -modal theory, then there exists a Λ-complete
N -modal theory containing Γ.

(2) If Λ is an intermediate propositional logic, then for any Λ-consistent
double theory (Γ,∆) there exists a Λ-complete theory (Γ′,∆′) such that
Γ ⊆ Γ′, ∆ ⊆ ∆′.

Let us fix names for some particular intuitionistic formulas and superintu-
itionistic logics:

EM := p ∨ ¬p (the law of the excluded middle);
AJ := ¬p ∨ ¬¬p (the weak law of the excluded middle);
AJ− := ¬¬p ∨ (¬¬p ⊃ p);
AP1 := EM ;
APn := pn ∨ (pn ⊃ APn−1) (for n > 1);
KP := (¬p ⊃ q ∨ r) ⊃ (¬p ⊃ q) ∨ (¬p ⊃ r) (Kreisel–Putnam formula);

Brn :=

(
n∧

i=0

(
pi ⊃

∨
j 6=i

pj

)
⊃
∨
j 6=i

pj

)
⊃

n∨
i=0

pi (Gabbay–De Jongh formulas);

AZ := (p ⊃ q) ∨ (q ⊃ p);

AIWn :=
n∨

i=0

(
pi ⊃

∨
j 6=i

pj

)
;

IGn :=
∨

0≤i<j≤n

(pi ≡ pj);

HJ := KC := H + AJ (Jankov’s logic);
LC := H +AZ (Dummett’s logic);
CL := H + EM (classical, or Boolean logic).

The following inclusions are well-known:

H ⊂ HJ ⊂ LC ⊂ CL,

H +APn+1 ⊂ H +APn.

A superintuitionistic logic Σ is called consistent if ⊥ 6∈ Σ; Σ is said to be interme-
diate if H ⊆ Σ ⊆ CL. It is well-known that every consistent superintuitionistic
propositional logic is intermediate.
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Lemma 1.1.2 (1) Some theorems of KN :

�i(p ∧ q) ≡ �ip ∧�iq;
✸i(p ∨ q) ≡ ✸ip ∨ ✸iq;
�ip ∧ ✸iq ⊃ ✸i(p ∧ q);
�i(p ⊃ q) ⊃ (✸ip ⊃ ✸iq);
✸i(p ⊃ q) ⊃ (�ip ⊃ ✸iq);
�i(p ≡ q) ⊃ (�ip ≡ �iq).

(2) The following rules are admissible in every modal logic:

Monotonicity rules Replacement rules

A ⊃ B

�iA ⊃ �iB

A ≡ B

�iA ≡ �iB

A ⊃ B

✸iA ⊃ ✸iB

A ≡ B
.

✸iA ≡ ✸iB

(3) Some theorems of S4:

✸✸p ≡ ✸p;
� (�p ∨�q) ≡ �p ∨�q.

(4) A theorem of S4.2:

✸�(
∧

i

pi) ≡
∧

i

✸�pi.

Lemma 1.1.3 Some theorems of H:

(1) p ⊃ ¬¬p,

(2) ¬¬(p ∧ q) ≡ ¬¬p ∧ ¬¬q,

(3) ¬¬(p ≡ q) ⊃ (¬¬p ≡ ¬¬q),

(4) (p ⊃ q) ⊃ (¬q ⊃ ¬p),

(5)
r∧

i=1

((pi⊃q)⊃q)≡

((
r∧

i=1

pi⊃q

)
⊃q

)
,

(6) (p ⊃ ¬q) ≡ (¬¬p ⊃ ¬q),

(7) (p ⊃ ¬q) ≡ ¬(p ∧ q).

Lemma 1.1.4 (Propositional replacement rule) The following rule is ad-
missible in every modal or superintuitionistic logic:

A ≡ A′

[A/p]B ≡ [A′/p]B
.
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We can write this rule more loosely as

A ≡ A′

C(. . . A . . .) ≡ C(. . . A′ . . .)
,

i.e. in any formula C we can replace some occurrences of a subformula A with
its equivalent A′.

To formulate the next theorem, we introduce some notation. For anN -modal
formula B, r ≥ 0, let

�≤rB :=
∧

{�αB | α ∈ I∞N , l(α) ≤ r};

for a finite set of N -modal formulas ∆, let

�≤r∆ :=
∧

{�≤rB | B ∈ ∆}.

Theorem 1.1.5 (Deduction theorem)

(I) Let Σ be a superintuitionistic logic, Γ∪{A} a set of intuitionistic formulas.
Then:

A ∈ (Σ + Γ) iff (
∧

∆ ⊃ A) ∈ Σ for some finite ∆ ⊆ Sub(Σ).

(II) Let Λ be an N -modal logic, Γ ∪ {A} a set of N -modal formulas. Then
A ∈ (Λ + Γ) iff

(∧
�≤r∆ ⊃ A

)
∈ Λ for some r ≥ 0 and some finite ∆ ⊆ Sub(Γ).

(III) Let Λ be a 1-modal logic, Γ ∪ {A} ⊆ LP1. Then A ∈ (Λ + Γ) iff

(1) (
r∧

k=0

(
∧
�k∆) ⊃ A) ∈ Λ for some r ≥ 0 and some finite ∆ ⊆ Sub(Γ)

— in the general case;

(2) (
∧
�r∆ ⊃ A) ∈ Λ for some r ≥ 0 and some finite ∆ ⊆ Sub(Γ)

— provided T ⊆ Λ;

(3) (
∧

∆ ∧
∧
�∆ ⊃ A) ∈ Λ for some finite ∆ ⊆ Sub(Γ)

— provided K4 ⊆ Λ;

(4) (
∧
�∆ ⊃ A) ∈ Λ for some finite ∆ ⊆ Sub(Γ)

— provided S4 ⊆ Λ.

Similarly one can simplify the claim (2) for the case when Λ is an N -modal logic
containing TN , K4N , or S4N ; we leave this as an exercise for the reader. But
let us point out that for the case when S4N ⊆ Λ, N > 1, �α is not necessarily
an S4-modality, and it may happen that for any ∆, A ∈ (Λ + Γ) is not

equivalent to

(
N∧

i=1

∧
�i∆ ⊃ A

)
∈ Λ.
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Corollary 1.1.6

(1) For superintuitionistic logics:

(Σ + Γ) ∩ (Σ + Γ′) = Σ + {A ∨A′ | A ∈ Γ, A′ ∈ Γ′}

if formulas from Γ and Γ′ do not have common proposition letters.

(2) For N -modal logics:

(Λ + Γ) ∩ (Λ + Γ′) = Λ + {�αA ∨ �α′A′ | A ∈ Γ, A′ ∈ Γ′; α, α′ ∈ I∞N }

if formulas from Γ and Γ′ do not have common proposition letters.

(3) For 1-modal logics:

(Λ + Γ) ∩ (Λ + Γ′) = Λ + {�rA ∨ �sA′ | A ∈ Γ, A′ ∈ Γ′; r, s ≥ 0}

if formulas from Γ and Γ′ do not have common proposition letters.

In some particular cases this presentation can be further simplified:

(a) for logics above T:

(Λ + Γ) ∩ (Λ + Γ′) = Λ + {�rA ∨ �rA′ | A ∈ Γ, A′ ∈ Γ′; r ≥ 0};

(b) for logics above K4:

(Λ+Γ)∩(Λ+Γ′) = Λ+{�rA ∨�sA′ | A ∈ Γ, A′ ∈ Γ′; r, s ∈ {0, 1}};

(c) for logics above S4:

(Λ + Γ) ∩ (Λ + Γ′) = Λ + {�A ∨ �A′ | A ∈ Γ, A′ ∈ Γ′}.

Therefore we have:

Proposition 1.1.7

(1) The set of superintuitionistic logics S is a complete well-distributive lattice:

Λ ∩
∑

i∈I

Λi =
∑

i∈I

(Λ ∩ Λi).

Here the sum of logics
∑
i∈I

Λi is the smallest logic containing their union.

The set of finitely axiomatisable and the set of recursively axiomatisable
superintuitionistic logics are sublattices of S.

(2) The set of N -modal logics MN is a complete well-distributive lattice; the
set of recursively axiomatisable N -modal logics is a sublattice of MN .
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Proof In fact, for example, in the intuitionistic case, both parts of the equality
are axiomatised by the same set of formulas

{
A ∨B | A ∈ Λ, B ∈

⋃

i∈I

Λi

}
.

�

Remark 1.1.8 Although the set of all finitely axiomatisable 1-modal logics is
not closed under finite intersections [van Benthem, 1983], this is still the case
for finitely axiomatisable extensions of K4, cf. [Chagrov and Zakharyaschev,
1997].

Theorem 1.1.9 (Glivenko theorem) For any intermediate logic Σ

¬A ∈ H iff ¬A ∈ Σ iff ¬A ∈ CL.

For a syntactic proof see [Kleene, 1952]. For another proof using Kripke models
see [Chagrov and Zakharyaschev, 1997], Theorem 2.47.

Corollary 1.1.10 If A ∈ CL, then ¬¬A ∈ H.

Proof In fact, A ∈ CL implies ¬¬A ∈ CL, so we can apply the Glivenko
theorem. �

1.2 Algebraic semantics

For modal and intermediate propositional logics several kinds of semantics are
known. Algebraic semantics is the most general and straightforward; it inter-
prets formulas as operations in an abstract algebra of truth-values. Actually
this semantics fits for every propositional logic with the replacement property;
completeness follows by the well-known Lindenbaum theorem.

Relational (Kripke) semantics is nowadays widely known; here formulas are
interpreted in relational systems, or Kripke frames. Kripke frames correspond to
a special type of algebras, so Kripke semantics is reducible to algebraic. Neigh-
bourhood semantics (see Section 1.17) is in between relational and algebraic.

Let us begin with algebraic semantics.

Definition 1.2.14 A Heyting algebra is an implicative lattice with the least
element:

Ω = (Ω, ∧, ∨, →, 0).

More precisely, (Ω, ∧, ∨) is a lattice with the least element 0, and → is the
implication in this lattice, i.e. for any a, b, c

c∧ a ≤ b iff c ≤ (a→ b). (∗)

(Here ≤ is the standard ordering in the lattice, i.e. a ≤ b iff a∧ b = a.)

4Cf. [Rasiowa and Sikorski, 1963; Borceaux, 1994].
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Recall that negation in Heyting algebras is ¬a := a → 0 and 1 = a → a is
the greatest element.

Note that (∗) can be written as

a→ b = max{c | c ∧ a ≤ b}.

In particular,
a→ b = 1 iff a ≤ b.

Also recall that an implicative lattice is always distributive:

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c).

A lattice is called complete if joins and meets exist for every family of its
elements:

∨

j∈J

aj := min{b | ∀j ∈ J aj ≤ b},
∧

j∈J

aj := max{b | ∀j ∈ J b ≤ aj}.

A complete lattice is implicative iff it is well-distributive, i.e., the following
holds:

a∧


 ∨

j ∈ J

aj


 =

∨

j ∈ J

(a∧ aj).

So every complete well-distributive lattice can be turned into a Heyting algebra.
Let us prove two useful properties of Heyting algebras.

Lemma 1.2.2

c∧

∧

j ∈ J

(aj → bj) ≤
∧

j ∈ J

(aj → bj ∧ c).

Proof We have to prove

c∧

∧

j ∈ J

(aj → bj) ≤ ak → bk ∧ c,

which is equivalent (by 1.2.1(∗)) to

c∧ ak ∧

∧

j ∈ J

(aj → bj) ≤ bk ∧ c.

But this follows from
ak ∧

∧

j ∈ J

(aj → bj) ≤ bk.

The latter holds, since by 1.2.1(∗), it is equivalent to
∧

j ∈ J

(aj → bj) ≤ ak → bk.

�
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Lemma 1.2.3
u→

∧

i∈I

vi =
∧

i∈I

(u→ vi).

Proof (≤) (
u→

∧

i∈I

vi

)
∧ u ≤

∧

i∈I

vi ≤ vi,

hence
u→

∧

i∈I

vi ≤ u→ vi,

and thus
u→

∧

i∈I

vi ≤
∧

i∈I

(u→ vi).

(≥)

u∧

∧

i∈I

(u→ vi) ≤ u∧ (u→ vi) ≤ vi,

hence
u∧

∧

i∈I

(u→ vi) ≤
∧

i∈I

vi,

and thus ∧

i∈I

(u→ vi) ≤ u→
∧

i∈I

vi.

�

Lemma 1.2.4 ∧

i∈I

(vi → u) = (
∨

i∈I

vi → u).

Proof (≥)
vi ≤

∨
i∈I

vi implies

∨

i∈I

vi → u ≤ vi → u;

hence ∨

i∈I

vi → u ≤
∧

i∈I

(vi → u).

(≤) Since ∧

i∈I

(vi → u) ≤ vi → u,

it follows that for any i ∈ I

vi ∧

∧

i∈I

(vi → u) ≤ u.
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Hence
(
∨

i∈I

vi) ∧

∧

i∈I

(vi → u) =
∨

i∈I

(vi ∧

∧

i∈I

(vi → u)) ≤ u.

Eventually ∧

i∈I

(vi → u) ≤
∨

i∈I

vi → u.

�

A Boolean algebra is a particular case of a Heyting algebra, where a∨¬a = 1.
In this case ∨,∧,→,¬ are usually denoted by ∪,∩,⋑,−. Then we can consider
∪,∩,−,0,1 (and even ∪,−,0) as basic and define a ⋑ b := −a ∪ b.

We also use the derived operation (equivalence)

a↔b := (a→ b) ∧ (b→ a)

in Heyting algebras and its analogue

a ≏ b := (a ⋑ b) ∩ (b ⋑ a)

in Boolean algebras.

Definition 1.2.5 An N -modal algebra is a structure

Ω = (Ω, ∩, ∪, −, 0, 1,�1, . . . ,�N ),

such that its nonmodal part

Ω♭ := (Ω, ∩, ∪,−, 0, 1)

is a Boolean algebra, and �i are unary operations in Ω satisfying the identities:

�i(a ∩ b) = �ia ∩�ib,

�i1 = 1.

Ω is called complete if the Boolean algebra Ω♭ is complete.

We also use the dual operations

✸ia = −�i − a.

For 1-modal algebras we write �, ✸ rather than �1, ✸1 (cf. Section 1.1.1).

Definition 1.2.6 A topo-Boolean (or interior, or S4-) algebra is a 1-modal
algebra satisfying the inequalities

�a ≤ a, �a ≤ ��a.

In this case � is called the interior operation and its dual ✸ the closure opera-
tion. An element a is said to be open if �a = a and closed if ✸a = a.
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Proposition 1.2.7 The open elements of a topo-Boolean algebra Ω constitute
a Heyting algebra:

Ω0 = (Ω0, ∩, ∪, →, 0),

in which a→ b = �(a ⋑ b). Moreover, if Ω is complete then Ω0 also is, and

∨

j ∈ J

aj =
⋃

j ∈ J

aj ,
∧

j ∈ J

aj = �


 ⋂

j ∈ J

aj




Proof Cf. [McKinsey and Tarski, 1944]; [Rasiowa and Sikorski, 1963]. �

Following [Esakia, 1979], we call Ω0 the pattern of Ω. It is known that every
Heyting algebra is isomorphic to some algebra Ω0 [Rasiowa and Sikorski, 1963]

Definition 1.2.8 A valuation in an N -modal algebra Ω is a map ϕ : PL −→ Ω.
The valuation ϕ has a unique extension to all N -modal formulas such that

(1) ϕ(⊥) = 0;

(2) ϕ(A ∧B) = ϕ(A) ∩ ϕ(B);

(3) ϕ(A ∨B) = ϕ(A) ∪ ϕ(B);

(4) ϕ(A ⊃ B) = ϕ(A) ⋑ ϕ(B);

(5) ϕ(�iA) = �iϕ(A).

The pair (Ω, ϕ) is then called an (algebraic) model over Ω. An N -modal formula
A is said to be true in the model (Ω, ϕ) if ϕ(A) = 1 (notation: (Ω, ϕ) � A); A
is called valid in the algebra Ω (notation: Ω � A) if it is true in every model
over Ω.

Lemma 1.2.9 Let Ω be an N -modal algebra, S a propositional substitution.
Let ϕ, η be valuations in Ω such that for any B ∈ PL⌈k

(♣) η(B) = ϕ(SB).

Then (♣) holds for any N -modal k-formula B.

Proof Easy, by induction on the length of B. �

Lemma 1.2.10 (Soundness lemma) The set

ML(Ω) := {A ∈ LPN | Ω � A}

is a modal logic.
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Proof First note that ML(Ω) is substitution closed. In fact, assume Ω � A,
and let S be a propositional substitution. To show that Ω � SA, take an
arbitrary valuation ϕ in Ω, and consider a new valuation η according to (♣)
from Lemma 1.2.9. So we obtain

ϕ(SA) = η(A) = 1,

i.e. Ω � SA.
The classical tautologies are valid in Ω, because they hold in any Boolean

algebra. The validity of AKi follows by a standard argument. In fact, note that
in a modal algebra �i is monotonic:
(∗) x ≤ y ⇒ �ix ≤ �iy,
because x ≤ y implies

�ix = �i(x ∩ y) = �ix ∩�iy.

Now since

(a ⋑ b) ∩ a ≤ b,

by monotonicity (*), we have

�(a ⋑ b) ∩�a ≤ �b,

which implies

�(a ⋑ b) ≤ (�a ⋑ �b),

This yields the validity of AKi.
Finally, modus ponens and necessitation preserve validity, since in a modal

algebra 1 ≤ a implies a = 1, and �i1 = 1. �

Definition 1.2.11 ML(Ω) is called the modal logic of the algebra Ω.
We also define the modal logic of a class C of N -modal algebras

ML(C) :=
⋂

{ML(Ω) | Ω ∈ C}.

Note that ML(Ω) is consistent iff the algebra Ω is nondegenerate, i.e. iff
0 6= 1 in Ω.

Definition 1.2.12 A valuation in a Heyting algebra Ω is a map ϕ : PL −→ Ω.
It has a unique extension ϕI : LP0 −→ Ω such that

(1) ϕI(⊥) = 0;

(2) ϕI(A ∧B) = ϕI(A) ∧ ϕI(B);

(3) ϕI(A ∨B) = ϕI(A) ∨ ϕI(B);

(4) ϕI(A ⊃ B) = ϕI(A) → ϕI(B).
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As in the modal case, the pair (Ω, ϕ) is called an (algebraic) model over Ω.
An intuitionistic formula A is said to be true in (Ω, ϕ) if ϕI(A) = 1 (notation:
(Ω, ϕ) � A); A is called valid in the algebra Ω (notation: Ω � A) if it is true
in every model over Ω.

We easily obtain an intuitionistic analogue of Lemma 1.2.9:

Lemma 1.2.13 Let Ω be a Heyting algebra, S a propositional substitution. Let
ϕ, η be valuations in Ω such that for any B ∈ PL

(♣) ηI(B) = ϕI(SB).

Then (♣) holds for any intuitionistic formula B.

Similarly we have

Lemma 1.2.14 (Soundness lemma) For a Heyting algebra Ω, the set

IL(Ω) := {A ∈ LP0 | Ω � A}

is a superintuitionistic logic.

Definition 1.2.15 IL(Ω) is called the superintuitionistic logic of the algebra
Ω. Similarly to the modal case, we define the superintuitionistic logic of a class
C of Heyting algebras

IL(C) :=
⋂

{IL(Ω) | Ω ∈ C}.

Definition 1.2.16 A valuation ϕ in an S4-algebra Ω is called intuitionistic if
it is a valuation in Ω0 i.e. if its values are open.

Definition 1.2.17 Gödel–Tarski translation is the map (−)T from intuitionis-
tic to 1-modal formulas defined by the following clauses:

⊥T = ⊥;
qT = �q for every proposition letter q;
(A ∧B)T = AT ∧BT ;
(A ∨B)T = AT ∨BT ;
(A ⊃ B)T = �(AT ⊃ BT ).

Lemma 1.2.18 (�AT ≡ AT ) ∈ S4 for any intuitionistic formula A.

Proof Easy by induction; for the cases A = B ∨ C, A = B ∧ C use Lemma
1.1.2. �

Lemma 1.2.19 Let Ω be an S4-algebra.
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(1) Let ϕ, ψ be valuations in Ω such that for any q ∈ PL

ϕ(q) = �ψ(q).

Then for any intuitionistic formula A,

ϕI(A) = ψ(AT ).

In particular,
ϕI(A) = ϕ(AT ),

if ϕ is intuitionistic.

(2) For any intuitionistic formula A,

Ω0 � A iff Ω � AT .

Proof
(1) By induction. Consider only the case A = B ⊃ C. Suppose

ϕI(B) = ψ(BT ), ϕI(C) = ψ(CT ).

Then we have

ϕI(B ⊃ C) = ϕI(B) → ϕI(C) = ψ(BT ) → ψ(CT ) = �(ψ(BT ) ⋑ ψ(CT ))
= ψ(�(BT ⊃ CT )) = ψ((B ⊃ C)T ).

(2) (Only if.) Assume Ω0 � A. Let ψ be an arbitrary valuation in Ω, and let ϕ
be the valuation in Ω0 such that

ϕ(q) = �ψ(q)

for every q ∈ PL. By (1) and our assumption, we have:

ψ(AT ) = ϕI(A) = 1.

Hence Ω � AT .
(If.) Assume Ω � AT . By (1), for any valuation ϕ in Ω0 we have ϕI(A) =

ϕ(AT ) = 1. Hence Ω0 � A. �

Let us now recall the Lindenbaum algebra construction. For an N -modal
or superintuitionistic logic Λ, the relation ∼Λ between N -modal (respectively,
intuitionistic) formulas such that

A ∼Λ B iff (A ≡ B) ∈ Λ

is an equivalence.
Let [A] be the equivalence class of a formula A modulo ∼Λ.

Definition 1.2.20 The Lindenbaum algebra Lind(Λ) of a modal logic Λ is the
set LPN/ ∼Λ with the operations
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• [A] ∩ [B] := [A ∧B],

• [A] ∪ [B] := [A ∨B],

• −[A] := [¬A],

• 0 := [⊥],

• 1 := [⊤],

• �i[A] := [�iA].

Theorem 1.2.21 For an N -modal logic Λ

(1) Lind(Λ) is an N -modal algebra;

(2) ML(Lind(Λ)) = Λ.

Definition 1.2.22 The Lindenbaum algebra Lind(Σ) of a superintuitionistic
logic Σ, is the set LP0/ ∼Σ with the operations

• [A] ∧ [B] := [A ∧B],

• [A] ∨ [B] := [A ∨B],

• [A] → [B] := [A ⊃ B],

• 0 := [⊥].

Theorem 1.2.23 For a superintuitionistic logic Σ,

(1) Lind(Σ) is a Heyting algebra;

(2) IL(Lind(Σ)) = Σ.

Definition 1.2.24 A set of modal formulas Γ is valid in a modal algebra Ω
(notation: Ω � Γ) if all these formulas are valid; similarly for intuitionistic
formulas and Heyting algebras. In this case Ω is called a Γ-algebra. The set of
all Γ-algebras is called an algebraic variety defined by Γ.

Algebraic varieties can be characterised in algebraic terms, due to the well-
known Birkhoff theorem [Birkhoff, 1979] (which holds also in a more general
context):

Theorem 1.2.25 A class of modal or Heyting algebras is an algebraic variety
iff it is closed under subalgebras, homomorphic images and direct products.

Since every logic is complete in algebraic semantics, there is the following
duality theorem.

Theorem 1.2.26 The poset MN of N -modal propositional logics (ordered by
inclusion) is dually isomorphic to the set of all algebraic varieties of N -modal
algebras; similarly for superintuitionistic logics and Heyting algebras.
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1.3 Relational semantics (the modal case)

1.3.1 Introduction

First let us briefly recall the underlying philosophical motivation. For more
details, we address the reader to [Fitting and Mendelsohn, 2000]. In relational
(or Kripke) semantics formulas are evaluated in ‘possible worlds’ representing
different situations. Depending on the application area of the logic, worlds
can also be called ‘states’, ‘moments of time’, ‘pieces of information’, etc. Every
world w is related to some other worlds called ‘accessible from w’, and a formula
�A is true at w iff A is true at all worlds accessible from w; dually, ✸A is true
at w iff A is true at some world accessible from w.

This corresponds to the ancient principle of Diodorus Cronus saying that

The possible is that which either is or will be true

So from the Diodorean viewpoint, possible worlds are moments of time, with
the accessibility relation ≤ ‘before’ (nonstrict).

For polymodal formulas we need several accessibility relations corresponding
to different necessity operators.

For the intuitionistic case, Kripke semantics formalises the ‘historical ap-
proach’ to intuitionistic truth by Brouwer. Here worlds represent stages of our
knowledge in time. According to Brouwer’s truth-preservation principle, the
truth of every formula is inherited in all later stages. ¬A is true at w iff the
truth of A can never be established afterwards, i.e. iff A is not true at w and
always later. Similarly, A ⊃ B is true at w iff the truth of A implies the truth
of B at w and always later. See [Dragalin, 1988], [van Dalen, 1973] for further
discussion.

1.3.2 Kripke frames and models

Now let us recall the main definitions in detail.

Definition 1.3.1 An N -modal (propositional) Kripke frame is an (N+1)-tuple
F = (W,R1, . . . , RN ), such that W 6= ∅, Ri ⊆W ×W. The elements of W are
called possible worlds (or points), Ri are the accessibility relations.

Quite often we write u ∈ F rather than u ∈ W .
For a Kripke frame F = (W,R1, . . . , RN ) and a sequence α ∈ I∞N we define

the relation Rα on W :

Ri1...ik
:= Ri1 ◦ . . . ◦Rik

, Rf := IdW .

(Recall that f is a void sequence, IdW is the equality relation, see the Intro-
duction.)

Every N -modal Kripke frame F = (W,R1, . . . , RN ) corresponds to an N -
modal algebra

MA(F ) := (2W , ∩, ∪, −, ∅, W, �1, . . . ,�N ),
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where ∩, ∪, − are the standard set-theoretic operations on subsets of W , and

�iV := {x | Ri(x) ⊆ V }.

MA(F ) is called the modal algebra of the frame F .

Definition 1.3.2 A valuation in a set W (or in a frame with the set of worlds
W ) is a valuation in MA(F), i.e. a map θ : PL −→ 2W . A Kripke model over
a frame F is a pair M = (F, θ), where θ is a valuation in F . θ is extended to
all formulas in the standard way, according to Definition 1.2.8:

(1) θ(⊥) = ∅;

(2) θ(A ∧B) = θ(A) ∩ θ(B);

(3) θ(A ∨B) = θ(A) ∪ θ(B);

(4) θ(A ⊃ B) = θ(A) ⋑ θ(B);

(5) θ(�iA) = �iθ(A) = {u | Ri(u) ⊆ θ(A)}.

For a formula A, we also write: M,w � A (or just w � A) instead of w ∈ θ(A),
and say that A is true at the world w of the model M (or that w forces A).

The above definition corresponds to the well-known inductive definition of
forcing in a Kripke model given by (1)–(6) in the following lemma.

Lemma 1.3.3 (1) M,u � q iff u ∈ θ(q) (for q ∈ PL);

(2) M,u 6� ⊥;

(3) M,u � B ∧ C iff (M,u � B and M,u � C);

(4) M,u � B ∨ C iff (M,u � B or M,u � C);

(5) M,u � B ⊃ C iff (M,u � B implies M,u � C);

(6) M,u � �iB iff ∀v ∈ Ri(u) M, v � B;

(7) M,u � ¬B iff M,u 6� B;

(8) M,u � ✸iB iff ∃v ∈ Ri(u) M, v � B.

(9) M,u � �αB iff ∀v ∈ Rα(u) M, v � B;

(10) M,u � ✸αB iff ∃v ∈ Rα(u) M, v � B.

Definition 1.3.4 An m-bounded Kripke model over a Kripke frame F =
(W,R1, . . . , RN ) is a pair (F, θ), in which θ : {p1, . . . , pm} −→ 2W ; θ is called
an m-valuation. In this case θ is extended only to m-formulas, according to
Definition 1.3.2.
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Definition 1.3.5 A modal formula A is true in a model M (notation: M � A)
if it is true at every world of M ; A is satisfied in M if it is true at some world
of M. A formula is called refutable in a model if it is not true.

Definition 1.3.6 A modal formula A is valid in a frame F (notation: F � A)
if it is true in every model over F . A set of formulas Γ is valid in F (notation:
F � Γ) if every A ∈ Γ is valid. In the latter case we also say that F is a Γ-frame.
The (Kripke frame) variety of Γ (notation: V(Γ)) is the class of all Γ-frames.

A formula A is valid at a world x in a frame F (notation: F, x � A) if it is
true at x in every model over F ; similarly for a set of formulas.

A nonvalid formula is called refutable (in a frame or at a world).
A formula A is satisfiable at a world w of a frame F (or briefly, at F,w) if

there exists a model M over F such that M,w � A.

Since by Definitions 1.2.8 and 1.3.2, θ(A) is the same in F and in MA(F ),
we have

Lemma 1.3.7 For any modal formula A and a Kripke frame F

F � A iff MA(F ) � A.

Thus 1.2.10 implies:

Lemma 1.3.8 (Soundness lemma)

(1) For a Kripke frame F , the set

ML(F ) := {A | F � A}

is a modal logic.

(2) For a class C of N -modal frames, the set

ML(C) :=
⋂

{ML(F ) | F ∈ C}

is an N -modal logic.

Definition 1.3.9 ML(F ) (respectively, ML(C)) is called the modal logic of F
(respectively, of C), or the modal logic determined by F (by C), or complete
w.r.t. F (C).

A modal logic of the form ML(C) (for a class of Kripke frames C) is called
Kripke complete.

For a Kripke model M , the set

MT(M) := {A |M � A}

is called the modal theory of M .

MT(M) is not always a modal logic; it is closed underMP and�-introduction
but not necessarily under substitution.

The following is a trivial consequence of definitions and the soundness lemma.
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Lemma 1.3.10 For an N -modal logic Λ and a set of N -modal formulas Γ,
V(Λ + Γ) = V(Λ) ∩ V(Γ). In particular, V(KN + Γ) = V(Γ).

Let us describe varieties of some particular modal logics:

Proposition 1.3.11

• V(D) consists of all serial frames, i.e. of the frames (W,R) such that
∀x∃y xRy;

• V(T) consists of all reflexive frames;

• V(K4) consists of all transitive frames;

• V(S4) consists of all quasi-ordered (or pre-ordered) sets, i.e. reflexive
transitive frames;

• V(S4.1) consists of all S4-frames with McKinsey property:

∀x∃y (xRy&R(y) = {y});

• V(S4.2) consists of all S4-frames with Church–Rosser property (or con-
fluent, or piecewise directed):

∀x, y, z (xRy& xRz ⇒ ∃t (yRt & zRt)),

or equivalently,
R−1 ◦R ⊆ R ◦R−1;

• V(K4.3) consists of all piecewise linear (or nonbranching) K4-frames,
i.e. such that

∀x, y, z (xRy& xRz ⇒ (y = z ∨ yRz ∨ zRy)),

or equivalently
R−1 ◦R ⊆ IW ∪R ∪R−1;

• V(K4 +AWn) consists of all transitive frames of width ≤ n;5

• V(Grz) consists of all Nötherian posets, i.e. of those without infinite as-
cending chains x1R

−x2R
−x3 . . .;

6

• V(S5) consists of all frames, where accessibility is an equivalence relation.

Due to these characterisations, an N -modal logic is called reflexive (respec-
tively, serial, transitive) if it contains TN (respectively, DN , K4N ).

Definition 1.3.12 Let Λ be a modal logic.

5See Section 1.9.
6Recall that xR−y iff xRy & x 6= y, see Introduction.
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• Λ is called Kripke-complete if it is determined by some class of frames;

• Λ has the finite model property (f.m.p.) if it is determined by some class
of finite frames;

• Λ has the countable frame property (c.f.p.) if it is determined by some
class of countable frames.7

The following simple observation readily follows from the definitions.

Lemma 1.3.13

(1) A logic Λ is Kripke-complete (respectively, has the c.f.p./
f.m.p.) iff each of its non-theorems is refutable8 in some Λ-frame (re-
spectively, in a countable/finite Λ-frame).

(2) ML(V(Λ)) is the smallest Kripke-complete extension of Λ; so Λ is Kripke-
complete iff Λ = ML(V(Λ)).

All particular propositional logics mentioned above (and many others) are
known to be Kripke-complete. Kripke-completeness was proved for large families
of propositional logics; Section 1.9 gives a brief outline of these results. However
not all modal or intermediate propositional logics are complete in Kripke seman-
tics; counterexamples were found by S. Thomason, K. Fine, V. Shehtman, J.
Van Benthem, cf. [Chagrov and Zakharyaschev, 1997]. But incomplete propo-
sitional logics look rather artificial; in general one can expect that a ‘randomly
chosen’ logic is compete.

Nevertheless every logic is ‘complete w.r.t. Kripke models’ in the following
sense.

Definition 1.3.14 An N -modal Kripke model M is exact for an N -modal logic
Λ if Λ = MT(M).

Proposition 1.3.15 Every propositional modal logic has a countable exact
model.

This follows from the canonical model theorem by applying the standard trans-
lation, see below.

1.3.3 Main constructions

Definition 1.3.16 If F = (W,R1, . . . , RN ) is a frame, V ⊆W , then the frame

F ↾ V := (V,R1 ↾V, . . . , RN ↾V )

is called a subframe of F (the restriction of F to V ).

7‘countable’ means ‘of cardinality ≤ ℵ0’.
8i.e., not valid.
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If M = (F, θ) is a Kripke model, then

M ↾ V := (F ↾ V, θ ↾ V ),

where (θ ↾ V )(q) := θ(q) ∩ V for every q ∈ PL, is called its submodel (the
restriction to V ).

A set V ⊆W is called stable (in F ) if for every i, Ri(V ) ⊆ V . In this case
the subframe F ↾ V and the submodel M ↾ V are called generated.

Definition 1.3.17 F ′ = (V,R′
1, . . . , R

′
N ) is called a weak subframe of F =

(W,R1, . . . , RN ) if R′
i ⊆ Ri for every i and V ⊆ W . Then for a Kripke model

M = (F, θ), M ′ = (F ′, θ ↾ V ) is called a weak submodel. If also W = V , F ′ is
called a full weak subframe of F .

We use the signs ⊆, ⊳,
∼
⊂, j to denote subframes, generated subframes,

weak subframes, and full weak subframes, respectively; the same for submodels.

Definition 1.3.18 Let F, M be the same as in the previous definition. The
smallest stable subset W↑u containing a given point u ∈ W is called the cone
generated by u; the corresponding subframe F↑u := F ↾ (W↑u) is also called
the cone (in F ) generated by u, or the subframe generated by u; similarly for
the submodel M↑u := M ↾ (W↑u). A frame F (respectively, a Kripke model M)
is called rooted (with the root u) if F = F↑u (respectively, M = M↑u).

We skip the simple proof of the following

Lemma 1.3.19 W↑u = R∗(u), where R∗ is the reflexive transitive closure of
(R1 ∪ . . . ∪RN ), i.e. R∗ =

⋃
α∈I∞

N

Rα.

Definition 1.3.20 A path of length m from u to v in a frame F = (W,R1, . . . ,
RN ) is a sequence (u0, j0, u1, . . . , jm−1, um) such that u0 = u, um = v, and
uiRji

ui+1 for i = 0, . . . ,m− 1.

For the particular case N = 1 we have ji = 1 for any i, so we can denote a path
just by (u0, u1, . . . , um).

Now Lemma 1.3.19 can be reformulated as follows:

Lemma 1.3.21 x ∈ F↑u iff there exists a path from u to x in F .

Definition 1.3.22 The temporalisation of a propositional Kripke frame F =
(W,R1, . . . , RN ) is the frame F± := (W,R1, . . . , RN , R

−1
1 , . . . , R−1

N ). A non-
oriented path in F is a path in F±.

Definition 1.3.23 Let F = (W,R1, . . . , RN ) be a propositional Kripke frame.
A subset V ⊆ W is called connected (in F ) if it is stable in F±, i.e. both Ri-
and R−1

i -stable for every i = 1, . . . , N . F itself is called connected if W is
connected in F . A cone in F± (as a subset) is called a (connected) component
of F .
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Lemma 1.3.24

(1) The component containing x ∈ F (i.e. the cone F± ↑ x) consists of all
y ∈ F such that there exists a non-oriented path from x to y.

(2) The components of F make a partition.

Proof
(1) Readily follows from Lemma 1.3.21.
(2) Follows from (1) and the observation that

{(x, y) | there exists a nonoriented path from x to y}

is an equivalence relation on W . �

The following is well-known:

Lemma 1.3.25 (Generation lemma) Let V be a stable subset in F,
M = (F, θ) a Kripke model. Then

(1) For any u ∈ V , for any modal formula A,

M ↾ V, u � A iff M,u � A;

(2) ML(F ) ⊆ ML(F ↾ V ).

The same holds for bounded models, with obvious changes.
We also have:

Lemma 1.3.26 (1) ML(F ) =
⋂

u∈F

ML(F↑u).

(2) MT(M) =
⋂

u∈M

MT(M ↑u).

Proof

(1) By Lemma 1.3.25(2), ML(F ) ⊆ ML(F↑u) for any u ∈ F , and thus

ML(F ) ⊆
⋂

u∈F

ML(F↑u).

Now let A 6∈ ML(F ). Then, by definition, there is a Kripke model M over
F and a world u such that M,u 6�A. By Lemma 1.3.25(1) M↑u, u 6� A,
and so F↑u 6� A.

(2) By 1.3.25(1), MT(M) ⊆ MT(M ↑ u), so

MT(M) ⊆
⋂

u∈M

MT(M ↑ u).

On the other hand, if A 6∈ MT(M), then M,u 6� A for some u ∈M ; hence
M ↑ u, u 6� A by 1.3.25 (1), thus A 6∈ MT(M ↑ u).
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�

Definition 1.3.27 The disjoint sum (or disjoint union) of a family of frames
Fj = (Wj , R1j , . . . , Rnj), for j ∈ J , is the frame

⊔
j∈J

Fj := (W,R1, . . . , RN ),

where
W =

⊔

j∈J

Wj :=
⋃

j∈J

(Wj × {j}),

(x, j)Ri(y, j
′) iff j = j′ & xRijy.

Obviously, in this case F ′
i :=

(
⊔

j∈J

Fj

)
↾ (Wi ×{i}) is a generated subframe

of
⊔

j∈J

Fj isomorphic to Fi.

Hence we obtain

Lemma 1.3.28 ML

(
⊔

j∈J

Fj

)
=
⋂

j∈J

ML(Fj).

Proof Let F :=
⊔

j∈J

Fj . By Lemma 1.3.26,

ML(F ) =
⋂

v∈F

ML(F↑v) =
⋂

j∈J

⋂

u∈Fj

ML(F↑(u, j)).

But the embedding of Fj in F yields an isomorphism Fj↑u ∼= F↑(u, j), hence

⋂

u∈Fj

ML(F↑(u, j)) =
⋂

u∈Fj

ML(Fj↑u) =
⋂

j∈J

ML(Fj)

by Lemma 1.3.26, which implies the main statement. �

Remark 1.3.29 One can show that MA

(
⊔

j∈J

Fj

)
∼=
∏

j∈J

MA(Fj). One can

also show that ML

(
∏

j∈J

Ωj

)
=
⋂

j∈J

ML(Ωj) for a family of modal algebras

(Ωj)j∈J . Together with Lemma 1.3.7, this yields an alternative proof of 1.3.28.

Definition 1.3.30 Let F = (W,R1, . . . , RN ), F ′ = (W,R′
1, . . . , R

′
N ) be two

frames. A map f : W → W ′ is called a morphism from F to F ′ (notation:
f : F −→ F ′) if it satisfies the following conditions:

(1) ∀u, v ∈W ∀i (uRiv ⇒ f(u)R′
if(v)) (monotonicity);

(2) ∀u ∈W ∀v′ ∈W ′ ∀i (f(u)R′
iv

′ ⇒ ∃v (uRiv & f(v) = v′)) (lift property).

A surjective morphism is called a p-morphism (notation: f : F ։ F ′).
f is called an isomorphism from F onto F ′ (notation: f : F ∼= F ′) if it is a

monotonic bijection and f−1 is also monotonic.
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As usual, F and F ′ are called isomorphic (notation: F ∼= F ′) if there exists
an isomorphism from F onto F ′.

We write F ։ F ′ if there exists a p-morphism from F onto F ′.
Note that the conjunction (1) & (2) is equivalent to ‘cone preservation’:

∀u∀i f(Ri(u)) = R′
i(f(u)).

Definition 1.3.31 Let M = (F, θ), M ′ = (F ′, θ′) be two Kripke models. A
(p-)morphism (respectively, an isomorphism) of frames f : F −→ F ′ is said
to be a (p-)morphism (respectively, an isomorphism) from M (on)to M ′ if for
every q ∈ PL, u ∈W

M,u � q iff M ′, f(u) � q.

As in the case of frames, morphisms of models are denoted by −→, p-morphisms
by ։, isomorphisms by ∼=.

Lemma 1.3.32

(1) The composition of frame morphisms F −→ F ′ and F ′ −→ F ′′ is a
frame morphism F −→ F ′′; similarly for p-morphisms of frames and for
(p-)morphisms of Kripke models.

(2) A subframe F ′ ⊆ F is generated iff the inclusion map is a morphism
F ′ −→ F ; similarly for Kripke models.

(3) A restriction of a frame morphism to a generated subframe is a frame
morphism and moreover, a restriction to a cone is a p-morphism onto a
cone; similarly for Kripke models.

(4) ∼= is an equivalence relation between Kripke frames; the same for Kripke
models.

Proof

(1) Easily follows from cone preservation.

(2) In fact, the cone preservation for j is equivalent to R′(x) = R(x) for
x ∈ F ′.

(3) Follows from (1) and (2); note that the restriction of f : F −→ G to
F ′ ⊆ F is the composition f · j, where j : F ′ −→ F is the inclusion map.
The image of a cone is a cone by cone preservation.

(4) Trivial, since a composition of isomorphisms is an isomorphism.

�

Exercise 1.3.33 Show that every p-morphism f : F ։ F ′ maps a generated
subframe of F onto a generated subframe of F ′.
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Lemma 1.3.34 (Morphism lemma)

(1) Every morphism of Kripke models is reliable, i.e. if f : M −→ M ′, then
for any u ∈M , for any modal formula A,

M,u � A iff M ′, f(u) � A.

(2) If f : M ։M ′, then for any modal formula A,

M � A iff M ′ � A.

(3) If F ։ F ′ then ML(F ) ⊆ ML(F ′).

Proposition 1.3.35 Every variety V(Γ) is closed under generated subframes,
p-morphic images, and disjoint sums.

Proof Follows from 1.3.25, 1.3.28 and 1.3.34. �

Remark 1.3.36 This proposition resembles the ‘only if’ part of the Birkhoff
theorem 1.2.25. The analogy becomes clear if we note the duality between
Kripke frames and their modal algebras — generated subframes correspond to
homomorphic images of algebras, p-morphic images to subalgebras, and disjoint
sums to direct products. However the converse to 1.3.35 is not true. A precise
model-theoretic characterisation of Kripke frame varieties (using ultrafilter ex-
tensions) was given by van Benthem, cf. [van Benthem, 1983], [Blackburn, de
Rijke and Venema, 2001]. We shall return to this topic in Volume 2.

Exercise 1.3.37 Show the following analogue of 1.2.26: the poset of Kripke-
complete N -modal propositional logics is dually isomorphic to the poset of all
N -modal Kripke frame varieties.

Proposition 1.3.38 Let (Fi | i ∈ I) be a family consisting of all different
components of a propositional Kripke frame F . Then F ∼=

⊔
i∈I

Fi.

Proof An isomorphism is given by the map f sending x to (x, i) whenever
x ∈ Fi. This map is well-defined, since different components are disjoint by
1.3.24.

If xRjy and x ∈ Fi, then y ∈ Fi as well, so f(x) = (x, i)Rji(y, i) = f(y).
The implication f(x)Rjif(y) ⇒ xRjy is trivial. �

Proposition 1.3.39 Let (Fi | i ∈ I) be a family of all different components of
a propositional Kripke frame F .

Then

(1) for any morphism f : F → G, every fi := f ↾ Fi is a morphism;

(2) for any family of morphisms fi : Fi −→ G, the joined map f :=
⋃
i∈I

fi is a

morphism F −→ G.
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Proof

(1) Since every component is a generated subframe, this follows from Lemma
1.3.32(3).

(2) Let Rj be a relation in F, Sj the corresponding relation in G. For x ∈ Fi

we have Rj(x) ⊆ Fi, so

f [Rj(x)] = fi[Rj(x)] = Sj(fi(x)) = Sj(f(x)),

since f ↾ Fi = fi and fi is a morphism.

�

In this book we are especially interested in K4- and S4-frames; by Lemma
1.3.11, K4-frames are transitive, and S4-frames are quasi-ordered sets.

For a K4-frame (W,R) there is the equivalence relation ≈R:= (R ∩ R−1) ∪
IdW in W ; its equivalence classes are called (R-)clusters, and we can consider
the quotient set as a frame.

Definition 1.3.40 Let F = (W,R) be a K4-frame. Let W∼ := W/ ≈R be the
set of all R-clusters, and let u∼ be the cluster of u. Then the frame F∼ :=
(W∼, R∼), where R∼ := {(u∼, v∼) | uRv}, is called the skeleton of F .

A singleton cluster {u} is called trivial (respectively, degenerate) if u is
reflexive (respectively, irreflexive).

Lemma 1.3.41

(1) R∼ is transitive and antisymmetric; if R is reflexive, then R∼ is a partial
order.

(2) The map u 7→ u∼ is a p-morphism from F onto F∼.

Proof Straightforward. �

Lemma 1.3.42 If f : F ։ G and F is connected,then G is connected.

Proof If (u0, j0, . . . , jm−1, um) is a path from u to v in F , then (f(u0), j0, . . . ,
f(um)) is a path from f(u) to f(v) in G. �

1.3.4 Conical expressiveness

Definition 1.3.43 An N -modal propositional logic L is called conically ex-
pressive if there exists a propositional N -modal formula C(p) with a single
proposition letter p such that for any propositional Kripke model M with M �
L, for any u ∈M ,

M,u � C(p) ⇔M ↑u � p.

Obviously, an extension of a conically expressive logic (in the same language)
is conically expressive. A simple example of a conically expressive logic is K4;
the corresponding C(p) is p ∧�p.
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Exercise 1.3.44

(a) Show that K +�2p ⊃ �4p is conically expressive.

(b) Recall that K4.t = K2 + ✸1�2 ⊃ p + ✸1�1p ⊃ p + �1p ⊃ �2
1p. Show

that K4.t +�1�2p ⊃ �2�1p is conically expressive.

Now given C from Definition 1.3.43, for a formula A ∈ LPN put

�∗A := [A/p]C(p).

Let us show that �∗ behaves like an S4-modality9 in logics containing L.

Lemma 1.3.45 For any N -modal Kripke model M such that M � Λ for any
u ∈M , for any N -modal formula A

M,u � �∗A⇔ ∀v ∈ R∗(u)M, v � A,

where R∗ is the same as in Lemma 1.3.19.

Proof Similar to soundness of the substitution rule. Let M0 be a Kripke
model over the same frame as M , such that for any v ∈M

M0, v � p⇔M, v � A.

Then by induction we obtain for any propositional formula X(p) for any v ∈M .

M0, v � X(p) ⇔M, v � X(A).

Hence for any u ∈M and for C from 1.3.43

M0, u � C(p) ⇔M,u � C(A) (= �∗A),

and so by 1.3.43,
M,u � �∗A⇔M0 ↑u � p.

But by Lemmas 1.3.19, 1.3.25(1) and the choice of M0

M0 ↑u � p⇔ ∀v ∈ R∗(u) M0, v � p⇔ ∀v ∈ R∗(u) M, v � A.

Hence the claim follows. �

The proofs of the next two lemmas use the Canonical model theorem 1.7.3.

Lemma 1.3.46 If a modal logic Λ is conically expressive and �∗ is defined as

above, then the rule
A

�∗A
is admissible in Λ.

Proof Since by 1.7.3, Λ has an exact model, it suffices to show that for any
Kripke model M , for any A, M � A implies M � �∗A. But this readily follows
from 1.3.45. �

9�∗ is called the master modality.
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Lemma 1.3.47 If an N -modal propositional logic Λ is conically expressive,
then the following formulas are in Λ (for k ≤ N):

(1) �∗(p ⊃ q) ⊃• �
∗p ⊃ �∗q;

(2) �∗p ⊃ p;

(3) �∗p ⊃ �∗�∗p;

(4) �∗p ⊃ �k�
∗p;

(5) �∗p ⊃ �kp,

(6) �∗p ⊃ �αp, for any α ∈ I∞N .

Proof Again we can consider an exact model and show that these formulas
are true at every world. This easily follows from 1.3.45, the reflexivity and the
transitivity of R∗, and the inclusions R∗ ⊇ Rk ◦R∗, Rk ⊆ R∗. �

Proposition 1.3.48 Let Λ be a conically expressive N -modal logic. Then there
exists r ≥ 0 such that Λ ⊢ �∗p ≡ �≤rp.

Proof By 1.3.47(6), Λ ⊢ �∗p ⊃ �αp, and thus Λ ⊢ �∗p ⊃ �≤rp by the
admissible classical rule

X ⊃ Y, X ⊃ Z

X ⊃ Y ∧ Z
.

To prove the converse (for some r), we apply the strong completeness of KN

(cf. 1.7.5, 1.7.8). Suppose Λ 6⊢ �≤rp ⊃ �∗p for any r, so every set

{�αp | |α| ≤ r, α ∈ I∞N } ∪ {¬�∗p}

is Λ-consistent. Then every finite subset of

{�αp | α ∈ I∞N } ∪ {¬�∗p}

is Λ-consistent, and thus the latter set is Λ-consistent. By the strong complete-
ness, there exists a Kripke model M with a world x such that

M,x � �αp for any α ∈ I∞N , (1.1)

M,x � ¬�∗p (1.2)

By 1.3.3(9), (1.1) implies M, y � p for any y ∈ Rα(x), and thus for any y ∈
R∗(x), by 1.3.19. This contradicts (1.2), by 1.3.45.

Therefore Λ ⊢ �≤rp ⊃ �∗p for some r. �

Proposition 1.3.49 For an N -modal logic Λ, the following properties are equiv-
alent:

(1) Λ is conically expressive;
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(2) there exists r ≥ 0 such that Λ ⊢ �≤rp ⊃ �k�
≤rp for any k ∈ IN ;

(3) there exists r ≥ 0 such that Λ ⊢ �≤rp ≡ �≤r+1p.

Proof (1) ⇒ (2) readily follows from 1.3.48 and 1.3.47(4).

(2) ⇒ (3). Assume (2). By definition,

Λ ⊢ �≤r+1p ≡ �≤rp ∧
∧

{�αp | α ∈ Ir+1
N }. (4)

The latter conjunct can be presented as

∧
{�k�βp | k ∈ IN , β ∈ Ir

N},

so (since �k distributes over conjunction) it is equivalent to

N∧

k=1

�k(
∧

{�βp | β ∈ Ir
N},

which follows from
N∧

k=1

�k�
≤rp, and thus from �≤rp (under assumption (2)).

Hence by applying (4), we obtain (3).

(3) ⇒ (1). Suppose (3). We claim that for any Kripke model M , M � Λ
implies

M,u � �≤rp⇐⇒M↑u � p. (5)

In fact, by 1.3.25(1), 1.3.19 we have

M↑u � p⇐⇒ ∀v ∈ R∗(u) M, v � p⇐⇒ ∀α ∈ I∞N M,u � �αp.

Hence (⇐=) in (5) follows readily.

To prove (=⇒), it suffices to show that for any α ∈ I∞N

Λ ⊢ �≤rp ⊃ �αp. (6)

This obviously holds for |α| ≤ r. For |α| > r we can argue by induction on |α|.
In fact, if (6) holds for α, then for any k ∈ IN

Λ ⊢ �k�
≤rp ⊃ �kαp.

From (3) it follows that

Λ ⊢ �≤rp ⊃ �k�
≤rp,

and thus

Λ ⊢ �≤rp ⊃ �kαp,

i.e. (6) holds for kα. �
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Theorem 1.3.50 (Deduction theorem for conically expressive modal logics)
Let Λ be a conically expressive N -modal logic, Γ ∪ {A} a set of N -modal for-
mulas. Then

Λ + Γ ⊢ A iff Λ ⊢
∧
�∗∆ ⊃ A for some finite ∆ ⊆ Sub(Γ),

where �∗∆ := {�∗B | B ∈ ∆}.

Proof By 1.1.5 (II),

Λ + Γ ⊢ A iff Λ ⊢
∧
�≤r∆ ⊃ A for some r ≥ 0 and some finite ∆ ⊆ Sub(Γ).

By 1.3.47(6),

Λ ⊢
∧
�∗∆ ⊃

∧
�≤r∆,

so
Λ + Γ ⊢ A⇒ Λ ⊢

∧
�∗∆ ⊃ A for some finite ∆ ⊆ Sub(Γ).

The converse also holds, since

Λ ⊢
∧
�∗∆ ≡

∧
�≤r∆

for some r, by 1.3.48. �

This theorem clearly implies 1.1.5 (III)(3), 1.1.5 (III)(4). The following corollary
generalises the corresponding items from 1.1.6.

Corollary 1.3.51 Let Λ be a conically expressive modal logic. Then

(Λ + Γ) ∩ (Λ + Γ′) = Λ + {�∗A ∨ �∗A′ | A ∈ Γ, A′ ∈ Γ′}

if formulas from Γ and Γ′ do not have common proposition letters.

Proof Let Λ1 be the right hand of this equality. By 1.1.6,

(Λ + Γ) ∩ (Λ + Γ′) = Λ + {�αA ∨ �βA
′ | A ∈ Γ, A′ ∈ Γ′; α, β ∈ I∞N }.

By 1.3.47(6),
Λ ⊢ �∗A ∨�∗A′ ⊃ �αA ∨ �βA

′,

hence
(Λ + Γ) ∩ (Λ + Γ′) ⊆ Λ1.

The other way round, by 1.3.48, for some r

Λ ⊢ �∗A ≡
∧

{�αA | |α| ≤ r}, �∗A′ ≡
∧

{�βA
′ | |β| ≤ r},

and thus
Λ ⊢ �∗A ∨�∗A′ ≡

∧
{�αA ∨ �βA

′ | |α|, |β| ≤ r}.

Hence
Λ1 ⊆ (Λ + Γ) ∩ (Λ + Γ′).

�
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1.4 Relational semantics (the intuitionistic case)

Definition 1.4.1 Assume that F = (W,R) is an S4-frame, i.e. MA(F ) is a
topo-Boolean algebra. Then the algebra of its open elements (or, equivalently,
of stable subsets of F )

HA(F ) := MA(F )0

is called the Heyting algebra of F .
S4-frames are also called intuitionistic propositional.
An intuitionistic valuation in F is defined as a valuation in HA(F ), i.e. as a

valuation in W with the following truth-preservation(or monotonicity) property
(for every q ∈ PL):

(TP0) ∀u, v ∈ W (uRv & u ∈ θ(q) ⇒ v ∈ θ(q)).

The corresponding Kripke model M = (F, θ) is also called intuitionistic. θ is
extended to the map θI : IF −→ HA(F ) according to Definition 1.2.12.

Definition 1.4.2 For an intuitionistic Kripke model M = (W,R, θ) we define
the intuitionistic forcing relation between worlds and intuitionistic formulas as
follows:

M,u  A := u ∈ θI(A).

Now we readily obtain an alternative inductive definition of intuitionistic
forcing, cf. Lemma 1.3.3.

Lemma 1.4.3 Intuitionistic forcing has the following properties:

• M,u  q iff u ∈ θ(q) (for q ∈ PL);

• M,u 6 ⊥;

• M,u  B ∧ C iff M,u  B & M,u  C;

• M,u  B ∨ C iff M,u  B ∨M,u  C;

• M,u  B ⊃ C iff ∀v ∈ R(u) (M, v  B ⇒M, v  C);

• M,u  ¬B iff ∀v ∈ R(u) M, v 6 B;

• M,u  B ≡ C iff ∀v ∈ R(u) (M, v  B ⇔M, v  C).

Lemma 1.4.4 In intuitionistic Kripke models the truth-preservation holds for
any formula A:

(TP ) ∀u, v ∈ F (uRv & M,u  A⇒M, v  A).

Proof Trivial, since θI(A) is stable. �

Definition 1.4.5 An intuitionistic formula A is said to be valid in an S4-frame
F (notation: F  A) if HA(F )  A, i.e. if A is true in every intuitionistic model
over F.
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Similarly, one can reformulate the definitions of satisfiability, etc. (1.3.5, 1.3.6)
for the intuitionistic case.

We also have a relational analogue of Lemma 1.2.19, for which we need the
following

Definition 1.4.6 Let F be an S4-frame, M a Kripke model over F . The pat-
tern of M is the Kripke model M0 over F such that for any u ∈ F, q ∈ PL

M0, u � q iff M,u � �q.

Obviously, M0 is an intuitionistic Kripke model; M0 = M if M is itself
intuitionistic.

Lemma 1.4.7 Under the conditions of Definition 1.4.6, we have

(1) for any u ∈ F and intuitionistic formula A

M0, u  A iff M,u � AT ,

(2) F  A iff F � AT .

Proof Obvious from 1.2.19. �

Together with Lemma 1.2.14 and the trivial observation that F 6 ⊥, this implies

Lemma 1.4.8 (Soundness lemma) Let F be an S4-frame. Then the set of
all intuitionistic formulas valid in F is an intermediate logic.

This logic is called the intermediate logic of F and denoted by IL(F ).
For a set of intuitionistic formulas Γ, an intuitionistic Γ-frame is an intu-

itionistic propositional frame, in which Γ is intuitionistically valid. The class
of all these frames is called the intuitionistic (Kripke frame) variety of Γ and
denoted by VI(Γ).

Definition 1.3.9 is obviously transferred to the intuitionistic case. Respec-
tively the notation ML, MT changes to IL, IT. Lemmas 1.3.10 and 1.3.13
and Proposition 1.3.15 also have intuitionistic versions; the reader can easily
formulate them.

Lemma 1.4.9 Let F be an S4-frame, M an intuitionistic model over F .

(1) If M1 is a generated submodel of M , then M1 also is intuitionistic, and
for any A ∈ LP0, u ∈M1

M1, u  A iff M,u  A.

(2) If F1 is a generated subframe of F then

IL(F ) ⊆ IL(F1).
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Proof
(1) From the generation lemma 1.3.25 and the definition of intuitionistic forcing
(1.4.1).
(2) From Lemma 1.3.25(2) and Lemma 1.4.7(2). �

Lemma 1.4.10 Let F ′ be a subframe of a Kripke S4-frame F . Then every
intuitionistic valuation θ′ in F ′ can be extended to an intuitionistic valuation in
F .

Proof In fact, take a valuation θ in F such that θ(q) = R(θ′(q)) for any
q ∈ PL. �

The three subsequent lemmas readily follow from Lemmas 1.4.7, 1.3.26,
1.3.28 and 1.3.34.

Lemma 1.4.11 For an S4-frame F

IL(F ) =
⋂

u∈F

IL(F↑u).

Lemma 1.4.12 For S4-frames Fi, i ∈ I

IL

(
⊔

i∈I

Fi

)
=
⋂

i∈I

IL(Fi).

Lemma 1.4.13 (Morphism lemma) Let M, M ′ be intuitionistic Kripke mod-
els, and let F, F ′ be S4-frames.

(1) If f : M −→M ′, then f is reliable: for any u ∈M , for any intuitionistic
formula A,

M,u  A iff M ′, f(u)  A.

(2) If f : M −→M ′, then

M  A iff M ′  A.

(3) If F ։ F ′, then IL(F ) ⊆ IL(F ′).

Lemma 1.4.14 Let F be an S4-frame. Then

IL(F ) = IL(F∼).

Proof If ϕ is an intuitionistic valuation in F , consider the valuation ϕ∼ in
F∼ defined by

ϕ∼(q) := {u∼ | u ∈ ϕ(q)}.

It is clear that ϕ∼ is well-defined and intuitionistic. By Lemma 1.3.41, it follows
that the map sending u to u∼ is a p-morphism of Kripke models, and thus

(F, ϕ) � A iff (F∼, ϕ∼) � A

by Lemma 1.4.13. To complete the proof, note that an arbitrary intuitionistic
valuation ψ in F∼ can be presented as ϕ∼, with
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ϕ(q) = {u | u∼ ∈ ψ(q)}.

�

For a class C of S4-frames let C∼ be the closure of {F∼ | F ∈ C} under
isomorphism, and let Posets be the class of all posets.

Lemma 1.4.15

(1) IL(C) = IL(C∼).

(2) VI(Γ)∼ = VI(Γ) ∩ Posets for any set of intuitionistic formulas Γ.

(3) Every Kripke-complete intermediate logic is determined by some class of
posets: L = IL(VI(L) ∩ Posets).

Proof

(1) Follows readily from 1.4.14.

(2) In fact, F  Γ ⇔ F∼  Γ by 1.4.14, so VI(Γ)∼ ⊆ VI(Γ). The other way
round, if a poset G ∈ VI(Γ), then G ∼= G∼ ∈ VI(Γ)∼.

(3) Note that L = IL(VI(L)) for a complete L and apply (1), (2).

�

So instead of VI(Γ) we can use the reduced intuitionistic variety

V∼(Γ) := VI(Γ) ∩ Posets.

Now we obtain an analogue of 1.3.35:

Proposition 1.4.16 Intuitionistic Kripke frame varieties and reduced intu-
itionistic Kripke frame varieties are closed under generated subframes, p-morphic
images, and disjoint sums.

Proof For intuitionistic varieties this follows from 1.4.9, 1.4.12 and 1.4.13.
For reduced intuitionistic varieties we can also apply 1.4.15(2) and note that
the class of posets is closed under the same three operations. �

Let us describe reduced intuitionistic varieties for some intuitionistic formu-
las mentioned in section 1.1.

Proposition 1.4.17

• V∼(EM) = V∼(CL) consists of all trivial frames, i.e., frames of the form
(W, IdW );

• V∼(AJ) = V∼(HJ) = V(S4.2)∼ consists of all confluent posets;

• V∼(AZ) = V∼(LC) = V(S4.3)∼ consists of all non-branching posets;
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• V∼(APn) consists of all posets of depth ≤ n;10

• V∼(AIWn) consists of all posets of width ≤ n;11

• V∼(AGn) consists of all posets F such that for any x ∈ F ,
|HA(F ↑x)| ≤ n.

Definition 1.4.18 A quasi-morphism between S4-frames F = (W,R) and F ′ =
(W ′, R′) is a monotonic map h : W −→W ′ with the quasi-lift property:

∀x ∈W ∀y′ ∈ W ′ (h(x)R′y′ ⇒ ∃y (xRy & h(y) ≈R′ y′)).

For intuitionistic Kripke models M = (F, θ), M ′ = (F ′, θ′) a quasi-morphism
from M to M ′ is a quasi-morphism of their frames such that for any q ∈ PL

M, x  q iff M ′, h(x)  q.

A quasi-p-morphism is a surjective quasi-morphism.

The following is clear:

Lemma 1.4.19 A quasi-(p)-morphism of frames h : F −→ F ′ gives rise to
a quasi-(p)-morphism of their skeletons h∼ : F∼ ։ F ′∼ such that h∼(u∼) =
h(u)∼.

Quasi-morphisms are reliable for intuitionistic formulas:

Lemma 1.4.20

(1) If h is a quasi-morphism from M to M ′, then for any x ∈ M , for any
intuitionistic formula A,

M,x  A iff M ′, h(x)  A.

(2) If there exists a quasi-p-morphism from F onto F ′ then IL(F ) ⊆ IL(F ′).

Proof By Lemmas 1.4.13 and 1.4.14. �

1.5 Modal counterparts

The following lemma can be easily proved by induction.

Lemma 1.5.1 Let S = [C/p] be an intuitionistic substitution, ST := [CT /p].
Then S4 ⊢ (SA)T ≡ STAT for any intuitionistic formula A.

This lemma implies

10See Section 1.15.
11See Section 1.9.
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Proposition 1.5.2 For any 1-modal logic Λ ⊇ S4 the set

TΛ := {A ∈ LP0 | AT ∈ Λ}

is a superintuitionistic logic.

Lemma 1.5.3 For any S4-algebra Ω, TML(Ω) = IL(Ω0).

Proof This is a reformulation of 1.2.19(2). �

Definition 1.5.4 The above defined logic TΛ is called the superintuitionistic
fragment of Λ; the logic Λ is called a modal counterpart of TΛ.

For a set Γ of intuitionistic formulas put ΓT := {AT | A ∈ Γ}.

Theorem 1.5.512 Every propositional superintuitionistic logic L = H + Γ has
the smallest modal counterpart: τ(L) := S4 + ΓT .

Theorem 1.5.613 Every propositional superintuitionistic logic has the greatest
modal counterpart. In particular, the greatest modal counterpart of H is Grz.

The greatest modal counterpart of L is denoted by σ(L).

Theorem 1.5.7 (Blok–Esakia)

(1) σ(H + Γ) = Grz + ΓT .

(2) The correspondence between superintuitionistic logics and their greatest
modal counterparts is an order isomorphism between superintuitionistic
logics and modal logics above Grz.

See [Chagrov and Zakharyaschev, 1997] for the proof of 1.5.7 (as well as 1.5.5
and 1.5.6).

Proposition 1.5.8 For a modal logic Λ ⊇ S4

(1) VI(TΛ) = V(Λ);

(2) if Λ is Kripke-complete, then TΛ is also Kripke-complete; more precisely,
TML(C) = IL(C).

Proof (1) We have

TΛ ⊆ ML(F ) iff Λ ⊆ TML(F ) = IL(F ).

The latter equality follows from 1.4.7.
(2) In fact, TML(C) =

⋂
F∈C

TML(F ) =
⋂

F∈C
IL(F ) = IL(C). The second

equality follows from 1.4.7. �

12[Dummett and Lemmon, 1959].
13[Maksimova and Rybakov, 1974], [Esakia, 1979].
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Lemma 1.5.9 For any intermediate logic L,

V(τ(L)) = VI(L).

Proof An exercise. �

Theorem 1.5.10 (Zakharyaschev) The map τ preserves Kripke-completeness;
so if an intermediate logic L is Kripke-complete, then

τ(L) = ML(VI(L)).

For the proof see [Chagrov and Zakharyaschev, 1997]

Remark 1.5.11 Unlike τ , the map σ does not preserve Kripke-completeness;
a counterexample can be found in [Shehtman, 1980].

1.6 General Kripke frames

‘General Kripke frame semantics’ from [Thomason, 1972]14 (cf. also [Chagrov
and Zakharyaschev, 1997]) is an extended version of Kripke semantics, which is
equivalent to algebraic semantics.

Definition 1.6.1 A general modal Kripke frame is a modal Kripke frame to-
gether with a subalgebra of its modal algebra, i.e. Φ = (F,W), where W ⊆
MA(F ) is a modal subalgebra. W is called the modal algebra of Φ and also
denoted by MA(Φ); its elements are called interior sets of Φ.

So for F = (W,R1, . . . , RN ), W should be a non-empty set of subsets closed
under Boolean operations and �i : V 7→ �iV (Section 1.3). Instead of �i one
can use its dual ✸iV := R−1

i V .

Definition 1.6.2 A valuation in a general Kripke frame Φ = (F,W) is a val-
uation in MA(Φ). A Kripke model over Φ is just a Kripke model M = (F, θ)
over F , in which θ is a valuation in Φ. A modal formula A is valid in Φ (no-
tation: Φ � A) if it is true in every Kripke model over Φ; similarly for a set of
formulas.

Analogous definitions are given in the intuitionistic case.

Definition 1.6.3 A general intuitionistic Kripke frame is Φ = (F,W), where
F is an intuitionistic Kripke frame, W ⊆ HA(F ) is a Heyting subalgebra. W is
called the Heyting algebra of Φ and denoted by HA(Φ); its elements are called
interior sets.

Definition 1.6.4 An intuitionistic valuation in a general intuitionistic Kripke
frame Φ = (F,W) is a valuation in HA(Φ). An intuitionistic Kripke model
over Φ is of the form M = (F, θ), where θ is an intuitionistic valuation in Φ.
An intuitionistic formula A is valid in Φ (notation: Φ  A) if it is true in every
intuitionistic Kripke model over Φ; similarly for a set of formulas.

14In that paper it was called ‘first-order semantics’.
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Obviously we have analogues of 1.3.7, 1.3.8, 1.4.7 and 1.4.8:

Lemma 1.6.5 For any modal formula A and a general Kripke frame Φ

Φ � A iff MA(Φ) � A;

analogously, for intuitionistic A and Φ

Φ  A iff HA(Φ) � A;

Lemma 1.6.6

(1) For a general modal Kripke frame Φ the set

ML(Φ) := {A | Φ � A}

is a modal logic; if Φ is intuitionistic, then

IL(Φ) := {A | Φ  A}

is an intermediate logic, and moreover, IL(Φ) = TML(Φ).

(2) For a class C of N -modal general frames the set

ML(C) :=
⋂

{ML(Φ) | Φ ∈ C}

is an N -modal logic; if the frames are intuitionistic, then

IL(C) :=
⋂

{IL(Φ) | Φ ∈ C}

is an intermediate logic, and IL(C) = TML(C).

Lemma 1.6.7

(1) For an N -modal Kripke model M = (F, θ) the set of all definable sets
WM := {θ(A) | A ∈ LPn} is a subalgebra of MA(F ).

(2) Similarly, for an intuitionistic Kripke model M = (F, θ), WI
M = {θI(A) |

A ∈ LP0} is a subalgebra of HA(F ).

Proof (Modal case) In fact, by definition

θ(¬A) = −θ(A), θ(A ∧B) = θL(A) ∩ θL(B), θ(�iA) = �iθ(A).

�

So we define the corresponding general frames:

Definition 1.6.8 For a Kripke model M = (F, θ), the general frame GF (M) :=
(F,WM ) (or GF I(M) := (F,WI

M ) in the intuitionistic case) is called associated.
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Lemma 1.6.9 GF (M) � A iff all modal substitution instances of A are true
in M ; similarly for the intuitionistic case.

Proof (If.) For M = (F, θ), let η be a valuation in F such that η(pi) = θ(Bi)
for every i. An easy inductive argument shows that

η(A) = θ([B1, . . . , Bn/p1, . . . , pn]A)

for any n-formula A, cf. Lemma 1.2.9.
(Only if.) The same equality shows that for any modal (or intuitionistic)

substitution S, θ(SA) = η(A) for an appropriate valuation η in GF (M). �

Definition 1.6.10 If Φ = (F,W) is a general Kripke frame, F = (W,R1, . . . ,
RN ), V ⊆W , then we define the corresponding general subframe:

Φ ↾ V := (F ↾ V,W ↾V ),

where
W ↾V := {X ∩ V | X ∈ W}.

If V is stable, Φ ↾ V is called a generated (general) subframe. The cone gener-
ated by u in Φ is the subframe Φ↑u := Φ ↾ (W↑u).

The definition of a subframe is obviously sound, because W ↾ V is a modal
algebra of subsets of V with modal operations �iV X := �iX ∩ V .

The following is a trivial consequence of 1.3.25 and 1.3.26.

Lemma 1.6.11 For a general frame Φ,

(1) if V is a stable subset, then ML(Φ) ⊆ ML(Φ ↾ V );

(2) ML(Φ) =
⋂

u∈Φ

ML(Φ↑u).

Exercise 1.6.12 Define morphisms of general frames and prove their proper-
ties.

1.7 Canonical Kripke models

Definition 1.7.1 The canonical Kripke frame for an N -modal propositional
logic Λ is FΛ := (WΛ, R1,Λ, . . . , RN,Λ), where WΛ is the set of all Λ-complete
theories, xRi,Λy iff for any formula A, and �iA ∈ x implies A ∈ y.

The canonical model for Λ is MΛ = (FΛ, θΛ), where

θΛ(pi) := {x | pi ∈ x}.

Analogously, the canonical frame for a bounded modal logic Λ⌈m is FΛ⌈m :=
(WΛ⌈m, R1,Λ⌈m, . . . , RN,Λ⌈m), where WΛ⌈m is the set of all maximal Λ-consistent
sets of N -modal m-formulas,

xRi,Λ⌈my iff for any m-formula A, �iA ∈ x implies A ∈ x.

The canonical model for Λ⌈m is MΛ⌈m := (FΛ⌈m, θΛ⌈m), where θΛ⌈m(pi) =
θΛ(pi) for i ≤ m.
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Definition 1.7.2 The canonical frame for an intermediate propositional logic
Σ is FΣ := (WΣ, RΣ), where WΣ is the set of all Σ-complete intuitionistic
(double) theories, xRΣy iff x ⊆ y.

The canonical model for Σ is MΣ := (FΣ, θΣ), where

θΣ(pi) := {x | pi ∈ x}.

The corresponding definitions for bounded intermediate logics must be now
clear, so we skip them.

The following is well-known, cf. [Chagrov and Zakharyaschev, 1997], [Black-
burn, de Rijke and Venema, 2001].

Theorem 1.7.3 (Canonical model theorem) For any N -modal or interme-
diate logic Λ and m-formula A (of the corresponding kind):

(1) MΛ, x � A iff A ∈ x;

(2) MΛ⌈m, y � A iff A ∈ y;

(3) MΛ⌈m � A iff MΛ � A iff A ∈ Λ.

Definition 1.7.4 A modal or intermediate logic is called canonical if it is valid
in its canonical frame.

Remark 1.7.5 By soundness (1.3.8, 1.4.8) it follows that Λ = KN + Γ is
canonical iff FΛ � Γ, and similarly for Λ = H + Γ. In particular, the logics
KN , H are canonical.

Definition 1.7.6 A modal logic Λ is called strongly Kripke complete if every
Λ-consistent theory Γ is satisfiable in some Λ-frame, i.e., there exists a Λ-frame
F , a model M over F ,and a world x in M such that M,x � A for any A ∈ Γ
(which we denote by M,x � Γ).

Definition 1.7.7 An intermediate logic Λ is called strongly Kripke complete
if every Λ-consistent theory (Γ,∆) is satisfiable in some Λ-frame, i.e., there
exists a Λ-frame F , a model M over F ,and a world x in M such that M,x  A
for any A ∈ Γ and M,x 6 B for any B ∈ ∆.

Proposition 1.7.8 Every canonical modal or intermediate logic is strongly Kripke
complete.

Proof (Modal case.) If Γ is Λ-consistent, then Γ ⊆ x for some Λ-complete
theory x (by the Lindenbaum lemma 1.1.1). Then by 1.7.3, MΛ, x � Γ, while
FΛ is a Λ-frame by canonicity.

The intuitionistic case is similar. �

Lemma 1.7.9 Every strongly Kripke complete modal or intermediate logic is
Kripke complete.
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Proof (Modal case.) If A 6∈ Λ, then the theory {¬A} is Λ-consistent, so by
strong completeness, ¬A is satisfiable in a Λ-frame. Thus Λ is Kripke complete
by 1.3.13.

(Intuitionistic case.) If A 6∈ Λ, then the theory (∅, {A}) is Λ-consistent, so
(∅, {A}) is satisfiable in a Λ-frame. Now we can apply 1.3.13. �

Definition 1.7.10 The general canonical frame of an N -modal (respectively,
intuitionistic) logic Λ is ΦΛ := GF (MΛ) (respectively, ΦI

Λ := GF I(MΛ)).

Theorem 1.7.11 (General canonical model theorem) For a modal (respec-
tively, intermediate) propositional logic Λ

ML(ΦΛ) = Λ (respectively, IL(ΦΛ) = Λ).

Proof By Lemma 1.6.9, ML(ΦΛ) consists of all modal formulas A such that
MΛ � SA for any modal substitution S. By 1.7.3, the latter is equivalent to
SA ∈ Λ. Since Λ is substitution closed, it follows that ML(ΦΛ) = Λ. The
same argument works for the intuitionistic case. �

An alternative proof of 1.7.11 can be obtained from the algebraic complete-
ness theorem 1.2.21 and the following observation:

Proposition 1.7.12 MA(ΦΛ) ∼= Lind(Λ) for a modal logic Λ;
HA(ΦΣ) ∼= Lind(Σ) for an intermediate logic Σ.

Proof (Modal case.) The map γ : Lind(Λ) −→ MA(ΦΛ) sending [A] to
θΛ(A) is well-defined, since MΛ � A ≡ B whenever A ∼Λ B by Theorem 1.7.1.
γ is obviously surjective and preserves the modal algebra operations. In fact,

γ(�[A]) = γ([�A]) = θΛ(�A) = �θΛ(A)

according to Definitions 1.2.20 and 1.3.2, and similarly for the other operations.
Finally, note that

γ([A]) = γ([B]) iff θΛ(A) = θΛ(B) iff MΛ � A ≡ B iff (A ≡ B) ∈ Λ iff [A] = [B]

by 1.7.1 and the definitions. So γ is an isomorphism. �

Definition 1.7.13 A general frame Φ = ((W,R1, . . . , RN ),W) (modal or intu-
itionistic) is called descriptive if it satisfies the following conditions:

• Φ is differentiated (distinguishable): for any two different points x, y there
exists an interior set U ∈ W separating them, i.e. such that x ∈ U < y ∈
U ;

• tightness:
∀x, y, i (∀U ∈ W (x ∈ �iU ⇒ y ∈ U) ⇒ xRiy) (in the modal case),
∀x, y (∀U ∈ W (x ∈ U ⇒ y ∈ U) ⇒ xR1y) (in the intuitionistic case);
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• compactness:
every centered subset X ⊆ W (i.e. such that

⋂
X1 6= ∅ for any finite

X1 ⊆ X ) has a non-empty intersection (in the modal case);
if a pair (X ,Y) of subsets of W is centered (i.e.

⋂
X1 6⊆

⋃
Y1 for any

finite X1 ⊆ X , Y1 ⊆ Y), then
⋂
X 6⊆

⋃
Y (in the intuitionistic case).

A differentiated and tight general frame is called refined.

Lemma 1.7.14 A generated subframe of a refined frame is refined.

Proof Distinguishability is obviously preserved for subframes.
Let us check tightness in the modal case. We use the same notation as in

1.7.13. Suppose V ⊆W is stable, x, y ∈ V and

(1) ∀U ∈ W ↾ V (x ∈ �iV U ⇒ y ∈ U).

This is equivalent to

∀U ∈ W (x ∈ �i(U ∩ V ) ∩ V ⇒ y ∈ U ∩ V )

and thus (since V is stable and x, y ∈ V ) to

(2) ∀U ∈ W (x ∈ �iU ⇒ y ∈ U).

If Φ is tight, (2) implies xRiy, therefore (1) also implies xRiy, which means
tightness of Φ ↾ V . �

Remark 1.7.15 Compactness is not always preserved for generated subframes;
the reader can try to construct a counterexample.

Descriptive frames can also be characterised as canonical frames of modal
algebras. These frames resemble canonical frames of modal logics.

Recall that a (proper) filter in a Boolean algebra is a ≤-stable (proper) subset
closed under meets. A maximal filter is maximal among proper filters.

Definition 1.7.16 For an N -modal algebra Ω, consider the set Ω+ of its max-
imal filters with the accessibility relations:

xRiy iff ∀a (�ia ∈ x⇒ a ∈ y)

and with the interior sets of the form

h(a) := {x ∈ Ω+ | a ∈ x}

for all a ∈ Ω. The resulting general frame Ω+ := (Ω+, R1, . . . , RN ) is called the
canonical or the dual frame of Ω.

Recall that a (proper) prime filter in a Heyting algebra is a ≤-stable (proper)
subset X closed under ∧ and such that

a ∨ b ∈ X only if (a ∈ X or b ∈ X).
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Definition 1.7.17 For a Heyting algebra Ω, consider the set Ω+ of its prime
filters with the accessibility relation xRy iff x ⊆ y and with the interior sets
h(a) = {x ∈ Ω+ | a ∈ x} for a ∈ Ω. The general frame Ω+ := (Ω+, R) is called
the canonical or the dual frame of Ω.

Theorem 1.7.18 (Tarski–Jonsson)

(1) If Ω is a modal algebra, then MA(Ω+) ∼= Ω.

(2) If Ω is a Heyting algebra, then HA(Ω+) ∼= Ω.

A required isomorphism is the Stone map h from Definitions 1.7.16 and
1.7.17. In particular, for the Lindenbaum algebra we again obtain the frame
isomorphic to ΦΛ (with an obvious notion of isomorphism):

Theorem 1.7.19 For a modal or intermediate logic Λ

Lind(Λ)+ ∼= ΦΛ.

This is because the maximal (prime) filters of Lind(Λ) exactly correspond
to Λ-complete theories.

Theorem 1.7.20 A general Kripke frame is descriptive iff it is isomorphic to
some frame Ω+.

This result was proved in [Goldblatt, 1976] and earlier in [Esakia, 1974] for
S4-frames. For a more available proof see [Chagrov and Zakharyaschev, 1997].

The subsequent lemma follows from the above, but also has an independent
proof based on the properties of MΛ.

Lemma 1.7.21 Every general canonical frame ΦΛ is descriptive.

From the definitions it is evident that for any general Kripke frame (F,W),
ML(F ) ⊆ ML(F,W) (or IL(F ) ⊆ IL(F,W) in the intuitionistic case). More-
over, in many cases these two logics coincide.

Definition 1.7.22 A set of N -modal formulas Γ is called d-persistent (respec-
tively, r-persistent) if for any descriptive (respectively, refined) general frame
(F,W), (F,W) � Γ ⇒ F � Γ; similarly, for intuitionistic formulas.

The following observations are trivial consequences of soundness:

Lemma 1.7.23

(1) A modal or intermediate propositional logic is d-persistent (respectively, r-
persistent) iff it is axiomatisable by a d-persistent (respectively, r-persistent)
set.

(2) A sum of d-persistent (respectively, r-persistent) logics is d-persistent (re-
spectively, r-persistent).
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Proposition 1.7.24 Every d-persistent modal or intermediate logic is canoni-
cal, and therefore Kripke complete.

Proof (Modal case) ΦΛ � Λ by 1.7.11, and ΦΛ = (FΛ,WΛ) is descriptive by
1.7.21. So for a d-persistent Λ it follows that FΛ � Λ. �

Thus for propositional modal logics d-persistence implies canonicity and
canonicity implies Kripke completeness. The converse implications are not true
— however, all three properties are equivalent for elementary logics, by the
Fine–van Benthem theorem, see 1.8.3 below.

1.8 First-order translations and first-order de-
finability

Let L1N be the classical first-order language with equality and binary predi-
cate letters R1, . . . , RN . So classical L1N -structures are nothing but N -modal
frames. The classical truth of an L1N -formula ϕ in a frame F is denoted by
F � ϕ as usual.

Definition 1.8.1 An L1N -formula ϕ corresponds to an N -modal propositional
formula A if for any N -modal Kripke frame F ,

F � A (modally) ⇔ F � ϕ (classically).

Similarly, an L11-formula ϕ corresponds to an intuitionistic propositional
formula A if for any intuitionistic Kripke frame F, F  A ⇔ F � ϕ.

Definition 1.8.2 The class Mod(Σ) of all classical models of a first-order the-
ory (i.e., a set of first-order sentences) Σ is called △-elementary; if Σ is
recursive (respectively, finite), this class is called R-elementary (respectively,
elementary). An N -modal or intermediate logic Λ is called △-elementary (re-
spectively, R-elementary, elementary) if the class V(Λ) (or VI(Λ)) is of the
corresponding kind in the language L1N (or L11).

A modal or intermediate logic determined by a △-elementary (respectively,
R-elementary, elementary) class of frames is called quasi-△-elementary (respec-
tively, quasi-R-elementary, quasi-elementary).15

Theorem 1.8.3 (Fine–van Benthem) Every quasi-∆-elementary modal or
intermediate logic (in particular, every Kripke complete ∆-elementary logic) is
d-persistent.

For the proof see [van Benthem, 1983], [Chagrov and Zakharyaschev, 1997].
Let us recall the well-known ‘standard’ translation from modal formulas into

first-order formulas, cf. [van Benthem, 1983].16

15According to another terminology, a quasi-△-elementary logic is called △-elementarily

determined, etc.
16A similar translation for intuitionistic formulas was first introduced in [Mints, 1967].
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Let L1⋆
N be the language obtained by adding countably many monadic pred-

icate letters P1, P2, . . . to L1N . Every N -modal formula A is translated into an
L1⋆

N -formula A⋆(t) with at most one parameter t, according to the rules:

p⋆
i = Pi(t),

⊥⋆(t) = ⊥,
(A ⊃ B)⋆(t) = A⋆(t) ⊃ B⋆(t),
(�kA)⋆(t) = ∀x(Rk(t, x) ⊃ A⋆(x)), where A⋆(x) is obtained from A⋆(t) by

substituting x for t (together with renaming of bound variables, if necessary).17

Every Kripke modelM = (F, ϕ) over a frame F = (W,̺1, . . . , ̺n) clearly cor-

responds to a classical L1⋆
N -structure M⋆ = (W,̺1, . . . , ̺n, ϕ(p1), ϕ(p2), . . . ).

Lemma 1.8.4

(1) Let M = (F, ϕ) be a Kripke model over a frame
F = (W,̺1, . . . , ̺N ). Then for any a ∈W, for any N -modal formula A,

M, a � A iff M⋆ � A⋆(a).

(2) For any N -modal frame F , for any N -modal formula A

F � A iff ∀ϕ (F, ϕ)⋆ � ∀tA⋆(t).

Proof
(1) Easy by induction. E.g. in the case A = �kB we have:

M,a � A ⇔ ∀b ∈ ̺k(a) M,u1 � B
⇔ ∀b ∈ ̺k(a) M⋆ � B⋆(b) (by the induction hypothesis)
⇔ M⋆ � ∀x(Rk(a, x) ⊃ B⋆(x)) ⇔M⋆ � (�kB)⋆(a).

(2)
F � A ⇔ ∀ϕ∀a (F, ϕ), a � A⇔ ∀ϕ∀a (F, ϕ)⋆ � A⋆(a) (by (1))

⇔ ∀ϕ (F, ϕ)⋆ � ∀tA⋆(t).
�

In the next proposition we use the following notation. For an L1N -theory
Σ, [Σ] denotes the set of its L1⋆

N -theorems (in classical first-order logic).

Proposition 1.8.5

(1) For any L1N -theory Σ, ML(Mod(Σ)) ≤1 [Σ]. In particular, every quasi-
R-elementary modal or intermediate logic is recursively axiomatisable.

(2) Every quasi-△-elementary modal or intermediate logic has the c.f.p.

(3) Every finitely axiomatisable (quasi-)△-elementary modal or intermediate
logic is (quasi-)elementary.

Proof
(1) Since all L1⋆

N -models of Σ are exactly the structures of the form (F, ϕ)⋆,
where F � Σ, by Lemma 1.8.4 and Gödel’s completeness theorem, we obtain

17Variable substitutions for first-order formulas are considered in detail in Chapter 2.
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(♯)
A ∈ ML(Mod(Σ)) ⇔ Σ � ∀tA⋆(t) (in the classical sense)

⇔ Σ ⊢ ∀tA⋆(t) (in classical first-order logic).

Since A can be uniquely restored from A⋆, this proves the 1-reducibility.
Next, if Σ is recursive, then ML(Mod(Σ)) is RE as it is 1-reducible to the set
of theorems of a recursive classical theory. Now (1) follows by the well-known
Craig’s lemma, cf. [Boolos, Burgess, and Jeffrey, 2002].

To prove (1) in the intuitionistic case, note that by 1.5.8, IL(C) = TML(C),
so IL(C) is 1-reducible to ML(C).

(2) Let C0 be the class of all countable L1⋆
N -models of Σ. Similarly to the above,

we obtain that A ∈ ML(C0) iff for any countable L1⋆
N -structure M, (M �

Σ ⇒ M � ∀tA⋆(t)). By the Löwenheim–Skolem theorem, the latter is equiv-
alent to Σ ⊢ ∀tA⋆(t), and thus (by (♯)) to A ∈ ML(Mod(Σ)). Therefore
ML(Mod(Σ)) = ML(C0), which proves (2). The intuitionistic version follows
readily.
(3) (Modal case) If ML(Mod(Σ)) = KN + A for a formula A, then by (♯),
Σ ⊢ ∀tA⋆(t) in classical logic, which implies Σ1 ⊢ ∀tA⋆(t) for some finite
Σ1 ⊆ Σ. Hence ϕ ⊢ ∀tA⋆(t), where ϕ =

∧
Σ1, so A ∈ ML(Mod(ϕ)) (by (♯)),

and thus
ML(Mod(Σ)) = KN +A ⊆ ML(Mod(ϕ)).

On the other hand, Mod(Σ) ⊆Mod(ϕ), hence ML(Mod(ϕ)) ⊆ ML(Mod(Σ)).
Therefore ML(Mod(Σ)) = ML(Mod(ϕ)) is quasi-elementary.

The case when KN +A is ∆-elementary is left to the reader.
(Intuitionistic case.) Assume that L is finitely axiomatisable and ∆-element-

ary. Then by definition, τ(L) is also finitely axiomatisable. Since by 1.5.9,
VI(L) = V(τ(L)), it follows that τ(L) is ∆-elementary. Then (as we have just
proved) τ(L) is elementary. Now the equality VI(L) = V(τ(L)) implies the
elementarity of L.

It remains to consider the case when an intermediate L is finitely axiomatis-
able and quasi-∆-elementary. Then we can argue as in the modal case. In fact, if
IL(C) = H+A for C = Mod(Σ), then AT ∈ ML(C), so by (♯), Σ ⊢ ∀t(AT )⋆(t).
Then we can replace Σ with a single ϕ and obtain that IL(C) = IL(Mod(ϕ)).

�

1.9 Some general completeness theorems

In this section we recall two general results on Kripke-completeness — the
Sahlqvist theorem and the Fine theorem.

Definition 1.9.1 A Sahlqvist formula is a modal formula of the form �α(A ⊃
B), where α ∈ I∞N , B is a positive modal formula (i.e. built from proposition
letters using ⊥, ⊤, ∨, ∧, ✸i, �i), and A is built from proposition letters and
their negations using the same connectives, so that subformulas of A of the form
C ∨D or ✸iC containing negated proposition letters are not within the scope of
any �j.
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Theorem 1.9.2 (Sahlqvist theorem) Let Λ be a modal logic axiomatised by
Sahlqvist formulas. Then Λ is d-persistent and △-elementary.

For the proof see [Chagrov and Zakharyaschev, 1997], [Blackburn, de Rijke
and Venema, 2001].

Definition 1.9.3 A subset V in a transitive frame F = (W,R) is called an
antichain if its different worlds are incomparable:

∀x, y ∈ V (xRy ⇒ x = y).

The width of F is the maximal cardinality of finite antichains in cones of F if
it exists and ∞ otherwise.

So for a finite n, F is of width ≤ n iff

∀y, x0, . . . , xn ∈ W (∀i yRxi ⇒ ∃i ∃j 6= i (xiRxj ∨ xjRxi ∨ xi = xj)).

This property corresponds to the modal formula AWn (cf. 1.3.11) and to AIWn

in the intuitionistic case (cf. 1.4.17).

Definition 1.9.4 For a finite n, a modal logic of width ≤ n is an extension of
K4 +AWn; an intermediate logic of width ≤ n is an extension of H +AIWn.
All these are called the logics of finite width.

The width of a transitive modal logic Λ can be defined explicitly as the
least n such that AWn ∈ Λ (and ∞ if AWn 6∈ Λ for any n); similarly for the
intuitionistic case.

Theorem 1.9.5 (Fine theorem) Every logic of finite width (modal or inter-
mediate) is Kripke-complete and moreover, has the c.f.p.

This result (for the modal case) was first proved in [Fine, 1974]; for a shorter
proof see [Chagrov and Zakharyaschev, 1997]. The intuitionistic case follows
from the observation that L ⊢ AIWn implies τ(L) ⊢ AWn together with 1.5.8
and 1.5.5.

1.10 Trees and unravelling

Recall that a path in a frame is a sequence of related worlds together with
indices of the accessibility relations (Definition 1.3.20).

Definition 1.10.1 The depth of a world u in F (notation: dF (u) or d(u) if
there is no confusion) is the maximal length of a path from u in F if it exists
and ∞ otherwise.

Let us introduce two other kinds of ‘paths’ and ‘depths’ in Kripke frames.
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Definition 1.10.2 A distinct path in a frame F is a path, in which all the
worlds are different. The distinct depth of u in F (notation: ddF (u) or dd(u))
is the maximal length of a distinct path from u in F if it exists and ∞ otherwise.

Definition 1.10.3 A strict path in a transitive frame F = (W,R) is a path
(u0, u1, . . . , um), in which ui+1R�ui for any i < m (or equivalently, all the worlds
are in different clusters). Respectively, the strict depth of u in F (notation:
sdF (u) or sd(u)) is the maximal length of a strict path from u in F if it exists
and ∞ otherwise.

Obviously, sd(u) = sd(u) = sd(v) if u ≈R v, and sdF (u) = sdF∼(u∼).

Exercise 1.10.4 Show that d(x) ≤ n iff x � �n⊥, where �A := �1A ∧ . . . ∧
�NA.

Definition 1.10.5 A world u in a frame is called a dead end (respectively,
maximal; quasi-maximal) if d(u) = 0 (respectively, dd(u) = 0; sd(u) = 0).
Dead ends in a tree are also called leaves (as well as maximal worlds in reflexive
or transitive trees).

A maximal cluster in a K4-frame F is a maximal point in F∼.

So quasi-maximal points in a K4-frame are exactly the points of the maximal
clusters.

Definition 1.10.6 A frame F = (W,R1, . . . , RN ) with a root u0 is called a tree
(or an N -tree) if

• ∀i ∀y ¬yRiu0,

• for any x 6= u0 there exists a unique pair (i, y) such that yRix.

Hence we readily have

Lemma 1.10.7 A frame F is a tree with a root u iff for any x ∈ F there exists
a unique path from u to x in F .

Definition 1.10.8 The height of a world x in a tree F (notation: htF (x), or
ht(x)) is the length of the (unique) path from the root to x.

Definition 1.10.9 A successor of a world u in a poset18 F = (W,R) is a
minimal element in the set R−(u) of all strictly accessible worlds. βF (u) (or
β(u)) denotes the set of all successors of u in F . F is called successive if for
any u, R−(u) = R(βF (u)). The branching at u in F is |βF (u)|.

Every finite p.o. set is clearly successive. For rooted successive p.o. sets we
can also define the height of x as the minimal length of a ‘successor-path’ from
the root to x.

18More generally, we may assume that F is transitive antisymmetric.
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Definition 1.10.10 Let Tω = ω∞ be the set of all finite sequences of natural
numbers. The 1-modal universal tree is the frame

F1Tω := (Tω,❁),

where
u ❁ v := ∃k ∈ ω v = uk.

The N -modal universal tree is

FNTω := (Tω,❁1N , . . . ,❁NN),

where
u ❁iN v := ∃k ∈ ω (v = uk & k ≡ i− 1 (mod N)).

Sometimes we drop N in FNTω and ❁iN if it is clear from the context.
The intuitionistic universal tree is the p.o. set19 ITω := (Tω,0), where

u 0 v := ∃w (v = uw).

So 0 is the reflexive and transitive closure of ❁, and the set of immediate
successors of u in ITω is just β(u) = ❁(u). From the definitions it follows easily
that FNTω is really a tree with the root f.

Definition 1.10.11 A subframe F ⊆ FNTω or F ⊆ ITω, that is stable under
1 (or equivalently, under all ❂i, 1 ≤ i ≤ N), is called a standard tree (or a
standard subtree of the corresponding frame).

Let us fix the following standard trees:

• the universal n-ary trees, or the universal trees of branching n, for finite
n > 0:

FNTn := FNTω ↾ TNn, ITn := ITω ↾ Tn,

where Tn is the set of all {0, 1, . . . , n− 1}-sequences;

• universal trees of depth (or height) k:

FNT
k
n := FNTn ↾ T

k
ω , IT

k
n := ITn ↾ T

k
ω ,

where
T k

ω := {u ∈ Tω | l(u) ≤ k},

l(u) is the length of sequence u, n ≤ ω. In particular, T 0
ω contains only

the root f. Obviously, l(u) = ht(u) in FNTω.

Sometimes we also use the notation Tω
n rather than Tn, for 0 < n ≤ ω.

19This is a p.o. tree according to Definition 1.11.10.
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Definition 1.10.12 Let F be a successive poset. A subframe G ⊆ F is called
greedy if for any u ∈ G either βF (u) ⊆ G or βF (u)∩G = ∅. A greedy standard
tree is a greedy standard subtree of FNTω or ITw.

Definition 1.10.13 Let F = (W,R1, . . . , RN ) be a frame with a root u0. The

unravelling of F is the frame F# = (W#, R#
1 , . . . , R

#
N ), where W# is the set of

all paths in F starting at u0 and

αR#
j β iff ∃v β = (α, j, v).

Unravelling was first introduced probably in [Sahlqvist, 1975]; later it was
used by many authors, cf. [Gabbay, 1976], [van Benthem, 1983], [Gabbay and
Shehtman, 1998].

The proof of the following lemma is straightforward.

Lemma 1.10.14

(1) F# is a tree.

(2) The map π : W# −→ W such that π(u0, . . . , um) = um, is a p-morphism
from F# onto F.

Now let us show how to increase branching in a standard way.

Definition 1.10.1520 Let F = (W,R1, . . . , RN ) be a frame with root u0. Put

W1 : =





W if there exists a path of positive length
(a ‘loop’) from u0 to u0,

W − {u0} otherwise

WH := (W1 × ω) ∪ {(u0,−1)}.

Let RH
1 , . . . , R

H
N be the relations on WH such that

(a, n)RH
i (b,m) iff aRib & m 6= −1.

The frame FH := (WH, RH
1 , . . . , R

H
N ) is called the (ω−) thickening of F .

20[Gabbay and Shehtman, 1998].
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Informally speaking, we make ω copies of every world of W1 and connect all
the copies of two worlds if the original worlds are connected in F ; we also add
the root (u0,−1).

From the definition we readily obtain

Lemma 1.10.16

(1) For any x ∈WH, RH
i (x) is either empty or denumerable.

(2) the map γ : (a, n) 7→ a is a p-morphism from FH onto F .

Lemma 1.10.17 Let F = (W,R1, . . . , RN ) be a tree, in which every set Ri(x)
is either empty or denumerable. Then F is isomorphic to a greedy standard tree.

Proof Let F k be the restriction of F to the worlds of height ≤ k. We define
the embeddings fk : F k  FNT

k
ω by induction.

If u0 is the root of F , we put

f0(u0) := f.

If fk is already defined, we extend it to fk+1 as follows. If htF (y) = k and
Ri(y) 6= ∅ , then Ri(y) is denumerable, by our assumption. So let ey,i : ω →
Ri(y) be the corresponding bijective enumeration. Then put

fk+1(ey,i(j)) := (fk(y), jN + i− 1).

Since F is a tree, every world of height (k + 1) is ey,i(j) for a unique triple
(y, i, j), so fk+1 is well-defined. Since ey,i is a bijection, it is clear that fk+1 is
an embedding.

Its image rng(fk+1) is greedy. In fact, if u = fk(y) and Ri(y) 6= ∅, then by
our construction, fk+1 gives rise to a bijection between Ri(y) and

❁i (u) = {(u, jN + i− 1) | j ≥ 0}.

Eventually, the required isomorphism is f :=
⋃

k≥0

fk. �

Proposition 1.10.18

(1) Every countable rooted frame is a p-morphic image of a greedy standard
tree.

(2) Every serial countable rooted N -frame is a p-morphic image of FNTω.

Proof

(1) Let F be the original frame. By 1.10.14 and 1.10.16 we have p-morphisms

(FH)♯ ։ FH ։ F.

By 1.10.17, (FH)♯ is a tree.

Since by 1.10.16, every RH
i (x) is either empty or denumerable, the same

property holds for (FH)♯, and thus it is isomorphic to a greedy standard
tree, by 1.10.17 .
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(2) If F is serial and f : G։ F , then G is also serial, due to the lift property.
By definition, every serial greedy standard subtree of FNTω is FNTω itself.

�

1.11 PTC-logics and Horn closures

Definition 1.11.1 A modal propositional formula is called closed (or constant)
if it is a 0-formula, i.e. if it does not contain proposition letters.

Lemma 1.11.2 If F, F ′ are N -modal frames and f : F ։ F ′, then F � A⇐⇒
F ′ � A for any closed N -modal formula A.

Proof Let M, M ′ be arbitrary Kripke models respectively over F, F ′. By
induction it easily follows that M,x � A iff M ′, f(x) � A for any x ∈ M and
closed A. Hence F, x � A iff F ′, f(x) � A. This implies F � A⇐⇒ F ′ � A since
f is surjective. �

Proposition 1.11.3 Every logic axiomatisable by closed formulas is canonical.

Proof By Theorem 1.7.3, every axiom of the logic is true in the canonical
model. For a closed formula, this is equivalent to validity in the canonical frame.

�

Definition 1.11.4 A pseudotransitiveN -modal formula has the form ✸α�kp ⊃
�βp, where p ∈ PL, α, β ∈ I∞N . This formula is called one-way if α = f. A
PTC-formula is a formula which is either pseudotransitive or closed. A PTC-
logic is a modal logic axiomatised by a set of PTC-formulas. One-way PTC-
formulas and logics are defined similarly.

For example, the following formulas are pseudotransitive:

�p ⊃ p, �p ⊃ ��p, ✸�p ⊃ p, ✸1�2p ⊃ p.

Thus many well-known logics are PTC, e.g. D, K4, D4, S4, T, B, K.t, K4.t,
S5.

Since every pseudotransitive formula is obviously Sahlqvist, from the Sahlqvist
theorem and Proposition 1.11.3 we obtain

Proposition 1.11.5

(1) A pseudotransitive N -modal formula A = ✸α�kp ⊃ �βp corresponds to
the L1N -formula21

A♯ := ∀x, v(∃u(uRαx ∧ uRβv) ⊃ xRkv),

21Strictly speaking, this becomes an L1N -formula after writing uRαx and uRβv in terms
of the basic predicates R1, . . . , RN .
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(2) Every PTC-logic is canonical and ∆-elementary.

Later to the well-known transitive closure, there exists a ‘closure’ under
pseudotransitivity. This is a rather simple fact from classical logic, but still let
us recall its proof briefly.

Further on arbitrary lists of individual variables are denoted by x, y. etc.
and arbitrary lists of individuals by a, b. etc. As usual, we write ϕ(x, y, z) to
indicate that all parameters of the formula ϕ are among x, y, z.

Definition 1.11.6 An L1N -sentence of the form

ψ = ∀x∀z∀z̄(ϕ(x, y, z) → Rk(x, y))

is a called a universal strict Horn clause, if ϕ(x, y, z) is a (non-empty) conjunc-
tion of atomic formulas.

Proposition 1.11.7 Let F = (W,̺1, . . . , ̺N ) be an N -modal frame, Γ = {ψk |
k ∈ I} a set of universal (strict) Horn clauses

ψk = ∀x∀y∀zk(ϕk(x, y, zk) → Rik
(x, y)).

Then there exists a frame F+
Γ such that22

(1) F j F+
Γ ;

(2) F+
Γ � Γ;

(3) If G � Γ and f : F −→ G is monotonic, then f : F+
Γ −→ G is also

monotonic.

We can say that F+
Γ is the ‘smallest’ full weak extension of F satisfying Γ.

Proof We construct F+
Γ as the union of a sequence of frames Fm = (W,̺m1, . . . ,

̺mN), beginning with F0 = F. Namely, let:

̺(m+1)j = ̺mj ∪
⋃

ik=j

{(a, b) | Fm � ∃zkϕk(a, b, zk)},

̺+
j =

⋃

m

̺mj , F
+
Γ = (W,̺+

1 , . . . , ̺
+
N ).

Then F0 j . . . Fm j Fm+1 . . . j F+
Γ , and thus (1) holds. Furthermore, we

have:

(4) if ϕ(z) is a conjunction of atomic formulas, then the following conditions
are equivalent:

(i) F+
Γ � ϕ(a);

22Recall that j denotes a full weak subframe, cf. 1.3.17.
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(ii) ∃m∀k ≥ m Fk � ϕ(a);

(iii) ∃m Fm � ϕ(a).

In fact, (ii)⇒(iii) is trivial. (iii)⇒(i) holds, since Fm j F
+
Γ , and the truth of

positive formulas is preserved by monotonic maps. (i)⇒(ii) easily follows from
ρmj ⊆ ρ(m+1)j and ρ+

j =
⋃
m
ρmj .

Now let us prove (2). Assume F+
Γ � ϕk(a, b, ck), ik = j. Then by (4),

Fm � ϕk(a, b, ck) for some m, and thus (a, b) ∈ ̺(m+1)j by definition. Hence

F+
Γ � Rj(a, b). Therefore F+

Γ � ψk.
To check (3), we assume that G � Γ, f : F −→ G is monotonic and show by

the induction that f : Fm −→ G is monotonic for any m.
To make the step, assume a̺(m+1)jb. Then there are two cases.
If a̺mjb, then G � Rj(f(a), f(b)) by induction hypothesis.
If Fm � ∃zkϕk(a, b, zk), ik = j, then G � ∃zkϕk(f(a), f(b), zk), since mono-

tonic f : Fm −→ G preserves the truth of positive formulas. Now G � ψk

implies G � Rj(f(a), f(b)). �

By Proposition 1.11.5 every pseudotransitive modal formula corresponds to
a universal strict Horn formula. So Proposition 1.11.7 yields

Corollary 1.11.8 Let Γ be a set of pseudotransitive N -modal formulas, F an
N -modal frame. Then there exists an N -modal frame F+

Γ such that

(1) F j F+
Γ ;

(2) F+
Γ � Γ;

(3) for any N -modal frame G, if G � Γ and f : F −→ G is monotonic, then
f : F+

Γ −→ G is monotonic.

Definition 1.11.9 The frame F+
Γ described in Corollary 1.11.8 is called the

pseudotransitive closure of F (under Γ), or the Γ-closure of F . If Λ = KN +
Γ + ∆ is a PTC-logic with the set of pseudotransitive axioms Γ and a set of
closed axioms ∆ and if F+

Γ � ∆, then F+
Γ is also called the Λ-closure of F .

Definition 1.11.10 If Λ is a PTC-logic, then the Λ-closure of a tree is called
a Λ-tree. K4-trees (respectively, S4-trees) are also called transitive trees (re-
spectively, p.o. trees). In the particular case when Λ = DN + Γ, with a set
of pseudotransitive axioms Γ, the Γ-closure of FNTω is called the full standard
Λ-tree.

Proposition 1.11.11

(1) Let Λ be a PTC-logic. Then every countable rooted Λ-frame is a p-morphic
image of a greedy standard Λ-tree.

(2) If Λ = DN + Γ, with a set of pseudotransitive axioms Γ, then every serial
countable rooted Λ-frame is a p-morphic image of the full standard Λ-tree.
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(3) Every countable rooted S4-frame is a p-morphic image of ITω.

Proof
(1) Let F be such a frame. By Proposition 1.10.18, there exists f : Φ ։ F for
some greedy standard tree Φ. By Proposition 1.11.7, the map f : Φ+

Γ −→ F is
monotonic, where Γ is the set of pseudotransitive axioms of Λ. The lift property
obviously holds for this map, since it holds for f : Φ −→ F . So F is a p-morphic
image of Φ+

Γ . Finally note that all closed axioms of Λ are valid in Φ+
Γ , by Lemma

1.11.2.
(2) By Proposition 1.10.18(2), in this case we can take Φ = FNTω.
(3) In fact, ITω is the full standard S4-tree. �

Corollary 1.11.12

(1) Every PTC-logic Λ is determined by the class of greedy standard Λ-trees.

(2) Every serial PTC-logic Λ is determined by the full standard Λ-tree.

(3) S4 = ML(ITω), H = IL(ITω).

Proof
(1) Λ is complete and ∆-elementary, so it has the c.f.p by Proposition 1.8.5.
Then by Proposition 1.11.11(1) and the morphism lemma, every A 6∈ Λ is
refuted in a greedy standard Λ-tree.
(2) By the same argument using 1.11.11(2).
(3) By (2), since ITω is the full standard S4-tree. The claim about H follows
by 1.5.7, since H = TS4. �

Proposition 1.11.13 ITω is a p-morphic image of IT2.

Proof Let τ : ω −→ ω be a map such that every set τ−1(n) is infinite (such
a map obviously exists, since there is a bijection between ω × ω and ω). Next,
every α ∈ T2 can be uniquely presented in the form 0n11 . . . 0nk10nk+1, where
n1, . . . , nk+1 ≥ 0, and 0n means 0 . . . 0︸ ︷︷ ︸

n

. Now put

f(α) := τ(n1)τ(n2) . . . τ(nk).

We claim that f is a required p-morphism from ITω onto IT2.
In fact ITω is a Horn closure of F1Tω, so by 1.11.7, it suffices to check the

monotonicity of f w.r.t. ❁. But this is the case, since f(α0) = f(α), and
f(α1) = f(α)τ(nk+1).

For the lift property, suppose f(α) ❁ u; then u = f(α)m for some m. By
the construction of τ , there exists n ≥ nk+1 such that τ(n) = m. So we can
take

β = 0n11 . . . 0nk10n1,

then f(β) = τ(n1) . . . τ(nk)τ(n) = f(α)m = u, and obviously, α 0 β.
Since 0 is the transitive closure of ⊑, the lift property now follows easily.
It remains to note that τ sends the root to the root, which implies the

surjectivity of f . �



60 CHAPTER 1. BASIC PROPOSITIONAL LOGIC

Corollary 1.11.14 Every countable rooted S4-frame is a p-morphic image of
IT2.

Proof By Propositions 1.11.13 and 1.11.11. �

Definition 1.11.15 A standard 1-tree is called strongly standard if together
with any sequence αn it contains all the sequences αm for m < n.

Lemma 1.11.16 Every countable tree is isomorphic to a strongly standard tree.

Proof Given a tree F , we construct a required isomorphism f . f(x) is defined
by induction on ht(x). If x is the root, put f(x) := f. If f(x) is defined and
β(x) = {y0, . . . , yn}, put f(yi) := f(x)i; similarly if β(x) is countable. (Of
course this definition depends on the chosen ordering of β(x).) �

Definition 1.11.17 An S4-tree is called branchy if for any u |β(u)| ≤ 1.

Every branchy tree is clearly infinite.

Lemma 1.11.18 If F is a strongly standard branchy tree, then F ։ IT2.

Proof We define the p-morphism g as follows:

g(n1 . . . nk) := n1 . . . nk,

where n is the remainder of n modulo 2. g is obviously monotonic. The lift
property follows, since g(x)0 = g(x0), g(x)1 = g(x1) and a branchy standard
tree always contains x0, x1 together with x. �

Lemma 1.11.19 If every cone in a countable S4-tree F is nonlinear, then
F ։ IT2.

Proof By 1.11.18 and 1.11.16, it is sufficient to p-morphically map F onto a
branchy tree.

Let F = (W,R). For x ∈ W let h(x) be the least element in {y ∈ R(x) |
|β(y)| > 1}. h(x) clearly exists, since this set has a minimal element, which
must be unique.

Now h is a morphism, i.e. a p-morphism onto its image. In fact, the mono-
tonicity is obvious. The lift property follows since

h(x)R−h(y) ⇒ xR−y.

To show the latter, suppose h(x)R−h(y). Since yRh(y) and xRh(x)Rh(y), it
follows that x, y are R-comparable (remember that F is an S4-tree). If yRx, we
obtain yRh(x)R−h(y), and h(x) has at least two successors, which contradicts
the choice of h(y). Thus xR−y.

The imageG of h is a branchy tree, since h(x) = h(h(x)), and thus βG(h(x)) =
h[βF (h(x))]. �
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Definition 1.11.20 A p.o. tree is called effuse if it has a cone without linear
subcones.

Proposition 1.11.21 If F is an effuse countable tree, then ML(F ) = S4 and
thus IL(F ) = H.

Proof If a cone F↑u does not contain linear subcones, then by Lemma 1.11.19
and Proposition 1.11.13, F↑u ։ IT2 ։ ITω, and thus ML(F ) ⊆ ML(ITω) =
S4 by the generation lemma, the morphism lemma and Corollary 1.11.12. The
converse inclusion is trivial by soundness. �

1.12 Subframe and cofinal subframe logics

Definition 1.12.1 A modal or intermediate propositional logic is called sub-
frame if its Kripke frame variety is closed under taking subframes.

Definition 1.12.2 For a transitive Kripke frame F = (W,R) a subset V ⊆W
and the subframe F ′ = F ↾ V are called cofinal if R(V ) ⊆ R−1(V ).

Definition 1.12.3 A transitive modal or an intermediate propositional logic Λ
is called cofinal subframe if its Kripke frame variety V(Λ) or V∼(Λ) is closed
under taking cofinal subframes.

Definition 1.12.4 Let F , G be Kripke frames of the same kind. A subreduc-
tion from F to G is a p-morphism from a subframe of F onto G. A reduction is
a subreduction defined on a cone. A subreduction of transitive frames is called
cofinal if its domain is cofinal.

If G is rooted and there exists a reduction (respectively, a subreduction, a
cofinal subreduction) from F to G, we say that F is reducible (respectively,
subreducible, cofinally subreducible) to G.

If G is arbitrary we also say that F is reducible to G if it is reducible to
every cone in G.

By the morphism and generation lemmas every variety V(Λ) or V∼(Λ) is
closed under reductions. Thus for a subframe (respectively, cofinal subframe)
Λ it is closed under subreductions (respectively, cofinal subreductions).

Definition 1.12.5 A class of first-order structures is called universal, if it is
a class of models of a set of universal first-order sentences.

Definition 1.12.6 A modal or intermediate propositional logic Λ is universal,
if V(Λ) (or V∼(Λ)) is universal.

The well-known Tarski –  Los theorem states that a ∆-elementary class is uni-
versal iff it is closed under substructures. So a ∆-elementary propositional logic
is universal iff it is subframe.

The following result yields a criterion of universality for subframe logics; for
the proof see [Chagrov and Zakharyaschev, 1997], Theorem 11.31, or [Wolter,
1997].
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Definition 1.12.7 A modal or intermediate propositional logic Λ has the finite
embedding property if for any Kripke frame F , F validates Λ whenever every
finite subframe of F validates Λ.

Theorem 1.12.8 (Wolter) For any subframe modal logic Λ the following prop-
erties are equivalent

(1) Λ is universal and Kripke-complete;

(2) Λ is quasi-∆-elementary;

(3) Λ is d-persistent;

(4) Λ is r-persistent;

(5) Λ has the finite embedding property and is Kripke-complete.

Later on we will need the implication (1)⇒(4) from this theorem, so let us
give some comments on its proof. (1)⇒(2) is obvious, (2)⇒(3) is the Fine–
van Benthem theorem. For (3)⇒(4), note that every refined Λ-frame (F,W)
has a descriptive extension (F ′,W ′) also validating Λ (the so-called ‘ultrafilter
extension’). By d-persistence it follows that F ′ � Λ, and thus F � Λ, since Λ
is subframe.

However an example from [Chagrov and Zakharyaschev, 1997] shows that
subframe monomodal logics may be Kripke-incomplete.

On the other hand, subframe intermediate and K4-logics enjoy better prop-
erties. Their main new feature is axiomatisability by special ‘subframe formulas’
defined below. In this definition we assume that pa are different proposition let-
ters corresponding to worlds a of a finite Kripke frame F .

Definition 1.12.9 For a transitive frame F = (W,R) with root 0 put

SM−(F ) := p0 ∧
∧

aRb

�(pa ⊃ ✸pb) ∧
∧

¬aRb

�(pa ⊃ ¬✸pb) ∧
∧

0Ra

✸pa∧
∧

a6=b

¬✸(pa ∧ pb) ∧
∧

a6=0

¬pa,

XM−(F ) := SM−(F ) ∧�

( ∨
a∈W

pa

)
,

CSM−(F ) := SM−(F ) ∧�✸

( ∨
a∈W

pa

)
,

SM(F ) := ¬SM−(F ), CSM(F ) := ¬CSM−(F ), XM(F ) := ¬XM−(F ).

SM(F ), CSM(F ), XM(F ) are respectively called the (modal) subframe, the
cofinal subframe, and the frame formula of F .23

Obviously, the conjunct
∧

a6=0

¬pa is redundant if the underlying logic is S4 and

all frames are reflexive.

23XM(F ) is also called the Jankov–Fine, or the characteristic formula.



1.12. SUBFRAME AND COFINAL SUBFRAME LOGICS 63

These formulas as well as the next theorem originate from [Fine, 1974],
[Fine, 1985], [Zakharyaschev, 1989]. They are particular kinds of Zakharyaschev
canonical formulas, see [Zakharyaschev, 1989], [Chagrov and Zakharyaschev,
1997].

Theorem 1.12.10 Let F be a finite rooted transitive Kripke 1-frame. Then for
any transitive Kripke 1-frame G

(1) G 6� XM(F ) iff G is reducible to F ,

(2) G 6� SM(F ) iff G is subreducible to F ,

(3) G 6� CSM(F ) iff G is cofinally subreducible to F .

Let us recall the idea of the proof. For example, if M = (G, θ) 6�CSM(F ),
then we obtain a cofinal subreduction from G to F by putting f(x) = a iff
M,x � pa. The other way round, if f is such a subreduction, we construct a
countermodel M for CSM(F ) by putting M,x � pa iff f(x) = a.

The next two theorems from [Zakharyaschev, 1989] are also specific for the
transitive case:

Theorem 1.12.11 A transitive 1-modal logic is subframe (respectively, cofinal
subframe) iff it is axiomatisable by subframe (respectively, cofinal subframe)
formulas above K4.

Theorem 1.12.1224 Every cofinal subframe modal logic has the f.m.p.

Corollary 1.12.13 Let Λ0 be a subframe K4-logic. Then for any 1-modal logic
Λ ⊇ Λ0, Λ is subframe (respectively, cofinal subframe) iff it is axiomatisable by
subframe (respectively, cofinal subframe) formulas of Λ0-frames above Λ0.

Proof ‘If’ easily follows from 1.12.11. To prove ‘only if’, suppose Λ is subframe;
the case of cofinal subframe logics is quite similar. By 1.12.11, we have

Λ = K4 + {SM(F ) | (F ) ∈ Λ}, Λ0 = K4 + {SM(F ) | SM(F ) ∈ Λ0}

hence

Λ = Λ0 + {SM(F ) | SM(F ) ∈ Λ− Λ0}.

Now SM(F ) 6∈ Λ0 implies F � Λ0. In fact, since Λ0 is Kripke-complete by
1.12.12, there exists a Λ0-frame G such that G 6� SM(F ). Then G is subre-
ducible to F by 1.12.10, and since Λ0 is a subframe logic, it follows that F � Λ0.

�

We shall use this corollary especially for the case Λ0 = S4.

24For subframe transitive logics this fact was first proved in [Fine, 1985].
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Example 1.12.14 S4.1 = S4+�✸p ⊃ ✸�p is a cofinal subframe logic (McK-
insey property is obviously preserved for cofinal subframes). It can be presented
as S4 + CSM(FC2), where FC2 is a 2-element cluster — one can check that
an S4-frame has McKinsey property iff it is not cofinally subreducible to FC2.
Similarly the logic K4.1− := K4+�⊥∨✸�⊥ is cofinal subframe; it is presented
as K4 + CSM(FC1), where FC1 is a reflexive singleton and characterised by
the (first-order) condition

∀x (R(x) = ∅ ∨ ∃y (xRy & R(y) = ∅)).

Thanks to completeness stated in 1.12.12, Theorem 1.12.8 has the following
transitive version:

Theorem 1.12.15 (Zakharyaschev) For any subframe modal logic Λ ⊇ K4
the following properties are equivalent:

(1) Λ is universal;

(2) Λ is quasi-∆-elementary;

(3) Λ is d-persistent;

(4) Λ is r-persistent;

(5) Λ has the finite embedding property.

By applying 1.12.10 to subframe logics Λ = Λ0+{SM(Fi) | i ∈ I} described
in 1.12.13, we can reformulate the finite embedding property as follows:

For any Λ0-frame G, if G is subreducible to some Fi (i ∈ I), then
some finite subframe of G is subreducible to some Fj (j ∈ I).

Hence we obtain a sufficient condition for elementarity of subframe logics
above K4 or S4.

Proposition 1.12.16

(1) A subframe K4-logic is ∆-elementary if above K4 it is axiomatisable by
subframe formulas of irreflexive transitive frames.

(2) A subframe S4-logic is ∆-elementary if above S4 it is axiomatisable by
subframe formulas of posets.

Proof We prove only (1); the proof of (2) is similar. By 1.12.15, it is sufficient
to check the finite embedding property for K4 + {SM(Fi) | i ∈ I}, where Fi

are irreflexive K4-frames. So for a K4-frame G subreducible to some Fi, we
find a finite subframe subreducible to Fi. Given a subreduction f : G′ ։ Fi, for
G′ ⊆ G, it is sufficient to construct a finite G′′ ⊆ G′ such that f ↾ G′′ : G′′ ։ Fi.

This is done by induction on |Fi|. If Fi is an irreflexive singleton, everything
is trivial. Otherwise, let u be the root of Fi, and let f(a) = u. Obviously, a is
irreflexive.
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For every v ∈ β(u) there exists a cone G′
v ⊆ G′ ↑a such that f ↾ G′

v : G′
v ։

Fi ↑ v — this follows from 1.3.32(3). Then by the induction hypothesis, there
is a finite G′′

v ⊆ G′
v such that f ↾ G′′

v : G′′
v ։ Fi ↑ v.

Finally put G′′ := {a} ∪
⋃

v∈β(u)

G′′
v (as a subframe of G′). This G′′ is the

required one; in fact, monotonicity is preserved by restricted maps, and the lift
property easily follows from the construction. �

For subframe logics axiomatisable by a single subframe formula the converse
also holds:

Proposition 1.12.17

(1) A subframe logic K4 + SM(F ) is elementary iff F is irreflexive.

(2) A subframe logic S4 + SM(F ) is elementary iff F is a poset.

Proof

(1) If F contains reflexive points, we can replace each of them by the chain
(ω,<). The resulting frame F ′ is reducible to F , since a reflexive singleton
is a p-morphic image of (ω,<). However, finite subframes of F ′ are not
reducible to F , since a p-morphic image of a finite irreflexive K4-frame
is always irreflexive (e.g. because finite irreflexive K4-frames are exactly
finite GL-frames). Thus K4+SM(F ) does not have the finite embedding
property in this case.

(2) Similarly, if F contains nontrivial clusters, we can replace each of them by
(ω,≤). Then we obtain a frame F ′ reducible to F . Every finite subframe
of F ′ is a poset, so it is not reducible to F (e.g. because it is a Grz-frame).

�

Remark 1.12.18 In general, the converse to 1.12.16 is not true. For example,
the trivial logic S4+p ⊃ �p is obviously subframe and elementary, but it cannot
be axiomatised by subframe formulas of posets. In fact, every formula SM(F )
for a nontrivial F , is valid in every S5-frame G (which is a cluster), since G is
not subreducible to F . Moreover, there is a conjecture that elementarity of a
logic axiomatisable by a finite set of subframe formulas is undecidable.25

Theorem 1.12.15 has an analogue for cofinal subframe logics.

Definition 1.12.19 A world in a transitive frame is called inner if its cluster
is not maximal. The restriction of a frame F to inner worlds is denoted by F−.

Definition 1.12.20 Let F , G be K4-frames and suppose that G is finite. A
cofinal subreduction f from F to G is called a cofinal quasi-embedding if f−1(x)
is a singleton for any inner x. If such a subreduction exists, we say that G is a
finite cofinal quasi-subframe of F .

25M. Zakharyaschev, personal communication.
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Definition 1.12.21 A modal or intermediate propositional logic Λ has the fi-
nite cofinal quasi-embedding property if for any Kripke frame F , F validates
Λ whenever every its finite cofinal quasi-subframe validates Λ.

Theorem 1.12.22 (Zakharyaschev) For any cofinal subframe modal logic
the following properties are equivalent:

(1) Λ is elementary;

(2) Λ is quasi-∆-elementary;

(3) Λ is d-persistent;

(4) Λ has the finite cofinal quasi-embedding property.

Note that unlike the previous theorem, 1.12.22 does not include r-persistence.

Let us now consider the intuitionistic case. Now we assume that qa are
different proposition letters indexed by worlds of a finite poset F .

Definition 1.12.23 For a poset F = (W,≤) with root 0 put

SI−(F ) :=
∧

a<b

(qb ⊃ qa) ∧
∧
a

((
∧

a6≤b

qb • ⊃ qa

)
⊃ qa

)
,

CSI−(F ) := SI−(F ) ∧ ¬
∧

a∈W

qa,

XI−(F ) := CSI−(F ) ∧
∧
a

(
∧

b<a

qb ⊃ qa ∨
∧

a6≤b

qb

)
,

SI(F ) := SI−(F ) ⊃ q0, CSI(F ) := CSI−(F ) ⊃ q0, XI(F ) := XI−(F ) ⊃ q0.

SI(F ), CSI(F ), XI(F ) are respectively called the (intuitionistic) subframe,
cofinal subframe, and frame formula of F .26

Note that SI(F ) is an implicative formula and CSI(F ) is built from propo-
sition letters and ⊃, ⊥.

Then similarly to the modal case, we have (cf. [Zakharyaschev, 1989], [Cha-
grov and Zakharyaschev, 1997]):

Theorem 1.12.24 Let F be a finite rooted poset. Then for any poset G

(1) G 6� XI(F ) iff G is reducible to F ;

(2) G 6� SI(F ) iff G is subreducible to F ;

(3) G 6� CSI(F ) iff G is cofinally subreducible to F .

26XI(F ) is also called the Jankov, or the characteristic formula of F .
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The idea of the proof is quite similar to 1.12.10. E.g. if M = (G, θ) 6
XI(F ), we obtain a reduction f from G to F by putting

f(x) = a := (M,x 
∧

a6≤b

qb & M,x 6 qa).

The formulas from 1.12.23 can be simplified. For example, in CSI−(F ) we
can replace the conjunct ¬

∧
a∈W

qa with ¬
∧

a∈max(F )

qa, where max(F ) is the set

of maximal points of F ; also
∧

b<a

qb occurring in the second conjunct of XI−(F )

can be replaced with
∧

a∈β(b)

qb.

Other versions of these formulas are described in [Chagrov and Zakharyaschev,
1997] and [Shimura, 1993].

The next result is also due to [Zakharyaschev, 1989], cf. [Chagrov and
Zakharyaschev, 1997].

Theorem 1.12.25 For an intermediate propositional logic Λ the following prop-
erties are equivalent:

(1) Λ is a subframe (respectively, cofinal subframe) logic;

(2) Λ is axiomatisable by subframe (respectively, cofinal subframe) formulas;

(3) Λ is axiomatisable by implicative formulas (respectively, (⊃,⊥)-formulas).

Let us now formulate analogues of Theorems 1.12.12, 1.12.15 and 1.12.22 for
intermediate logics.

Theorem 1.12.26 Every cofinal subframe intermediate logic has the finite model
property.

This result follows from [McKay, 1968] and 1.12.25; also see [Chagrov and Za-
kharyaschev, 1997].

Theorem 1.12.27

(1) An intermediate logic is subframe iff it is universal.

(2) Every subframe intermediate logic is r-persistent.

Theorem 1.12.28 Every cofinal subframe intermediate logic is ∆-elementary
and d-persistent.

To formulate a modal analogue of this result, we need

Definition 1.12.29 A transitive frame is called almost irreflexive if all its non-
maximal clusters are degenerate. An S4-frame is called blossom if all its non-
maximal clusters are trivial.
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Theorem 1.12.30

(1) A cofinal subframe S4-logic is ∆-elementary if above S4.1 it is axiomati-
sable by cofinal subframe formulas of blossom frames.

(2) A cofinal subframe K4-logic is ∆-elementary if above K4.1− it is axioma-
tisable by cofinal subframe formulas of almost irreflexive transitive frames.

Proof (1) By 1.12.22, it suffices to check the finite cofinal quasi-embedding
property for our logic Λ. So suppose G 6�Λ. If G 6�S4.1, the further proof is
easy27, so let G � S4.1. Then there is a finite rooted blossom frame F such that
CSM(F ) ∈ Λ and a cofinal subreduction f from G to F . Let us show that then
there exists a subframe G0 ⊆ G such that f ↾ G0 is a cofinal subreduction to F
and f is injective on f−1(F−). Moreover, we can chooseG0 so that f [G−

0 ] ⊆ F−,
and thus G−

0 is finite.
The proof is by induction on the cardinality of F . Let u be an element of

G with f(u) = 0F , where 0F is the root of F . For every a ∈ β(0F ), choose an
arbitrary v ∈ G such that u ≤G v and f(v) = a. Note that if a is maximal in F
and G has McKinsey property, we can choose a maximal v, since f is cofinal.
Then fa := f ↾ (G↑v), is a cofinal subreduction from G ↑ v to F↑a. Hence
by the induction hypothesis, there exists a finite subframe Ga of G such that
fa ↾ Ga is a cofinal subreduction from G to F ↑ a. Put

G0 := {u} ∪
⋃

a∈β(0F )

Ga.

Then G0 obviously has the required property.
(2) is proved similarly. �

1.13 Splittings

The following result is a modal version of [Jankov, 1969].

Theorem 1.13.1 Let F be a finite rooted Kripke frame. Then for any modal
algebra Ω the following properties are equivalent:

(1) Ω 6� XM(F );

(2) MA(F ) is a subalgebra of a homomorphic image of Ω.

Lemma 1.13.2 For any 1-modal logic Λ ⊇ K4 and a finite rooted transitive
frame F

XM(F ) ∈ Λ iff Λ 6⊆ ML(F );

in particular, for any 1-modal formula A

K4 +A ⊢ XM(F ) iff A 6∈ ML(F ).

If F is reflexive, then the latter is also equivalent to S4 +A ⊢ XM(F )

27Since S4.1 is elementary.
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Remark This lemma shows that the pair of logics (K4 + XM(F ),ML(F ))
‘splits’ the set of extensions of K4: every Λ ⊇ K4 is either below ML(F ) or
above K4 +XM(F ).

The original Jankov formula [Jankov, 1969] is defined as follows.

Definition 1.13.3 Let F = (W,≤) be a finite p.o. set, Ω = HA(F ). Then

XI(F ) :=

(
∧

a,b∈Ω

(pa∧b ≡ pa ∧ pb) ∧
∧

a,b∈Ω

(pa∨b ≡ pa ∨ pb)∧

∧
a,b∈Ω

(pa→b ≡ (pa ⊃ pb)

)
∧ ¬p0) ⊃ pω,

where {pa | a ∈ Ω} is a set of distinct propositional variables corresponding to
the elements of Ω and ω is the subgreatest element of Ω.

Theorem 1.13.4 Let F be a finite rooted Kripke frame. Then for any Heyting
algebra Ω′ the following properties are equivalent:

(1) Ω′ 6� XI(F );

(2) HA(F ) is a subalgebra of a homomorphic image of Ω′.

Corollary 1.13.5 Let F be a finite rooted p.o. set. Then for any p.o. set G
the following properties are equivalent:

(1) G 6 XI(F );

(2) there exists u ∈ G such that Gu ։ F .

Lemma 1.13.6 For any superintuitionistic logic Λ

XI(F ) ∈ Λ iff Λ 6⊆ IL(F ),

in particular, for any intuitionistic formula A

XI(F ) ∈ (H +A) iff A 6∈ IL(F ).

Hence for example, we obtain

Lemma 1.13.7 Let A be a propositional formula. Then:

(1) AJ ∈ (H +A) iff A 6∈ IL(F2) (Fig. 1.2);

(2) AJ− ∈ (H +A) iff A 6∈ IL(F3) and A 6∈ IL(F4) (Figs. 1.3, 1.4).

Proof Note that

H +AJ = H +XI(F2), H +AJ− = H +XI(F3) ∧XI(F4).

Then apply Lemma 1.13.6 �
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•

• •

Figure 1.2. F2

•

•

•

•

Figure 1.3. F3

•

••

•

•

Figure 1.4. F4
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1.14 Tabularity

Definition 1.14.1 A modal or intermediate propositional logic is called tabular
if it is determined by a finite modal or Heyting algebra, or equivalently, by a finite
Kripke frame.

Lemma 1.14.2 In the notation of 1.10.2, if F has a root u0, dd(u0) is finite
and R(x) is finite for any x ∈ F , then F is finite.

Proof By induction on k = dd(u0). The statement is trivial for k = 0. For
the step note that

W = R∗(u0) = {u0} ∪R(u0) ∪
⋃

{W ↑u | u0Ru, u0 6= u}.

By the induction hypothesis, every W ↑ u for u0Ru, u0 6= u is finite, since
dd(u) < dd(u0).

Hence W is finite. �

Consider the following N -modal k-formulas

pi
k := ¬pi ∧

∧
i6=j

pj ;

Altk := ¬
k∧

i=1

✸pi
k;

B1
k := p1

k;

Bi
k := pi

k ∧ ✸Bi−1
k for 1 < i ≤ k;

AHk := ¬Bk
k ;

where
✸A := ✸1A ∨ · · · ∨ ✸NA.

These formulas have the following first-order characterisations.

Lemma 1.14.3 For a frame F = (W,R1, . . . , RN ) put R := R1 ∪ · · · ∪ RN .
Then

(1) F, x � Altk iff |R(x)| < k;

(2) F, x � AHk iff ddF (x) < k.

For intermediate logics we have the same characterisation with different for-
mulas.

Lemma 1.14.4 For a poset F = (W,R)

F, x � IGk iff |R(x)| < k.

Hence we obtain a characterisation of tabular modal logics similar to that
in [Chagrov and Zakharyaschev, 1997].

Proposition 1.14.5
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(1) An N -modal propositional logic Λ is tabular iff Λ ⊢ Altk ∧AHk for some
k.

(2) An intermediate propositional logic Λ is tabular iff Λ ⊢ IGk for some k.

Proof The claim ‘only if’ follows from 1.14.3 and 1.14.4.
To show ‘if’, use the canonicity of AHk, Altk, IGk and the observation that

every rooted frame validating Altk ∧AHk (or IGk) is finite. �

Lemma 1.14.6 If Φ = (F,W) is a finite refined frame, then ML(Φ) = ML(F )
(or IL(Φ) = IL(F ) in the intituionistic case).

Proof (Modal case) For x 6= y let Uxy be an interior set such that x ∈ Uxy, y 6∈
Uxy. Since F is finite, it follows that

{x} =
⋂

y 6=x

Uxy ∈ W .

Thus all subsets of F are interior, so the valuations in Φ and F are the same.
Therefore valid formulas are the same.

(Intuitionistic case.) Suppose F = (W,R) is an intuitionistic frame and for
y 6∈ R(x) let Vxy ∈ W be such that x ∈ Vxy, y 6∈ Vxy. Then

R(x) =
⋂

y 6∈R(x)

Vxy ∈ W .

So for every R-stable U we have

U =
⋃

x∈U

R(x) ∈ W ,

and again it follows that Φ, F have the same valuations. �

Proposition 1.14.7 Every tabular modal or intermediate propositional logic is
r-persistent.

Proof (Modal case) Consider a tabular logic Λ and a refined frame Φ = (F,W)
validating Λ. By 1.14.5, Λ ⊢ Altk ∧ AHk for some k, hence Φ � Altk ∧ AHk.
According to the characterisation given in 1.14.3, the classes V(Altk), V(AHk)
are universal, so Altk ∧ AHk is r-persistent by Theorem 1.12.8 and thus valid
in F and therefore in every cone F ↑u. So by 1.14.5, Φ ↑ u is finite. By 1.7.14,
Φ ↑ u is refined and by 1.6.11, Φ ↑ u � Λ. Therefore, F ↑ u � Λ by 1.14.6. Since
u is arbitrary, by Lemma 1.3.26, it follows that F � Λ.

In the intuitionistic case use the same argument and 1.14.4 instead of 1.14.5.
�

Proposition 1.14.8 For finite modal frames G, F , ML(G) ⊆ ML(F ) iff G is
reducible to F ; similarly for the intuitionistic case.

Theorem 1.14.9 Every tabular modal or intermediate logic is finitely axioma-
tisable. Moreover, a transitive modal or intermediate logic is finitely axiomati-
sable by frame formulas.
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1.15 Transitive logics of finite depth

The results of this section are based on [Hosoi, 1967], [Hosoi, 1969].

Lemma 1.15.1 For a poset F

F  APn ⇔ d(F ) ≤ n.

Proposition 1.15.2 Let Zn be an n-element chain. Then

IL(Zn) = LC +APn, LC =
⋂

n

IL(Zn) = IL(F )

for every infinite chain F . In particular, IL(Z1) = H +AP1 is a classical logic
and H +APn ⊂ IL(Zn) for n ≥ 2.

Proposition 1.15.3 H + APn is determined by the class of finite posets of
depth n.

Proof As we know, APn-frames are S4-frames of depth ≤ n, so H +APn is a
subframe logic. Thus it is determined by finite posets of depth ≤ n. It remains
to note that every poset of depth < n is a generated subframe in a poset of
depth n. �

Hence by unravelling we obtain

Corollary 1.15.4 H+APn = IL(IT n
ω ), where IT n

ω is the standard tree of depth
n and branching ω.

Hence by induction on n we obtain

Corollary 1.15.5 For every m,n ∈ ω there exists k ∈ ω such that

(H +APn)⌈m = IL(IT n
k )⌈m,

where IL(IT n
k ) is the tree of depth n and branching k.

So to say, m letters can distinguish only finitely many successors of any
point.

Definition 1.15.6 A logic L is called locally tabular if all its finitely generated
Lindenbaum algebras Lind(L⌈m) are finite; in other words, if for every m there
exist finitely many non-L-equivalent formulas in m propositional letters.

Corollary 1.15.7 Every logic H +APn is locally tabular.

Proposition 1.15.8 Every locally tabular logic has the f.m.p.

Lemma 1.15.9 H +XI(Zn+1) = H + APn for n ≥ 0.
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Proof A frame F is of depth ≤ n iff F is not reducible to Zn+1 iff F 
XI(Zn+1). Thus H+APn and H+XI(Zn+1) have the same finite frames, and
it remains to show that the latter logic has the f.m.p.

But this logic is subframe, since the class of frames of depth ≤ n is closed
under subframes. So we can apply Fine’s theorem. �

Hence by Lemma 1.13.6 we obtain

Proposition 1.15.10 For a superintuitionistic logic L

L 6⊆ IL(Zn+1) iff H +APn ⊆ L.

This proposition shows that the structure of superintuitionistic logics splits
into an (ω + 1)-sequence of slices.

Definition 1.15.11 For a finite n, the nth slice is the set of superintuitionistic
logics

Sn := {L ∈ S | H +APn ⊆ L ⊆ IL(Zn)};

the ωth slice is
Sω := {L | H ⊆ L ⊆ LC}.

So
S0 = {H +AP0} = {H + ⊥},

i.e. S0 contains only the logic of the empty ‘chain’ Z0.
Let Sn be the set of logics of slice n (for 0 ≤ n ≤ ω). Proposition 1.15.10

implies

Proposition 1.15.12

(1) S =
⋃

n≤ω

Sn,

(2) Sn

⋂
Sm = ∅ for n 6= m,

(3) if L is a superintuitionistic logic, then L ∈ Sn, where

n =

{
ω if ∀n L ∈ IL(Zn),
max{n ∈ ω | L ⊆ IL(Zn)} otherwise

(4) the slices S1 is one-element: S1 = {H +AP1} = CL,

(5) the slice S2 is a decreasing (ω + 1)-chain,

(6) for n ≥ 3 all slices Sn are of cardinality 2ℵ0 .

Proposition 1.15.13 For a finite n

IL(F ) ∈ Sn ⇔ d(F ) = n.
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Proposition 1.15.14 Sn = {IL(F ) | F is a poset of depth n}. Every logic of
slice Sn is determined by a disjoint union of finite posets of depth n.

Proof Local tabularity is clearly inherited by extensions, so it holds for all
logics of finite slices. Therefore all logics of finite slices have the f.m.p., and
hence the proposition follows. �

As we mentioned, LC =
⋂

n∈ω
IL(Zn). The set

{L | LC ⊂ L} = {IL(Zn) | n ∈ ω}

is a decreasing ω-chain; this readily follows from Proposition 1.15.14, since
IL(Zn) = LC + APn is a simple extension of LC in the nth slice. Also
H =

⋂
n∈ω

(H + APn), since H has the f.m.p. and every finite poset is of fi-

nite depth.

Proposition 1.15.15 Sn are sublattices of the lattice of superintuitionistic log-
ics. Every finite slice Sm is embeddable in all slices Sn for m ≤ n ≤ ω by maps
λmn: L 7→ L ∩ IL(Zn) (and IL(Zω) = LC).

Proof Note that L1 ⊆ L2 iff λmn(L1) ⊆ λmn(L2), since L = λmn(L)+APm =
λmn(L) + (H + APm), for L ∈ Sm; moreover, λmn(L) = λmk(L) + APn =
λmn(L) + (H +APn) for k ≥ n, by distributivity. Also

λmn(L ∩ L′) = λmn(L) ∩ λmn(L′),

and λmn(L+ L′) = λmn(L) + λmn(L′), again by distributivity. �

1.16 ∆-operation

In this section we study an embedding of Sn in Sn+1 (∆-operation) introduced
in [Hosoi, 1969].

Definition 1.16.1 For A ∈ IF put δA := p∨ (p ⊃ A), where p is a proposition
letter that does not occur in A. For a superintuitionistic logic L put ∆L :=
H + {δA | A ∈ L}.28

The original definition [Hosoi, 1969] is ∆L := {δ′A | A ∈ L}, where δ′A :=
((p ⊃ A) ⊃ p) ⊃ p) (the ‘A-version’ of Peirce’s law). Let us show that both
definitions are equivalent.

Lemma 1.16.2 H + δA = H + δ′A for any formula A.

28Obviously, the definition of ∆L does not depend on the choice of p; but we fix p to make
δA unique. To be precise, we should use the notation δpA instead of δA.
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Proof On the one hand, obviously QH ⊢ δA ⊃ δ′A. On the other hand, let
us prove

(0) H + δ′A ⊢ δA.

In fact, obviously

(1) p ⊢H p ∨ (p ⊃ A),

hence

(2) p, p ∨ (p ⊃ A) ⊃ A ⊢H A,

and thus by the deduction theorem 1.1.5

(3) δA ⊃ A ⊢H p ⊃ A.

This implies

(4) δA ⊃ A ⊢H δA,

hence

(5) H ⊢ (δA ⊃ A) ⊃ δA,

by the deduction theorem. Now since

((δA ⊃ A) ⊃ δA) ⊃ δA

is a substitution instance of δ′A, (5) implies (0). �

The next lemma shows the semantical meaning of δA.

Lemma 1.16.3 Let F be a rooted poset with root 0F . Then

F  δA iff ∀u 6= 0F F ↑ u  A.

Proof (Only if.) Suppose F↑u 6 A, u 6= 0F , so M 6 A for some Kripke
model M = (F↑u, θ). By truth preservation it follows that M,u 6 A. Then
consider M ′ = (F, ξ) such that

ξ(q) : =

{
θ(q) if q 6= p,
F − {0F} if q = p.

Obviously M ′ is intuitionistic. Also M ′, u 6 A, since p does not occur in
A. Now from M ′, u  p and M ′, 0F 6 p it follows that M ′, 0F 6 δA; thus
F 6 δA.

(If.) Suppose F 6 δA, i.e. M 6 δA for some Kripke model M over F . Then
by truth preservation M, 0F 6 δA; hence M, 0F 6 p, and M,u  p, M,u 6 A
for some u 6= 0F . By the generation lemma it follows that M↑u, u 6 A; thus
F↑u 6 A. �
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Hence we obtain

Proposition 1.16.4 If F  L, then 1 + F  ∆L, where 1 + F is obtained by
adding a root below F .

Proof In fact, if 1 + F 6 δA, then by 1.16.3, F↑u 6 A for some u ∈ F ; thus
F 6 A by the generation lemma. �

Lemma 1.16.5 For any superintuitionistic logic L, δA ∈ ∆L iff A ∈ L.

Proof We consider a particular case, when L is Kripke-complete. The claim
easily follows from Lemma 1.16.3 (and Proposition 1.16.4). In fact, if A 6∈ L =
IL(F ) for a poset F , then ∆L ⊆ IL(1 + F ) and δA 6∈ IL(1 + F ). �

A predicate analogue of 1.16.5 will be discussed later on in Section 2.13.

Lemma 1.16.6 (1) H ⊢ A ⊃ δA.

(2) H ⊢ δ(A1 ⊃ A2) ⊃ (δA1 ⊃ δA2).

(3) H ⊢ δ

(
n∧

i=1

Ai

)
≡

n∧
i=1

δAi.

Proof An easy exercise; also see Chapter 2. �

Proposition 1.16.7 For propositional superintuitionistic logics L1, L2.

(1) ∆L ⊆ L;

(2) L1 ⊆ L2 iff ∆L1 ⊆ ∆L2;

(3) L1 = L2 iff ∆L1 = ∆L2.

Proof (1) ∆L ⊆ L follows from H ⊢ A ⊃ δA.
(2) ‘Only if’ is obvious. To show ‘if’, suppose L1 6⊆ L2 and A ∈ L1 − L2;

then δA ∈ ∆L1 − ∆L2 by 1.16.5, and thus ∆L1 6⊆ ∆L2.
(3) A trivial consequence of (2). �

Note that (2) means that ∆ is a monotonic embedding S −→ S. By (2),
L1 ⊆ L2 also implies ∆nL1 ⊆ ∆nL2 for any n.

Now the deduction theorem implies

Lemma 1.16.8 ∆(H + Γ) = H + δΓ, where δΓ := {δA | A ∈ Γ}. Hence
∆n(H + Γ) = H + δnΓ, where δnΓ := {δnA | A ∈ Γ}.29

Proof In fact, if L = H + Γ ⊢ A then H ⊢
m∧

i=1

Bi ⊃ A for some B1, . . . , Bm ∈

Sub(Γ). Then δBi ∈ Sub(δΓ), and so H + δΓ ⊢ δA. Thus ∆L = H + δL ⊆
H + δΓ. �

29Strictly speaking, δnA means δpn . . . δp1A for different proposition letters p1, . . . , pn that
do not occur in A. Cf. the footnote to Definition 1.16.1.
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Obviously APm+1 = δAPm, so δnAPm = APm+n, in particular APm =
δm⊥.30

Hence we conclude that ∆n(H + APm) = H + APm+n, and thus for any n
∆(H+APn) = H+APn+1; and H+APn = ∆n(H+⊥) = ∆n−1(CL) for n > 0.

Also by Proposition 1.16.7,

∆(IL(Zn)) ⊂ IL(Zn+1) for n > 0;

The inclusion is proper, since ∆L ⊆ ∆CL = H + AP2 for L ⊆ CL, and thus
AZ = (p ⊃ q) ∨ (q ⊃ p) 6∈ ∆L.

So we obtain

Proposition 1.16.9 ∆L ∈ Sn+1 for L ∈ Sn, n ∈ ω. Thus ∆ embeds Sn in
Sn+1 and Sω in itself.

Note that ∆ is not a lattice embedding; more precisely, it preserves joins not
meets.

Lemma 1.16.10 If A1 ∈ (L1 − L2) and A2 ∈ (L2 − L1), then δA1 ∨ δA2 ∈
∆L1 ∩ ∆L2 − ∆(L1 ∩ L2).

Proof For Kripke-complete L1 and L2 (in particular, for all logics of finite
slices) this readily follows from Lemma 1.16.3. Namely, if A1 6∈ L2 = IL(F2)
and A2 6∈ L1 = IL(F1), then the frame 1 + F1 ⊔ F2 separates δA1 ∨ δA2 from
∆(L1 ∩ L2).

The lemma actually holds for arbitrary logics; its analogue for predicate
logics will be discussed in Section 2.13. �

Proposition 1.16.11 For superintuitionistic logics L1, L2

(1) ∆(L1 + L2) = ∆L1 + ∆L2;

(2) ∆(L1 ∩ L2) = ∆L1 ∩ ∆L2 iff L1 and L2 are ⊆-comparable.

Proof (1) follows from Lemma 1.16.5: L1+L2 = H+L1∪L2, so ∆(L1+L2) =
H + δL1 ∪ δL2 = (H + δL1) + (H + δL2) = ∆L1 + ∆L2.

(2) follows from 1.16.10. �

Proposition 1.16.12 ∆L = L iff L = H. So ∆L ⊂ L for any L 6= H.

Proof If ∆L = L, then L ⊆ H + ⊥ implies L ⊆ ∆n(H + ⊥) = H + APn for
all n ∈ ω. Hence L ⊆

⋂
n

(H +APn) = H. �

Remark 1.16.13 A similar argument shows that for any superintuitionistic
logic L, ⋂

n∈ω

∆nL = H (∗)

in other words, the ‘ω-iteration’ of ∆ is trivial. (∗) readily implies Proposition
1.16.12. In Volume 2 we will prove that 1.16.12 and (∗) do not transfer to the
predicate case.

30More exactly, note that according to the definition of APn is section 1.1, APm+1 =
δpm+1APm; so APm+n = δpm+n

. . . δpm+1APm.
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1.17 Neighbourhood semantics

Neighbourhood semantics is a generalisation of Kripke semantics. In this case
‘possible worlds’ are regarded as points of an abstract ‘space’ or a ‘neighbour-
hood frame’. In such a frame every world has a set of ‘neighbourhoods’, and
�A is true at w iff A is true in all worlds in some neighbourhood of w, that is,
in all the worlds that are ‘rather close’ to w. So in neighbourhood semantics
‘necessary’ is interpreted as ‘locally true’.

Here is a precise definition.

Definition 1.17.1 An n-modal (propositional) neighbourhood frame is an (n+
1)-tuple F = (W,�1, . . . ,�N ), such that W 6= ∅, �i are unary operations in
2W satisfying the identities:

�i(a ∩ b) = �ia ∩�ib,

�iW = W.

As in Kripke frames, the elements of W are called possible worlds, or points;
u ∈ �iV is read as ‘V is an i-neighbourhood of u’. The basic identities mean
that the intersection of two i-neighbourhoods of u is also an i-neighbourhood
of u, every extension of an i-neighbourhood is again an i-neighbourhood and
that W is an i-neighbourhood of any u. However a neighbourood of u may not
contain u, or may even be empty.

Obviously, an N -modal neighbourhood frame F corresponds to the N -modal
algebra

MA(F ) := (2W , ∪, ∩, −, ∅, W, �1, . . . ,�N ).

The following is a trivial consequence of definitions, cf. Section 1.3.

Lemma 1.17.2 Every Kripke frame F = (W,R1, . . . , RN ) corresponds to a
neighbourhood frame Nd(F ) = (W,�1, . . . ,�N ), such that MA(Nd(F )) =
MA(F ).

Definition 1.17.3 A neighbourhood model over a neighbourhood frame F is
a pair M = (F, θ), in which θ : PL −→ 2W is a valuation. θ is extended to all
formulas, according to Definition 1.2.8.

We use the same terminology and notation as in Kripke semantics. For a formula
A, we write: M,w � A (or w � A) instead of w ∈ θ(A), and say that A is true
at the world w of M (or that w forces A).

So we have:

M,x � �iA iff θ(A) is an i-neighbourhood of x.

Definition 1.17.4 A modal formula A is true in a neighbourhood model M
(notation: M � A) if it is true at every world of M ; A is valid in a neighbourhood
frame F (notation: F � A) if it is true in every model over F. A set of formulas
Γ is valid in F (notation: F � Γ) if every A ∈ Γ is valid.



80 CHAPTER 1. BASIC PROPOSITIONAL LOGIC

Similarly to Lemmas 1.3.7 and 1.3.8 we obtain

Lemma 1.17.5 For any modal formula A and a neighbourhood frame F

F � A iff MA(F ) � A.

Lemma 1.17.6

(1) For a neighbourhood frame F the set

ML(F ) := {A | F � A}

is a modal logic.

(2) For a class C of N -modal neighbourhood frames the set

ML(C) :=
⋂

{ML(F ) | F ∈ C}

is an N -modal logic.

Definition 1.17.7 The logic ML(F ) (respectively, ML(C)) is called the modal
logic of F (respectively, of C), or the modal logic determined by F (by C).

A modal logic is called neighbourhood complete if it is determined by some
class of neighbourhood frames.

From Lemma 1.17.2 we have:

Lemma 1.17.8 Every Kripke-complete propositional logic is neighbourhood com-
plete.

The converse to the previous Lemma is false [Gabbay, 1975], [Gerson, 1975a],
[Shehtman, 1980], [Shehtman, 2005]. There also exist examples of modal logics
that are incomplete in neighbourhood semantics [Gerson, 1975b], [Shehtman,
1980], [Shehtman, 2005]. The question of whether all intermediate propositional
logics are neighbourhood complete (Kuznetsov’s problem [Kuznecov, 1974] ), is
still open.



Chapter 2

Basic predicate logic

2.1 Introduction

The main notion of this chapter is first-order logic. Similarly to the propositional
case, we define a logic as a set of formulas that contains some basic axioms and
is closed under some basic inference rules.

Here the crucial point is the substitution rule, which is important because
we would like to distinguish between logics and theories.

On the one hand, every axiomatic logical calculus (postulated by a set of ax-
ioms and inference rules) generates a ‘theory’ — the set of all theorems. Usually
theories are supposed to collect properties of a certain kind of objects. Many
well known theories, such as Peano arithmetic, Tarski’s elementary geometry,
Zermelo–Fraenkel set theory, were developed for that purpose.

On the other hand, we may be interested in theories that do not depend
on ‘application domains’ and express the basic ‘logical laws’. For example, the
proposition

Every human has a father and a mother

expressed by a formula

A = ∀x(H(x) ⊃ ∃yF (y, x) ∧ ∃zM(z, x)),

is a specific property of humans that does not hold for all living creatures.
The formula

B = ∀x(H(x) ⊃ ∃yM(y, x))

also expresses a true property of humans, which does not hold in other cases.
But the implication

A ⊃ B

(allowing us to deduce B from A) is a logical law — its truth does not depend
on the meaning of the predicates H, F, M .

81
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So the laws of logic should sustain replacing of predicates by arbitrary for-
mulas. We can regard them as schemata for producing theorems, and define a
logic just as a substitution closed theory.1

A standard example is classical first-order logic, the set of all theorems of
classical predicate calculus. Numerous classical theories contain it as a fixed
basic part.

In the nonclassical area there is a great variety of logics deserving special
attention. Of course study of nonclassical theories (such as Heyting arithmetic
or modal set theories) is also interesting and important, but due to the lack of
time, we postpone it until Volume 2.

Study of nonclassical logics in this volume is closely related to study of
different semantics. Unlike the classical case, there are many options here.
From our viewpoint, a semantics S for a certain class of logics (say, Σ) should
include the notions of a ‘frame’ and ‘validity’. A semantics S is ‘sound’ for Σ if
the set of all formulas valid in any S-frame is a logic from Σ.2 Thus to check
soundness, it is necessary to prove that the substitution rule preserves ‘validity’
in a ‘frame’.

In this respect there is a big difference between the classical and nonclas-
sical cases. In classical logic we may not care about formula substitutions,
and they are usually not discussed in textbooks and monographs.3 Traditional
formulations of classical predicate calculus use axiom schemes rather than the
substitution rule, and soundness is proved without mentioning substitutions.
The substitution closedness is then given as gratis. But in our nonclassical
studies when we use rather exotic types of frames, proofs of soundness may be
nontrivial, and we have to deal with the substitution rule.

Therefore, we first take a closer look at at this rule. Its intuitive meaning is
clear: given a first-order formulaA we can deduce every formula [C/P (x1, . . . , xn)]A
obtained by substituting a formula C for an atomic formula P (x1, . . . , xn).
More exactly, to obtain [C/P (x1, . . . , xn)]A, one should replace every occur-
rence of P (x1, . . . , xn) with C and every occurrence of P (y1, . . . , yn) (using
other variables y1, . . . , yn) with the corresponding version of C, [y1, . . . , yn/
x1, . . . , xn]C. In its turn [y1, . . . , yn/x1, . . . , xn]C is obtained by a ‘correct’ re-
placement of parameters x1, . . . , xn with y1, . . . , yn.

Thus the definition of a formula substitution [C/P (x1, . . . , xn)] relies on the
definition of a correct variable substitution [y1, . . . , yn/x1, . . . , xn].

Our approach to substitutions is developed in sections 2.3, 2.5. As we hope,
the readers will find it convenient from the technical viewpoint, because we de-
fine formulas [y1, . . . , yn/x1, . . . , xn]A and [C/P (x1, . . . , xn)]A up to congruence
and can almost forget about variable renaming.

1Of course this definition is rather conventional, and there exist examples of ‘logics’ that
are not substitution closed.

2Some authors still use ‘semantics’ that are not sound in this sense [Kracht and Kutz,
2005], [Goldblatt and Maynes, 2006]. This is not so convenient, because it may be difficult to
describe all ‘frames’ characterising a given logic.

3With few exceptions, such as [Church, 1996], [Novikov, 1977].
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2.2 Formulas

2.2.1 Basic definitions. Free and bound variables

The expansion of a propositional language to a first-order language is defined
in a standard way.

Let V ar = {v1, v2, . . .}, PL
n = {Pn

i | i ≥ 0} (n ≥ 0) be fixed disjoint
countable sets. The elements of V ar and PLn are respectively called (in-
dividual) variables, and n-ary predicate letters.4 An atomic formula without
equality is either ⊥, or P 0

i (a proposition letter), or Pn
i (x1, . . . , xn) for some

n > 0, x1, . . . , xn ∈ V ar. Atomic formulas with equality can also be of the form
x = y, where x, y ∈ V ar and ‘=’ is an extra binary predicate letter.5 Note that
our basic language does not include constants or function letters; we will return
to these matters in Volume 2. Also note that the language is countable, but we
shall consider its uncountable expansions with constants.

Classical (or intuitionistic) predicate formulas (with or without equality)
are built from atomic formulas using the propositional connectives ∧, ∨, ⊃, and
the quantifiers ∀, ∃; in N -modal predicate formulas6 the unary box connectives
�i, 1 ≤ i ≤ N , can also be used. The abbreviations ¬A, ⊤, A ≡ B, ✸iA have
the same meaning as in the propositional case; x 6= y abbreviates ¬(x = y).

For a formula A, a list of variables x = x1 . . . xn and a quantifier Q ∈ {∀, ∃},
QxA denotes Qx1 . . .QxnA.

|A| denotes the length of a formula A (regarded as a word in the alphabet
containing the variables, the predicate letters, the propositional connectives, the
quantifiers, and the brackets). Sometimes they also use the complexity of a for-
mula — the number of occurrences of quantifiers and propositional connectives.

Definition 2.2.1 The (modal) degree d(A) of a modal predicate formula A is
defined by induction:

d(A) = 0 for A atomic;
d(A ∧B) = d(A ∨B) = d(A ⊃ B) = max (d(A), d(B));
d(∀xA) = d(∃xA) = d(A);
d(�iA) = d(A) + 1.

So d(A) = 0 iff A is a classical formula.

AF, IF, MFN denote respectively the sets of atomic, intuitionistic, and N -
modal formulas without equality; the corresponding sets of formulas with equal-
ity are denoted by AF=, IF=, MF=

N ; we omit the subscript N if N = 1 or if

N is clear from the context. Sometimes we write IF (=), MF
(=)
N . etc. in or-

der to combine the cases with and without equality in a single statement. The

4We also use the symbols P, Q, R, . . . (sometimes with subscripts) as names of predicate
letters; p, q, r, . . . as names of proposition letters and x, y, . . . as names of variables.

5‘=’ is also used as a metasymbol.
6To avoid confusion, we use the letter N instead of n, because in many cases n denotes the

number of variables in a list.
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set MF
(=)
N is also denoted by L

(=)
N and called the (basic) N -modal first-order

language; L
(=)
0 is (basic) classical (or intuitionistic) first-order language.

Now we need some more details about syntactic structure of formulas.

Definition 2.2.2 An occurrence of a letter c in a word α is a triple (α, i, c)
such that c is the i-th letter of α; an occurrence of a word β in α is a triple
(α, i, β) such that β is a subword of α beginning with the i-th letter of α.

Remark 2.2.3 If (α, i, β) is an occurrence of a subword β in α and (β, j, γ) is
an occurrence of a subword γ in β, then (α, i + j − 1, γ) is an occurrence of γ
in α. In this case we often say that γ has the same occurrence in β and in α,
although formally (β, j, γ) 6= (α, i + j − 1, γ). We also say that the occurrence
(α, i + j − 1, γ) of γ in α is within the occurrence (α, i, β) of β.

The following statement is rather standard (cf. slightly different versions in
[Shoenfield, 1967], [Bourbaki, 1968]), but for the reader’s convenience, we give
a sketch of a proof.

Lemma 2.2.4 (Parsing lemma) (1) A proper initial subword of a formula
is not a formula. Formally: if (A, 1, B) is an occurrence of a subformula,
then A = B.

(2) Let A, B, A′, B′ be formulas, ∗, ∗′ ∈ {∨,∧,⊃} binary connectives such
that A ∗B = A′ ∗′ B′. Then A = A′, ∗ = ∗′, and B = B′.

(3) Every occurrence of a left bracket, a box connective or a quantifier in a
formula begins a unique subformula.

(4) For any formulas A, B every occurrence of a proper subformula in (A∗B)
is either in A or in B (or more precisely, either within the part denoted
by A or the part denoted by B).

Proof (1) α � β denotes that a word α is an initial subword of β.
If A is atomic, the claim is trivial.
If A = QxA′ for a quantifier Q, then B = QxB′ for some formula B′ � A′,

so A′ = B′ by the induction hypothesis; hence A = B.
A similar argument applies to A = �iB.

If A = (A′∗A′′) for formulas A′, A′′, then B begins with ‘(’, so B = (B′∗B′′)
for some formulas B′, B′′. Thus A′ � B′ or B′ � A′, so by the IH, A′ = B′.
Hence B′′ � A′′, and by the IH again, A′′ = B′′. Therefore A = B.

(2) Repeat the argument in the proof of (1) for the case A = (A′ ∗A′′) and
apply (1).

(3) The existence of such a subformula is easily proved by induction, and
the uniqueness follows from (1).

(4) This subformula C begin with a left bracket, a quantifier or a box oc-
curring in A or B. So by (3) C is a subformula of A or B. �



2.2. FORMULAS 85

Exercise 2.2.5 Basing on the previous lemma show that two different occur-
rences of proper subformulas in a formula do not overlap. Formally: if (A, i, B),
(A, j, C) are occurrences of subformulas and 1 < i < j, then either i + |B| ≤ j
or j + |C| < i+ |B|.

Now we recall another standard definition.

Definition 2.2.6 An occurrence of a variable x in a formula A is called bound
if it is within an occurrence of a subformula beginning with a quantifier over x.
An occurrence next to a quantifier is called strongly bound. All other occur-
rences of variables are called free.

If (A, i,QxB) is an occurrence of a subformula beginning with an occurrence
of a quantifier, we say that the quantifier occurrence (A, i,Q) is active for every
occurrence of x within (A, i,QxB).

Lemma 2.2.7 Free and bound occurrences of variables in formulas can be
described by induction as follows.

• All variable occurrences in atomic formulas are free.

• If (A, i, x) is free (bound), then (�jA, i + 1, x) is free (bound).

• Let C = (A ∗B), where ∗ is a binary connective, |A| = l.

If (A, i, x) is free (bound), then (C, i+ 1, x) is free (bound).

If (B, i, x) is free (bound), then (C, i + l + 2, x) is free (bound).

• Let B = ∀yA or ∃yA. If (A, i, x) is free (bound) and x 6= y, then (B, i +
2, x) is free (bound). All occurrences of y in B are bound.

Proof All the cases are trivial, except for formulas of the form (A∗B). In this
case first note that every occurrence of x in C = (A ∗B) is either (C, i + 1, x),
where (A, i, x) is an occurrence in A, or (C, i + l + 2, x), where (B, i, x) is an
occurrence in B. Since by Lemma 2.2.4 every subformula QxD occurs within
either A or B, all bound occurrences of x in C result from its bound occurrences
in A or B. �

FV (A) denotes the set of parameters (free variables) of a formula A, i.e., of
all variables having free occurrences in A. A closed formula (or a sentence) is a

formula without parameters. MS
(=)
N (respectively, IS(=)) denotes the set of all

N -modal (respectively, intuitionistic) sentences.
BV (A) denotes the set of bound variables of A (i.e., the variables having

bound occurrences in A). We also use the notation

BV −(A) := BV (A) − FV (A), V (A) := BV (A) ∪ FV (A).

A variable is called new for A if it does not occur in A.
Recall that a universal closure of a formula is usually understood as the result

of the universal quantification over all its parameters. But such a definition is
a priori ambiguous. To fix a unique notation for the universal closure, one can
take the parameters in a certain order, for example as follows.
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Definition 2.2.8 The standard list of parameters of a formula A is the set of
its parameters FV (A) ordered in accordance with their first occurrences in A.
The standard universal closure ∀A of a formula A is the sentence ∀xA, where
x is the standard list of parameters of A. For any ordering y = y1 . . . yn of
FV (A) the sentence ∀yA is called a universal closure of A.

The set of all universal closures of formulas from a set Γ is denoted by Γ.
Note that in all the logics considered in this book the universal closures

of the same formula are always equivalent, so we can deal only with standard
universal closures, i.e., with {∀A | A ∈ Γ} instead of Γ.

2.2.2 Schemes

For a subformula QxB of a formula A (where Q is a quantifier), every free
occurrence of x in B, as well as the first occurrence of x, is called referent to
the first occurrence of Q. More precisely:

Definition 2.2.9 Let (A, i,Q) be an occurrence of a quantifier Q in a formula
A beginning a subformula7 QxB. If (B, j, x) is a free occurrence of x in B, then
the occurrence (A, i+j+2, x) of x in A is called referent to (A, i,Q); the strictly
bound occurrence (A, i+1, x) is also referent to (A, i,Q). All variable occurrences
in A referent to the same occurrence of a quantifier are called coreferent (or
correlated). We also say that an occurrence of a quantifier binds all referent
occurrences of variables.

Lemma 2.2.10 Every bound occurrence (A, i, x) of a variable x in a formula
A is referent to a unique occurrence of a quantifier in A, namely, to the nearest
occurrence active for (A, i, x).

Proof A bound occurrence (A, i, x) is within some occurrence (A, j,QxB).
This occurrence of x is bound in B iff it is within an occurrence of a subformula
Q′xC of B, i.e., within an occurrence (A, k,Q′xC), where j < k. So (A, i, x)
is referent to (A, j,Q) iff (A, j,Q) is active for (A, i, x) and there is no active
(A, k,Q′) with j < k. �

Now we can define the reference structure of a formula A as the function
sending every bound occurrence of a variable in A to the occurrence of a binding
quantifier. But the following definition is more convenient.

Definition 2.2.11 Let A be a formula of length n. The reference function of
A is a function rfA defined on the set

{i | 1 ≤ i ≤ n & (A, i, x) is a bound variable occurrence for some x}

such that rfA(i) = j whenever (A, i, x) is referent to (A, j,Q) (for some variable
x and a quantifier Q).

7which is unique by 2.2.4(3).
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So rfA sends positions of bound variables to positions of their binding quan-
tifiers.

Definition 2.2.12 Let • be a new symbol, regarded as an extra variable (‘joker’).
The stem of a formula A is a formula A− obtained by replacing every bound
occurrence of every variable in A with •. The scheme of A is a pair A :=
(A−, rfA).

Thus BV (A−) ⊆ {•}, FV (A−) = FV (A).
Reference functions can be represented graphically, by connecting occur-

rences of quantifiers with referent variable occurrences. For example, for

A := ∀x(P (x) ⊃ ∃yQ(y, x))

the reference function is pictured as follows:

∀x(P (x) ⊃ ∃yQ(y, x))

and the scheme as follows:

∀ • (P (•) ⊃ ∃ •Q(•, •))

(Note that the stem itself has a different reference function!)

Remark 2.2.13 Instead of this graphic representation, one can number quan-
tifier occurrences and add corresponding superscripts to referent variable occur-
rences, cf. [Kleene, 1967].

The next lemma allows us to construct schemes by induction.

Lemma 2.2.14 (1) For A atomic, A = (A,∅).

(2) For ∗ ∈ {∨,∧,⊃}
(A ∗B)− = (A− ∗B−),

rf(A∗B)(i) =

{
rfA(i− 1) + 1, if 1 < i < |A|,

rfB(i− |A| − 2) + |A| + 2, if |A| + 2 < i,

or in a brief notation:

rf(A∗B) = rf+1
A ∪ rf

+|A|+2
B

(where for a partial function f on natural numbers we put8

f+m(i) := f(i−m) +m).

8Informally: f becomes f+m if 0 shifts to m.
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(3) (�iA)− = �iA
−, rf�iA = rf+1

A .

(4) For a quantifier Q and a variable x, (QxA)− is obtained from QxA− by
replacing all occurrences of x with •, or in a brief notation:

(QxA)− = QxA−[x 7→ •];

rfQxA = rf+2
A ∪ {(2, 1)} ∪ {(i+ 2, 1) | (A, i, x) is a free occurrence}.

Proof The claims about stems are obvious. For the reference function, the
proof is based on Parsing Lemma. We consider only the case of (A ∗B) leaving
all the rest to the reader.

By Parsing Lemma, an occurrence ((A ∗ B), i,QxC) of a subformula QxC
in (A ∗ B) is either within A or B. In the first case we have an occurrence
(A, i−1,QxC), and so every free occurrence (C, j, x) implies rfA(i+j+1) = i−1
and rf(A∗B)(i+ j + 2) = i. Hence

rf(A∗B)(i + j + 2) = rf+1
A (i + j + 2).

In the second case we have an occurrence (B, i−|A|−2,QxC), and so every free
occurrence (C, j, x) implies rfB(i+j−|A|) = i−|A|−2 and rf(A∗B)(i+j+2) = i.
Hence

rf(A∗B)(i + j + 2) = rf
+|A|+2
B (i + j + 2).

�

This lemma motivates an alternative inductive definition of schemes:

Definition 2.2.15

• A := A for A atomic;

• (A ∗B) := (A ∗ B ) for ∗ ∈ {∨,∧,⊃};

• �jA := �j A ;

• QxA (for Q ∈ {∀, ∃}) is obtained from Qx A by replacing all occurrences
of x with • and connecting them with the first occurrence of Q.

Schemes can also be defined by induction without appealing to formulas:

Definition 2.2.16

• Every atomic formula is a scheme.

• If S1, S2 are schemes, then (S1 ∗ S2) is a scheme.

• If S is a scheme, then �jS is a scheme.

• If S is a scheme, x ∈ Var, then there is a scheme QxS obtained from
QxS by replacing all occurrences of x with • and connecting them with the
first occurrence of Q.
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It is quite clear (a strict proof is by induction) that for any scheme S in
the sense of this definition, there is a formula A such that S = A . So in our
syntax we can deal with schemes rather than formulas. In a systematic way this
approach is developed in [Bourbaki, 1968].9 One can even argue that schemes
better correspond to human intuition about first-order logic.10 But in our book,
we prefer to keep to the traditional notion of a formula and use schemes only
incidentally, for technical purposes.

2.3 Variable substitutions

2.3.1 Discussion

It is well-known that a ‘logically correct’ variable substitution is not a simple
replacement of variables, due to possible variable collisions. For example, if
A is ∃y (x 6= y), and we want the formula ∀xA ⊃ [y/x]A to be (classically)
valid; it is incorrect to define [y/x]A as ∃y (y 6= y). Many authors consider
such substitutions as ‘bad’ and simply do not allow them; formally, [y/x]A is
a ‘good’ substitution if free occurrences of x are not within the scope of any
quantifier over y; as they say, y is free for x in A, cf. [Kleene, 1952], [Kleene,
1967], [Mendelson, 1997].

However, this restriction does not help for defining formula substitutions,
because e.g.

[∃yQ(x, y)/P (x)]P (y)

should be
[y/x]∃yQ(x, y),

and the latter substitution [y/x] is ‘bad’.
A well-known way to solve the problem is renaming of bound variables, cf.

[Kleene, 1963]. For example, in the formula ∃y (x 6= y) we can rename the bound
y by z and define [y/x](∃y (x 6= y)) as ∃z (y 6= z). But this variable z can be
chosen in many different ways — it can be arbitrary except for the original y. If
the result of a substitution should be unique, we have to fix one of these options.
For example, we can always take the first variable allowed for renaming (in the
list of all variables) [Kolmogorov and Dragalin, 2005]. However, such a definition
is technically inconvenient and rather unnatural, because the alphabetical order
of variables is not related to logic at all.

So we propose another approach. A substitution is considered as a relation
not function; the result of a substitution is unique only up to congruence (correct
renaming of bound variables).11 We regard [y/x]A not as a single formula, but
as a member of a certain class of formulas. This resembles the well-known
mathematical notation

∫
f(x)dx of a primitive function, which is unique up to

9With minor differences — instead of quantifiers Bourbaki uses the ε-symbol (denoted by
τ) and defines ∃xA as an abbreviation for [τx(A)/x]A.

10Natural language does not use bound variables and hides them in the reference structure,
cf. the sentence Every triangle has at least two acute angles.

11Congruence corresponds to α-equivalence in λ-calculi.
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adding a constant. Using schemes instead of formulas simplifies all the details:
two formulas are congruent if they have the same scheme.

A formula is called clean if all its quantifiers bind different variables and
none of its bound variables is free. Every formula A can be transformed into
an equivalent clean formula A◦, without bound occurrences of x or y. Then
we define [y/x]A as [y/x]A◦. Since there are no variable collisions, the latter
substitution is done by a straightforward replacement.

2.3.2 Variable transformations

Now we pass to formal details. Let x = (x1, . . . , xn) be a list of variables
(n ≥ 0).12 Later on we use the following notation:

r(x) for the set {x1, . . . , xn};
z ∈ x for ‘z occurs in x’, i.e. for z ∈ r(x);13

xy for the concatenation of the lists x, y;
x ∩ S for ‘the sublist of x containing the elements of S’;
x − S for ‘the sublist of x obtained by removing the elements of S’, etc.

A list is said to be distinct if all its members are different.

Definition 2.3.1 A variable transformation of a (distinct) list x to y is the
finite function (the set of pairs) {(x1, y1), . . . , (xn, yn)}; this function is denoted
by [x 7→ y].

If a transformation [x 7→ y] is bijective (i.e., y is distinct), it is called a
variable renaming. If also V (A) ⊆ r(x) for a certain formula A, [x 7→ y] is
called a variable renaming in A. A bound variable renaming in A is a variable
renaming in A fixing all parameters of A.

So a bound variable renaming in A is a bijective transformation [x 7→ y] such
that V (A) ⊆ r(x) and xi = yi for xi ∈ FV (A).

Also note that [x 7→ y] is a variable renaming iff the corresponding substi-
tution [y/x] is a permutation of V ar.

For a set of variables S, [x 7→ y]S denotes the restriction of [x 7→ y] to
r(x) ∩ S. We also use the abbreviations

[x 7→ y]A for [x 7→ y]FV (A);
[x 7→ y]−z for [x 7→ y]r(x)−{z}.

If x = (x1, . . . , xn), y = (y1, . . . , yn) are lists of variables and all x1, . . . , xn

are distinct, we define the variable substitution [y/x] as the following function
V ar −→ V ar:

[y/x](z) =

{
yi if z = xi;
z if z 6∈ x.

Note that the same definition can be given in the case when some of the xi are
equal, but x suby14.

12If there is no confusion, we also denote the list (x1, . . . , xn) by x1 . . . xn.
13This notation is only occasional.
14The relation sub was defined in the Introduction.
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Of course a variable substitution is nothing but a function V ar −→ V ar
that changes only finitely many variables. So a composition of substitutions is
a substitution.

For a list of variables z = z1 . . . zm, put

[y/x]z := [y/x](z1) . . . [y/x](zm).

We also use the dummy substitution [/], which is the identity function on V ar.

A transformation [x 7→ y] is called proper if xi 6= yi for every i. We say that
a transformation [x 7→ y] represents the substitution [y/x].15 Obviously, every
substitution is represented by infinitely many transformations, but only one of
them is proper.

Exercise 2.3.2 Show that if [x 7→ y] is a variable renaming, then there exists
a bijective substitution [u/v] such that [u/v]x = y.

Every transformation [x 7→ y] acts letter-wise on words (and in particular
on predicate formulas): a word α is transformed to α[x 7→ y], the result of
simultaneous replacement of all occurrences of xi with yi (for i = 1, . . . , n).

Lemma 2.3.3 If A is a formula, [x 7→ y] is a variable transformation, then
A[x 7→ y] is also a formula.

Proof Almost obvious, by induction on |A| (an exercise). �

We can say that A[x 7→ y] is obtained from a formula A by a ‘straightforward’
renaming of variables.16 However, note that the formulas A and A[x 7→ y] may
be not logically equivalent in classical logic. For example, this is the case for

A = ∃x1 (P (x1) ∧ ¬P (y1)) and A[x1 7→ y1] = ∃y1(P (y1) ∧ ¬P (y1)).

Later on we will describe ‘admissible’ transformations that do not affect the
truth values of formulas, cf. Lemma 2.3.24.

The composition of transformations is understood as the composition of the
corresponding binary relations. So [x 7→ y] ◦ [z 7→ t] is a partial function
sending xi to tj iff yi = zj. Generally speaking, this does not correspond to the
composition of actions on words, and it may happen that

α([x 7→ y] ◦ [z 7→ t]) 6= (α[x 7→ y])[z 7→ t].

We may always assume that a transformation acts on a given formula involving
all the variables; in fact, A[x 7→ y] = A[xz 7→ yz], where r(z) = V (A) − r(x).
However, the condition V (A) ⊆ r(x) is still insufficient for the equality

A([x 7→ y] ◦ [z 7→ t]) = (A[x 7→ y])[z 7→ t],

as the reader can easily see.
Nevertheless we have

15Sometimes transformations are also called ‘substitutions’, but we avoid this terminology.
16The notation [y/x]A is reserved for a ‘correct’ variable substitution with renaming of

bound variables, see below.
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Lemma 2.3.4 (1) Let [x 7→ y], [z 7→ t] be variable transformations such that
r(y) ⊆ r(z), A a predicate formula such that V (A) ⊆ r(x). Then

A([x 7→ y] ◦ [z 7→ t]) = (A[x 7→ y])[z 7→ t].

(2) Let [x 7→ y′], [y 7→ z] be variable transformations such that |x| = n, |y| =
m and y′ = y·σ for some σ ∈ Σmn

17. Then [x 7→ y′]◦[y 7→ z] = [x 7→ z·σ]
and for any predicate formula A such that V (A) ⊆ r(x)

(A[x 7→ y′])[y 7→ z] = A[x 7→ z · σ].

(3) (A[x 7→ y])[y 7→ x] = A if [x 7→ y] is a variable renaming in A.

Proof

(1) On the one hand, the composition acts on A by replacing every occurrence
of xi in A with tj such that zj = yi; this j exists, since r(y) ⊆ r(z); it is
unique, since z is distinct.

On the other hand, A[x 7→ y] is obtained by replacing every occurrence
of xi in A with yi; then (A[x 7→ y])[z 7→ t] is obtained by replacing all
occurrences of yi in A[x 7→ y] with tj such that zj = yi. Thus the resulting
action is the same.

(2) In fact, [x 7→ y′] ◦ [y 7→ z] sends xi to yσ(i), and next to zσ(i). Thus
[x 7→ y′] ◦ [y 7→ z] = [x 7→ z · σ]. Now we can apply (1).

(3) Readily follows from (2); now σ is the identity map.

�

Lemma 2.3.5 Let A be a predicate formula, [x 7→ y] a transformation such
that V (A) ⊆ r(x) and for any j 6= k, if xk ∈ BV (A) and xj ∈ V (A), then
yj 6= yk. Then

(1) free (respectively, bound) occurrences of variables in A correspond to free
(bound) occurrences of variables in A[x 7→ y]:

(A, i, xj) is free (bound) iff (A[x 7→ y], i, yj) is free (bound);

(2) rfA = rfA[x 7→y].

The conditions of the lemma mean that the transformation does not stick
together any bound variable with another variable. This obviously holds when
[x 7→ y] is a variable renaming in A.

17I.e., y′

i = yσ(i), see the Introduction.
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Proof We denote A[x 7→ y] by A′.
(1) Suppose an occurrence (A, i, xj) is bound. Then it is within an occurrence

of a subformula (A,m,QxjB). So inA′ we obtain an occurrence (A′, i, yj) within
an occurrence of a subformula (A′,m,QyjB

′). Thus (A′, i, yj) is bound.
The other way round, suppose (A′, i, yj) is bound, so it is within an occur-

rence of a subformula (A′,m,QyjB
′). In A and A′ all the quantifiers are at

the same positions, and we have occurrences (A,m,QxkB), (A, i, xl) such that
yk = yj = yl. Then by the conditions of the lemma, k = j = l, so we obtain
that (A, i, xj) is bound as it is within (A,m,QxjB).

(2) From (1) it follows that the reference functions rfA, rfA′ have the same
domain. Let us show that they have the same values.

In fact, if an occurrence (A, i, xj) is bound, rfA sends i to the position of
the binding quantifier for this occurrence of xj . So if rfA(i) = k, we have

A = . . .

k

↓

Qxj . . .

i

↓
xj . . .︸ ︷︷ ︸
B

. . .

and the occurrence (B, i− k − 1, xj) is free. Then

A′ = . . .

k

↓

Qyj . . .

i

↓
yj . . .︸ ︷︷ ︸
B′

. . .

and by (1) applied to B, the occurrence (B′, i−k−1, yj) is free. Thus rfA′(i) =
k. �

2.3.3 Congruence

Definition 2.3.6 Two predicate formulas A,B are called congruent (in sym-
bols, A ⊜ B) if they have the same scheme.

Definition 2.3.7 We say that B is strongly congruent to A (in symbols, A
◦
≡

B) if there is a bound variable renaming [x 7→ y] in A such that B = A[x 7→ y].

Lemma 2.3.8 Strong congruence is an equivalence relation on formulas.

Proof The reflexivity is trivial.

If A
◦
≡ A′, then A′ = A[x 7→ y] for a bound variable renaming [x 7→ y].

We may assume that V (A) = r(x); then V (A′) = r(y). By Lemma 2.3.4,
A′[y 7→ x] = A, and by Lemma 2.3.5, FV (A) = FV (A′). Thus [y 7→ x] fixes
the parameters of A′, so it is a bound variable renaming in A′, and it follows

that A′ ◦
≡ A.

To show the transitivity suppose A
◦
≡ A′, A′ ◦

≡ A′′. Then A′ = A[x 7→
y], A′′ = A′[y′ 7→ z], where [x 7→ y] is a bound variable renaming in A,
[y′ 7→ z] is a bound variable renaming in A′. As above we may assume that
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r(x) = V (A), r(y′) = V (A′); then obviously V (A′) = r(y), since [x 7→ y]
is a variable renaming in A. So we may further assume that y = y′. Now
A′′ = A[x 7→ y][y 7→ z] = A[x 7→ z] by Lemma 2.3.4. The composed map
[x 7→ z] is a bijection, and it remains to show that xi = zi whenever xi ∈ FV (A).

In fact, xi ∈ FV (A) implies xi = yi, since [x 7→ y] is a bound variable
renaming in A, and yi ∈ FV (A′) by Lemma 2.3.5. Since [y 7→ z] is a bound

variable renaming in A′, it follows that zi = yi = xi. Therefore A
◦
≡ A′′. �

Lemma 2.3.9 If [x 7→ y] is a bound variable renaming in A, then A ⊜ A[x 7→
y]. Thus strong congruence implies congruence.

Proof Easily follows from Lemma 2.3.5. In fact, let A′ := A[x 7→ y]. Every
free occurrence of xi in A is replaced with yi in A′, which coincides with xi,
since [x 7→ y] is a bound variable renaming in A. So A, A′ differ only in bound
variables. All bound variables in these formulas occur at the same positions;
in the stems A−, (A′)− all these occurrences are replaced with •; therefore
A− = (A′)−. Since rfA = rfA′ , we obtain A ⊜ A′. �

Definition 2.3.10 For a variable transformation [x 7→ y] and a scheme S, we
define S[x 7→ y] as the result of replacing every occurrence of xi in S by yi.

Thus
A [x 7→ y] = (A−[x 7→ y], rfA).

Lemma 2.3.11 Let A be a formula, [x 7→ y] a variable transformation such
that r(xy) ∩BV (A) = ∅. Then

A [x 7→ y] = A[x 7→ y] .

Proof Put B := A[x 7→ y]. Since B does not depend on the variables
xi 6∈ V (A), we may assume that r(x) ⊆ V (A). Let u be a list of variables from
V (A) − r(x), so that r(xu) = V (A). Obviously, B = A[xu 7→ yu]. Now note
that the conditions of Lemma 2.3.5 hold for [xu 7→ yu]. In fact, the original
transformation [x 7→ y] does not affect bound variables of A and its trivial
extension [xu 7→ yu] is injective on bound variables. So Lemma 2.3.5 implies
rfA = rfB .

It remains to show that A−[x 7→ y] = B−. The argument is similar to
Lemma 2.3.9. By Lemma 2.3.5, bound variables in A and B occur at the same
positions; in A− and B− they are replaced with •. Every occurrence of a free
variable xi in A is the same in A−, while in B it is replaced with yi and remains
free by Lemma 2.3.5, so it is yi in B− as well. Thus B− = A−[x 7→ y]. �

Lemma 2.3.12 (1) QxA ⊜ QyA[x 7→ y] for x 6∈ BV (A), y 6∈ V (A), Q ∈
{∀, ∃};

(2) A ⊜ B ⇒ QxA ⊜ QxB for Q ∈ {∀, ∃};

(3) A ⊜ A′ & B ⊜ B′ ⇒ (A ∗B) ⊜ (A′ ∗B′) for ∗ ∈ {⊃,∧,∨};
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(4) A ⊜ B ⇒ �iA ⊜ �iB for i ∈ IN .

Proof (2), (3), (4) follow from the inductive definition of schemes 2.2.16. (1)
follows from 2.3.9. In fact, let z be the list of all other variables occurring in A,
then [xz 7→ yz] is a bound variable renaming in A, and it transforms QxA into
QyA[x 7→ y]. So these formulas are congruent. �

Lemma 2.3.13 (Parsing lemma for congruence)

(1) If A = (B ∗ C) ⊜ A′, then A′ = (B′ ∗ C′) for some B′ ⊜ B, C′ ⊜ C.

(2) If A = QyB ⊜ A′ and y 6∈ BV (B), then for some variable z and formula
B′, A′ = QzB′, and either B′ ⊜ B[y 7→ z] and z 6∈ FV (B), or z = y and
B′ ⊜ B.

Proof

(1) Let A = (B ∗ C) ⊜ A′. Since A′ begins with (, it must have the form
(B′ ∗′ C′). Then A = (B ∗ C ), and A′ = (B′ ∗′ C′ ), hence B =
B′ , ∗ = ∗′, C = C′ by 2.2.4. In more detail, we have

(B− ∗ C−) = A− = (A′)− = ((B′)− ∗ (C′)−),

so by Lemma 2.2.4, B− = (B′)−, C− = (C′)−. The reference functions
also coincide, because by 2.2.14,

rfB(i) = rfA(i+ 1) − 1 = rfA′(i+ 1) − 1 = rfB′(i).

The equality rfC = rfC′ is checked similarly (to apply 2.2.14, note that
|B| = |B′|, since the stems coincide).

(2) Suppose A = QyB ⊜ A′ and y 6∈ BV (B). By definition, A is obtained
from Qy B by replacing y with • and adding the corresponding connec-
tions to the first Q. Since A = A′ , it follows that A′ has the form QzB′

(otherwise A′ does not begin with Q), z occurs in B′ exactly at the same
positions as y in B , and there is no other difference between these two
schemes. So y = z implies B′ ⊜ B. If y 6= z, it follows that

B′ = B [y 7→ z] (2.1)

and z does not occur in B , i.e., z 6∈ FV (B).

Let us first consider the case when also z 6∈ BV (B). Then by Lemma
2.3.11 we have

B [y 7→ z] = B[y 7→ z] . (2.2)

Hence
B′ = B[y 7→ z] ,

i.e., B′ ⊜ B[y 7→ z].
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If z ∈ BV (B), we rename it into a new variable u 6∈ V (B), i.e., we consider
C := B[z 7→ u]; then obviously, B = C[u 7→ z].

Since z 6∈ FV (B), the transformation [z 7→ u] is trivially prolonged to
a bound variable renaming in B (which fixes all the variables but z). So
B ⊜ C by Lemma 2.3.9, and thus QzB′ ⊜ QyB ⊜ QyC. Now z 6∈ BV (C),
so by the above argument we have B′ ⊜ C[y 7→ z], and then (since [u 7→ z]
is again prolonged to a bound variable renaming in C[y 7→ z])

B′ ⊜ C[y 7→ z] ⊜ C[y 7→ z][u 7→ z] = C[u 7→ z][y 7→ z] = B[y 7→ z].

�

The next proposition gives us a convenient inductive definition of congruence
that does not appeal to schemes.

Proposition 2.3.14 Congruence is the smallest equivalence relation ∼ between
N -modal predicate formulas with the properties from Lemma 2.3.12:

(1) QxA ∼ QyA[x 7→ y] for x 6∈ BV (A), y 6∈ V (A), Q ∈ {∀, ∃};

(2) A ∼ B ⇒ QxA ∼ QxB for Q ∈ {∀, ∃};

(3) A ∼ A′ & B ∼ B′ ⇒ (A ∗B) ∼ (A′ ∗B′) for ∗ ∈ {⊃,∧,∨};

(4) A ∼ B ⇒ �iA ∼ �iB for i ∈ IN .

Proof
Let us consider an arbitrary equivalence relation ∼ with these properties

and show that congruent formulas are ∼-related.
So we prove that for any A, B

A ⊜ B ⇒ A ∼ B

by induction on |A|(= |B|).
If A is atomic, then obviously A ⊜ B implies A = B, so the claim is trivial.
Now for the induction step suppose A ⊜ B.
(i) If A = (A1 ∗A2), then by 2.3.13(1), for some B1 ⊜ A1, B1 ⊜ A2 we have

B = (B1 ∗ B2). Hence by induction hypothesis, Ai ∼ Bi, and thus A ∼ B by
(3).

(ii) We skip a similar simple case when A = �iA
′.

(iii) Finally, suppose A = QxC ⊜ B. Since A = B , it follows that B =
QyD for some D, y.

By bound variable renaming we can replace C with a formula C1
◦
≡ C such

that x, y 6∈ BV (C1). Then by 2.3.9, 2.3.12,

QxC1 ⊜ QxC ⊜ B = QyD.

Now by 2.3.13(2) we have two options.
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(iii.1) x = y and C1 ⊜ D. Then C ⊜ D. Since |C| < |A|, we have C ∼ D by
the induction hypothesis, and hence by (2),

A = QxC ∼ QxD = B.

(iii.2) y 6∈ FV (C1) and D ⊜ C1[x 7→ y]. Since |D| < |B| = |A|, by the
induction hypothesis,

D ∼ C1[x 7→ y],

and thus by (2)

B = QyD ∼ QyC1[x 7→ y] (∗)

Now note that y 6∈ V (C1) by the choice of C1 and option (iii.2). Also x 6∈
BV (C1). Hence by (1),

QyC1[x 7→ y] ∼ QxC1. (∗∗)

Next, since |C| < |A|, by the induction hypothesis, C ⊜ C1 implies C ∼ C1,
and thus

QxC1 ∼ QxC = A. (∗ ∗ ∗)

Eventually (*), (**), and (***) imply A ∼ B. �

The characterization given in Proposition 2.3.14 resembles the definition of
α-equivalence in λ-calculi, cf. [Barendregt, 1981]. It is worth noting that there
exists an equivalent description of congruence (or α-equivalence) via variable
swaps, cf. [Gabbay and Pitts, 2002]:

Lemma 2.3.15 Congruence is the smallest equivalence relation ∼ between N -
modal predicate formulas with the following properties:

(1′) A ∼ B iff B is obtained from A by replacing some of its subformula QxC
with D = Qy(C[xy 7→ yx]), where y 6∈ FV (C), Q ∈ {∀, ∃},

(2)–(4) from 2.3.14.

Proof Congruence satisfies (1′), since for y 6∈ FV (C),

(QxC)[xyz 7→ yxz] = Qy(C[xy 7→ yx]),

where z is a list of all other variables from V (C), and thus

QxC ⊜ Qy(C[xy 7→ yx[)

by 2.3.18. It also satisfies (2)–(4) as noted in 2.3.14.

The other way round, (1′) obviously implies (1) from 2.3.14, since A[xy 7→
yx] = A[x 7→ y] for y 6∈ V (A). Thus every equivalence relation satisfying (1′),
(2)–(4) contains ⊜ by 2.3.14. �
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2.3.4 Clean formulas

Definition 2.3.16 A formula A is called clean if in A there are no variables
both free and bound and every bound variable has a unique strongly bound oc-
currence, i.e., different occurrences of quantifiers bind different variables.

This is equivalent to the following inductive definition:

Definition 2.3.17

• Every atomic formula is clean.

• If formulas A,B are clean, ∗ ∈ {∧,∨ ⊃}, and BV (A)∩V (B) = BV (B)∩
V (A) = ∅, then (A ∗B) is clean.

• If A is clean, x ∈ V ar, and x 6∈ BV (A), then QxA is clean.

Lemma 2.3.18 If [x 7→ y] is variable renaming in a clean formula A, then
A[x 7→ y] is clean.

Proof Every occurrence of Qxi in A becomes an occurrence of Qyi in A′ :=
A[x 7→ y]. As the variables xi in all these occurrences are different and the
map [x 7→ y] is injective, the resulting yi are also different. Since x includes
all variables from A, y includes all variables from A′ and all strongly bound
variables in A′ are different.

Next, consider a free occurrence of yi in A′. By Lemma 2.3.5, it results from
a free occurrence of xi in A. Since A is clean, xi is not bound in A, and thus yi

is not bound in A′ — again by 2.3.5.
Thus A′ is clean. �

Lemma 2.3.19 Let A be a clean formula, [x 7→ y] a variable transformation
such that BV (A) ∩ r(xy) = ∅. Then A[x 7→ y] is clean.

Proof The transformation [x 7→ y] does not affect bound variables, so all
strongly bound variables remain the same (and different). The parameters of
A[x 7→ y] may only change to some of the yi, i.e., FV (A[x 7→ y]) ⊆ FV (A) ∪
r(y). The latter set does not intersect BV (A). Therefore A[x 7→ y] is clean. �

Lemma 2.3.20 If A ⊜ A′ and A,A′ are clean, then A
◦
≡ A′.

Proof Due to congruence, A− = (A′)−. Since a formula and its stem differ
only in occurrences of bound variables, this also holds for A and A′.

Now consider the i-th occurrence of a quantifier in A: (A, k,Q). Let xi

be the corresponding bound variable. This quantifier Q occurs in A′ at the
same position k binding a variable yi. Since A is clean, all occurrences of xi

in A are bound and coreferent; similarly, all occurrences of yi in A′ are bound
and coreferent. By congruence, for any m, rfA(m) = k iff rfA′(m) = k, thus
(A,m, xi) is an occurrence in A iff (A′,m, yi) is an occurrence in A′. So A′ is
obtained by replacing every xi with yi, i.e. A′ = A[x1 . . . xn 7→ y1 . . . yn] (where
n is the number of quantifier occurrences in A). The list x1 . . . xn is distinct, as

well as y1 . . . yn. Therefore A
◦
≡ A′. �
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Proposition 2.3.21 For any clean formula A,

◦
≡ (A) = ⊜ (A) ∩ (clean formulas).

Proof Immediate from 2.3.18, 2.3.20, 2.3.9. �

Proposition 2.3.22 Every predicate formula A is congruent to some clean for-
mula (called a clean version of A).

Proof By induction on the complexity of A.

• If A is atomic, it is already clean.

• If A = �iB and B ⊜ B0 for a clean B0, then obviously A ⊜ �iB0 and
�iB0 is clean.

• If A = (B ∗C) and B ⊜ B0, C ⊜ C0 for clean B0, C0, then A ⊜ (B0 ∗C0).
The formula (B0 ∗C0) may be not clean, but we can make it clean by an
appropriate bound variable renaming.

In fact, let BV (B0) = r(x), and let [x 7→ y] be a bijection such that
r(y) ∩ V (C0) = ∅. Then B1 := B0[x 7→ y] is clean by Lemma 2.3.18, and
BV (B1) = r(y) by Lemma 2.3.5, so

BV (B1) ∩ V (C0) = ∅.

Similarly there exists C1 ⊜ C0 such that

BV (C1) ∩ V (B1) = ∅.

Since also
BV (B1) ∩ FV (C1) = r(y) ∩ FV (C0) = ∅,

we have
BV (B1) ∩ V (C1) = ∅,

so by 2.3.17, it follows that (B1 ∗ C1) is clean.

B1 ⊜ B0 and C1 ⊜ C0 implies (B1 ∗ C1) ⊜ (B0 ∗ C0) ⊜ A.

• If A = QxB and B ⊜ B0 for a clean B0, then A ⊜ QxB0 by 2.3.12 (2).
Now there are two cases.

If x 6∈ BV (B0), then QxB0 is clean, and we are done.

If x ∈ BV (B0), we can rename x into a new variable y 6∈ V (B0). Then
[x 7→ y] can be prolonged to a bound variable renaming in QxB0; thus
QxB0 ⊜ QyB0[x 7→ y] by 2.3.12 (1), and B0[x 7→ y] is clean by 2.3.18.
Hence the formula QyB0[x 7→ y] is clean by 2.3.17, and we have proved
that it is congruent to A.

�
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To complete the whole picture, let us also give a description of a congruence
class of a clean formula in terms of transformations. However, this description
will not be used in further studies.

Definition 2.3.23 A transformation [x 7→ y] is called neutral for a formula A
if

• r(x) = V (A);

• xi = yi for xi ∈ FV (A);

• for any subformula of A of the form QxiB, where Q is a quantifier, the
following holds:

if xj ∈ FV (B) and j 6= i, then yj 6= yi. (♯)

If we call an occurrence of Q beginning a subformula QxiB potentially active
for any free occurrence of any xj 6= xi in B, then the condition (♯) means that
the transformation [x 7→ y] does not make active quantifiers from potentially
active.

Lemma 2.3.24 Let A be a clean formula.

(1) If [x 7→ y] is neutral for A, then A[x 7→ y] ⊜ A.

(2) Every formula congruent to A can be obtained by a neutral transformation.

Proof (1) Let us show that a neutral [x 7→ y] preserves the scheme A .
In fact, consider xi ∈ BV (A). Every occurrence of xi free in a subformula

B of QxiB occurring in A becomes an occurrence of yi in B[x 7→ y]. This
occurrence of yi is also free, since otherwise it is referent to a nearer occurrence
of a quantifier Q′ over yi in A[x 7→ y]:

A[x 7→ y] = . . .Qyi . . .Q
′yi . . . yi . . .︸ ︷︷ ︸
B[x 7→y]

. . .

But this Q′yi comes from an occurrence of Q′xj in A, and j 6= i, since A is
clean. Then

A = . . .Qxi . . .Q
′xj . . . xi . . .︸ ︷︷ ︸

D

. . .

︸ ︷︷ ︸
B

. . .

Now xi is free in a subformula D of Q′xjD occurring in B, while yi = yj .
This contradicts the condition (♯). Thus the reference functions rfA[x 7→y], rfA

coincide on the domain of rfA.
It remains to show that the domains of the reference functions are the same,

i.e., that free variable occurrences in A remain free in A[x 7→ y]. In fact,
consider xj ∈ FV (A); then yj = xj , since [x 7→ y] fixes free variables. Suppose
an occurrence of xj in A becomes bound in A[x 7→ y]. This may happen only
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in the case when xj occurs in a subformula QxiE of A with i 6= j, which is
transformed into a subformula QyjE[x 7→ y] of A[x 7→ y] with yi = yj. But
such a situation is forbidden by (♯).

Therefore A ⊜ A[x 7→ y].
(2) If A ⊜ C, then all parameters of these formulas are at the same positions.
Since A is clean, all occurrences of every bound variable xi in A are coreferent

and since rfA = rfC , in C they are replaced with the same bound variable yi.
So C = A[x 7→ y] for r(x) = V (A) and some y. Now suppose QxiB occurs in
A at position k. If xj has a free occurrence in B and j 6= i, this occurrence of
xj becomes an occurrence of yj within a subformula Qyi(B[x 7→ y]) of C. We
claim that yj 6= yi.

In fact, otherwise we obtain an occurrence of yi = yj in C referent to a
quantifier at position ≥ k, while the original occurrence of xj in A is either free
or referent to a quantifier at position < k. So rfC 6= rfA contradicting A ⊜ C.

Thus [x 7→ y] is neutral for A. �

2.3.5 Applying variable substitutions to formulas

Now we can define how variable substitutions act on formulas.

Definition 2.3.25 Let A be a predicate formula, [y/x] a variable substitution.
Then we define [y/x]A as an arbitrary formula B such that A [x 7→ y] = B .

Let us show soundness of this definition.

Lemma 2.3.26 Every predicate formula A has a clean version A◦ such that
r(xy) ∩BV (A◦) = ∅.

Then [y/x]A ⊜ A◦[x 7→ y].

Proof To obtain A◦, take an arbitrary clean version and make an appropriate
bound variable renaming. Then

A [x 7→ y] = A◦[x 7→ y]

by Lemma 2.3.11. �

From the definition we readily obtain that congruent formulas have the same
substitution instances under every variable substitution:

Lemma 2.3.27 A ⊜ A′ ⇒ [y/x]A ⊜ [y/x]A′.

Note that [y/x] and [x 7→ y] do not depend on the ordering of x; in precise
terms, if |x| = n, σ ∈ Υn, then [x · σ 7→ y · σ] = [x 7→ y].

The next lemma contains some simple properties of variable substitutions.

Lemma 2.3.28 For any predicate formula A, substitutions [y/x], [y′/x′], [y′′/x′′],
[x/u], [z/u] and quantifier Q

(1) FV ([y/x]A) = (FV (A) − r(x)) ∪ rng[x 7→ y]A;
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(2) [x/x]A ⊜ A;

(3) Qy[y/x]A ⊜ QxA if y 6∈ FV (A) or y = x;

(4) [y′′/x′′][y′/x′]A ⊜ [y/x]A, where [y/x] = [y′′/x′′]·[y′/x′] (the composition
of functions on V ar);

(5) [y/x][z/u]A ⊜ [[y/x]z/u]A if FV (A) ∩ r(x) ⊆ r(u);

(6) [y/x][x/u]A ⊜ [y/u]A if FV (A) ∩ r(x) ⊆ r(u);

(7) [v/u][y/x]A ⊜ [[v/u]y/x]A if u 6∈ FV (A) − r(x);

(8) [y/x]QzA ⊜ Qz[y/x]A if z 6∈ r(x);

(9) [y/x](A ∗B) ⊜ ([y/x]A ∗ [y/x]B) for ∗ ∈ {∨,∧,⊃};

(10) [y′′/x′′][y′/x′]A ⊜ [y′′y′/x′′x′]A if r(x′′) ∩ r(x′y′) = ∅;

(11) [y/x]A ⊜ [yn/zn] . . . [y1/z1][zn/xn] . . . [z1/x1]A
for distinct variables z1, . . . , zn 6∈ FV (A) ∪ r(xy); so every variable sub-
stitution in a formula can be presented as a composition of substitutions
of the form [y/x] (simple substitutions);

(12) [y/x]QzA ⊜ Qz[y/x]A if r(z) ∩ r(x) = ∅;

(13) Qy[y/x]A ⊜ QxA if both x,y are distinct, r(y)∩FV (A) = r(y)∩ r(x) =
∅;

(14) Qy[y/x[A ⊜ QxA if both x,y are distinct, r(y) ∩ FV (A) ⊆ r(x).

Note that (13) is a particular case of (14), but we need it for the proof of (14).

Proof

(1) Since [y/x]A = A [x 7→ y], it follows that FV ([y/x]A) = V (A [x 7→ y])

(or, to be more precise, FV (A−[x 7→ y]) − {•}). So we should take the
set V (A) = FV (A) and replace every xi occurring in this set with the
corresponding yi; this gives us exactly

(FV (A) − r(x)) ∪ rng[x 7→ y]A.

(2) Trivial.

(3) The case y = x is trivial, so suppose y 6∈ FV (A). Let A◦ be a clean version
of A such that BV (A◦) ∩ r(xy) = ∅. As we know

[y/x]A ⊜ A◦[x 7→ y],

hence by 2.3.14,

(♯1) Qy[y/x]A ⊜ QyA◦[x 7→ y].
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Since y 6∈ FV (A), by 2.3.14 we also have

(♯2) Qy(A◦[x 7→ y]) ⊜ QxA◦.

Now obviously, A ⊜ A◦ implies

(♯3) QxA◦ ⊜ QxA

(by 2.3.14 or just by the definition of a scheme). So from (♯1), (♯2), (♯3)
we obtain

Qy[y/x]A ⊜ QxA.

(4) Let A◦ be a clean version of A such that BV (A◦) ∩ r(xx′x′′yy′y′′) = ∅.

Then

[y′/x′]A ⊜ A◦[x′ 7→ y′].

By Lemma 2.3.19, the latter formula is clean, and obviously its bound
variables are the same as in A◦. So

[y′′/x′′][y′/x]A ⊜ [y′′/x′′](A◦[x′ 7→ y′]) ⊜ (A◦[x′ 7→ y′])[x′′ 7→ y′′].

Since [y′/x′] = [y′t/x′t], we can always add variables to both x′ and y′,
so we may assume that r(x′) ⊇ FV (A)(= FV (A◦)),

We can also write

A◦[x′ 7→ y′] = A◦[u 7→ v],

where

[u 7→ v] := [x′ 7→ y]A,

since x′ does not contain bound variables of A. Then r(u) = FV (A◦), so
r(v) = FV (A◦[u 7→ v]).

Similarly we have

(A◦[x′ 7→ y′])[x′′ 7→ y′′] = (A◦[u 7→ v])[x′′ 7→ y′′] = (A◦[u 7→ v])[w 7→ z],

where

[w 7→ z] := [x′′ 7→ y′′]A◦[u 7→v].

So r(w) = r(v), and thus v = w ·σ for some surjective σ ∈ Σ|w|,|v|. Hence

(A◦[u 7→ v])[w 7→ z] = A◦[u 7→ z · σ]

by Lemma 2.3.4.

On the other hand, for [y/x] = [y′/x′] ◦ [y′′/x′′] we may assume that
r(x) ⊇ FV (A). Then we have

[y/x]A ⊜ A◦[x 7→ y] ⊜ A◦[x 7→ y]A,
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and it remains to show that

[u 7→ z · σ] = [x 7→ y]A.

In fact, suppose xj = ui ∈ FV (A). Then

yj = [y′′/x′′](y′j) = [y′′/x′](vi) = [y′′/x′′](wσ(i)) = zσ(i),

by the choice of [u 7→ v], [w 7→ z].

(5) By (4), it suffices to check that [y/x] · [z/u] and [[y/x]z/u] coincide on
parameters of A. In fact, the first substitution sends every ui to zi and
next to [y/x]zi and every xj 6∈ r(u) to yj . So if r(x) ∩ FV (A) ⊆ r(u),
all parameters of A beyond r(u) remain fixed. The second substitution
sends ui directly to [y/x]zi and also fixes other parameters; thus the claim
holds.

(6) This is a particular case of (5) when x = z. Then [y/x]z = y.

(7) Apply (5) to the case y := v, x := u, z := u, u := x. Note that

FV (A) ∩ {u} ⊆ r(x) iff {u} ⊆ −FV (A) ∪ r(x).

(8) Consider a clean version A◦ of A such that r(xyz) ∩BV (A◦) = ∅. Then

QzA ⊜ QzA◦

and QzA◦ is clean by 2.3.17.

So

(8.1) [y/x]QzA ⊜ (QzA◦)[x 7→ y] = Qz(A◦[x 7→ y]).

On the other hand,
A◦[x 7→ y] ⊜ [y/x]A,

hence

(8.2)

Qz(A◦[x 7→ y]) ⊜ Qz[y/x]A

by 2.3.22. Now (8) follows from (8.1) and (8.2).

(9) Let A◦, B◦ be clean versions of A and B such that

BV (A◦) ∩ r(xy) = BV (B◦) ∩ r(xy) = ∅,

BV (A◦) ∩ FV (A) = BV (B◦) ∩ FV (B) = ∅.

Then (A◦ ∗B◦) is a clean version of (A ∗B) and by 2.3.11 we have:

[y/x](A ∗B) ⊜ (A◦ ∗B◦)[x 7→ y] = (A◦[x 7→ y] ∗B◦[x 7→ y])
⊜ ([y/x]A ∗ [y/x]B).
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(10) Note that in this case

[y′′/x′′] · [y′/x′] = [y′′y′/x′′x′]

and apply (4)

(11) Since zi 6∈ FV (A), from (6) we obtain

(♯) [y/z][z/x]A ⊜ [y/x[A

By induction from (10) we also have

(♯♯) [z/x]A ⊜ [zn/xn] . . . [z1/x1]A,

since r(x) ∩ r(z) = ∅ and z is distinct.

In the same way from (10) we obtain

(♯♯♯) [y/z][z/x]A ⊜ [yn/zn] . . . [y1/z1][z/x]A,

since r(z) ∩ r(y) = ∅ and z is distinct.

Now (11) follows from (♯), (♯♯), (♯♯♯) and 2.3.27.

(12) Follows from (8) by induction on |z|. For the step, suppose z = z1z
′ and

[y/x]Qz′A ⊜ Qz′[y/x]A;

then by 2.3.14(2),
Qz1[y/x]Qz′A ⊜ Qz[y/x]A.

On the other hand, by (8)

[y/x]QzA ⊜ Qz1[y/x]Qz′A;

hence (12) follows.

(13) Apply induction on |x| = |y|. The base follows from (3).

For the step, suppose y = y1y
′, x = x1x

′ and

Qy′[y′/x′]A ⊜ Qx′A.

Then by 2.3.14 (2),

(∗1) Qx1Qy
′[y′/x′]A ⊜ QxA.

On the other hand, by (10),

[y/x]A ⊜ [y1/x1][y′/x′]A;

hence by 2.3.14 (2),

(∗2) Qy[y/x]A ⊜ Qy[y1/x1][y′/x′]A.
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By (12),

Qy′[y1/x1][y′/x′]A ⊜ [y1/x1]Qy′[y′/x′]A,

hence by 2.3.14 (2) and (3)

(∗3) Qy[y1/x1][y′/x′]A ⊜ Qy1[y1/x1](Qy′[y′/x′]A) ⊜ Qx1Qy′[y′/x′]A.

Now (13) follows from (∗2), (∗3), and (∗1).

(14) Let z be a distinct list of ‘brand-new’ variables of the same length as x
and y; so r(z) ∩ FV (A) = r(z) ∩ r(xy) = ∅. By (13),

(14.1) QxA ⊜ Qz[z/x]A,

(14.2) Qy[y/x]A ⊜ Qz[z/y][y/x]A.

By the assumption of (14), r(y) ∩ FV (A) ⊆ r(x), so we can apply (6):

[z/y][y/x]A ⊜ [z/x]A.

Hence by 2.3.14,

(14.3) Qz[z/y][y/x]A ⊜ Qz[z/x]A.

Now (14) follows from (14.1), (14.2), (14.3).

�

Exercise 2.3.29 Describe the composition of substitutions (or of correspond-
ing transformations) explicitly.

2.4 Formulas with constants

Although our basic languages do not contain individual constants, we will need
auxiliary languages with constants.

So let D be a non-empty set; we assume that D ∩ V ar = ∅. Let LN (D) be
the language LN expanded by individual constants from the set D. Formulas of
the language LN (D) (respectively, L0(D)) are called N -modal (respectively, in-

tuitionistic) D-formulas; the set of all these formulas is denoted by MF
(=)
N (D)18

(respectively, IF (=)(D)). Obviously, every predicate formula (in the ordinary
sense, i.e. without extra constants) is a D-formula. A D-sentence is a D-formula

without parameters; MS
(=)
N (D) and IS(=)(D) denote the sets of D-sentences

of corresponding types.

18Or briefly, by MF (=)(D).
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Definition 2.4.1 Let x = (x1, . . . , xn) be a list of distinct variables, a =
(a1, . . . , an) a list of constants (individuals) from D (not necessarily distinct).
Then the D-transformation [x 7→ a] is a finite function {(x1, a1), . . . , (xn, an)}
sending every xi to ai, i = 1, . . . , n. The D-instance [a/x]A of a D-formula A
under [x 7→ a] is obtained by simultaneous replacement of all free occurrences of
x1, . . . , xn in A respectively with a1, . . . , an.

Strictly speaking, [a/x]A is defined by induction on |A|:

• [a/x]P (y) := P ([a/x]y),
where [a/x]y is a tuple z such that |z| = |y| and for any j,

zj =

{
ai if yj = xi,
yj if yj 6∈ r(x).

• [a/x]P := P if P ∈ PL0,

• [a/x](B ∗ C) := ([a/x[B ∗ [a/x]C) if ∗ ∈ {∨,∧,⊃},

• [a/x]⊥ := ⊥,

• [a/x]�iB := �i[a/x]B,

• [a/x]QzB := Qz[a/x]B if z 6∈ r(x),

• [a/x]QxiB := Qxi[âi/x̂i]B.19

So we can also denote [a/x]A by A[x 7→ a] if r(x) ∩ BV (A) = ∅. Normally
we use the notation [a/x]A in the case when both A is a usual formula and
[a/x]A is a D-sentence (which is equivalent to FV (A) ⊆ r(x)). A formula A is
called a generator of every D-sentence [a/x]A.

For D-formulas we define schemes, clean versions and congruence in the
natural way.

Lemma 2.4.2 (1) A ⊜ B ⇒ [a/x]A ⊜ [a/x]B
for any D-transformation [x 7→ a] and D-formulas A,B.

(2) If x is a distinct list of variables |x| = n, a ∈ Dn, then for any predicate
formula A, for any σ ∈ Υn

[(a · σ)/x]A = [a/(x · σ−1)]A.

(3) For any predicate formula A, for any distinct list xy such that r(y) ∩
FV (A) = ∅

[a/y][y/x]A ⊜ [a/x]A.

19Recall that x̂i is obtained by eliminating xi from x; similarly for âi.
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(4) Let x, z be distinct lists of variables, |x| = n, |z| = m ≤ n, and let
σ : In −→ Im. Let A be a formula such that r(z · σ) ∩BV (A) = ∅. Then

[a/z][(z · σ)/x]A ⊜ [(a · σ)/x]A.

Proof (1) It is clear that

[a/x]A = A [x 7→ a]

(a strict proof is by induction). So A = B implies [a/x]A = [a/x]B .

(2) Note that [x 7→ a · σ] = [x · σ−1 7→ a] — each of these maps sends xi to
aσ(i), and xσ−1(j) to aj . Now the claim follows from 2.4.1.

(3) As noted above, constant substitutions respect congruence. So we can
prove the claim for a clean version A◦ of A such that BV (A◦) ∩ r(xy) = ∅. In
this case it is equivalent to

(A◦[x 7→ y])[y 7→ a] = A◦[x 7→ a].

The latter equality follows from two simple observations. First, it is clear that

[x 7→ y] ◦ [y 7→ a] = [xy 7→ aa].

Second, since r(y) ∩ FV (A) = ∅, we have r(y) ∩ V (A◦) = ∅, and so

A◦[xy 7→ aa] = A◦[x 7→ a].

(4) Similar to (2). Consider a clean version A◦ of A, with BV (A◦)∩r(xz) =
∅. Then the claim reduces to

(A◦[x 7→ z · σ])[z 7→ a] = A◦[x 7→ a · σ],

which follows from

[x 7→ z · σ] ◦ [z 7→ a] = [x 7→ a · σ].

�

We also use a somewhat ambiguous notation A(x) to indicate that FV (A) ⊆
r(x); in this case [a/x]A is abbreviated to A(a). The abbreviation A(a) is
convenient and rather common, but it leads to some confusion: it may happen
that a D-sentence B can be presented as [a1, . . . , an/x1, . . . , xn]A for different
formulas A. For example, P (a, a) = [a/x]P (x, x) = [a, a/x, y]P (x, y). Such an
ambiguity may be undesirable (cf. Section 5.1), so we will mainly use ‘maximal’
representations described as follows.

Definition 2.4.3 A formula A is called a maximal generator of a D-formula
B if B = [a/x]A for some bijective D-transformation [x 7→ a].

Since [a/x]A does not depend on the variables xi that are not parameters
of A, in the above definition we may further assume that r(x) ⊆ FV (A), and
thus a is the list of all constants occurring in B.
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Lemma 2.4.4 Every D-formula has a maximal generator.

Proof Let a = a1 . . . an be a list of all constants occurring in a D-sentence
B, x = x1 . . . xn a list of different new variables for B. Consider the formula
A := B[a 7→ x] obtained by replacing every occurrence of ai with xi. Since
xi 6∈ BV (B), we have [a/x]A = A[x 7→ a] = (B[a 7→ x])[x 7→ a] = B, and thus
A is a maximal generator of B. �

Lemma 2.4.5

(1) If B = [a/x]A for a formula A and a bijection [x 7→ a], then A = B[a 7→
x].

(2) If A1, A2 are maximal generators of B, then A2
◦
= [y/x]A1 for some

variable renaming [x 7→ y] (and of course, A1 is obtained from A2 in the
same way).

More precisely, if B = [a/x]A1 = [a/y]A2 for bijections [x 7→ a], [y 7→ a],
then A2 ⊜ [y/x]A1.

(3) A maximal generator of a D-formula B is a substitution instance of any
generator of B under some variable substitution.

Proof (1) We check that

([a/x]A)[a 7→ x] = A

by induction on |A|.
This is clear for atomic A = P (y), when [a/x]A = A[x 7→ a] (cf. Lemma

2.3.4). All induction steps are routine; let us consider only the case A = QxiB
for a quantifier Q. By definition,

([a/x]A)[a 7→ x] = (Qxi[âi/x̂i]B)[a 7→ x] = Qxi(([âi/x̂i]B)[a 7→ x])

Since B is a usual formula and [x 7→ a] is a bijection, ai does not occur in
[âi/x̂i]B; thus

([âi/x̂i]B)[a 7→ x] = ([âi/x̂i]B)[âi 7→ x̂i] = B

by the induction hypothesis. Therefore (1) holds for A.
(2) If A1 is a maximal generator of B, then B = [a/x]A1 for some bijection

[x 7→ a]. Similarly, B = [a/y]A2 for a bijection [y 7→ a]. Now let A◦
1 be a clean

version of A1 such that BV (A◦
1) ∩ r(xy) = ∅.

By 2.4.2(1), A1
◦
= A◦

1 implies

B = [a/x]A1
◦
= [a/x]A◦

1 = A◦
1[x 7→ a].

Hence
B[a 7→ x]

◦
= (A◦

1[x 7→ a])[a 7→ x] = A◦
1.
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Similarly, there exists a clean A◦
2

◦
= A2 such that

B[a 7→ y]
◦
= A◦

2.

Therefore

A2
◦
= B[a 7→ y]

◦
= (A◦

1[x 7→ a])[a 7→ y] = A◦
1[x 7→ y],

and the latter formula is [y/x]A1 by 2.3.25.
(3) Let C be a generator of B, thus B = [b/z]C for some [z 7→ b]; and let

A be a maximal generator of B, with B = [a/x]A, for a bijection [x 7→ a]. We
may assume that r(x) ⊆ FV (A), r(z) ⊆ FV (C) and r(b) = r(a) is the set of
all constants occurring in B.

Since a is distinct, every bi equals to some aj , so b = a ·τ for some surjective
map τ : In → Im.

Thus
B = [a · τ/z]C = [a/x]A,

and we have by 2.4.2(4)

[a · τ/z]C ⊜ [a/x][x · τ/z]C.

Hence by (2), A
◦
= [x · τ/z]C. �

2.5 Formula substitutions

Definition 2.5.1 A (simple) formula substitution is a pair (C,P (x)), where
C is a predicate formula, P (x) is an atomic equality-free formula, x is dis-
tinct. The substitution (C,P (x)) is usually denoted by [C/P (x)]. More exactly,
[C/P (x)] is called an MFN−, (MF=

N−, IF−, IF=−) substitution if the for-
mula C is of the corresponding type.

Definition 2.5.2 For a substitution [C/P (x)],

FV [C/P (x)] := FV (C) − r(x)

is called the set of parameters,

BV [C/P (x)] := r(x)

the set of bound variables. A substitution [C/P (x)] is called strict if FV [C/P (x)] =
∅, i.e. if FV (C) ⊆ r(x).

Definition 2.5.3 Let A be a clean predicate formula, S = [C/P (x)] a formula
substitution such that BV (A) ∩ FV (S) = ∅. Let B be a result of replacing all
subformulas of A of the form P (y) with [y/x]C.

Every formula congruent to B is denoted by SA and is called a substitution
instance of A under S.
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More precisely, SA is defined by induction:

SP (y) ⊜ [y/x]C,
SA ⊜ A if A is atomic and does not contain P ,
S�iA ⊜ �iSA,
S(A ∗B) ⊜ (SA ∗ SB) for ∗ ∈ {∨,∧,⊃},
SQzA ⊜ QzSA for Q ∈ {∀, ∃}.

A formula SA is called a substitution instance of A, or more exactly, an

MF
(=)
N - (IF (=)-) substitution instance if S is an MF

(=)
N - (IF (=)-) substitution.

Due to the assumption BV (A)∩FV (S) = ∅, in SA the parameters of S do
not collide with the existing bound variables from A.

Note that applying S to A does not affect occurrences of equality in A, but
may introduce new occurrences if C contains equality.

Lemma 2.5.4 Let A be a clean formula, S = [C/P (x)] a formula substitution
such that FV (S) ∩BV (A) = ∅. Then

S(A[u 7→ v]) ⊜ [v/u]SA.

for any variables u, v such that v 6∈ V (A), u ∈ FV (A), and u, v 6∈ FV (S).

Proof Since v 6∈ V (A), we can prolong [u 7→ v] to a variable renaming in A
by fixing all variables from V (A)−{u}. So A[u 7→ v] is clean by 2.3.17 with the
same bound variables as A, and Definition 2.5.3 is applicable to this formula.

Now we argue by induction on |A|.

• If A = P (y), then A[u 7→ v] = P ([v/u]y), SA ⊜ [y/x]C, and

S(A[u 7→ v]) ⊜ [[v/u]y/x]C.

By assumption, u 6∈ FV (S) = FV (C) − r(x), so we obtain

S(A[u 7→ v]) ⊜ [v/u]SA

by applying 2.3.28 (7).

• Let A = QzB, then SA ⊜ QzSB. Hence

(1) [v/u]SA ⊜ [v/u]QzSB ⊜ Qz[v/u]SB

by 2.3.28 (8); note that z 6= u, since u ∈ FV (A)

By the induction hypothesis,

[v/u]SB ⊜ S(B[u 7→ v]),

hence

(2) Qz[v/u]SB ⊜ QzS(B[u 7→ v])
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by ??. Now by 2.5.3

(3) QzS(B[u 7→ v]) ⊜ SQz(B[u 7→ v]),

so from (1), (2), (3) we have

[v/u]SA ⊜ SQz(B[u 7→ v]).

It remains to note that

Qz(B[u 7→ v]) = A[u 7→ v],

since z 6= u. Therefore the claim holds for A.

• If A = (B ∗C), we can use 2.3.28 (9) and the distribution of S and [u 7→ v]
over ∗. Note that if u does not occur in B (or in C), the main statement
trivially holds for B (or C), and the argument does not change. The
details are left to the reader.

• The case A = �iB is trivial.

�

Lemma 2.5.5 Let A,B be congruent clean formulas, S a formula substitution
such that BV (A) ∩ FV (S) = BV (B) ∩ FV (S) = ∅. Then SA ⊜ SB.

Proof By induction on |A| = |B|.

• If A is atomic, then A = B, and there is nothing to prove.

• If A = (A1 ∗A2), then by Lemma 2.3.13(1), B = (B1 ∗B2) for A1 ⊜ B1,
A2 ⊜ B2. Hence

SA ⊜ (SA1 ∗ SA2), SB ⊜ (SB1 ∗ SB2),

and SAi ⊜ SBi by the induction hypothesis. Eventually SA ⊜ SB by
2.3.14.

• We skip the easy case when A = �iA1.

• Suppose A = QxA1 for a quantifier Q. Since A is clean, x 6∈ BV (A1), so
by Lemma 2.3.13(2), for some y 6∈ FV (A1), B1

B = QyB1, B1 ⊜ A1[x 7→ y].

We may also assume that y 6∈ BV (A1). (Otherwise consider A2
◦
≡ A1

such that y 6∈ BV (A2), then

B1 ⊜ A1[x 7→ y] ⊜ A2[x 7→ y],
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so A2 can be used instead of A1.) Thus

SA = QxSA1, SB = QySB1,

and
SB1 ⊜ S(A1[x 7→ y]) ⊜ [y/x]SA1

by the induction hypothesis and Lemma 2.5.4 (which is applicable, since
y 6∈ V (A1) and x, y 6∈ FV (S) by the assumption of the lemma). Hence by
2.3.27(3)

SB = QySB1 ⊜ Qy[y/x]SA1 ⊜ QxSA1 = SA.

�

Now we can define substitution instances of arbitrary formulas.

Definition 2.5.6 A substitution instance SA of a predicate formula A under
a simple substitution S is an arbitrary formula congruent to SA◦, where A◦ is
a clean version of A such that FV (S) ∩ BV (A◦) = ∅. A strict substitution
instance is a substitution instance under a strict substitution.

Lemma 2.5.5 shows soundness of this definition, i.e. that the congruence
class of SA◦ does not depend on the choice of A◦.

Note that according to the definition, for a trivial formula substitution S =
[P (x)/P (x)] and a formula A, SA denotes an arbitrary formula congruent to
A.

Lemma 2.5.7 Let [C1/P (x)], [C2/P (x)] be formula substitutions such that
C1 ⊜ C2. Then for any predicate formula A, [C1/P (x)]A ⊜ [C2/P (x)]A.

Proof We denote [Ci/P (x)] by Si. Let A◦ be a clean version of A such
that FV (Si) ∩ BV (A◦) = ∅ for i = 1, 2. Obviously we can construct such A◦

by an appropriate bound variable renaming from an arbitrary clean version.
Now SiA ⊜ SiA

◦, so we show S1A
◦ ⊜ S2A

◦ by induction on |A◦|. To simplify
notation, put B := A◦.

If B = P (y), then SiB = [y/x]Ci, so S1B ⊜ S2B follows from 2.3.27.
If B is atomic and does not contain P , the claim is trivial.
The induction step easily follows from the distribution of Si over all connec-

tives and quantifiers. E.g. suppose B = QyB1; then y 6∈ FV (Si), so

SiQyB1 ⊜ QySiB1

by 2.3.14. By induction hypothesis,

S1B1 ⊜ S2B1,

hence
QyS1B1 ⊜ QyS2B1

by 2.3.14, and therefore
S1B ⊜ S2B.

All the remaining cases are left to the reader. �
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Now let us consider complex substitutions.

Definition 2.5.8 For atomic equality-free formulas P1(x1), . . . , Pk(xk) (with
different predicate letters P1, . . . , Pk and distinct lists x1, . . . ,xk) and formulas
C1, . . . , Ck we define the complex formula substitution

[C1, . . . , Ck/P1(x1), . . . , Pk(xk)] (or [Ci/Pi(xi)]1≤i≤k)

as the tuple (C1, . . . , Ck, P1(x1), . . . , Pk(xk)).
The set of its parameters and bound variables are respectively

FV [C1, . . . , Ck/P1(xi), . . . , Pk(xk)] :=

k⋃

i=1

FV [Ci/Pi(xi)] =

k⋃

i=1

(FV (Ci)−r(xi)).

and

BV [C1, . . . , Ck/P1(xi), . . . , Pk(xk)] := r(x1 . . .xk).

A substitution without parameters is called strict.

Now we have an analogue of Definition 2.5.3.

Definition 2.5.9 For a substitution S = [C1, . . . , Ck/P1(x1), . . . , Pk(xk)] and
a clean formula A such that FV (S) ∩BV (A) = ∅, a substitution instance SA
is defined up to congruence by induction:

SPi(y) ⊜ [y/xi]Ci,
SA ⊜ A if A is atomic and does not contain P1, . . . , Pk,
S�iA ⊜ �iSA,
S(A ∗B) ⊜ (SA ∗ SB) for ∗ ∈ {∨,∧,⊃},
SQzA ⊜ QzSA for Q ∈ {∀, ∃}.

We also have an analogue of Lemma 2.5.5.

Lemma 2.5.10 If A,B are clean formulas, A ⊜ B, S is a complex formula
substitution and

BV (A) ∩ FV (S) = BV (B) ∩ FV (S) = ∅,

then SA ⊜ SB.

Proof The same as in 2.5.5 (including an analogue of 2.5.4). �

So the following definition is sound.

Definition 2.5.11 For an arbitrary formula A and a formula substitution S, we
define SA as SA◦, for a clean version A◦ of A such that FV (S)∩BV (A◦) = ∅.

Hence we readily obtain
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Lemma 2.5.12 For any predicate formulas A,B and a formula substitution S,

A ⊜ B ⇒ SA ⊜ SB.

The inductive definition 2.5.9 now extends to arbitrary formulas:

Lemma 2.5.13 Let S be a formula substitution. Then for any formulas A,B

(1) S�iA ⊜ �iSA,

(2) S(A ∗B) ⊜ (SA ∗ SB) for ∗ ∈ {∨,∧,⊃},

(3) SQzA ⊜ QzSA for Q ∈ {∀, ∃}, z 6∈ FV (S).

Proof

(1) Let A◦ be a clean version of A such that FV (S) ∩ BV (A◦) = ∅. Then
�iA

◦ is a clean version of �iA, so

S�iA ⊜ S�iA
◦ ⊜ �iSA

◦.

By definition, SA◦ ⊜ SA, hence

�iSA
◦ ⊜ �iSA,

therefore (1) holds.

(2) An exercise for the reader.

(3) Let A◦ be a clean version of A such that FV (S) ∩ BV (A◦) = ∅, z 6∈
BV (A◦). Then QzA◦ is a clean version of QzA and

FV (S) ∩BV (QzA◦) = ∅.

By definition,

SQzA ⊜ SQzA◦ ⊜ QzSA◦, SA◦ ⊜ SA;

hence
QzSA◦ ⊜ QzSA.

This implies (3). �

The next lemma shows that the result of applying a substitution does not
really depend on the names of its bound variables. We prove this only for simple
substitutions, leaving the general case to the reader.

Lemma 2.5.14 Let [C/P (x)] be a formula substitution, [x 7→ y] a variable
renaming such that r(y) ∩ FV (C) = ∅. Then for any formula A,

[C/P (x)]A ⊜ [[y/x]C/P (y)]A.
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Proof
If A = P (z), we have

[C/P (x)]A ⊜ [z/x]C, [[y/x]C/P (y)]A ⊜ [z/y][y/x]C,

while
[z/x]C ⊜ [z/y][y/x]C

by 2.3.28(6).
If A is atomic and does not contain P , the claim is trivial.
Now we can argue by induction on |A|. Put

S1 := [C/P (x)], S2 := [[y/x]C/P (y)].

If A = QuB, we may assume that u 6∈ FV (S1)(= FV (S2)) — otherwise consider
A′ ⊜ A of the form Qu′B′, where u′ 6∈ FV (S1).

Suppose S1B ⊜ S2B, then SiA ⊜ QuSiB by 2.5.3; hence S1A ⊜ S2A by
2.3.14.

Other cases are also based on 2.5.3 and 2.3.14; we leave them to the reader.
�

Lemma 2.5.15 Let S = [C/P (u)] be a simple formula substitution, [y/x] a
variable substitution such that FV (C) ∩ r(x) = ∅. Then for any predicate
formula A, S[y/x]A ⊜ [y/x]SA.

Proof Since S respects congruence by Lemma 2.5.12, [y/x] respects congru-
ence by 2.3.27 and both S and [y/x] distribute over all connectives and quan-
tifiers in an appropriate clean version of A (Definition 2.5.3, Lemma 2.3.28), it
suffices to consider only the case when A is atomic. The nontrivial option is
A = P (z). Then

S[y/x]A ⊜ SP ([y/x]z) ⊜ [[y/x]z/u]C,

[y/x]SA ⊜ [y/x][z/u]C.

Now the claim follows by 2.3.28(5). �

Remark 2.5.16 From 2.3.28(5) it follows that the above lemma also holds
when FV (C) ∩ r(x) ⊆ r(u). But in general S may not commute with [y/x].
For example, if P ∈ PL1, Q ∈ PL2 and S = [Q(u, x)/P (u)], then S[y/x]P (x) =
Q(y, x), [y/x]SP (x) = Q(y, y).

Lemma 2.5.15 shows that in some cases variable substitutions commute with
formula substitutions. The next lemma considers situations where formula sub-
stitutions ‘absorb’ variable substitutions.

Lemma 2.5.17 Let [C/P (x)] be a simple formula substitution, A a predicate
formula, [y/z] a variable substitution such that r(z) ∩ FV (A) = r(z) ∩ r(x) =
r(y) ∩ r(x) = ∅. Then

[y/z][C/P (x)]A ⊜ [[y/z]C/P (x)]A.
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Note that [y/z]C is defined up to congruence, but the congruence class of
[[y/z]C/P (x)]A does not depend on the choice of a congruent version of [y/z]C,
thanks to Lemma 2.5.7.

Proof The same idea as in 2.5.15 shows that it is sufficient to consider only
the case when A = P (u) is atomic (and by the assumption, r(z) ∩ r(u) = ∅).

In this case the claim becomes

(∗) [y/z][u/x]C ⊜ [u/x][y/z]C.

The latter congruence follows from 2.3.28. In fact, by 2.3.28(4),

[y/z][u/x]C ⊜ ([y/z] · [u/x])C.

From r(z) ∩ r(ux) = ∅, by 2.3.28(10) we have

[y/z][u/x]C ⊜ [yu/zx]C,

and similarly from r(x) ∩ r(yz) = ∅,

[u/x][y/z]C ⊜ [uy/xz]C.

Since [yu/zx] = [uy/xz], this implies (∗). �

The previous lemma easily transfers to complex sibstitutions:

Lemma 2.5.18 Let

S = [C1, . . . , Ck/P1(x1), . . . , Pk(xk)]

be a formula substitution, A a predicate formula, [y/z] a variable substitution
such that r(z) ∩ FV (A) = ∅ and r(yz) ∩ r(x1, . . . ,xk) = ∅.

Then

[y/z]SA ⊜ S0A,

where S0 = [[y/z]C1, . . . , [y/z]Ck/P1(x1), . . . , Pk(xk)]. Note that r(z)∩FV (S0) =
∅.

Proof Again everything reduces to the case of atomic A. But in this case S
acts as a simple substitution, so we can apply 2.5.17. �

Lemma 2.5.19 [[c/x] B/q]A ⊜ [c/x][B/q]A for a propositional formula A, a
list of proposition letters q, a list of constants c, a distinct list of variables x, a
list of predicate formulas B, r(x) ∩ FV (A) = ∅.

Proof The same argument as above reduces everything to the case when A is
atomic, i.e. a proposition letter. Then the claim is trivial. �
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Lemma 2.5.20 Every complex substitution acts on formulas as a composition
of simple substitutions. More precisely, if S = [C1, . . . , Ck/P1(x1), . . . , Pk(xk)]
is a complex substitution, P ′

i is of the same arity of Pi and P ′
i does not occur

in C1, . . . , Ck for i = 1, . . . , k, then for any formula A

SA ⊜ [C1/P
′
1(x1)] . . . [Ck/P

′
k(xk)][P ′

1(x1)/P1(x1)] . . . [P ′
k(xk)/Pk(xk)]A.

Proof Since substitutions respect congruence and distribute over all connec-
tives and quantifiers over non-parametric variables (by Lemma 2.5.13), we may
prove the claim for a congruent version of A, in which the parameters of S
are not bound. In this case it suffices to check the claim for an atomic A. If
P1, . . . , Pk do not occur in A, there is nothing to prove. So let A = Pi(y). Then
by definition

SA ⊜ [y/xi]Ci,

while

[C1/P
′
1(x1)] . . . [P ′

k(xk)/Pk(xk)]A ⊜ [Ci/P
′
i (xi)][P

′
i (xi)/Pi(xi)]Pi(y)

⊜ [Ci/P
′
i (xi)]P

′
i (y) ⊜ [y/xi]Ci.

So the claim holds. �

The composition of substitutions reduces to a single (complex) substitution
as the following lemma shows.

Lemma 2.5.21 Let S0 = [C0/Pi(x0)], S1 = [C1, . . . , Ck/P1(x1), . . . , Pk(xk)]
be formula substitutions. Then there exists a formula substitution S2 such that
for any formula A

S0S1A ⊜ S2A.

In particular, if r(xi) ∩ FV (C0) = ∅, then this holds for

S2 = [S0C1, . . . , S0Ck/P1(x1), . . . , Pk(xk)].

Proof Similarly to the previous lemma, it suffices to check the claim only for
A = Pi(y). In this case we have

S0S1A ⊜ S0[y/xi]Ci.

Let us first assume that r(xi) ∩ FV (C0) = ∅. Then by Lemma 2.5.15

S0[y/xi]Ci ⊜ [y/xi]S0Ci ⊜ S2Pi(y),

for S2 = [S0C1, . . . , S0Ck/P1(x1), . . . , Pk(xk)].
In the general case we apply Lemma 2.5.14 and rename xi into z such that

r(z) ∩ FV (C0) = ∅. Then S1A ⊜ S
′
1A, where

S′
1 = [C1, . . . , C

′
i, . . . , Ck/P1(x1), . . . , Pi(z), . . . , Pk(xk)], C′

i ⊜ [z/xi]Ci;

hence S0S1A ⊜ S0S
′
1A ⊜ S2A for some S2, as we have already proved. �
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Remark 2.5.22 In general S0[C1/P (x)]Amay not be congruent to [S0C1/P (x)]A.
A counterexample can be derived from Remark 2.5.16: put

S0 = [Q(u, x)/P (u)], C1 = P (x), A = P (y);

then
S0[C1/P (x)]A = S0A = Q(y, x),

while
[S0C1/P (x)]A = [Q(x, x)/P (x)]A = Q(y, y).

Lemma 2.5.23 For any formula substitutions S0, S1, there exists a formula
substitution S such that for any formula A

S0S1A ⊜ SA.

Proof By Lemma 2.5.20

S0S1A ⊜ S2 . . . SnS1A

for some simple formula substitutions S2, . . . , Sn. Then we can use induction
on n and Lemma 2.5.21. �

Now let us consider parameters of substitution instances. We begin with a
simple remark that a strict substitution instance of a formula A may be not a
sentence if A is not a sentence.

Intuitively it is clear that free variable occurrences in a substitution instance
[C/P (x)]A may be of three kinds:

(1) those derived from original free occurrences in A if they occur in atoms
not containing P (and thus not affected by the substitution);

(2) members of y in subformulas of the form [y/x]C replacing occurrences of
P (y) in A;

(3) those produced by parameters of the substitution wherever P (y) is re-
placed with [y/x]C.

Parameters of the first two types are called essential. Here is a precise
definition for an arbitrary substitution.

Definition 2.5.24 A parameter z ∈ FV (A) is called essential for a simple
formula substitution [C/P (x)] if one of the following conditions holds:

(1) there exists a free occurrence of z in A within an atomic subformula that
does not contain P ;

(2) there exists a free occurrence of z in A as some yj within an occurrence
of P (y), where y = y1 . . . yn and xj ∈ FV (C).

For an arbitrary substitution [Ci/Pi(xi)]1≤i≤k the conditions change as follows:
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(1) there exists a free occurrence of z in A within an atomic subformula that
does not contain any Pi;

(2) there exists a free occurrence of z in A as some yj within an occurrence of
Pi(y), where y = y1 . . . yn and xij (the j-th member of xi) is a parameter
of C.

The set of all essential parameters of A for S is denoted by FV e(S,A). Now
let us prove the above observation on parameters of SA in more detail.

Lemma 2.5.25 Let A be a formula, S = [Ci/Pi(xi)]1≤i≤k a formula substitu-
tion. Then

FV (SA) = FV (S) ∪ FV e(S,A) if some Pi occurs in A
FV (SA) = FV e(S,A) otherwise.

Proof The second claim obviously follows from 2.5.24(1). To prove the first,
we argue by induction. We consider only the case when S = [C/P (x)] is simple.
We may assume that A is clean, BV (A) ∩ FV (S) = ∅.

• For atomic A there are two cases.

(1) A = P (y). Then SA ⊜ [y/x]C and by Lemma 2.3.28(1), FV (SA) =
FV (S) ∪ rng[x 7→ y]C . By definition, rng[x 7→ y]C = FV e(S,A) in
this case, cf. 2.5.24(2).

(2) A does not contain P . Then FV (A) = FV e(S,A).

• For A = �iB we have SA = �iSB and thus FV (SA) = FV (SB). Since
P occurs in A iff it occurs in B and FV e(S,A) = FV e(S,B), the claim
follow readily.

• For A = (B ∗D), where ∗ is a binary connective, the proof is similar to
the previous case; note that FV e(S,B ∗D) = FV e(S,B) ∪ FV e(S,D).

• For A = QuB we have

FV (SA) = FV (SB) − {u}. By induction hypothesis,

FV (SB) = FV (S) ∪ FV e(S,B),

since P occurs in B. So it remains to show that

FV e(S,A) = FV e(S,B) − {u}.

In fact,

(1) z has a free occurrence in QuB within an atom that does not contain
P iff z 6= u and z has the same kind of occurrence in B;

(2) z has a free occurrence in QuB within P (y) as described in 2.5.24
(2) iff z 6= u and z has the same kind of occurrence in B.
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�

From the previous lemma we obtain

Proposition 2.5.26 Let A be a formula, S = [Ci/P (xi)]1≤i≤k a formula sub-
stitution such that some Pi occurs in A. Then

(1) FV (S) ⊆ FV (SA) ⊆ FV (S) ∪ FV (A),

(2) FV (SA) ⊆ FV (A) if S is strict,

(3) for any subformula B of A, FV (SB) ⊆ FV (SA) ∪BV (A).

Proof

(1) Note that FV e(S,A) ⊆ FV (A).

(2) Follows from (1).

(3) By 2.5.25,

FV (SB) = FV (S) ∪ FV e(S,B) ⊆
FV (S) ∪ FV e(S,A) ∪ (FV e(S,B) − FV e(S,A)) =
FV (SA) ∪ (FV e(S,B) − FV e(S,A)).

Now note that according to Definition 2.5.24, the set FV e(S,B) − FV e(S,A)
contians only variables that are free in B, but not free in A, so this set is
contained in BV (A). Hence (3) follows. �

Remark 2.5.27 The reader can try to prove this proposition directly without
using Lemma 2.5.25. This does not seem easier.

Definition 2.5.28 For a set of formulas Γ ⊆MF
(=)
N (respectively, IF (=)), its

substitution closure is the set of all their substitution instances of the corre-
sponding kind:

Sub(Γ) := {SA | A ∈ Γ, S is an MF
(=)
N - (IF (=)-) formula substitution}.

The universal substitution closure of Γ is the set Sub(Γ) of all universal clo-
sures20 of formulas from Sub(Γ).

Since every N -modal formula is also N ′-modal for N ′ > N , there is some
ambiguity in this definition. But usually it is clear from the context, what kind
of formulas we consider.

Lemma 2.5.29

(1) Sub(Sub(Γ)) = Sub(Γ)

20Cf. Definition 2.2.8.
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(2) Sub(Sub(Γ)) ⊜ Sub(Γ) for a set of sentences Γ (where ⊜ means that these
sets are the same up to congruence).

Proof

(1) Every B ∈ Sub(Γ) has the form SA for some A ∈ Γ and formula substitu-
tion S. Then for any formula substitution S1, S1SA ∈ Sub(Γ) by Lemma
2.5.23.

(2) Let us show that for any B ∈ Sub(Γ) and for any substitution S1, ∀S1B
is congruent to a formula from Sub(Γ). We have

B = ∀zSA

for some A ∈ Γ, substitution S and r(z) = FV (SA). We may also assume
that FV (S) ∩ BV (A) = ∅ (otherwise we replace A with a congruent
formula). Since A is a sentence, we have FV (SA) = FV (S) by 2.5.25.

Now let y be a distinct list of new variables (for B) such that |y| = |z|
and r(y) ∩ FV (S1) = ∅. Then

∀zSA ⊜ ∀y[y/z]SA

by 2.3.28(13), and so by 2.5.12

(∗) S1B = S1∀zSA ⊜ S1∀y[y/z]SA.

Now by 2.5.17

[y/z]SA ⊜ S2A

for some formula substitution S2 (note that the condition r(z)∩BV (S) =
∅ holds, since r(z) = FV (S)).

Hence by 2.3.14(2) and 2.5.12

(∗∗) S1∀y[y/z]SA ⊜ S1∀yS2A.

Since r(y) ∩ FV (S1) = ∅, from 2.5.13(3) it follows that

(∗ ∗ ∗) S1∀yS2A ⊜ ∀yS1S2A.

Eventually, by (∗), (∗∗), (∗ ∗ ∗) we obtain

∀S1B ⊜ ∀∀yS1S2A,

and the latter formula is in Sub(Γ), by 2.5.23.

�
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Now let us define ‘minimal’ non-strict substitution instances of predicate
formulas.

Let P1, . . . , Pk be all predicate letters (besides equality) occurring in a for-
mula A, Pi ∈ PLni , and put

P := P1(x1) . . . Pk(xk),

where every xi is a distinct list of variables of length ni. Next, let m ≥ 0, and
let P ′

i be different21 (m+ni)-ary predicate letters (i = 1, . . . , k), z = z1 . . . zm a
distinct list of new variables for A that do not occur in x1 . . .xk. Then we call
P ′

i the m-shift of Pi; an m-shift of the formula A (by z) is Am(z) := [P′/P]A,
where

P′ = P ′
1(x1, z) . . . P ′

k(xk, z).

We also put A0(z) := A.
Sometimes we will fix z and use the notation Am rather than Am(z).

Exercise 2.5.30 Show that Am(z) is a substitution instance of any An(y).

Lemma 2.5.31 FV (Am(z)) = FV (A) ∪ r(z) if A is not purely equational22;
for purely equational A, Am(z) ⊜ A.

Proof According to the definition, Am(z) ⊜ [P′/P]A, FV [P′/P] = r(z) and
all parameters of A are essential for [P′/P]. Now we can apply 2.5.25. �

Lemma 2.5.32 Let S = [C/P], for P = P1(x1) . . . Pk(xk), C = C1 . . . Ck, be
a formula substitution and assume that z is a list of new parameters for A and
all Ci, |z| = m, r(z) ∩ r(x1 . . .xk) = ∅. Then

(SA)m(z) ⊜ S′(Am(z)),

where
S′ = [Cm

i (z)/P ′
i (xi, z)]1≤i≤k.

Proof By definition, for a certain substitution S1,

(SA)m(z) ⊜ S1SA, A
m(z) ⊜ S1A,

and FV (S1) = r(z). So, as before, we have to check the claim only for atomic
A (without equality).

If A = Pi(y), then

(SA)m(z) ⊜ ([y/xi]Ci)
m(z) ⊜ S1[y/xi]Ci,

S′Am(z) ⊜ S′P ′
i (y, z) ⊜ [yz/xiz]Cm

i (z) ⊜ [y/xi]S1Ci.

By our assumption, FV (S1) = r(z) is disjoint with xi. So the claim follows by
Lemma 2.5.15. �

21Speaking precisely, we can put (P j
i )′ := P j+m

i .
22I.e., it contains some predicate letters other than ‘=’.
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Exercise 2.5.33 Deduce 2.5.32 from 2.5.21.

Lemma 2.5.34 Let yz be a list of new variables for a formula A, |y| = m, |z| =
n. Then

(Am(y))n(z) ⊜ Am+n(yz).

Proof By definition we have

Am(y) ⊜ [P′/P]A, (Am(y))n(z) ⊜ [P′′/P′]Am(y),

where

P = (Pi(xi) | 1 ≤ i ≤ k), P′ = (P ′
i (xiy) | 1 ≤ i ≤ k), P = (P ′′

i (xiyz) | 1 ≤ i ≤ k).

Hence

(Am(y))n(z) ⊜ [P′′/P′][P′/P]A ⊜ [P′′/P]A.

To check the latter congruence we can consider only an atomic A = Pi(u),
similarly to Lemma 2.5.21. Then obviously

[P′′/P′][P′/P]A = [P′′/P′]P ′
i (uy) = P ′′

i (uyz) = [P′′/P]A.

�

Lemma 2.5.35 Every substitution instance SA of a formula A is obtained by
a variable renaming from a strict substitution instance of Am(z), where z is
a list of new variables for A, r(z) ∩ FV (S) = ∅, for some m ≥ 0, e.g. for
m = |FV (S)|.

Proof Let us first show this for a simple substitution S = [C(x,y)/P (x)] and
a formula A containing P . Let P1, . . . , Pk be a list of all other predicate letters
occurring in A, and let P ′

1, . . . , P
′
k be their m-shifts, where m = |y|. Next, let z

be distinct list of new variables of length m. Then

[C(x, z)/P (x)]A ⊜
[P1(x1) . . . Pk(xk)/P ′

1(x1, z) . . . P ′
k(xk, z)][C(x, z)/P ′(x, z)]Am(z),

where every Pi(xi) is an atomic formula with distinct xi.
In fact, by Lemma 2.5.21

[C(x, z)/P ′(x, z)]Am(z) ⊜
[C(x, z)/P ′(x, z)][P ′(x, z), P ′

1(x1, z), . . . , P ′
k(xk, z)/P (x), P1(x1), . . . , Pk(xk)]A ⊜

[C(x, z), P ′
1(x1, z), . . . , P ′

k(xk, z)/P (x), P1(x1), . . . , Pk(xk)]A,

hence by the same lemma

[P1(x1) . . . Pk(xk)/P ′
1(x1, z) . . . P ′

k(xk, z)][C(x, z)/P ′(x, z)]Am(z)
⊜ [C(x, z), P1(x1), . . . , Pk(xk)/P (x), P1(x1), . . . , Pk(xk)]A,
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and the latter formula is (congruent to) [C(x, z)/P (x)]A. So [C(x, z)/P (x)]A
is a strict substitution instance of Am(z). Since by 2.5.9(2)

[C(x,y)/P (x)]A ⊜ [y/z][C(x, z)/P (x)]A,

this proves our claim.
Now we can apply induction. As we know, every complex substitution is a

composition of simple substitutions. So it is sufficient to show that applying a
simple substitution S to a formula [y/z]S0A

m(z), where r(z)∩FV (S) = ∅ and
S0 is strict, can also be presented in this form.

Since r(z) ∩ FV (S) = ∅, by 2.5.15 we have

S[y/z]S0A
m(z) ⊜ [y/z]SS0A

m(z).

As we have already proved, for B ⊜ S0A
m(z)

SB ⊜ [u/t]S1B
k(t)

for an appropriate list of new variables t, some k, strict substitution S1 and
variable renaming [t 7→ u]. By 2.5.32 and 2.5.34,

Bk(t) ⊜ (S0A
m(z))k(t) ⊜ S2(Am(z))k(t) ⊜ S2A

m+k(zt),

where S2 is a strict substitution. Thus

[y/z]SB ⊜ [y/z][u/t]S1S2A
m+k(zt),

and S1S2 is strict as required. �

Let Am(z) be a universal closure of Am(z) (for m ≥ 0); thus Am(z) is
(equivalent to) ∀zAm(z) for a sentence A.

2.6 First-order logics

Definition 2.6.1 An (N -)modal predicate logic (m.p.l.) is a set L ⊆ MFN

such that

(m0) L contains classical propositional tautologies;

(m1) L contains the propositional axioms

AKi := �i(p ⊃ q) ⊃ (�ip ⊃ �iq).

(m2) L contains the predicate axioms (for some fixed P, q and arbitrary x, y):

(Ax12) ∀xP (x) ⊃ P (y);
(Ax13) P (y) ⊃ ∃xP (x);
(Ax14) ∀x(q ⊃ P (x)) ⊃ (q ⊃ ∀xP (x));
(Ax15) ∀x(P (x) ⊃ q) ⊃ (∃xP (x) ⊃ q);
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(m3) L is closed under the rules

A, (A ⊃ B)
(Modus Ponens, or MP);

B

A
(Necessitation, or �-introduction);

�iA

A
(Generalisation, or ∀-introduction)

∀xA

(for any x ∈ V ar).

(m4) L is closed under MFN -substitutions.

Definition 2.6.2 An (N -)modal predicate logic with equality (m.p.l.=) is a
set L ⊆MF=

N satisfying (m0)–(m3) from 2.6.1 and also
(m4=) L is closed under MF=

N -substitutions;
(m5=) L contains the axioms of equality (for arbitrary x, y and fixed P ):

(Ax16) x = x,
(Ax17) x = y ⊃ (P (x) ⊃ P (y)).

Definition 2.6.3 A superintuitionistic predicate logic (s.p.l.) is a set L ⊆ IF
such that

(s1) L contains the axioms of Heyting’s propositional calculus H (cf. Section
1.1.2);

(s2) = (m2) L contains the predicate axioms;
(s3) L is closed under the rules (MP), ∀-introduction, see (m3);
(s4) L is closed under IF -substitutions.

Definition 2.6.4 A superintuitionistic predicate logic with equality (s.p.l.=)
is a set L ⊆ IF= satisfying (s1)–(s3) from 2.6.3 and

(s4=) L is closed under IF=-substitutions;
(s5=) = (m5=) L contains the axioms of equality.

Further, by a ‘first-order logic’ we mean an arbitrary logic, modal or super-
intuitionistic, with or without equality.

Elements of a logic are called theorems, and we often write L ⊢ A instead of
A ∈ L.

Definition 2.6.5 A logic L (modal or superintuitionistic) is called consistent
if ⊥ 6∈ L.

MN (respectively M=
N , S, S

=) denotes the set of all N -m.p.l. (respectively,
N -m.p.l.=; s.p.l.; s.p.l.=). The smallest N -m.p.l. (respectively, N -m.p.l.=,
s.p.l., s.p.l.=) is denoted by QKN (respectively, by QK=

N , QH, QH=). L+ Γ
denotes the smallest m.p.l. containing an m.p.l. L and a set Γ ⊆ MF . This
notation is obviously extended to other cases (m.p.l.=, s.p.l., s.p.l.=).
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It is well-known that every theorem of QH(=) can be obtained by a formal
proof, which is a sequence of formulas that are either substitution instances of
axioms or are obtained from earlier formulas by applying inference rules cited in

(s3). The same is true for QK
(=)
N , but with the rules from (m3). The notion of

a formal proof extends to logics of the form QH(=) + Γ, QK
(=)
N + Γ, with the

only difference that formulas from Γ can also be used as axioms. By applying
deduction theorems, we can reduce the provability in L+ Γ to provability in L
in a more explicit way, see Section 2.8 below.

Definition 2.6.6 The quantified version of a modal (respectively, superintu-
itionistic) propositional logic Λ is

QΛ := QKN + Λ (respectively, QΛ := QH + Λ).

Definition 2.6.7 The propositional part of a predicate logic L is the set of its
propositional formulas:

Lπ := L ∩ LN (for an N -modal L);
Lπ := L ∩ L0 (for a superintuitionistic L).

The following is obvious.

Lemma 2.6.8

(1) If L is an N -m.p.l. or an s.p.l., then Lπ is a propositional logic of the
corresponding kind.

(2) If L is a predicate logic with equality, then Lπ = (L◦)π.23

A well-known example of an s.p.l. is the classical predicate logic

QCL(=) = Q(CL)(=) = QH(=) + EM,

where EM = p ∨ ¬p (see Section 1.1). An s.p.l.(=) L is called intermediate

iff L ⊆ QCL(=). Note that QCL(=) is included in QK
(=)
N (and thus, in any

m.p.l.(=)).
The rule (m4) means that together with a formula A, L contains all its

MFN -substitution instances (and similarly for (s4)). In particular, L contains
every formula congruent to A, because it is a substitution instance under the
dummy substitution. Hence we easily obtain

Lemma 2.6.9 If A ⊜ B then (A ≡ B) ∈ L (for any m.p.l.(=) or s.p.l.(=) L).

Proof A ⊜ B implies (A ≡ B) ⊜ (A ≡ A), and (A ≡ A) = [A/p](p ≡ p), thus
(A ≡ A) ∈ L by (m0), (m4) (or (s0), (s4)). Hence (A ≡ B) ∈ L. �

Lemma 2.6.10 Let A,B be formulas in the language of a predicate logic L.
Then for a variable x 6∈ FV (B):

23L◦ is defined in 2.14.1.
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(1) L ⊢ ∀x(B ⊃ A) ⊃• B ⊃ ∀xA,

(2) L ⊢ ∀x(A ⊃ B) ⊃• ∃xA ⊃ B.

Proof (1) Consider the substitution S = [A,B/P (x), q]; note that x 6∈ FV (S).
By Lemma 2.5.13, up to congruence, S distributes over ⊃ and ∀x (since x 6∈
FV (S)). Congruence also distributes over ⊃ and ∀x, by 2.3.14. Thus

S(Ax14) ⊜ ∀x(B ⊃ A) ⊃• B ⊃ ∀xA,

and so the latter formula is in L.
The proof of (2) is similar. �

Definition 2.6.11 Let Γ be a set of formulas in the language of a predicate
logic L. An L-derivation of a formula B from Γ a sequence A1, . . . , An, in which
An = B and every Ai is either a theorem of L, or Ai ∈ Γ, or Ai is obtained
from earlier formulas by applying MP, or Ai is obtained from an earlier formula
by ∀-introduction over a variable that is not a parameter of any formula from
Γ. If such a derivation exists, we say that B is L-derivable from Γ, notation:
Γ ⊢L B.

Note that we distinguish derivations from proofs; the latter may also use
substitution and �-introduction.

From definitions we easily obtain

Lemma 2.6.12 ⊢L A iff L ⊢ A.

Proof ‘If’. If L ⊢ A, then A is an L-derivation (from ∅).
‘Only if’. By induction on the length of an L-derivation of A from ∅. �

Recall the simplest first-order analogue of the propositional deduction theo-
rem:

Lemma 2.6.13 If Γ ∪ {A} ⊢L B, then Γ ⊢L A ⊃ B.

Proof Standard, by induction on the length of a derivation of B from Γ∪{A}.
(i) If B ∈ L ∪ Γ, then A ⊃ B follows by MP from B and B ⊃ (A ⊃ B),

which is a substitution instance of (Ax1).
(ii) If B is obtained by MP from C and C ⊃ B and by the induction hy-

pothesis Γ ⊢L A ⊃ C, A ⊃• C ⊃ B, note that

Γ ⊢L (A ⊃• C ⊃ B) ⊃ (A ⊃ C• ⊃• A ⊃ B),

from a tautology (or an intuitionistic axiom (Ax2)); hence Γ ⊢L A ⊃ B by MP.
(iii) Suppose B = ∀xC, Γ ⊢L A ⊃ C by induction hypothesis and x is not a

parameter in Γ ∪ {A}, then Γ ⊢L ∀x(A ⊃ C). By Lemma 2.6.10, L ⊢ ∀x(A ⊃
C) ⊃ (A ⊃ B), therefore Γ ⊢L A ⊃ B by MP.

(iv) If B = A, then (A ⊃ B) = (A ⊃ A), which is L-derivable by a standard
argument; see any textbook in mathematical logic. �
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Hence we obtain an equivalent characterisation of L-derivability.

Lemma 2.6.14 Let Γ be a set of N -modal (or intuitionistic) predicate for-
mulas, L an N -modal (or superintuitionistic) predicate logic (with or without
equality). Then for any N -modal (or intuitionistic) formula B, Γ ⊢L B iff there
exists a finite X ⊆ Γ such that

L ⊢
∧
X ⊃ B.

As usual, we also include the case X = ∅, with ⊤ as the empty conjunction.

Of course the notation
∧
X makes sense, due to the commutativity and the

associativity of conjunction in intuitionistic logic.

Proof Since every derivation from Γ contains a finite number of formulas from
Γ, it is clear that Γ ⊢L B iff there exists a finite X ⊆ Γ such that X ⊢L B.

So we have to show that

(1) X ⊢L B iff L ⊢
∧
X ⊃ B.

The proof is by induction on |X |.
If X = ∅, then ⊢L B iff L ⊢ B by 2.6.12.
But L ⊢ B ⊃• ⊤ ⊃ B (this is an instance of (Ax1)), so by MP, L ⊢ B implies

L ⊢ ⊤ ⊃ B.
The other way round, L ⊢ ⊤ ⊃ B implies L ⊢ B, since L ⊢ ⊤. Therefore

L ⊢ B iff L ⊢ ⊤ ⊃ B.
Suppose (1) holds for X (and any B). Then it also holds for X ∪ {A}.
In fact, by 2.6.13 and our assumption

X ∪ {A} ⊢ B iff X ⊢L A ⊃ B iff L ⊢
∧
X ⊃• A ⊃ B.

The latter is equivalent to

L ⊢ (
∧
X) ∧A ⊃ B,

due to

(2) H ⊢ (p ⊃• q ⊃ r) ≡ (p ∧ q ⊃ r).

(2) follows in a standard way by the deduction theorem from

p ⊃• q ⊃ r, p ∧ q ⊢H r

and
p ∧ q ⊃ r, p, q ⊢H r.

�

The next lemmas collects some useful theorems and admissible rules for
different types of logics.
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Lemma 2.6.15 The following theorems (admissible rules) are in every first-
order logic L:

(i) Bernays rules:
B ⊃ A

B ⊃ ∀xA
,

A ⊃ B

∃xA ⊃ B

if x 6∈ FV (B);

(ii)
∀xA ⊃ [y/x]A, ∀xA ⊃ A,
[y/x]A ⊃ ∃xA, A ⊃ ∃xA;

(iii) variable substitution rule:
A

[y/x]A
;

(iv) ∀x(A ⊃ B) ⊃ (QxA ⊃ QxB);

(v) monotonicity rules for quantifiers

A ⊃ B

QxA ⊃ QxB
;

(vi) replacement rules for quantifiers

A ≡ B

QxA ≡ QxB
;

(vii) ∀x(A ∧B) ≡ ∀xA ∧ ∀xB;

(viii) ∃x(A ∨B) ≡ ∃xA ∨ ∃xB;

(ix) ∀xA ≡ A if x 6∈ FV (A);

(x) ∃xA ≡ A if x 6∈ FV (A);

(xi) ∀x (C ⊃ A) ≡ (C ⊃ ∀xA) if x 6∈ FV (C);

(xii) ∀x (A ⊃ C) ≡ (∃xA ⊃ C) if x 6∈ FV (C);

(xiii) ∀x ¬A ≡ ¬∃xA;

(xiv) ∃x (C ⊃ A) ⊃ (C ⊃ ∃xA) if x 6∈ FV (C);

(xv) ∃x (A ⊃ C) ⊃ (∀xA ⊃ C) if x 6∈ FV (C);

(xvi) ∃x¬A ⊃ ¬∀xA;

(xvii) ∃x(A ∨ C) ≡ ∃xA ∨ C if x 6∈ FV (C);



2.6. FIRST-ORDER LOGICS 131

(xviii) Qx(A ∧ C) ≡ QxA ∧ C, if x 6∈ FV (C), Q ∈ {∀, ∃};

(xix) ∃x(A ∧B) ⊃ ∃xA ∧ ∃xB;

(xx) ∀xA ∨ ∀xB ⊃ ∀x(A ∨B);

(xxi) ∀xA ∨ C ⊃ ∀x(A ∨ C) if x 6∈ FV (C);

(xxii) QxQyA ≡ QyQxA for Q ∈ {∀, ∃};

(xxiii) QxA ≡ Q(x · σ)A for a quantifier Q, a distinct list x and a permutation
σ of In, where n = |x|;

(xxiv) ∃x∀yA ⊃ ∀y∃xA;

(xxv) ∀xA ⊃ [y/x]A for a variable substitution [y/x];

(xxvi) ∀x(A ≡ B) ⊃ (QxA ≡ QxB);

(xxvii) ∀(A ≡ A′) ⊃ ∀([A/P (x)]B ≡ [A′/P (x)]B),

if B is non-modal (moreover, if P (x) is not within the scope of modal
operators in B);

(xxviii)
A ≡ A′

(replacement rule)
[A/P (x)]B ≡ [A′/P (x)]B

;

(xxix) ∀

(
n∧

i=1

Ai

)
≡

n∧
i=1

∀Ai;

(xxx)
A ≡ B

∀A ≡ ∀B
.

So (xxiii) shows that up to equivalence, the universal closure ∀A does not
depend on the order of quantifiers.

Similarly to the propositional case (Section 1.1), the replacement rule (xxviii)
can be written as follows:

A ≡ A′

B(. . . A . . .) ≡ B(. . . A′ . . .)
.

Proof

(i) Readily follows from 2.6.10.

(ii) By Lemma 2.5.13 we obtain

[A/P (x)](∀xP (x) ⊃ P (y)) ⊜ ∀xA ⊃ [y/x]A

(note that x 6∈ FV [A/P (x)]). So since L contains (Ax12), it also contains
(ii).

The particular case of this is ∀xA ⊃ A. Hence ∀xA ⊃ A easily follows by
induction on |x| and the trnasitivity of ⊃.

The dual claims for ∃ are proved in a similar way.
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(iii) If L ⊢ A, then L ⊢ ∀xA. Since L ⊢ ∀xA ⊃ [y/x]A by (ii), we obtain
L ⊢ [y/x]A by MP. Therefore L is closed under variable substitution,
since every variable substitution is a composition of simple substitutions.

(iv) By the deduction theorem, it is sufficient to show

∀x(A ⊃ B) ⊢L QxA ⊃ QxB.

First consider the case Q = ∀. We have the following ‘abridged’ L-
derivation from ∀x(A ⊃ B):

1. ∀x(A ⊃ B) ⊃• A ⊃ B by (ii)

2. ∀x(A ⊃ B) by assumption

3. A ⊃ B by 1,2, MP

4. ∀xA ⊃ A by (ii)

5. ∀xA ⊃ B by 3, 4, transitivity

6. ∀xA ⊃ ∀xB by 5, (i).

Here we apply the transitivity rule and the Bernays rule to L-derivability
from Γ; the reader can easily see that they are really admissible in this
situation.

For the case Q = ∃ the argument slightly changes in items 4–6.

4. B ⊃ ∃xB by (ii)

5. A ⊃ ∃xB by 3, 4, transitivity

6. ∃xA ⊃ ∃xB by 5, (i).

(v) If L ⊢ A ⊃ B, then L ⊢ ∀x(A ⊃ B) by generalisation. Since L ⊢ ∀x(A ⊃
B) ⊃• QxA ⊃ QxB by (iv), we obtain L ⊢ QxA ⊃ QxB by MP.

(vi) If L ⊢ A ≡ B, then L ⊢ A ⊃ B, B ⊃ A by (Ax3), (Ax4)24 and MP. Hence
L ⊢ QxA ⊃ QxB, QxB ⊃ QxA by (v), and thus L ⊢ QxA ≡ QxB by

∧-introduction
C, D

C ∧D
, which is admissible in L.

(vii) Since L ⊢ A ∧ B ⊃ A by (Ax3) and substitution, it follows that L ⊢
∀x(A ∧B) ⊃ ∀xA, by (v), and thus ∀x(A ∧B) ⊢L ∀xA.

Similarly from (Ax4) we obtain

∀x(A ∧B) ⊢L ∀xB;

hence

∀x(A ∧B) ⊢L ∀xA ∧ ∀xB,

24In the modal case we may use (Ax3), (Ax4) as classical tautologies.
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by ∧-introduction, and therefore

L ⊢ ∀x(A ∧B) ⊃ ∀xA ∧ ∀xB,

by the deduction theorem.

To show the converse we may also use the deduction theorem. In fact, we
have the following abridged derivation from ∀xA ∧ ∀xB:

1. ∀xA ∧ ∀xB by assumption

2. ∀xA ∧ ∀xB ⊃ ∀xA by (Ax3), substitution

3. ∀xA by 1,2, MP

4. ∀xA ⊃ A by (ii)

5. A by 3,4, MP.

A similar argument shows ∀xA ∧ ∀xB ⊢L B.

Hence ∀xA∧∀xB ⊢L A∧B, by ∧-introduction and therefore ∀xA∧∀xB ⊢L

∀x(A ∧B).

(viii) It is sufficient to show

L ⊢ ∃xA ∨ ∃xB ⊃ ∃x(A ∨B)

and
L ⊢ ∃x(A ∨B) ⊃ ∃xA ∨ ∃xB.

For the first, we can use the ∨-introduction rule:

X ⊃ Z, Y ⊃ Z

X ∨ Y ⊃ Z
,

which is admissible in L, due to (Ax5).

So it remains to show

L ⊢ ∃xA ⊃ ∃x(A ∨B), ∃xB ⊃ ∃x(A ∨B).

But these follow by (v) from A ⊃ A∨B, B ⊃ A∨B, which are substitution
instances of (Ax6), (Ax7).

The converse L ⊢ ∃x(A ∨ B) ⊃ ∃xA ∨ ∃xB follows by the Bernays rule
from

L ⊢ A ∨B ⊃ ∃xA ∨ ∃xB.

For the latter we can also use ∨-introduction after we show

L ⊢ A ⊃ ∃xA ∨ ∃xB, B ⊃ ∃xA ∨ ∃xB.

But A ⊃ ∃xA∨∃xB follows by transitivity from A ⊃ ∃xA (ii) and ∃xA ⊃
∃xA ∨ ∃xB (Ax6). The argument for B ⊃ ∃xA ∨ ∃xB is similar.
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(ix) L ⊢ ∀xA ⊃ A by (ii). L ⊢ A ⊃ ∀xA follows by the Bernays rule from
L ⊢ A ⊃ A.

(x) The proof is similar to (ix).

(xi) We have L ⊢ ∀x(C ⊃ A) ⊃• C ⊃ ∀xA by 2.6.10(1).

For the converse, first note that

C ⊃ ∀xA, C ⊢L A

by the abridged derivation

C, C ⊃ ∀xA, ∀xA, ∀xA ⊃ A, A,

hence

C ⊃ ∀xA ⊢L C ⊃ A

by Deduction theorem, and thus

C ⊃ ∀xA ⊢L ∀x(C ⊃ A),

since x 6∈ FV (C). Therefore

L ⊢ C ⊃ ∀xA• ⊃ ∀x(C ⊃ A).

(xii) Along the same lines as in (xi), using 2.6.10(2) and the theorem A ⊃ ∃xA.
We leave the details to the reader.

(xiii) Readily follows from (xii), with C = ⊥.

(xiv) By Deduction theorem, this reduces to ∃xC ⊃ A,C ⊢L ∃xA. The latter
follows by the abridged derivation

C, C ⊃ ∃xC, ∃xC, ∃xC ⊃ A, A, A ⊃ ∃xA, ∃xA.

(xv) By the Bernays rule and deduction theorem from

A ⊃ C ⊢L ∀xA ⊃ C.

By Deduction theorem, the latter reduces to

A ⊃ C, ∀xA ⊢L C,

which we leave as an easy exercise for the reader.

(xvi) = (xiv) for C = ⊥.
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(xvii) By (x), L ⊢ ∃xC ≡ C, so the admissible replacement rule

B1 ≡ B2

A ∨B1 ≡ A ∨B2

yields
L ⊢ ∃xA ∨ ∃xC ≡ ∃xA ∨ C.

Since also
L ⊢ ∃x(A ∨ C) ≡ ∃xA ∨ ∃xC

by (viii), and we obtain (xvi) by transitivity for ≡.

(xviii) If Q = ∀, the argument is similar to (xvi), using (ix), (vii), and the
replacement rule

B1 ≡ B2

A ∧B1 ≡ A ∧B2

.

Let Q = ∃. Then
L ⊢ ∃x(A ∧ C) ⊃ ∃xA ∧ C

follows from (xvii), (x), and the replacement rule

A1 ⊃ A2 ∧B1, B1 ≡ B2

A1 ⊃ A2 ∧B2

for A1 = ∃x(A ∧ C), A2 = ∃xA, B1 = ∃xC, B2 = C.

Finally, to show
L ⊢ ∃xA ∧ C ⊃ ∃x(A ∧ C)

we argue as follows. First we obtain

C ⊢L A ⊃ A ∧C

by the deduction theorem and ∧-introduction. Hence

C ⊢L ∃xA ⊃ ∃x(A ∧ C)

by (v); this rule is still admissible in L-derivations from C, since ∀x-
introduction is admissible.

So by the deduction theorem,

⊢L C ⊃• ∃xA ⊃ ∃x(A ∧C).

The latter formula is equivalent to

∃xA ∧ C ⊃ ∃x(A ∧C).

In fact,
∃xA ∧ C ⊢L ∃x(A ∧C),

since ∃xA ∧ C ⊢L C and ∃xA ∧ C ⊢L ∃xA, and we may use C ⊃• ∃xA ⊃
∃x(A ∧ C) and MP to obtain ∃x(A ∧ C).

Therefore
⊢L ∃xA ∧ C ⊃ ∃x(A ∧ C).
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(xix) The proof is similar to (vii). From (Ax3), (Ax4) by monotonicity we
obtain

L ⊢ ∃x(A ∧B) ⊃ ∃xA, ∃x(A ∧B) ⊃ ∃xB.

Hence L ⊢ ∃x(A ∧B) ⊃ ∃xA ∧ ∃xB by ∧-introduction and the deduction
theorem.

(xx) The proof is similar to (viii).

First we note that

L ⊢ ∀xA ⊃ A ∨B

by transitivity from ∀xA ⊃ A, A ⊃ A ∨B.

Similarly

L ⊢ ∀xB ⊃ A ∨B.

Hence by ∨-introduction,

L ⊢ ∀xA ∨ ∀xB ⊃ A ∨B,

and (xviii) follows by the Bernays rule.

(xxi) Almost the same as (xx). Apply the Bernays rule to ∀xA ∨ C ⊃ A ∨C.

(xxii) By (ii), L ⊢ ∀yA ⊃ A; hence

L ⊢ ∀x∀yA ⊃ ∀xA

by monotonicity and

L ⊢ ∀x∀yA ⊃ ∀y∀xA,

by the Bernays rule.

The converse is obtained in the same way.

The case of ∃ is similar.

(xxiii) Since σ is a composition of elementary transpositions, it is sufficient to
consider σ = σn

i,i+1. So let x = yxixi+1z, then x · σ = yxi+1xiz. We have
(in L)

⊢ Qxixi+1QzA ≡ Qxi+1QxiQzA

by (xxii), hence

QyQxiQxi+1QzA ≡ QyQxi+1QxiQzA

by (vi), i.e. we obtain

QxA ≡ Q(x · σ)A.

(xxiv) Since L ⊢ ∀yA ⊃ A, we obtain L ⊢ ∃x∀yA ⊃ ∃xA by monotonicity; hence
L ⊢ ∃x∀yA ⊃ ∀y∃xA by the Bernays rule.
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(xxv) First consider the case when x∩y = ∅. We argue by induction on n = |x|.
The base n = 1 was proved in (ii).

Next, if x = x1x
′, y = y1y

′, and we know that L ⊢ ∀x′A ⊃ [y′/x′]A, then
by (v),

L ⊢ ∀xA ⊃ ∀x1[y′/x′]A.

By (ii),

L ⊢ ∀x1[y′/x′]A ⊃ [y1/x1][y′/x′]A,

hence

L ⊢ ∀xA ⊃ [y1/x1][y′/x′]A,

by transitivity. Since x1 6∈ x′y′, by Lemma 2.3.28(10) the conclusion is
congruent to [y/x]A as we need.

Now in the general case, let z be a distinct list of new variables, |z| = n.
Then as we have proved, L ⊢ ∀xA ⊃ [z/x]A, and thus

L ⊢ ∀xA ⊃ ∀z[z/x]A

by the Bernays rule. We also have

L ⊢ ∀z[z/x]A ⊃ [y/z][z/x]A

from the above, so by transitivity

L ⊢ ∀xA ⊃ [y/z][z/x]A.

Since z consists of new variables, by Lemma 2.3.28(6), [y/z][z/x]A ⊜
[y/x]A, and this completes the argument.

(xxvi) We have the following theorems in L:

1. A ≡ B• ⊃• A ⊃ B (Ax3)

2. ∀x(A ≡ B) ⊃ ∀x(A ⊃ B) 1, monotonicity (v)

3. ∀x(A ⊃ B) ⊃• QxA ⊃ QxB (iv)

4. ∀x(A ≡ B) ⊃• QxA ⊃ QxB 2, 3, transitivity.

Hence ∀x(A ≡ B) ⊢L QxA ⊃ QxB. In the same way (using Ax4) we
obtain

∀x(A ≡ B) ⊢L QxB ⊃ QxA.

Hence by propositional logic

∀x(A ≡ B) ⊢L QxA ≡ QxB,

which implies (xxvi) by the deduction theorem.
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(xxvii) To simplify the notation, we write B(A) instead of [A/P (x)]B. So we
show

∀(A ≡ A′) ⊢L ∀(B(A) ≡ B(A′))

by induction on the length of B and then apply the deduction theorem.

If B is atomic and does not contain P , the claim is trivial.

If B = P (y), the claim reduces to

∀(A ≡ A′) ⊢L ∀([y/x]A ≡ [y/x]A′) (∗∗)

For the latter, we first obtain

L ⊢ ∀x(A ≡ A′) ⊃• [y/x]A ≡ [y/x]A′

by (xxv), and hence

L ⊢ ∀x′∀x(A ≡ A′) ⊃ ∀x′([y/x]A ≡ [y/x]A′),

where x′ is a distinct list of remaining parameters from FV (A ≡ A′)−r(x).
By permutation of quantifiers (xxiii), elimination of vacuous quantifiers
(ix) and the rule (vi), the premise is equivalent to ∀(A ≡ A′). By ap-
plying the first Bernays rule (i), we may now add the quantifiers over the
remaining parameters (from y) to the conclusion, so that it becomes equiv-
alent to ∀([y/x]A ≡ [y/x]A′) — again by permutation and elimination of
redundant quantifiers. Hence (**) follows.

If B = (B1 ∗ B2) for a propositional connective ∗, and by the induction
hypothesis we have

∀(A ≡ A′) ⊢L ∀(B1(A) ≡ B1(A′)), ∀(B2(A) ≡ B2(A′)),

hence we deduce (by (xxv))

B1(A) ≡ B1(A′), B2(A) ≡ B2(A′).

Now we can apply the admissible propositional rule

A1 ≡ A′
1, A2 ≡ A′

2

(A1 ∗A2) ≡ (A′
1 ∗A

′
2)

and obtain B(A) ≡ B(A′). Since ∀(A ≡ A′) is closed, ∀-introduction is
also applicable.

If B = QyB1, we can transform it into a congruent formula by an ap-
propriate renaming of y. More precisely, B1 ⊜ B2, for some B2 with
y 6∈ BV (B2), and then B ⊜ QyB2 ⊜ Qz(B2[y 7→ z]), by 2.3.12. So
(up to congruence) we may assume that B = QyB1, y 6∈ FV [A/P (x)],
y 6∈ FV [A′/P (x)]. Then by 2.5.13(3),

B(A) ⊜ QyB1(A), B(A′) ⊜ QyB1(A′).
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If by the induction hypothesis

∀(A ≡ A′) ⊢L B1(A) ≡ B1(A′),

then
∀(A ≡ A′) ⊢L ∀y(B1(A) ≡ B1(A′)).

Hence we deduce
QyB1(A) ≡ QyB1(A′)

by (xxvi) and MP, replace it with the congruent formula

B(A) ≡ B(A′)

and finally apply generalisation.

(xxviii) The argument is by induction on the length of B, similar to (xxvii).

If B = P (y), then B(A) ⊜ [y/x]A, B(A′) ⊜ [y/x]A′. The rule

A ≡ A′

[y/x]A ≡ [y/x]A′

is admissible by (iii).

If B = (B1 ∗B2), use the admissible propositional rule

A1 ≡ A′
1, A2 ≡ A′

2

(A1 ∗A2) ≡ (A′
1 ∗A

′
2)

as in the proof of (xxvii).

If B = QyB1, then as in the proof of (xxvii), we may assume that y 6∈
FV [A/P (x)], y 6∈ FV [A′/P (x)], so

B(A) ⊜ QyB1(A), B(A′) ⊜ QyB1(A′).

By the induction hypothesis, L ⊢ A ≡ A′ implies L ⊢ B1(A) ≡ B1(A′);
hence by (vi)

L ⊢ QyB1(A) ≡ QyB1(A′),

and thus
L ⊢ B(A) ≡ B(A′).

Finally, if B = �iB1, then the propositional replacement rule (1.1.1) can
be used; the details are left to the reader.

(xxix) First note that
∀x(A ∧B) ≡ ∀xA ∧ ∀xB

follows from (vii) and (vi) by induction on |x|. Hence we obtain

∀x(

n∧

i=1

Ai) ≡

n∧

i=1

∀xAi
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by induction on n. Finally note that ∀Ai is equivalent to ∀xAi for any x
containing all parameters of Ai — this follows by applying (ix) to quanti-
fiers over variables xj 6∈ FV (Ai).

(xxx) In fact, the rule
A ≡ B

∀xA ≡ ∀xB

is admissible (by multiple application of (vi)). Now suppose a distinct list
x contains all parameters of A and B. Then after some permutation x
becomes yz, with r(z) = FV (A), r(y) ∩FV (A) = ∅; thus by (xxiii) ∀zA
is equivalent to ∀A and

L ⊢ ∀xA ≡ ∀y∀zA.

By multiple application of (ix) we can eliminate dummy quantifiers:

L ⊢ ∀y∀zA ≡ zA,

so
L ⊢ ∀xA ≡ ∀A.

By the same reason we have

L ⊢ ∀xB ≡ ∀B.

Therefore L ⊢ A ≡ B implies

L ⊢ ∀A ≡ ∀B.

�

Lemma 2.6.16 Theorems in logics with equality:

(1) x = y ⊃ y = x;

(2) x = y ∧ y = z ⊃ x = z;

(3) x = y ⊃• [x/z]A ≡ [y/z]A;

(4) x1 = y1 ∧ . . . ∧ xn = yn ⊃• P (x1, . . . , xn) ≡ P (y1, . . . , yn).

Proof

(1) From (Ax17) by substitution [x = z/P (x)] we obtain

L ⊢ x = y ⊃• x = z ⊃ y = z.

Hence by substitution [x/z] (2.6.15 (iii))

L ⊢ x = y ⊃• x = x ⊃ y = x.

This implies x = y ⊢L y = x (due to (Ax16)), whence L ⊢ x = y ⊃ y = x
by the deduction theorem.
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(2) From (Ax17)
y = z ⊃• P (y) ⊃ P (z)

by substitution [x = y/P (y)] we have

y = z ⊃• x = y ⊃ x = z.

This is equivalent to (2) by H.

(3) By (Ax17)
x = y ⊢L P (x) ⊃ P (y)

and
y = x ⊢L P (y) ⊃ P (x).

Hence by (1), x = y ⊢L P (y) ⊃ P (x), so by ∧-introduction x = y ⊢L

P (x) ≡ P (y), and thus

L ⊢ x = y ⊃• P (x) ≡ P (y) (#1)

by the deduction theorem. Hence by applying the substitution S :=
[A/P (z)] we obtain

L ⊢ x = y ⊃• [x/z]A ≡ [y/z]A.

(4) By the deduction theorem, it suffices to show

x1 = y1 ∧ . . . ∧ xn = yn ⊢L P (x1, . . . , xn) ≡ P (y1, . . . , yn). (#2)

For this we show by induction that

x1 = y1 ∧ . . . ∧ xm = ym

⊢L [x1, . . . , xm/z1, . . . , zm]P (z) ≡ [y1, . . . , ym/z1, . . . , zm]P (z). (#3m)

for a list of new variables z = (z1, . . . , zn).

The case m = 0 is trivial.

Suppose (#3m) holds; to check (#3m+1), assume

x1 = y1 ∧ . . . ∧ xm = ym ∧ xm+1 = ym+1. (#4)

Then by (∀zm+1)-introduction (since zm+1 is new)

∀zm+1(Am ≡ Bm),

where
Am := [x1, . . . , xm/z1, . . . , zm]P (z),
Bm := [y1, . . . , ym/z1, . . . , zm]P (z).

Hence by 2.6.15 (ii) and MP

[xm+1/zm+1]Am ≡ [xm+1/zm+1]Bm. (#5)
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The assumption (#4) implies xm+1 = ym+1, so by (iii) we have

[xm+1/zm+1]Bm ≡ [ym+1/zm+1]Bm. (#6)

From (#5), (#6), by transitivity we obtain [xm+1/zm+1]Am ≡ [ym+1/
zm+1]Bm, i.e. Am+1 ≡ Bm+1. Now since (#2) is (#3n), the claim is
proved.

�

Lemma 2.6.17 Theorems in QCL (and thus, in any m.p.l.):

(1) ∃x (A ⊃ C) ≡ (∀xA ⊃ C) if x 6∈ FV (C);

(2) ∃x¬A ≡ ¬∀xA;

(3) ∃x (C ⊃ A) ≡ (C ⊃ ∃xA) if x 6∈ FV (C);

(4) ∀x(A ∨ C) ≡ ∀xA ∨ C if x 6∈ FV (C).

Proof

(1) We have in QCL:

1. ¬∃x(A ⊃ C) ≡ ∀x¬(A ⊃ C) (Lemma 2.6.15(xiii))

2. ¬(A ⊃ C) ≡ A ∧ ¬C (by a propositional tautology)

3. ∀x¬(A ⊃ C) ≡ ∀x(A ∧ ¬C) (2, replacement)

4. ∀x(A ∧ ¬C) ≡ ∀xA ∧ ¬C (2.6.15(xix))

5. ∀xA ∧ ¬C ≡ ¬(∀xA ⊃ C) (by a propositional tautology).

Hence we obtain

6. ¬∃x(A ⊃ C) ≡ ¬(∀xA ⊃ C) (by transitivity from 1, 3, 4, 5).

This implies (1), due to the admissible rule

¬A ≡ ¬B

A ≡ B
.

(2) Put C = ⊥ in (1)

(3) We have in QCL:

1. (C ⊃ A) ≡ (¬C ∨A) (from a propositional tautology)

2. ∃x(C ⊃ A) ≡ ∃x(¬C ∨A) (1, replacement)

3. ∃x(¬C ∨A) ≡ ¬C ∨ ∃xA (2.6.15(xvii))

4. ¬C ∨ ∃xA ≡ C ⊃ ∃xA (from a propositional tautology)

5. ∃x(C ⊃ A) ≡ C ⊃ ∃xA (by transitivity from 2, 3, 4).
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(4) We have in QCL:

1. A ∨ C ≡• ¬C ⊃ A (from a propositional tautology)

2. ∀x(A ∨ C) ≡ ∀x(¬C ⊃ A) (1, replacement)

3. ∀x(¬C ⊃ A) ≡• ¬C ⊃ ∀xA (2.6.15(xi))

4. ¬C ⊃ ∀xA. ≡ ∀xA ∨ C (from a propositional tautology)

5. ∀x(A ∨ C) ≡ ∀xA ∨C (by transitivity from 2, 3, 4).

�

Lemma 2.6.18 Theorems in modal logics (where © ∈ {�i,✸i}, x is a list of
variables):

(1) ©∀xA ⊃ ∀x ©A;

(2) ∃x ©A ⊃ ©∃xA;

(3) x = y ⊃ �α(x = y) for N -modal logics with equality, α ∈ I∞N .

Proof (1) L ⊢ ∀xA ⊃ A (2.6.15 (ii)), hence L ⊢ ©∀xA ⊃ ©A by monotonicity
(1.1.1), which is also admissible in the predicate case. Therefore L ⊢ ©∀xA ⊃
∀x ©A, by the Bernays rule.

(2) Similar to (1), using A ⊃ ∃xA.

(3) Let us first prove x = y ⊃ �i(x = y). So assuming x = y, we prove
�i(x = y).

1. x = y ⊃• �i(z = x) ⊃ �i(z = y) Ax17, substitution [�i(z = x)/P (x)].

2. �i(z = x) ⊃ �i(z = y) 1, x = y, MP.

3. ∀z(�i(z = x) ⊃ �i(z = y)) 2, ∀z-introduction (if z is new).

4. �i(x = x) ⊃ �i(x = y) 3, Ax12, MP.

5. �i(x = x) Ax16, �-introduction.

6. �i(x = y) 4, 5, MP.

Hence L ⊢ x = y ⊃ �i(x = y).

For arbitrary α apply induction and monotonicity rules, cf. Lemma 1.1.2.
�

We use special notation for some formulas.
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Intuitionistic formulas:

CD := ∀x(P (x) ∨ q) ⊃ ∀xP (x) ∨ q (the constant domain principle); 25

CD− := ∀x(¬P (x) ∨ q) ⊃ ∀x¬P (x) ∨ q;
Ma := ¬¬∃xP (x) ⊃ ∃x¬¬P (x) (strong Markov principle);
Ma+ := ¬∃xP (x) ∨ ∃x¬¬P (x);
UP := (¬p ⊃ ∃xQ(x)) ⊃ ∃x(¬p ⊃ Q(x));
KF := ¬¬∀x (P (x) ∨ ¬P (x));
AP+

1 := ∀x1(Q1(x1) ∨ ¬Q1(x1));
AP+

n := ∀xn(Qn(xn) ∨ (Qn(xn) ⊃ AP+
n−1)) (n > 1);

DE := ∀x∀y (x = y ∨ ¬x = y) (the decidable equality principle);
SE := ∀x∀y (¬¬x = y ⊃ x = y) (the stable equality principle);
AU ′

1 := ∃xP (x) ⊃ ∀xP (x);

AUn := ∀

(
∧

0≤i≤n

Pi(xi) ⊃
∨

0≤i<j≤n

Pi(xj)

)
(n > 0);

AU=
n := ∀

∨
0≤i<j≤n

(xi = xj) (n > 0).

Modal formulas:

Bai := ∀x�iP (x) ⊃ �i∀xP (x) (Barcan formula for �i);
CEi := ∀x∀y(x 6= y ⊃ �i(x 6= y)) (the closed equality principle for �i).

In particular,

AU1 ⊜ ∀x∀y(P (x) ⊃ P (y)), AU=
1 ⊜ ∀x∀y(x = y).

All the above intuitionistic formulas exceptAU ′
1, AUn, and AU=

n are classical
theorems.

Classically both formulas AUn and AU=
n state that the individual domain

contains at most n elements, so they are logically equivalent. This also holds in
intuitionistic logic:

Lemma 2.6.19

(1) QH= ⊢ AU=
n ⊃ AUn (and so QK=

N ⊢ AU=
n ⊃ AUn).

(2) QH= +AUn = QH= +AU=
n (and QK=

N +AUn = QK=
N +AU=

n ).

(3) QH +AU ′
1 = QH +AU1.

Proof
(1) Since Pi(xi) ∧ (xi = xj) implies Pi(xj).

(2) Consider the formula

AU−
n :=

∧

i

Pi(xi) ⊃
∨

i<j

Pi(xj)

25First introduced by A. Grzegorczyk.
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(the ‘quantifier-free matrix’ of AUn) and the substitution

S := [x1 = z, . . . , xn = z/P1(z), . . . , Pn(z)].

Then
S(AU−

n ) =
∧

i<n

xi = xi ⊃
∨

i<j

xi = xj

implies
∨
i<j

xi = xj ; therefore QH= +AUn ⊢ AU=
n .

(3) [⊤/P1(x)]AU1 is equivalent to AU ′
1. So QH+AU1 ⊢ AU ′

1. The converse
is trivial. �

Note that the argument is not valid for S(AUn), because S renames bound
variables xi in AUn.

Lemma 2.6.20

(1) For any modal formula A and a list of variables x

QS4 ⊢ � ∀x�A ≡ � ∀xA, ✸ ∃x✸A ≡ ✸ ∃xA.

(2) For any intuitionistic formula A

QH +KF ⊢ ∀x¬¬A ⊃ ¬¬∀xA;

moreover,

QH +KF = QH + ∀x¬¬P (x) ⊃ ¬¬∀xP (x).

Proof
(1) �∀x�A ⊃ ∀x�A follows from �p ⊃ p.

The other way round, we obtain�∀xA ⊃ ∀x�A by 2.6.16(1), hence�2∀xA ⊃
�∀x�A by monotonicity, and thus �∀xA ⊃ �∀x�A (since S4 ⊢ �p ⊃ �2p).

For the second formula the proof is similar, using A ⊃ ∃xA.
(2) For L := QH + ∀x¬¬P (x) ⊃ ¬¬∀xP (x) let us show that L ⊢ KF .
In fact,

L ⊢ ∀x¬¬(P (x) ∨ ¬P (x)) ⊃ ¬¬∀x(P (x) ∨ ¬P (x))

by substitution.
On the other hand,

H ⊢ ¬¬(p ∨ ¬p)

by the Glivenko theorem, hence

QH ⊢ ¬¬(P (x) ∨ ¬P (x)),

and thus
QH ⊢ ∀x¬¬(P (x) ∨ ¬P (x)).
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So by MP it follows that L ⊢ ¬¬∀x(P (x) ∨ ¬P (x))(= KF ).
The other way round, let us show that

QHK := QH +KF ⊢ ∀x¬¬P (x) ⊃ ¬¬∀xP (x).

By the deduction theorem, this reduces to

∀x¬¬P (x) ⊢QHK ¬¬∀xP (x)

and next to
∀x¬¬P (x),¬∀xP (x) ⊢QHK ⊥.

It suffices to show that

∀x¬¬P (x), ¬P (x) ⊢QH ¬∀x(P (x) ∨ ¬P (x)),

which follows from

(I) ∀x¬¬P (x), ∀x(P (x) ∨ ¬P (x)) ⊢QH P (x).

To show (I), note that

(II) ∀x¬¬P (x), ∀x(P (x) ∨ ¬P (x)) ⊢QH ¬¬P (x), P (x) ∨ ¬P (x)

and

(III) ¬¬P (x), P (x) ∨ ¬P (x) ⊢QH P (x),

since P (x) ⊢ P (x) and {¬¬P (x),¬P (x)} is inconsistent. �

2.7 First-order theories

In this section we again consider formulas with extra individual constants.

Definition 2.7.1 Let L be an N -m.p.l.(=) (respectively, an s.p.l.(=)). An N -
modal (respectively, an intuitionistic) formula with extra constants A is called
L-provable, or an L-theorem (notation: ⊢L A) if it has a maximal generator in
L, i.e. if it can be presented in a form A = [c/x]B, with B ∈ L, a distinct list
of constants c, and a distinct list of variables x (cf. Lemma 2.4.4).

For A without constants, we also assume26 that ⊢L A iff A ∈ L.

Lemma 2.7.2 ⊢L A iff A has a generator in L (for A containing constants).

Proof ‘Only if’ follows from 2.7.1. The other way round, if A has a generator
B ∈ L, then its maximal generator A1 can be presented as [y/x]B (Lemma
2.4.5); so A1 ∈ L by 2.6.15 (iii). �

26Recall that in section 2.6 ⊢L A denotes the existence of an L-derivation of A, which is
equivalent to A ∈ L by 2.6.12.
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L-provability does not depend on the presentation of a formula:

Lemma 2.7.3 If B, B′ are maximal generators of A and B ∈ L, then B′ ∈ L.

Proof By Lemma 2.4.5, B′ ⊜ [z/y]B for some variable substitution [z/y]. So
B′ ∈ L, by Lemma 2.6.15. �

L-provability respects MP:

Lemma 2.7.4 If ⊢L A and ⊢L A ⊃ B, then ⊢L B.

Proof Suppose (A ⊃ B) = [c/x](A1 ⊃ B1), for distinct c, x, and (A1 ⊃ B1) ∈
L. Then A1 is a maximal generator of A, so ⊢L A implies A1 ∈ L, by Lemma
2.7.3. Hence B1 ∈ L, by MP. �

L-provability respects �-introduction:

Lemma 2.7.5 If ⊢L A, then ⊢L �iA.

Proof Suppose A = [c/x]A1 for distinct c, x, and A1 ∈ L. Then �iA1 ∈ L
and �iA = [c/x]�iA1. �

L-provability also respects substitution into propositional formulas:

Lemma 2.7.6 If L is a predicate logic (of any kind), A is a propositional for-
mula, A ∈ L, S = [B1, . . . , Bn/q1, . . . , qn] is a substitution of formulas with
constants for propositional letters, then ⊢L SA.

Proof Let Gi be a maximal generator of Bi, so Bi = [ci/xi]Gi for an injective
[ci/xi]. Take distinct lists y1, . . . ,yn of variables non-occurring in any Gi and
put G′

i := [yi/xi]Gi, G′ := G′
1, . . . , G

′
n, q := q1, . . . , qn, c := c1 . . . cn, y :=

y1 . . .yn. Then by Lemma 2.4.2(3), Bi ⊜ [ci/yi]G
′
i, and thus

SA ⊜ [[c/y] G′/q]A ⊜ [c/y][G′/q]A

(Lemma 2.5.18). Since [G′/q]A ∈ L, it follows that ⊢L SA. �

Definition 2.7.7 An N -modal theory (respectively, an intuitionistic simple
theory, with or without equality) is a set of N -modal (respectively, intuition-
istic) sentences with individual constants.

DΓ denotes the set of individual constants occurring in a theory Γ. So accord-
ing to the terminology from Section 2.3, Γ is a set of N -modal or intuitionistic

DΓ-sentences: Γ ⊆MS
(=)
N (DΓ) or Γ ⊆ IS(=)(DΓ). The set of all DΓ-sentences

(of the corresponding kind) L(=)(Γ) := MS
(=)
N (DΓ) (or IS(=)(DΓ)) is called the

language of Γ.

The next definition is an analogue of 2.6.11.
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Definition 2.7.8 An L-derivation of a formula with constants B from a the-
ory Γ is a sequence A1, . . . , An, in which An = B and every Ai is either L-
provable, or Ai ∈ Γ, or Ai is obtained from earlier formulas by applying MP or
∀-introduction.

If there exists an L-derivation of B from Γ, we say that B is L-derivable
from Γ (or an L-theorem of Γ); notation: Γ ⊢L B.

Then we easily obtain an analogue of 2.6.14:

Lemma 2.7.9 Let Γ be an N -modal or intuitionistic first-order theory (with or
without equality), L a predicate logic of the corresponding kind. Then for any
N -modal or intuitionistic formula B (perhaps, with extra constants)

Γ ⊢L B iff there exists a finite X ⊆ Γ such that ⊢L

∧
X ⊃ B.

Proof The argument is essentially the same as for 2.6.14; we check that

(∗) X ⊢L B ⇔ ⊢L

∧
X ⊃ B

for a finite theory X and a formula with constants B, by induction on |X |.
If X = ∅, (∗) means

⊢L B ⇔ ⊢L ⊤ ⊃ B,

which follows in the same way as in 2.6.14.
For the induction step we need the equivalence

⊢L

∧
X ⊃• A ⊃ B ⇔ ⊢L (

∧
X) ∧A ⊃ B,

which follows by Lemma 2.7.6 from (2) in the proof of 2.6.14. �

Lemma 2.7.10 Let L, L1 be N -modal (respectively, superintuitionistic) predi-
cate logics such that L ⊆ L1. Then for any N -modal (respectively, intuitionistic)
formula B,

L1 ⊢L B iff L1 ⊢ B.

Proof (Only if.) If L1 ⊢L B, then by 2.7.9, for a finite X ⊆ L1, ⊢L

∧
X ⊃ B,

i.e., (
∧
X ⊃ B) ∈ L ⊆ L1. Since ∧-introduction is an admissible rule in every

logic we consider, it follows that (
∧
X) ∈ L1, and thus B ∈ L1 by MP.

(If.) Trivial, by definition. �

Lemma 2.7.11 Let Γ be an N -modal theory, �iΓ := {�iA | A ∈ Γ}.

(1) If Γ ⊢L A, then �iΓ ⊢L �iA.

(2) If Γ ⊢L A ⊃ B, then �iΓ ⊢L �iA ⊃ �iB.

Proof (1) We apply 2.7.9. If L ⊢
∧
X ⊃ A for a finite X ⊆ Γ, then by 2.7.5,

L ⊢ �i(
∧
X) ⊃ �iA, and thus L ⊢

∧
�iX ⊃ �iA. Hence �iΓ ⊢L �iA.

(2) By (1), Γ ⊢L A ⊃ B implies �iΓ ⊢L �i(A ⊃ B). Then we can apply the
axiom AKi and MP. �
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Another useful fact is the following lemma on new constants.

Lemma 2.7.12 Let L be an N -modal or superintuitionistic logic, Γ a modal
(respectively, intuitionistic) theory, A(x) a formula with constants (resp., modal
or intuitionistic), x a variable not bound in A(x), and assume that a constant
c does not occur in Γ ∪ {A(x)}. Then the following conditions are equivalent:

(1) Γ ⊢L A(c);

(2) Γ ⊢L A(x);

(3) Γ ⊢L ∀xA(x).

Proof (1) ⇒ (2). Assume Γ ⊢L A(c). Then by 2.7.9, ⊢L

∧
Γ1 ⊃ A(c) for

some finite Γ1 ⊆ Γ. Let B :=
∧

Γ1. Then for some injective [yx 7→ dc],

B ⊃ A(c) = [dc/yx](B0 ⊃ A0(x)),
(B0 ⊃ A0(x)) ∈ L.

Since by assumption c does not occur in Γ, it does not occur in B, so we have

B = [dc/yx]B0 = [d/y]B0,
A(c) = [dc/yx]A0(x) = [d/y]A0(c).

Hence
A(x) = A(c)[c 7→ x] = [d/y]A0(x),

and thus
B ⊃ A(x) = [d/y](B0 ⊃ A0(x)).

So ⊢L B ⊃ A(x), therefore Γ ⊢L A(x).
An alternative proof is by induction on the length of an L-derivation of A(c)

from Γ; this is an exercise for the reader.
(2) ⇒ (3). Trivial, by ∀-introduction.
(3) ⇒ (1). Let A0(x) be a maximal generator ofA(x), then A(x) = [d/y]A0(x),

and also
∀xA(x) ⊃ A(c) = [dc/yx](∀xA0(x) ⊃ A0(x)).

But (∀xA0(x) ⊃ A0(x)) ∈ L by 2.6.13 (ii), so

⊢L ∀xA(x) ⊃ A(c).

Then Γ ⊢L ∀xA(x) implies Γ ⊢L A(c) by MP. �

In the intuitionistic case it is convenient to use theories of another kind.

Definition 2.7.13 A intuitionistic double theory (with or without equality) is
a pair (Γ,∆), in which Γ, ∆ are intuitionistic sentences (respectively, with or
without equality). D(Γ,∆)(= DΓ∪∆) denotes the set of constants occurring in

Γ ∪ ∆; the language of (Γ,∆) is L(Γ,∆) := IF (=)(D(Γ,∆)).
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Definition 2.7.14 Let L be an s.p.l., (Γ,∆) an intuitionistic theory. An intu-
itionistic formula A (with constants) is L-provable in (Γ,∆) if Γ ⊢L A ∨

∨
∆1

for some finite ∆1 ⊆ ∆.

So, as we assume
∨

∅ := ⊥, Γ ⊢L A implies (Γ,∆) ⊢L A.

This provability respects MP as well:

Lemma 2.7.15 If (Γ,∆) ⊢L C and (Γ,∆) ⊢L C ⊃ B, then (Γ,∆) ⊢L B.

Proof First note that Γ ⊢L A∨
∨

∆1 implies Γ ⊢L A∨
∨

∆2 for any ∆2 ⊇ ∆1,
since ⊢QH A ∨

∨
∆1 ⊃ A ∨

∨
∆2. The latter follows from the intuitionistic

tautology

p ∨ q ⊃ p ∨ (q ∨ r).

So if (Γ,∆) ⊢L C and (Γ,∆) ⊢L C ⊃ B, then Γ ⊢L C ∨
∨

∆1 and

Γ ⊢L (C ⊃ B) ∨
∨

∆1

for some finite ∆1 ⊆ ∆. But by 2.7.6

⊢QH (C ∨
∨

∆1) ∧ ((C ⊃ B) ∨
∨

∆1) ⊃ B ∨
∨

∆1,

since

H ⊢ (p ∨ r) ∧ ((p ⊃ q) ∨ r) ⊃ q ∨ r

(the latter follows from p∨ r, (p ⊃ q)∨ r ⊢H q∨ r, which we leave to the reader).
Hence Γ ⊢L B ∨

∨
∆1, and thus (Γ,∆) ⊢L B. �

2.8 Deduction theorems

We begin with an analogue of Lemma 2.6.13.

Lemma 2.8.1 For a predicate logic L, a first-order theory Γ and formulas with
constants A, B of the corresponding kind

Γ ∪ {A} ⊢L B ⇒ Γ ⊢L A ⊃ B.

Proof By an easy modification of the proof of 2.6.13, using Lemma 2.7.6. The
details are left to the reader. �

Theorem 2.8.2 (Deduction theorem for superintuitionistic logics) Let
L be an s.p.l.(=), Γ an intuitionistic theory without constants. Then for any
A ∈ IF (=)

L+ Γ ⊢ A iff Sub(Γ) ⊢L A.
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Proof (If.) Sub(Γ) ⊆ L+ Γ, hence Sub(Γ) ⊆ L+ Γ. So Sub(Γ) ⊢L A implies
L+ Γ ⊢L A, and thus L+ Γ ⊢ A, by Lemma 2.7.10.

(Only if.) It is sufficient to show that the set {A | Sub(Γ) ⊢L A} is a super-
intuitionistic logic. The conditions (s1)–(s3) from Definition 2.6.3 are obvious.

To check (s4), assume that A1, . . . , Ak ⊢L A for A1, . . . , Ak ∈ Sub(Γ). Then

by 2.7.9, we have

(
k∧

i=1

Ai ⊃ A

)
∈ L, and thus for any formula substitution S

L ⊢ S

(
k∧

i=1

Ai ⊃ A

)
, (1)

and the latter formula is congruent to

k∧

i=1

SAi ⊃ SA.

By 2.6.15(ii),
L ⊢ ∀SAi ⊃ SAi.

Note that ∀SAi ∈ Sub(Sub(Γ)) ⊜ Sub(Γ) by 2.5.29. Hence Sub(Γ) ⊢L SAi, and
therefore Sub(Γ) ⊢L SA by (1). �

For an N -modal theory ∆ put

�∞∆ := {�αB | B ∈ ∆, α ∈ I∞N }.

Theorem 2.8.3 (Deduction theorem for modal logics) Let L be a
N -m.p.l.(=), Γ an N -modal theory. Then for any N -modal formula A

L+ Γ ⊢ A iff �∞Sub(Γ) ⊢L A.

Proof �∞Sub(Γ) ⊢L A clearly implies L+ Γ ⊢ A.
For the converse, first note that the set {A | �∞Sub(Γ) ⊢L A} is substitution

closed. This is proved as in the previous theorem. In fact, suppose

�α1B1, . . . ,�αn
Bn ⊢L A

for B1, . . . , Bn ∈ Sub(Γ). Then (as in 2.8.2) we obtain

L ⊢

k∧

i=1

S�αi
Bi ⊃ SA.

As in 2.8.2, we also have
Sub(Γ) ⊢L SBi,

and thus by multiple application of 2.7.11(1)

�∞Sub(Γ) ⊢L �αi
SBi(⊜ S�αi

Bi).



152 CHAPTER 2. BASIC PREDICATE LOGIC

Therefore �∞Sub(Γ) ⊢L SA.
The set {A | �∞Sub(Γ) ⊢L A} is also closed under �-introduction. In fact,

by 2.7.11(1),
�∞Sub(Γ) ⊢L A⇒ �i�

∞Sub(Γ) ⊢L �iA,

and obviously �i�
∞Sub(Γ) ⊆ �∞Sub(Γ). �

Definition 2.8.4 An m.p.l.(=) is called conically expressive if its propositional
part is conically expressive.

Lemma 2.8.5 For any conically expressive N -m.p.l.(=) L, theory ∆ and for-
mula A,

�∗∆ ⊢L A iff �∞∆ ⊢L A,

where
�∗∆ := {�∗B | B ∈ ∆}.

Proof ‘If’ readily follows from L ⊢ �∗p ⊃ �αp, cf. 1.3.47(6). For the converse
note that �∗B is equivalent to a finite conjunction of formulas from �∞{B},
since Λ ⊢ �∗p ≡ �≤rp for some r, by 1.3.48. �

Hence we obtain a simplified version of the deduction theorem for conically
expressive modal logics:

Theorem 2.8.6 Let L be a conically expressive N -m.p.l.(=), Γ an N -modal
theory. Then for any N -modal formula A

L+ Γ ⊢ A iff �∗Sub(Γ) ⊢L A,

Proof Follows from 2.8.3 and 2.8.5. �

Here is a simple application of the deduction theorem.

Lemma 2.8.7 QH +W ∗ ⊢ KF , where

W ∗ = ∀x((P (x) ⊃ ∀yP (y)) ⊃ ∀yP (y)) ⊃ ∀xP (x),
K = ∀x¬¬P (x) ⊃ ¬¬∀xP (x).

Proof It is sufficient to show that

W ∗, ∀x¬¬P (x),¬∀xP (x) ⊢QH ⊥,

or, equivalently,

W ∗, ∀x¬¬P (x),¬∀xP (x) ⊢QH ∀xP (x).

But this is obvious, since the premise ∀x((P (x) ⊃ ∀yP (y)) ⊃ ∀yP (y)) of W ∗

is equivalent to ∀x((P (x) ⊃ ⊥) ⊃ ⊥), i.e. to ∀x¬¬P (x), under the assumption
¬∀xP (x). �
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2.9 Perfection

In this section we consider only superintuitionistic logics.

Lemma 2.9.1 For any intuitionistic sentence A and disjoint lists of new vari-
ables y, z of length m, n respectively,

QH ⊢
(
Am(y)

)n

(z) ≡ Am+n(yz).

Proof In fact,
(∀yAm(y))n(z) ⊜ S(∀yAm(y))

for some substitution S with FV (S) = r(z). Since y, z are disjoint, S commutes
with ∀y, so

(∀yAm(y))n(z) ⊜ ∀ySAm(y) ⊜ ∀y(Am(y))n(z) ⊜ ∀yAm+n(yz),

where the latter congruence follows from 2.5.34. Hence

QH ⊢
(
Am(y)

)n

(z) ≡ ∀z∀yAm+n(yz),

which is equivalent to Am+n(yz) by 2.6.15 (xxiii). �

Let A1 . . . Am be a list of formulas (not necessarily distinct); we define their
disjoint conjunction

A1

�
∧ . . .

�
∧ Am := S1A1 ∧ . . . ∧ SmAm,

where Si is a formula substitution transforming Ai in such a way that the
predicate letters in all conjuncts become disjoint. So we put

SiP
n
k (x) := Pn

mk+i(x);

then Pn
l occurs in SiAi only if l ≡ i (mod m).

Similarly we define a disjoint disjunction:

A1

�
∨ . . .

�
∨ Am := S1A1 ∨ . . . ∨ SmAm.

Lemma 2.9.2

QH ⊢ Ak
1(z)

�
∧ . . .

�
∧ Ak

m(z) ≡ ∀(Ak
1(z)

�
∧ . . .

�
∧ Ak

m(z)).

Proof In fact, let y be a distinct list of all parameters of Ak
1(z)

�
∧ . . .

�
∧ Ak

m(z);

then QH ⊢ Ak
i (z) ≡ ∀yAk

i (z) (by adding dummy quantifiers, cf. 2.6.15(ix)).
Hence

QH ⊢ SiAk
i (z) ≡ Si∀yA

k
i (z)(⊜ ∀ySiA

k
i (z)),

since Si is strict. But ∀y distributes over ∧, so

QH ⊢

m∧

i=1

SiAk
i (z) ≡ ∀y

(
m∧

i=1

SiA
k
i (z)

)
,

which proves our claim. �
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For a theory Θ put

Θ∀ := {Ak(z1, . . . , zk) | A ∈ Θ, k ≥ 0, z1, . . . , zk are new for A},

Θ∧ := {A1

�
∧ . . .

�
∧ Am | m > 0, A1, . . . , Am ∈ Θ},

Θ∧∀ := {(A1

�
∧ . . .

�
∧ Ak)k(z1, . . . , zk) | k > 0, A1, . . . , Ak ∈ Θ,

z1, . . . , zk are new for A1, . . . , Ak}.

Thus Θ∧ contains conjunctions of variants of formulas from Θ in disjoint
predicate letters. Obviously,

QH + Θ = QH + Θ∀ = QH + Θ∧ = QH + Θ∧∀.

For theories Θ1, . . . ,Θm we also define the disjoint disjunction

Θ1

�
∨ . . .

�
∨ Θm := {A1

�
∨ . . .

�
∨ Am | A1 ∈ Θ1, . . . , Am ∈ Θm}

(the set of disjunctions of variants of formulas from Θ1, . . . ,Θm) and the ex-
tended disjoint disjunction:

(Θ1

�
∨ . . .

�
∨ Θm)∀ = {(A1

�
∨ . . .

�
∨ Am)k(z1, . . . , zk) | k ≥ 0, A1 ∈ Θ1, . . . , Am ∈ Θm,

z1, . . . , zk are new for A1, . . . , Am}.

Definition 2.9.3 Let L be an s.p.l.(=), Θ1,Θ2 sets of formulas in the language
of L. We say that

• Θ1 L-implies Θ2 (notation: Θ1 ≤L Θ2) if

∀B ∈ Θ2 ∃A ∈ Θ1 L ⊢ A ⊃ B.

• Θ1 and Θ2 are L-equivalent (notation: Θ1 ∼L Θ2) if Θ1 ≤L Θ2 and
Θ2 ≤L Θ1.

• Θ1 sub-L-implies Θ2 (notation: Θ1 ≤sub
L Θ2) if Sub(Θ1) ≤L Sub(Θ2);

• Θ1 is sub-L-equivalent to Θ2 (notation: Θ1 ∼sub
L Θ2) if

Sub(Θ1) ∼L Sub(Θ2).

Here are some simple properties of these relations.

Lemma 2.9.4

(1) Θ1 ≤L Θ2 =⇒ Θ1 ≤sub
L Θ2.

(2) Θ1 ∼L Θ2 =⇒ Θ1 ∼sub
L Θ2.

(3) Θ1 ≤sub
L Θ2 iff Sub(Θ1) ≤L Θ2.

(4) Θ1 ≤sub
L Θ2 =⇒ L+ Θ2 ⊆ L+ Θ1.
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(5) Θ1 ∼sub
L Θ2 =⇒ L+ Θ1 = L+ Θ2.

(6) ≤L, ≤sub
L are transitive; ∼L, ∼sub

L are equivalence relations.

Proof

(1) Note that L ⊢ A ⊃ B implies L ⊢ SA ⊃ SB for any substitution S.

(2) Follows from (1).

(3) By (1) and 2.5.29,

Sub(Θ1) ≤L Θ2 =⇒ Sub(Θ1) = Sub(Sub(Θ1)) ≤L Sub(Θ2).

The converse is trivial.

(4) Θ1 ≤sub
L Θ2 clearly implies Θ2 ⊆ L+ Θ1.

(5) Follows from (4).

(6) Trivial.

�

2.9.4(2), (5) allow us sometimes to identify L-(sub)-equivalent sets of formu-
las.

Lemma 2.9.5 For any intuitionistic formula A

Sub({An(x1, . . . , xn) | n ≥ 0}) ≤QH Sub(A),

where the variables x1, . . . , xn, . . . are new for A.

Proof We use the simplified notation An for An(x1, . . . , xn). If A′ ∈ Sub(A),
then by 2.5.35, A′ ⊜ [y/z]SAn for some strict substitution S, variable renaming
[y/z], n ≥ 0, and we may assume that r(z) = FV (SAn)(⊆ FV (An) by 2.5.26).
Then by 2.6.15(xxiii)

QH ⊢ ∀A′ ≡ ∀y[y/z]SAn. (1)

Since S is strict, by 2.5.13 we obtain

SAn = S∀zAn ⊜ ∀zSAn,

and so by 2.6.15(xxv),
QH ⊢ SAn ⊃ [y/z]SAn.

By 2.5.26, SAn is a sentence, so by Bernays rule,

QH ⊢ SAn ⊃ ∀y[y/z]SAn. (2)

Therefore by (1), (2)
QH ⊢ SAn ⊃ ∀A′,

which proves our statement. �
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Lemma 2.9.6 Let A be an intuitionistic formula.

(1) For any lists of new variables27 y, z of length n,

QH ⊢ An(y) ≡ An(z).

(2) If n > m, then Am(z1, . . . , zm) is QH-equivalent to a strict substitution
instance of An(z1, . . . , zn), where z1, . . . , zn are new for A.

Proof (1) Recall that by definition,

An(z) ⊜ [P′/P]A, An(y) ⊜ [P′′/P]A,

where P = P1(x1) . . . Pk(xk), P1 . . . Pk is a list of all predicate letters in A,

P′ = P ′
1(x1, z) . . . P ′

k(xk, z), P′′ = P ′
1(x1,y) . . . P ′

k(xk,y).

Hence by Lemma 2.5.18

An(z) ⊜ [z/y]An(y),

and thus

∀zAn(z) ⊜ ∀z[z/y]An(y) ⊜ ∀yAn(y)

by 2.3.27(14).
(2) Let P1, . . . , Pj be all predicate letters occurring in A, Pi ∈ PLki , and let

P ′
i , P ′′

i be their m- and n-shifts respectively. Then Am ⊜ S−A
n, where

S− := [P ′
i (x1, . . . , xki

, z1, . . . , zm)/P ′′
i (x1, . . . , xki

, z1, . . . , zn)]1≤i≤j .

Now suppose r(y) = FV (A). Then by 2.5.31

FV (An) = r(y) ∪ {z1, . . . , zn}, FV (Am) = r(y) ∪ {z1, . . . , zm}.

Since S− is strict, by 2.5.13 S−An is equivalent to

S−∀z1 . . . ∀zn∀yA
n ⊜ ∀z1 . . .∀zn∀yS−A

n ⊜ ∀z1 . . . ∀zn∀yA
m.

The latter formula is equivalent to Am, by elimination of dummy quantifiers
∀zm+1, . . . ,∀zn. �

So Lemma 2.9.6 justifies the use of the notation An instead of An(z).
For a set of formulas Γ, let

∧
Γ be the set of all finite conjunctions of formulas

from Γ.

Lemma 2.9.7 For any theory Θ

Sub(Θ∧) ⊜
∧

Sub(Θ).

27Of course, we suppose that y as well as z, is distinct; but y and z may overlap.
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Proof Let S be a formula substitution, A1, . . . , An ∈ Θ. By definition,

S(A1

�
∧ . . .

�
∧ An) ⊜ S(S1A1 ∧ . . . ∧ SnAn)

for some substitutions S1, . . . , Sn. Thus

S(A1

�
∧ . . .

�
∧ An) ⊜

n∧

i=1

SSiAi ∈
∧

Sub(Θ),

since SSi is equivalent to a single substitution, by 2.5.23.
The other way round, consider an arbitrary formula

S1A1 ∧ . . . ∧ SnAn ∈
∧

Sub(Θ),

where A1, . . . , An ∈ Θ, S1, . . . , Sn are formula substitutions. Then

A1

�
∧ . . .

�
∧ An = B1 ∧ . . . ∧Bn,

where all Bi use different predicate letters and every Ai is YiBi for some strict
substitution Yi. Thus

n∧

i=1

SiAi ⊜

n∧

i=1

SiYiBi.

Since the predicate letters of Bi are disjoint, there exists a unified formula
substitution S such that for any i

SBi ⊜ SiYiBi,

and thus
n∧

i=1

SiAi ⊜

n∧

i=1

SBi ⊜ S(

n∧

i=1

Bi) ∈ Sub(Θ∧).

�

Lemma 2.9.8 For any theory Θ

Sub(Θ∧∀) ∼L

∧
Sub(Θ∀).

Proof (≤L) In fact, an arbitrary formula A from
∧

Sub(Θ∀) is equivalent to
one of the form C1∧ . . .∧Ck, where Ci ∈ Sub(Ani

i (z1, . . . , zni
)), A1, . . . , Ak ∈ Θ,

and z1, z2, . . . are new for A1, . . . , Ak. By 2.9.6, every formula Ani

i (z1, . . . , zni
) is

equivalent to a substitution instance of An
i (z1, . . . , zn) for n ≥ max(n1, . . . , nk).

Let us also choose n ≥ k and put Ci := Ck, Ai := Ak for k < i ≤ n. Then A is
equivalent to C1 ∧ . . . ∧Cn, which is

S1An
1 ∧ . . . ∧ SnAn

n

for some substitutions S1, . . . , Sn (and we omit z1, . . . , zn in the notation),
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Now

(A1

�
∧ . . .

�
∧ An)n

is equivalent to

An
1

�
∧ . . .

�
∧ An

n = B1 ∧ . . . ∧Bn,

where An
i ∈ Sub(Bi). Thus S1An

1 ∧ . . . ∧ SnAn
n is equivalent to a formula

S′
1B1 ∧ . . . ∧ S

′
nBn,

which is S′(B1∧. . .∧Bn) for a unified substitution S′ (since the predicate letters
in Bi are disjoint). Therefore

L ⊢ S′(A1

�
∧ . . .

�
∧ An)n ≡ S1An

1 ∧ . . . ∧ SnAn
n,

which implies

L ⊢ S′(A1

�
∧ . . .

�
∧ An)n ⊃ A,

and so the statement holds.

(≥L) Again we use the notationAk rather than Ak(z). Consider (A1

�
∧ . . .

�
∧ Ak)k ∈

Θ∧∀, with A1, . . . , Ak ∈ Θ. By definition, A1

�
∧ . . .

�
∧ Ak = A′

1 ∧ . . . ∧ A′
k, for

A′
1, . . . , A

′
k ∈ Sub(Θ), so

(A1

�
∧ . . .

�
∧ Ak)k = ∀(A′k

1 ∧ . . . ∧A′k
k )

is equivalent to

A′k
1 ∧ . . . ∧A′k

k ,

and thus to a formula from (Θ∀)∧. Hence

(Θ∀)∧ ≤L Θ∧∀,

and therefore by Lemma 2.9.7

∧
Sub(Θ∀) ⊜ Sub((Θ∀)∧) ≤L Sub(Θ∧∀).

�

Definition 2.9.9 A set of sentences Θ is called ∀-perfect in a logic L if the
following holds

(∀-p) for any A ∈ Sub(Θ) there exists B ∈ Sub(Θ) such that L ⊢ B ⊃ ∀A,

i.e., Sub(Θ) ≤L Sub(Θ).

Lemma 2.9.10 (∀-p) follows from its weaker version

(∀-p−) for any A ∈ Θ and a list of new variables z of length k ≥ 0 there exists

B ∈ Sub(Θ) such that L ⊢ B ⊃ Ak(z),
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i.e., Sub(Θ) ≤L Θ∀.

Proof In fact, by 2.9.4(3) (∀-p−) implies Sub(Θ) ≤L Sub(Θ∀) and by 2.9.5
we have Sub(Θ∀) ≤L Sub(Θ). Hence by 2.9.4(6), Sub(Θ) ≤L Sub(Θ). �

Definition 2.9.11 A set of sentences Θ is called ∧-perfect in a logic L if

(∧-p) for any A1, . . . , Am ∈ Sub(Θ) there exists B ∈ Sub(Θ) such that L ⊢ B ⊃
A1 ∧ . . . ∧Am,

i.e.
Sub(Θ) ≤L

∧
Sub(Θ).

Note that the condition (∧-p) for m = 2 implies (∧-p) for arbitrary m, by
induction.

Lemma 2.9.12 Θ is ∧-perfect in L iff Sub(Θ) ≤L Θ∧.

Proof ‘Only if’ is obvious. For ‘if’ note that Sub(Θ) ≤L Θ∧ implies Sub(Θ) ≤L

Sub(Θ∧) by 2.9.4(3) and apply 2.9.7. �

Definition 2.9.13 A set Θ is called ∧∀-perfect (in L) if it is both ∀-perfect
and ∧-perfect.

Obviously, a perfect set (of any kind) in L is also perfect in every L′ ⊇ L.
The next proposition suggests equivalents to 2.9.13.

Proposition 2.9.14 Let Θ be a set of sentences. Then the following conditions
are equivalent:

(1) Θ is ∧∀-perfect in L;

(2) Sub(Θ) ≤L Θ∧∀;

(3) for any A1, . . . , Am ∈ Sub(Θ) there exists B ∈ Sub(Θ) such that

L ⊢ B ⊃ ∀A1 ∧ . . . ∀Am (or equivalently, L ⊢ B ⊃ ∀(A1 ∧ . . . ∧Am));

(4) for any A
L+ Θ ⊢ A iff L ⊢ B ⊃ A for some B ∈ Sub(Θ).

Informally speaking, (4) means that a ∧∀-perfect set of axioms allows for
the simplest natural form of the deduction theorem.

Proof (1) ⇒ (2). Suppose (1). By ∀-perfection and 2.9.4(3) we have

Sub(Θ) ≤L Sub(Θ∀),

hence ∧
Sub(Θ) ≤L

∧
Sub(Θ∀),



160 CHAPTER 2. BASIC PREDICATE LOGIC

and thus by ∧-perfection and 2.9.8

Sub(Θ) ≤L

∧
Sub(Θ∀) ∼L Sub(Θ∧∀),

which implies (2).
(2) ⇒ (3). Assuming (2), let us check (3), which we present as

Sub(Θ) ≤L

∧
Sub(Θ). (3.0)

First note that
Sub(Θ) ≤L Sub(Θ∧∀) ∼L

∧
Sub(Θ∀) (3.1)

follows from (2) by 2.9.4(3) and 2.9.8.
On the other hand, by Lemma 2.9.5, Sub(Θ∀) ≤L Sub(Θ), so

∧
Sub(Θ∀) ≤L

∧
Sub(Θ). (3.2)

Now (3.0) follows from (3.1) and (3.2).
(3) ⇒ (4). We assume (3) and check ‘only if’ in (4) (‘if’ is trivial). If

L+ Θ ⊢ A, then by the deduction theorem 2.8.2,

L ⊢ ∀A1 ∧ . . . ∧ ∀Am ⊃ A

for some A1, . . . , Am ∈ Sub(Θ). By (3),

L ⊢ B ⊃ ∀A1 ∧ . . . ∧ ∀Am

for some B ∈ Sub(Θ). Hence L ⊢ B ⊃ A.
The converse implications (and (4) ⇒ (1)) are obvious. �

Similarly in the case of ∀- or ∧-perfection we can somewhat simplify the
deduction theorem:

Lemma 2.9.15 (1) If Θ is ∀-perfect in L, then L+ Θ ⊢ A iff Sub(Θ) ⊢L A.

(2) If Θ is ∧-perfect in L, then L + Θ ⊢ A iff L ⊢ ∀B ⊃ A for some B ∈
Sub(Θ).

Proof (1) If Sub(Θ) ⊢L A, then by 2.7.9, L ⊢
∧
X ⊃ A for a finite X ⊆

Sub(Θ). Since L+ Θ ⊢
∧
X , it follows that L+ Θ ⊢ A.

The other way round, if L+ Θ ⊢ A, then by 2.8.2

L ⊢ ∀A1 ∧ . . . ∧ ∀Am ⊃ A

for some A1, . . . , Am ∈ Sub(Θ). By (∀-p) there exist Bi ∈ Sub(Θ) such that
L ⊢ Bi ⊃ ∀Ai; thus Sub(Θ) ⊢L A.

(2) ‘If’ is again obvious. The other way round, suppose L + Θ ⊢ A, i.e. by
the deduction theorem

L ⊢ ∀A1 ∧ . . . ∧ ∀Am ⊃ A
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for A1, . . . , Am ∈ Sub(Θ). Since by 2.6.15(xxix)

QH ⊢ ∀A1 ∧ . . . ∧ ∀Am ≡ ∀(A1 ∧ . . . ∧Am),

we obtain
L ⊢ ∀(A1 ∧ . . . ∧Am) ⊃ A.

By (∧-p) then
L ⊢ B ⊃ A1 ∧ . . . ∧Am

for some B ∈ Θ; hence by monotonicity

L ⊢ ∀B ⊃ ∀(A1 ∧ . . . ∧Am)

and eventually
L ⊢ ∀B ⊃ A.

�

Lemma 2.9.16 (1) For any theory Θ, the theories Θ∀,Θ∧,Θ∧∀ are respec-
tively ∀-perfect, ∧-perfect, and ∧∀-perfect.

(2) For any theories Θ1, . . . ,Θm, the theory (Θ1

�
∨ . . .

�
∨ Θm)∀ is ∀-perfect

Proof (1) (i) By Lemma 2.9.5,

Sub(Θ∀) ≤L Sub(Θ).

On the other hand, Θ∀ ⊆ Sub(Θ), so

Sub(Θ∀) ⊆ Sub(Sub(Θ)) ⊜ Sub(Θ)

by 2.5.31. Thus (∀-p) holds for Θ∀.
(ii) By definition,

Θ∧ ⊆
∧

Sub(Θ),

and thus
Sub(Θ∧) ⊆ Sub(

∧
Sub(Θ)) =

∧
Sub(Θ),

since substitutions distribute over conjunctions. Hence

∧
Sub(Θ) ≤L Sub(Θ∧),

and so ∧
Sub(Θ) ≤L

∧
Sub(Θ∧).

Therefore by Lemma 2.9.7,

Sub(Θ∧) ≤L

∧
Sub(Θ∧),

i.e., (∧-p) holds for Θ∧.
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(iii) Let us check that Θ∧∀ is ∀-perfect, i.e. (∀-p−) holds:

Sub(Θ∧∀) ≤L (Θ∧∀)∀.

Since by 2.9.8,

Sub(Θ∧∀) ≤L

∧
Sub(Θ∀),

it suffices to show that ∧
Sub(Θ∀) ≤L (Θ∧∀)∀. (∗)

So consider an arbitrary formula from (Θ∧∀)∀

(
(A1

�
∧ . . .

�
∧ An)n(y)

)m

(z),

where A1, . . . , An ∈ Θ. By Lemma 2.9.1, it is equivalent to

(A1

�
∧ . . .

�
∧ An)m+n(yz),

which can be rewritten as

∀(Bm+n
1 (yz) ∧ . . . ∧Bm+n

n (yz)),

where every Bi is a strict substitution instance of Ai. By 2.6.15(xxix) the latter
formula is equivalent to

A :=
n∧

i=1

∀Bm+n
i (yz).

Also note that
Bm+n

i (yz) ⊜ SiA
m+n
i (yz)

for some strict substitution Si, hence by 2.5.13(3)

∀Bm+n
i (yz) ⊜ Si

(
Am+n

i (yz)
)
,

and thus A ∈
∧

Sub(Θ∀). Hence (*) follows.
(iv) By Lemma 2.9.8,

Sub(Θ∧∀) ∼L

∧
Sub(Θ∀),

hence obviously ∧
Sub(Θ∧∀) ∼L

∧
Sub(Θ∀),

and thus
Sub(Θ∧∀) ≤L

∧
Sub(Θ∧∀)

showing the ∧-perfection.
(2) Follows from (1). �
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So every recursively axiomatisable s.p.l. QH + Θ has a recursive ∧∀-perfect
(in QH) axiomatisation Θ∧∀.28

Sometimes one can construct simpler perfect axiomatisations for QH + Θ
(or for L + Θ, with a superintuitionistic L). E.g. if a set Θ0 is ∀-perfect, then
Θ∧

0 (or (Θ0 ∪ Θ∀)∧ for any Θ) is ∧∀-perfect, etc.
To construct the sets Θ∀,Θ∧,Θ∧∀ from Θ we usually need infinitely many

additional universal quantifiers or conjuncts, so these sets are infinite for any
finite set Θ (unless Θ ⊆ {⊥,⊤}).29 But sometimes finite perfect extensions also
exist.

Lemma 2.9.17 If Θ1, . . . ,Θm are ∧∀-perfect, then

(1) (Θ1

�
∨ . . .

�
∨ Θm)∀ is ∧∀-perfect;

(2) QH + (Θ1

�
∨ . . .

�
∨ Θm)∀ = QH + Θ1

�
∨ . . .

�
∨ Θm.

Proof The ∀-perfection follows from Lemma 2.9.16. To show the ∧-perfection,

consider C1, . . . , Ck ∈ (Θ1

�
∨ . . .

�
∨ Θm)∀, with

Ci = (Ai1

�
∨ . . .

�
∨ Aim)li ,

Aij ∈ Θj . As noted above, we may assume that different Ci have no common
predicate letters. Then every Ci can be presented as

Ci = ∀(A′
i1 ∨ . . . ∨A

′
im),

where A′
ij ∈ Sub(Θj). By ∧∀-perfection (2.9.14(3)), there exist Bj ∈ Sub(Θj)

such that

L ⊢ Bj ⊃ ∀

k∧

i=1

A′
ij .

Every Bj is a substitution instance of a formula Dj ∈ Θj , and by an appropriate
renaming of predicate letters in Dj , we can make them all disjoint. Then

L ⊢




m∨

j=1

Bj


 ⊃

k∧

i=1

Ci,

with

(
m∨

j=1

Bj

)
∈ Sub(Θ1

�
∨ . . .

�
∨ Θm). �

Remark 2.9.18 Another kind of perfection was introduced in [Yokota, 1989],
cf. also [Skvortsov, 2004]. A theory Θ is called arity-perfect in a logic L if for

28Of course every s.p.l. itself is ∧∀-perfect, but such a trivial axiomatisation is not recursive.
29Formally speaking, Θ∀ and Θ∧ are infinite even for Θ = {⊥}, but repetitions and dummy

quantifiers can be eliminated, so we can say that {⊥}∀ = {⊥}∧∀ = {⊥}.
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any A ∈ Sub(Θ) there exists a closed substitution instance B′ of some B ∈ Θ
such that L ⊢ B′⊃A (and thus L ⊢ B′⊃∀A).

Our notion of ∀-perfection is weaker, because in 2.9.9(∀-p) the formula B is
not necessarily closed30.

Note that the sets Θ∧, Θ∧∀ are arity-perfect.

Lemma 2.9.19 L-sub-equivalence preserves all forms of perfection.

Proof Readily follows from Definitions 2.9.9, 2.9.11 and the observation
that Sub(Θ1) ∼L Sub(Θ2) implies Sub(Θ1) ∼L Sub(Θ2) and

∧
Sub(Θ1) ∼L∧

Sub(Θ2). �

2.10 Intersections

Proposition 2.10.1 Let L be a superintuitionistic predicate logic, and let Γ,Γ′

be sets of sentences such that formulas from Γ and Γ′ do not have common
predicate letters. Then

(1) (L + Γ) ∩ (L + Γ′) = L + {Am ∨ Bn | A ∈ Γ, B ∈ Γ′, m, n ∈ ω} =
L+ {Am ∨Bm | A ∈ Γ, B ∈ Γ′, m ∈ ω};

(2) 31 If L ⊢ CD then

(L+ Γ) ∩ (L + Γ′) = L+ {A ∨B | A ∈ Γ, B ∈ Γ′}.

(3) If L+ Γ ⊢ CD and L+ Γ′ ⊢ CD, then

(L+ Γ) ∩ (L+ Γ′) = L+ CD + {A ∨B | A ∈ Γ, B ∈ Γ′}.

Proof

(1) The only nontrivial part of the proof is to show that

(L+ Γ) ∩ (L+ Γ′) ⊆ L+ {Am ∨Bm | A ∈ Γ, B ∈ Γ′, m ∈ ω}.

So suppose
(L + Γ) ∩ (L+ Γ′) ⊢ C.

Then by Theorem 2.8.2,

L ⊢
k∧

i=1

∀Ai ⊃ C and L ⊢
l∧

j=1

∀Bj ⊃ C

for some A1, . . . Ak ∈ Sub(Γ), B1, . . . Bl ∈ Sub(Γ′). Thus

L ⊢
∧

i,j

(∀Ai ∨ ∀Bj) ⊃ C.

30Recent counterexamples by D. Skvortsov show that ∀-perfection is properly weaker than
arity-perfection.

31Cf. [Ono, 1973, Theorem 5.5].
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By 2.5.35, every formula Ai can be presented in the form [ui/ti]SiC
mi

i ,
where Ci ∈ Γ, Si is a strict formula substitution, FV (Ci) = r(ti) (but the
list ui may be not distinct). So ∀Ai is L-equivalent to ∀ui[ui/ti]SiC

mi

i

and
L ⊢ ∀tiSiC

mi

i ⊃ ∀Ai

(by 2.6.15(xxv) and the Bernays rule). Since Si is strict, by 2.5.13 we have

∀tiSiC
mi

i ⊜ Si∀tiC
mi

i = SiC
mi

i .

Now if n = max{mi, nj | 1 ≤ i ≤ k, 1 ≤ j ≤ l}, then by Lemma 2.9.6,

Cmi

i is L-equivalent to a strict substitution instance of Cn
i ; thus

L ⊢ SiC
mi

i ≡ S′
iC

n
i

for some strict substitution S′
i. Therefore

L ⊢ S′
iC

n
i ⊃ ∀Ai.

In the same way we obtain

L ⊢ S′′
j D

n
j ⊃ ∀Bj

for some Dj ∈ Γ′ and strict S′′
j . Since by assumption the predicate letters

occurring in Ci and Dj are different, we may assume that Si, S
′′
j act on

different predicate letters. Then

S′
iS

′′
j (Cn

i ∨Dn
j ) ⊜ S′

iC
n
i ∨ S′′

j D
n
j ,

and so
L ⊢ S′

iS
′′
j (Cn

i ∨Dn
j ) ⊃ ∀Ai ∨ ∀Bj.

Eventually

L+ {An ∨Bn | A ∈ Γ, B ∈ Γ′, n ∈ ω} ⊢ C.

(2) The inclusion

L+ {A ∨B | A ∈ Γ, B ∈ Γ′} ⊆ (L+ Γ) ∩ (L+ Γ′)

holds trivially for any L, since L ⊢ A ⊃ A ∨B, B ⊃ A ∨B.

For the converse we use (1). It suffices to show that for any m ∈ ω and
for a list of new variables u

(∗) L+A ∨B ⊢ Am(u) ∨Bm(u).

Recall that by 2.9.6, we can replace u by another list of new variables v
of the same length:

L ⊢ Am(u) ∨Bm(u) ≡ Am(u) ∨Bm(v) = ∀uAm(u) ∨ ∀vBm(v).
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Now if u,v are disjoint, then by CD applied several times

(∗∗) L ⊢ ∀uAm(u) ∨ ∀vBm(v) ≡ ∀u∀v(Am(u) ∨Bm(v)).

But

(∗ ∗ ∗) L+A ∨B ⊢ ∀u∀v(Am(u) ∨Bm(v)).

In fact, Am(u) ⊜ S1A, B
m(v) ⊜ S2B for some formula substitutions

S1, S2. Since A,B do not have common predicate letters, we may also
assume that S1, S2 are defined on different predicate letters. Then

S1S2(A ∨B) ⊜ S1A ∨ S2B ⊜ A
m(u) ∨Bm(v).

So (∗ ∗ ∗) follows by substitution and ∀-introduction; (∗) follows from
(∗∗),(∗ ∗ ∗).

(3) Put L+ CD for L in (2).

�

Remark 2.10.2 The assumption L ⊢ CD in Proposition 2.10.1(2) is necessary.
[Ono, 1972/73] gives an example of predicate logics, for which the analogue of
(2) does not hold.

Similarly one can describe intersections of modal predicate logics.

Proposition 2.10.3 Assume that L is a N -modal predicate logic, and Γ,Γ′ do
not have common predicate letters. Then

(1) (L+Γ)∩(L+Γ′) = L+{�αAm∨�βBn | A ∈ Γ, B ∈ Γ′; m,n ∈ ω; α, β ∈
I∞N } = L+ {�αAn ∨�βBn | A ∈ Γ, B ∈ Γ′; n ∈ ω; α, β ∈ I∞N }.

For particular classes of modal logics this presentation can be simplified,
cf. Corollaries 1.1.6, 1.3.51:

(a) If L is conically expressive, then

(L+ Γ) ∩ (L+ Γ′) = L+ {�∗An ∨ �∗Bn | A ∈ Γ, B ∈ Γ′; n ∈ ω}.

(b) For 1-modal L ⊇ QT:

(L+Γ)∩(L+Γ′) = L+{�rAm ∨�sBn | A ∈ Γ, B ∈ Γ′; m,n, r, s ∈ ω}.

(c) For 1-modal L ⊇ QK4:

(L+ Γ) ∩ (L + Γ′) = L+ {�rAm ∨�sBn | A ∈ Γ, B ∈ Γ′; m,n,∈ ω;
r, s ∈ {0, 1}}.

(d) For 1-modal L ⊇ QS4:

(L+ Γ) ∩ (L+ Γ′) = L+ {�Am ∨�Bn | A ∈ Γ, B ∈ Γ′; m,n ∈ ω}.
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(2) If L ⊢ Bai for i ∈ IN , then:

(L+ Γ) ∩ (L+ Γ′) = L+ {�αA ∨�βB | A ∈ Γ, B ∈ Γ′;α, β ∈ I∞N }.

If L is also conically expressive, then

(L+ Γ) ∩ (L + Γ′) = L+ {�∗A ∨�∗B | A ∈ Γ, B ∈ Γ′}.

Proof (1) Use 2.8.3 and repeat the argument from the proof of 2.10.1, with
∀Ai, ∀Bj replaced by �αi

∀Ai, �βj
∀Bj . The details are left to the reader.

If L is conically expressive, then by 1.3.48, for some r

L ⊢ �∗An∨�∗Bn ≡ �≤rAn∨�≤rBn ≡
∧

{�αAn∨�βBn | α, β ∈ I∞N ; |α|, |β| ≤ r}.

By 1.3.47(6), for any α, β ∈ I∞N

L ⊢ �∗An ∨�∗Bn ⊃ �αAn ∨�βBn.

Hence

L+ {�∗An ∨�∗Bn | A ∈ Γ, B ∈ Γ′, n ∈ ω} =
L+ {�αAn ∨�βBn | A ∈ Γ, B ∈ Γ′; α, β ∈ I∞N , n ∈ ω}.

(2) Again we can use the argument from the proof of 2.10.1(2), with A,B
replaced by �αA,�βB. In the case when L is conically expressive note that

L+{�∗A∨�∗B | A ∈ Γ, B ∈ Γ′} = L+{�αA∨�βB | A ∈ Γ, B ∈ Γ′; α, β ∈ I∞N }.

�

Therefore we have

Proposition 2.10.4 The complete lattices of predicate logics (superintuitionis-
tic or modal) are well-distributive, i.e. they are Heyting algebras. Moreover, the
intersection of two recursively axiomatisable logics is recursively axiomatisable.
The intersection of finitely axiomatisable logics is finitely axiomatisable for su-
perintuitionistic logics containing CD and for conically expressive modal logics
containing the Barcan formulas for all basic modalities.

In Volume 2 we will show that the intersection of finitely axiomatisable super-
intuitionistic predicate logics may be not finitely axiomatisable, if one of them
does not contain CD.

2.11 Gödel–Tarski translation

Definition 2.11.1 Gödel–Tarski translation for predicate formulas is the map
(−)T : IF= −→MF= defined by the following clauses:
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AT = �A for A atomic;
(A ∧B)T = AT ∧BT ;
(A ∨B)T = AT ∨BT ;
(A ⊃ B)T = �(AT ⊃ BT );
(∃xA)T = ∃xAT ;
(∀xA)T = �∀xAT .

For a set Γ ⊆ IF= put ΓT := {AT | A ∈ Γ}.
Gödel–Tarski translation is obviously extended to formulas with constants.

Since QS4= ⊢ (x = y) ≡ �(x = y), we may also define (x = y)T just as x = y.

Lemma 2.11.2 QS4(=) ⊢ �AT ≡ AT for any A ∈ IF (=).

Proof By induction on the length of A. �

Lemma 2.11.3 (1) Let [x 7→ y] be a (simple) variable transformation. Then
for any A ∈ IF=,

(A[x 7→ y])T = AT [x 7→ y].

(2) For any formula with constants A ∈ IF=(D), for any D-transformation
[x 7→ a], ([a/x]A)T = [a/x](AT ).

Proof (1) Easy, by induction on |A|. We consider only the case A = ∀zB.
If z 6= x, we have

(A[x 7→ y])T = (∀z(B[x 7→ y]))T = �∀z(B[x 7→ y])T

= �∀z(BT [x 7→ y]) (by the induction hypothesis)
= (�∀zBT )[x 7→ y] = AT [x 7→ y].

If z = x, we have

(A[x 7→ y])T = (∀y(B[x 7→ y]))T = �∀y(B[x 7→ y])T

= �∀y(BT [x 7→ y]) (by the induction hypothesis)
= (�∀xBT )[x 7→ y] = AT [x 7→ y].

(2) An exercise. �

Lemma 2.11.4 If A ⊜ B for A,B ∈ IF=, then AT ⊜ BT .

Proof We use Proposition 2.3.17. Consider the equivalence relation

A ∼ B := (AT ⊜ BT )

on IF=. It is sufficient to show that ∼ satisfies the conditions (1)–(3) from
2.3.14.

We check only (1) for Q = ∀:

(∀xA)T ⊜ (∀y(A[x 7→ y]))T .
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In fact, by 2.11.1 and 2.11.3

(∀y(A[x 7→ y]))T = �∀y(A[x 7→ y])T = �∀y(AT [x 7→ y]),

which is congruent to (∀xA)T = �∀xAT by 2.3.14.
The remaining (routine) part of the proof is left to the reader. �

Lemma 2.11.5 Let S = [B(x,y)/P (x)] be an IF (=)-substitution, and consider
the MF (=)-substitution

ST := [BT (x,y)/P (x)].

Then for any A ∈ IF (=)

(∗) QS4(=) ⊢ (SA)T ≡ STAT .

Proof By induction on A.

• If A = P (z), then (SA)T ⊜ BT (z,y), and

STAT ⊜ ST (�P (z)) ⊜ �BT (z,y),

which is equivalent to BT (z,y) by Lemma 2.11.2.

• If A is atomic, A 6= P (z), the claim is trivial.

• If A = ∀zC is clean and also BV (A) ∩ FV (S) = ∅,32 then

(SA)T ⊜ (∀zSC)T ⊜ �∀z(SC)T ,

STAT ⊜ ST (�∀zCT ) ⊜ �∀zSTCT .

But

QS4(=) ⊢ (SC)T ≡ STCT

— by the induction hypothesis, and hence

QS4(=) ⊢ �∀z(SC)T ≡ �∀zSTCT

— by replacement. So (∗) holds.

• If A = ∃zC, then

(SA)T ⊜ (∃zSC))T ⊜ ∃z(SC)T ,
STAT ⊜ ST (∃zCT ) ⊜ ∃zSTCT .

Now again we have QS4(=) ⊢ (SA)T ≡ STAT by the induction hypothesis
and replacement.

32Otherwise we can consider a congruent formula with this property.
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• If A = C ∨D, then

(SA)T ⊜ (SC ∨ SD)T ⊜ (SC)T ∨ (SD)T ,
STAT ⊜ ST (CT ∨DT ) ⊜ STCT ∨ STDT .

By the induction hypothesis QS4 ⊢ (SC)T ≡ STCT , (SD)T ≡ STDT , so
we can apply a replacement.

The case A = C ∧D is almost the same, and we skip it.

• If A = C ⊃ D, then

(SA)T ⊜ (SC ⊃ SD)T ⊜ �((SC)T ⊃ (SD)T ),
STAT ⊜ ST (�(CT ⊃ DT )) ⊜ �(STCT ⊃ STDT ).

In this case we can also use QS4-theorems

(SC)T ≡ STCT , (SD)T ≡ STDT

and replacement.

�

Lemma 2.11.6 (Sub(Γ))T ⊆ QS4(=) + Sub(ΓT ) for any Γ ⊆ IF (=).

Proof By Lemma 2.11.5 we have (SA)T ∈ QS4(=) + STAT for any simple
substitution S. Now recall that every substitution is reducible to simple ones.

�

Lemma 2.11.7 For a list of variables x and an IF (=)-formula A(x),

QS4(=) ⊢ �∀xAT ≡ (∀xA)T .

Proof By induction on the length of x. The base: QS4 ⊢ AT ≡ �AT (2.11.2).
For the induction step, assume �∀xAT ≡ (∀xA)T . Then in QS4 we obtain:

�∀y∀xAT ≡ �∀y�∀xAT (Lemma 2.6.202)≡ �∀y(∀xA)T (by assumption and
replacement) ≡ (∀y∀xA)T . �

Proposition 2.11.8 For any m.p.l.(=) L containing QS4 the set

TL := {A ∈ IF (=) | AT ∈ L}

is an s.p.l. (=).

Proof We check that TL satisfies the conditions (s1)–(s5). By Proposition
1.5.2, AT ∈ QS4 for every propositional intuitionistic axiom A. The same holds
for predicate axioms and for the axioms of equality, as one can easily see. It is
also clear that TL satisfies (s3) from Section 1.2. Corollary 2.11.6 shows that
TL is closed under IF (=)- substitutions. �
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Definition 2.11.9 The above defined s.p.l.(=) TL is called the superintuition-
istic fragment of the m.p.l (=)L; an m.p.l.(=) L is called a modal counterpart
of the s.p.l.(=) TL, cf. Definition 1.5.4.

Lemma 2.11.10 For any A ∈ IF (=),

QH(=) ⊢ A⇒ QS4(=) ⊢ AT .

Proof By induction on the length of the proof of A. An alternative proof
makes use of completeness, see below. �

Lemma 2.11.11 Let L = QH(=) +Γ be an s.p.l.(=). Then for any A ∈ IF (=),

L ⊢ A⇒ QS4(=) + ΓT ⊢ AT .

Proof Suppose L ⊢ A. Then by Theorem 2.8.2, Sub(Γ) ⊢QH(=) A, i.e.
there exists formulas A1, . . . , An ∈ Γ and substitutions S1, . . . , Sn such that

QH(=) ⊢
n∧

i=1

∀SiAi ⊃ A. Then by Lemma 2.11.10,

QS4(=) ⊢

(
n∧

i=1

∀SiAi • ⊃ A

)T (
= �

(
n∧

i=1

(∀SiAi)
T

• ⊃ AT

))
.

Hence

QS4(=) ⊢
n∧

i=1

(∀SiAi)
T

• ⊃ AT .

By definition and Lemma 2.11.5, QS4(=) ⊢ (∀SiAi)
T ≡ �∀ST

i A
T
i . Therefore

�Sub(Γ) ⊢QS4(=) AT , i.e. QS4(=) + ΓT ⊢ AT by Theorem 2.8.3. �

As we shall see (cf. Proposition 2.16.17), in many cases the converse of 2.11.11
also holds, i.e.

QH(=) + Γ = T(QS4(=) + ΓT ),

or
QH + Γ(=) ⊢ A iff QS4(=) + Γ ⊢ AT . (∗)

In particular, it is well known that

TQS4(=) = QH(=)

[Schütte, 1968], [Rasiowa and Sikorski, 1963].
Let us make another simple observation.

Lemma 2.11.12 If an s.p.l.(=) L = QH(=) + Γ has modal counterparts, then

QS4(=) + ΓT is the smallest modal counterpart of L.

Proof Suppose L = TΛ. Then obviously, QS4(=) + ΓT ⊆ Λ. By Lemma
2.11.11, L ⊢ A only if QS4(=) + ΓT ⊢ A. On the other hand, if L 6⊢A, then
Λ 6⊢AT , and thus QS4(=) + ΓT 6⊢AT . Therefore QS4(=) + ΓT is a modal coun-
terpart of L. �
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Remark 2.11.13 The paper [Pankratyev, 1989] states that every s.p.l. has
modal counterparts. However the proof in this paper requires some verification,
which we postpone until Volume 2.

We do not know if there exist the greatest modal counterparts in the predi-
cate case, and Theorem 1.5.6 does not have a direct analogue:

Theorem 2.11.14 (1) [Pankratyev, 1989] QGrz is a modal counterpart of
QH.

(2) [Naumov, 1991] There exists a proper extension of QGrz which is also a
modal counterpart of QH.

These matters will also be discussed in Volume 2.

2.12 The Glivenko theorem

Proposition 2.12.1 (Predicate version of the Glivenko theorem) For
any intuitionistic predicate formula A

QCL ⊢ ¬A iff QH +KF ⊢ ¬A.

Proof ‘Only if’ is trivial, so let us prove ‘if’. Suppose QCL ⊢ ¬A. Then by
the deduction theorem 2.8.2

QH ⊢
∧

s

∀(As ∨ ¬As) ⊃ ¬A

for some formulas As. Hence by Lemma 1.1.3(6),(2), we have

(1) QH ⊢
∧

s

¬¬∀(As ∨ ¬As) ⊃ ¬A.

By Lemma 2.6.20(2), for any formula B

(2) QH +KF ⊢ ∀¬¬B ⊃ ¬¬∀B.

By Corollary 1.1.10 and Generalization, QH ⊢ ∀¬¬(As ∨ ¬As), so by applying
(2) and ∧-introduction, we obtain:

QH +KF ⊢
∧

s

¬¬∀(As ∨ ¬As).

Hence by (1), QH +KF ⊢ ¬A. �

Corollary 2.12.2 (1) QCL ⊢ A iff QH +KF ⊢ ¬¬A.

(2) For any ¬ ∧ ∀-formula33 A

QCL ⊢ A iff QH +KF ⊢ A.

33I.e., a formula built from atoms using only ¬, ∧, ∀.
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Proof

(1) Trivial, since QCL ⊢ A ⊃ ¬¬A.

(2) In this case by induction on the length of A it follows that QH + KF ⊢
¬¬A.

�

We say that an intermediate predicate logic L satisfies the Glivenko property if
for any formula A,

L ⊢ ¬A ⇐⇒ QCL ⊢ ¬A

and that L has the classical ¬ ∧ ∀- fragment if for any ¬ ∧ ∀-formula A,

L ⊢ A ⇐⇒ QCL ⊢ A.

Theorem 2.12.3 The following conditions are equivalent (for a superintuition-
istic predicate logic L):

(1) L satisfies the Glivenko property;

(2) L has the classical ¬ ∧ ∀-fragment;

(3) QH +KF ⊆ L ⊆ QCL.

So QH +KF is the smallest intermediate predicate logic with the Glivenko
property (or with the classical ¬ ∧ ∀-fragment).

Proof By Lemmas 2.6.20(2), 1.1.2(7)

QH+KF = QH+∀x¬¬P (x) ⊃ ¬¬∀xP (x) = QH+¬(∀x¬¬P (x)∧¬∀xP (x)).

Thus each of (1), (2) implies QH +KF ⊆ L.

(1) also implies L ⊆ QCL. In fact, suppose L ⊢ A. Since QH ⊢ A ⊃ ¬¬A,
it follows that L ⊢ ¬¬A, hence QCL ⊢ ¬¬A, by the Glivenko property. But
QCL ⊢ ¬¬A ⊃ A, so QCL ⊢ A.

Finally, (2) implies L ⊆ QCL as well. In fact, assume (2) and suppose
A ∈ (L − QCL) and QCL ⊢ A ≡ B, where B is a ¬ ∧ ∀-formula; then QCL ⊢
¬¬(A ≡ B), whence QH+KF ⊢ ¬¬(A ≡ B), by Proposition 2.12.1. As we have
proved, L ⊢ KF . So we obtain L ⊢ ¬¬(A ≡ B), whence L ⊢ ¬¬A ≡ ¬¬B, by
Lemma 1.1.3. Since A ∈ L, we also have ¬¬A ∈ L, and thus ¬¬B ∈ (L−QCL),
which contradicts (2). �

The same result holds for the logic with equality QH= +KF .
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2.13 ∆-operation

Definition 2.13.1 For a predicate formula A put δA := p∨(p ⊃ A), where p is
a proposition letter that does not occur in A. For a superintuitionistic predicate
logic L put ∆L := QH + {δA | A ∈ L} and also ∆0L := L, ∆n+1L := ∆∆nL
by induction.

Lemma 2.13.2 The following formulas are theorems of QH:

(1) A ⊃ δA

(2) δ(A ⊃ B) ⊃• δA ⊃ δB,

(3) δ∀A ⊃ ∀δA.

Proof (1) A ⊢QH p ⊃ A and p ⊃ A ⊢QH δA; hence A ⊢QH δA. Then apply
the deduction theorem.

(2) First note that by (Ax2),

p ⊃ (A ⊃ B), p ⊃ A ⊢QH p ⊃ B.

Hence by ∨-introduction

p ∨ (p ⊃ (A ⊃ B)), p ∨ (p ⊃ A) ⊢QH p ∨ (p ⊃ B).

Now (2) follows by the deduction theorem.
(3) We have QH ⊢ ∀A ⊃ A by 2.6.15. Hence QH ⊢ δ∀A ⊃ δA by (1),(2),

and eventually QH ⊢ δ∀A ⊃ ∀δA by the Bernays rule. �

So ∆L can be axiomatised as follows.

Lemma 2.13.3 ∆L = QH + {δA | A ∈ L}, where L denotes the set of all
sentences in L.

Proof Let ∆L := QH+{δA | A ∈ L}; then clearly ∆L ⊆ ∆L. The other way
round, if A ∈ L, then ∀A ∈ L, so δ∀A ∈ ∆L. By Lemma 2.13.2, δ∀A implies
∀δA; so δA ∈ ∆L. Therefore ∆L ⊆ ∆L. �

In [Komori, 1983] ∆L was defined as QH + {δ′A | A ∈ L}, where δ′A :=
((p ⊃ A) ⊃ p) ⊃ p. As in the propositional case, both definitions are equivalent:

Lemma 2.13.4 QH + δA = QH + δ′A for any formula A.

Proof Quite similar to 1.16.2 using the deduction theorem. �

Lemma 2.13.5 (1) ∆L ⊆ L.

(2) L1 ⊆ L2 ⇐⇒ ∆L1 ⊆ ∆L2.

(3) ∆(QH + ⊥) = QCL.
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(4) ∆L ⊂ QCL for every consistent s.p.l. L.

Proof (1) Since QH ⊢ A ⊃ δA for any A.
(2) ‘=⇒’ is trivial. ‘⇐=’ will be proved in Chapter 6 (Proposition 6.8.5)

similarly to 1.16.7 for the propositional case.
(3) ∆(QH + ⊥) ⊆ QCL, since QCL ⊢ δA for every A. The other way

round, QCL ⊆ ∆(QH+⊥), since QCL = QH+EM and EM = p∨¬p is just
δ⊥ = p ∨ (p ⊃ ⊥).

(4) follows from (3) and ‘⇐=’ in (2). �

The logics
QHP+

n := ∆n(QH + ⊥) = ∆n−1(QCL)

were first introduced in [Komori, 1983] (where they were denoted by ∆k(W ),
for W := QH + ⊥).

Let us now turn to a finite axiomatisation of QHP+
n presented in [Yokota,

1989].
First we generalise δ-operation as follows [Yokota, 1989].

Definition 2.13.6 Let

δk,PA := ∀y(P (y) ∨ (P (y) ⊃ A)),

where P ∈ PLk, y is a distinct list of variables, r(y) ∩ FV (A) = ∅. If P does
not occur in A, we use the notation δkA rather than δk,PA

34 Also put

δk1...kn
A := δk1 . . . δkn

A, δn
kA := δk . . . δk︸ ︷︷ ︸

n

A35

(in particular, δ0kA = A). For a set Θ of formulas and γ = δk, δ
n
k etc. put

γΘ := {γA | A ∈ Θ}.

We also introduce

δn
∞Θ :=

⋃
k∈ω

δn
k Θ,

δn
∗ Θ := δ1∞ . . . δ1∞︸ ︷︷ ︸

n

Θ =
⋃

k1,...,kn∈ω

δk1...kn
Θ

for n ∈ ω.36

Obviously,
δn
∞Θ ⊆ δn

∗ Θ.

Lemma 2.13.7 (1) QH + δA ⊢ δkA.

34Cf. Definitions 1.2.1 and 1.2.4 in [Yokota, 1989].
35The latter notation is somewhat ambiguous as it means δk,Pn

. . . δk,P1
A for different

P1, . . . , Pn that do not occur in A.
36In [Yokota, 1989] the set δ∗n{⊥} was denoted by P ∗

n .
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(2) δkL ⊆ ∆L.

(3) δk1...kn
L ⊆ ∆nL.

Proof
(1) δk,PA = ∀y [P (y)/p] δA, so we can apply substitution and generalisation.

(2) Follows from (1).
(3) Follows from (2) by induction. �

The next lemma shows that δ-type operators behave as specific �-modalities.

Lemma 2.13.8 The following are theorems of QH:

(1) A ⊃ ©A;

(2) ©(A ⊃ B) ⊃• ©A ⊃ ©B,

(3) ©

(
n∧

i=1

Ai

)
≡

n∧
i=1

©Ai;

(4) ©∀A ⊃ ∀© A;

where © = δk,P or δk1...kn
.

Proof
(1), (2). For © = δk,P this follows from 2.13.2 (1), (2) by substitution [P (y)/p]
and generalisation. For © = δk1...kn

apply induction.
(4) Similar to 2.13.2 (3). QH ⊢ ∀A ⊃ A implies QH ⊢ ©∀A ⊃ ©A by (1),

(2); hence QH ⊢ ©∀A ⊃ ∀© A by the Bernays rule.
(3) We may suppose n = 2 and use induction for the general case. So let us

show
QH ⊢ ©(A ∧B) ≡ ©A ∧©B.

Since QH ⊢ A ∧B ⊃ A, by (1), (2) and (MP) we obtain

QH ⊢ ©(A ∧B) ⊃ ©A.

Similarly
QH ⊢ ©(A ∧B) ⊃ ©B,

and thus
QH ⊢ ©(A ∧B) ⊃ ©A ∧©B.

For the converse note that

A ⊃ (B ⊃ A ∧B)

by (Ax5), hence
QH ⊢ ©A ⊃ ©(B ⊃ A ∧B)

by (1), (2) and next

QH ⊢ ©A ⊃• ©B ⊃ ©(A ∧B)
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again by (1), (2) and the transitivity of ⊃. In QH the latter formula is equivalent
to

©A ∧©B ⊃ ©(A ∧B).

�

Proposition 2.13.9 QH ⊢ δn
kA ⊃ δm

k A for n ≤ m.

Proof Readily follows from 2.13.8(1), since δm
k A = δm−n

k δn
kA (or more pre-

cisely, δk,Pm
. . . δk,P1A = δk,Pm

. . . δk,Pn+1(δk,Pn
. . . δk,P1A)). �

Note that δ0,pA = δA and APn = δn
0⊥, cf. section 1.16. We also have

AP+
n = δn

1⊥,

cf. section 2.6.

Lemma 2.13.10 (1) QH ⊢ AP+
n ⊃ δn

1A, APn ⊃ δn
0A for any formula A.

(2) QH+ δn
1 Θ ⊆ QH+AP+

n and QH+ δn
0 Θ ⊆ QH+APn for any theory Θ.

Proof
(1) By 2.13.8 (2), since QH ⊢ ⊥ ⊃ A.
(2) Follows from (1). �

Lemma 2.13.11 QH + δk1...kn
A ⊢ δl1...lnA whenever l1 ≤ k1, . . . , ln ≤ kn.

Proof It is sufficient to show that QH + δk,PA ⊢ δl,P ′A for l ≤ k, which is
proved by applying substitution and elimination of dummy quantifiers. �

The same argument actually proves a stronger claim:

Proposition 2.13.12 (1) δk,PA ≤sub
QH δl,P ′A for l ≤ k.

(2) δk1...kn
A ≤sub

QH δl1...lnA for l1 ≤ k1, . . . , ln ≤ kn.

(3) δn
∞Θ ∼sub

QH δn
∗ Θ.

Proof (1) In fact,

[P ′(y)/P (yz)]δk,PA = ∀yz(P ′(y) ∨ (P ′(y) ⊃ A)),

which is equivalent to δl,P ′A.
(2) follows by induction. Actually we shall prove that a strict substitution

instance of δk1 . . . δkn
A implies δl1 . . . δlnA. We shall use the notation ≤sub

QH in
this stronger sense.

The base is (1); note the corresponding substitution is strict. For the step,
suppose that QH ⊢ SB ⊃ C for a strict substitution S and

B = δk2 . . . δkn
A, C = δl2 . . . δlnA.
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Then by Lemma 2.13.8 QH ⊢ δl1SB ⊃ δl1C. By (1) δk1,PSB ≤sub
QH δl1,P ′SB.

Note that S does not affect P , since P does not occur in B. Since S is strict, it
commutes with quantifiers, so it follows that δk1,PSB ⊜ Sδk1,PB. Thus

δk1B ≤sub
QH δl1SB ≤QH δl1C.

Hence δk1B ≤sub
QH δl1C as required.

(3) On the one hand, δn
∗ Θ ⊆ δn

∞Θ. On the other hand, by (2)

δn
kA ≤sub

QH δl1...lnA

for k ≥ max(l1, . . . , ln); thus δn
∞Θ ≤sub

QH δn
∗ Θ. �

Lemma 2.13.13 For an s.p.l(=) L and sets of formulas Θ1, Θ2

(1) If L+ Θ1 ⊆ L+ Θ2, then

(a) L+ δn
k Θ1 ⊆ L+ δn

k Θ2 provided Θ2 is ∀-perfect in L;

(b) L+ δm
k (Θ∀

1) ⊆ L+ δn
k (Θ∀

2).

(2) If L+ Θ1 = L+ Θ2, then

(a) L+ δn
k Θ1 = L+ δn

k Θ2 provided Θ1,Θ2 are ∀-perfect in L;

(b) L+ δn
k (Θ∀

1) = L+ δn
k (Θ∀

2).

Proof

(1) (a) If A ∈ Θ1 ⊆ L + Θ1 ⊆ L + Θ2, then by 2.9.15(1) Sub(Θ2) ⊢L A, so
L ⊢ B1 ∧ . . . ∧ Bm ⊃ A for some B1, . . . , Bm ∈ Sub(Θ2). Then by
2.13.8,

L ⊢ δn
k (

m∧

i=1

Bi) ⊃ δn
kA,

and thus

L ⊢ (

k∧

i=1

δn
kBi) ⊃ δn

kA.

Since δn
kBi ∈ Sub(δn

k Θ2)37, it follows that L+ δn
k Θ2 ⊢ δn

kA.

Therefore δn
k Θ1 ⊆ L+ δn

k Θ2.

(b) Readily follows from (a), since Θ∀ is ∀-perfect in QH and QH+Θ =
QH + Θ∀.

(2) Follows from (1).

�

37In more detail, if Bi = SC for a substitution S, then δn
k

Bi ⊜ Sδn
k

C, since δn
k

does not
use quantifiers over the parameters of S.
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Lemma 2.13.14 38 If a set Θ is ∀-perfect in an s.p.l.(=) L, then δ1∞Θ is also
∀-perfect in L.

Proof For an arbitrary δkA ∈ δ1∞Θ, with A ∈ Θ, let us check the property
2.9.9 (∀-p−). We have

(δkA)m(z) = ∀z∀x(P (x, z) ∨ (P (x, z) ⊃ Am(z)))),

where xz is a distinct list of new variables, |z| = m, |x| = k, P does not occur
in Am(z). This formula is clearly QH-equivalent to δk+mA

m(z).
Since Θ is ∀-perfect and L + Θ ⊢ ∀zAm(z), there exists B ∈ Sub(Θ) such

that
L ⊢ B ⊃ ∀zAm(z),

and thus
L ⊢ B ⊃ Am(z).

We may also assume that r(xz) ∩ FV (B) = ∅. Hence

L ⊢ δk+mB ⊃ δk+mA
m(z),

by the monotonicity of δk+m and

δk+mB = ∀z∀x(P (x, z) ∨ (P (x, z) ⊃ B)) ∈ Sub(δk+mΘ),

as we can choose P that does not occur in Am(z) and in B.

L ⊢ δk+mB ⊃ (δkA)m(z),

therefore (∀-p−) holds for δkA. �

Proposition 2.13.15 If Θ is ∀-perfect in L, then δn
∞Θ and δn

∗ Θ are ∀-perfect
in L, for all n ≥ 0.

Proof For δn
∗ Θ = δ1∞ . . . δ1∞︸ ︷︷ ︸

n

Θ proceed by induction on n. And for δn
∞Θ use

the sub-equivalence: δn
∞Θ ∼sub

QH δn
∗ Θ.

Alternatively, for δn
∞Θ one can apply a direct argument generalising the

proof of Lemma 2.13.14. In fact,

L ⊢ B ⊃ ∀zAm(z)

implies
L ⊢ B ⊃ Am(z)

and next
L ⊢ δn

k+mB ⊃ δn
k+mA

m(z),

with
QH ⊢ δn

k+mA
m(z) ≡ (δn

kA)m(z);

38Cf. [Yokota, 1989, Proposition 1.4.6].
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again we can present δn
k+mB, (δn

kA)m(z) as

δn
k+mB = ∀z∀x(Pn(x, z)∨(Pn(x, z) ⊃ ∀z∀x(Pn−1(x, z)∨(Pn−1(x, z) ⊃ . . . B)))),

(δn
kA)m(z) = ∀z∀x(Pn(x, z)∨Pn(x, z) ⊃ ∀x(Pn−1(x, z)∨(Pn−1(x, z) ⊃ . . . Am(z)))));

with the same additional (k + m)-ary predicate letters in both formulas. Since
δn
k+mB ∈ Sub(δnk+mΘ), (∀-p−) holds for δn

∞Θ. �

Lemma 2.13.16 If L = QH + Θ and Θ is ∀-perfect in QH, then

∆L = QH + δΘ = QH + δ1∞Θ.

Proof By 2.13.13(2a)

∆L = QH + δL = QH + δΘ,

since QH + L = L = QH + Θ and both Θ and L are ∀-perfect in QH. Thus

∆L = QH + δ0Θ ⊆ QH + δ1∞Θ.

Since by 2.13.7 δ1∞Θ ⊆ ∆L, it follows that ∆L = QH + δ1∞Θ. �

Proposition 2.13.17 (1) If L = QH + Θ and Θ is ∀-perfect in QH, then
∆nL = QH + δn

∗ Θ. for any n ≥ 0.

(2) If L = QH + Θ, then

∆nL = QH + δn
∗ (Θ∀).

Proof (1) By induction on n. If n = 0, then ∆L = L, δn
∗ Θ = Θ, so the

statement is trivial. For the induction step suppose

∆nL = QH + δn
∗ Θ.

Then by 2.13.16 and 2.13.15,

∆n+1L = QH + δ1∞δ
n
∗ Θ = QH + δn+1

∗ Θ.

(2) Follows from (1) and the observation that QH + Θ = QH + Θ∀ and Θ∀

is ∀-perfect in QH. �

In particular, for Θ = {⊥} we have

Corollary 2.13.18 39 QHP+
n = QH + δn

∗ {⊥}.

Now let us show that every δn
kA for k > 1 (and hence every δk1,...,kn

), is
deducible from δn

1A.

Lemma 2.13.19 QH + δn
kA ⊢ (δkA ⊃ A) ⊃ A for any k, n ≥ 0.

39Cf. [Yokota, 1989, Theorem 1.4.7].
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Proof By 2.13.8(1),(2),

B ⊃ A ⊢QH δkB ⊃ δkA,

hence

(1) δkA ⊃ A, B ⊃ A, δkB ⊢QH A.

On the other hand, by the deduction theorem

(2) δkA ⊃ A, B ⊃• (δkA ⊃ A) ⊃ A ⊢QH B ⊃ A.

From (1), (2) we obtain40

B ⊃• (δkA ⊃ A) ⊃ A, δkA ⊃ A, δkB ⊢QH A.

Hence (again by the deduction theorem)

(3) B ⊃• (δkA ⊃ A) ⊃ A ⊢QH δkB ⊃• (δkA ⊃ A) ⊃ A.

Note that δkA is δk,PA for some P that does not occur in A, but (3) still holds
if P occurs in B.

Now by induction it follows that

QH ⊢ δn
kA ⊃• (δkA ⊃ A) ⊃ A

for any n. In fact, for n = 0 this is a substitution instance of an axiom, and for
the induction step we can apply (3). �

Lemma 2.13.20 QH + δm
1 δjA ⊢ δm

1 δj+1A for j > 0, m ≥ 0.

Proof Put

L := QH + δm
1 δj,PA, B := ∀z(Q(y, z) ∨ (Q(y, z) ⊃ A)),

where |y| = j, z 6∈ r(y), r(yz)∩FV (A) = ∅ and P,Q do not occur in A. Then

B = [Q(y, z)/S(z)] δ1,SA,

δj,PA = ∀y(P (y) ∨ (P (y) ⊃ A)), δj+1,QA = ∀yB.

Hence by substitution [B/P (y)]

(1) L ⊢ δm
1 ∀y(B ∨ (B ⊃ A)).

By Lemma 2.13.19 (for k = 1, n = m+ 1) we have

(2) QH + δm+1
1 A ⊢ (δ1,SA ⊃ A) ⊃ A.

40Cf. Lemma 1.2.3(4) from [Yokota, 1989].
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By 2.13.11, L ⊢ δm+1
1 A, and thus

(3) L ⊢ (δ1,SA ⊃ A) ⊃ A,

Hence by substitution [Q(y, z)/S(z)]

(4) L ⊢ (B ⊃ A) ⊃ A.

Since z 6∈ FV (A), we also obtain QH ⊢ A ⊃ B; thus

(5) L ⊢ (B ⊃ A) ⊃ B,

which implies

(6) L ⊢ B ∨ (B ⊃ A) ⊃ B,

and therefore

(7) L ⊢ ∀y (B ∨ (B ⊃ A)) ⊃ ∀yB,

by the monotonicity of ∀y. Eventually from (1), (7) and 2.13.8(1),(2) we obtain

L ⊢ δm
1 ∀yB = δm

1 δj+1A

as required. �

Lemma 2.13.21 QH + δm+1
1 A ⊢ δm

1 δkA for k ≥ 1, m ≥ 0.

Proof By induction on k. The case k = 1 is trivial. If the statement holds
for k, we obtain it for k + 1:

QH + δm
1 δk+1A ⊆ QH + δm

1 δkA ⊆ QH + δm
1 A

by Lemma 2.13.20 and the induction hypothesis. �

Proposition 2.13.2241 For any A ∈ IF (=)

(1) QH + δn
1A ⊢ δn

kA for k, n ≥ 0;

(2) QH + δn
1A ⊢ δk1...kn

A for k1, . . . , kn ≥ 0.

Proof (1) implies (2), since QH + δn
kA ⊢ δk1...kn

A for k ≥ k1, . . . , kn, by
2.13.11. The case k = 0 in (1) also follows from 2.13.11, and the case k = 1 is
trivial. So it remains to prove (1) for k > 1.

By induction on n−m let us show

(3) QH + δn
1A ⊢ δm

1 δ
n−m
k A

41Theorem 1.3.5 from [Yokota, 1989] is the particular case of this proposition for A = ⊥.
Our proof is similar to that paper.
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for 0 ≤ m ≤ n. If m = n, this is trivial. For the step, suppose (3) for m. By
2.13.21 we have

QH + δm
1 δ

n−m
k A ⊢ δm−1

1 δkδ
n−m
k A = δm−1

1 δn−m+1
k A.

So by the induction hypothesis we obtain

QH + δm−1
1 δn−m+1

k A ⊆ QH + δm
1 δ

n−m
k A ⊆ QH + δn

1A,

i.e. (3) holds for m− 1.
Finally note that (1) is (3) for m = 0. �

From 2.13.22 and 2.13.11 it follows that

QH + δn
1A = QH + δn

kA

for any k > 1. We also have

Lemma 2.13.23 QH + δ1A = QH + δ0A.

Proof In fact

QH + δ0A = QH + p ∨ (p ⊃ A) ⊢ ∀y(P (y) ∨ (P (y) ⊃ A)) = δ1A.

by substitution [P (y)/p] and generalisation. We already know that QH+δ1A ⊢
δ0A. �

However it may happen that QH + δn
0A ⊂ QH + δn

1A for some A and
n > 1. E.g. QH + APn 6⊢ AP+

n for n > 1 (cf. [Ono, 1983]); recall that
APn = δn

0⊥, AP
+
n = δn

1⊥.
Now we can strengthen 2.13.17:

Proposition 2.13.24 (1) If L = QH + Θ and Θ is ∀-perfect in QH, then

∆nL = QH + δn
1 Θ.

(2) If L = QH + Θ, then

∆nL = QH + δn
1 (Θ∀).

Proof Follows from 2.13.17 and 2.13.22. �

By applying 2.13.24 to Θ = {⊥} we obtain

Theorem 2.13.25 QHP+
n = QH +AP+

n for n > 0.

Now let us show perfection for finite axiomatisations of QHP+
n and obtain

an alternative proof of Theorem 2.13.25. This proof is not so straightforward,
but does not use the infinite axiomatisation described in 2.13.18. However we
still need 2.13.22 for this proof.
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Lemma 2.13.26 H ⊢ (C ⊃ q) ⊃ C, where C =
n∧

i=1

(pi ∨ (pi ⊃ q)), n ≥ 0.

Proof By induction on n. The case n = 0 is trivial.
Consider the inductive step from n to n + 1. By the deduction theorem it

suffices to prove
C ⊃ q ⊢H C,

for C =
n+1∧
i=1

(pi ∨ (pi ⊃ q)), which obviously follows from

(1) C ⊃ q ⊢H pi ⊃ q

for 1 ≤ i ≤ n+ 1. Put

B :=
∧

{pj ∨ (pj ⊃ q) | 1 ≤ j ≤ n+ 1, j 6= i}.

Then
H ⊢ C ≡ B ∧ (pi ∨ (pi ⊃ q)),

and thus
C ⊃ q, B, pi ⊢H q.

Hence by the deduction theorem,

(2) C ⊃ q, pi ⊢H B ⊃ q.

Together with the induction hypothesis

H ⊢H (B ⊃ q) ⊃ B,

(2) implies
C ⊃ q, pi ⊢H B,

and next
C ⊃ q, pi ⊢H q.

Hence (1) follows by the deduction theorem again. �

Lemma 2.13.27 Let L be a predicate superintuitionistic logic, Θ a set of for-
mulas, k ≥ 0.

(1) If Θ is ∧-perfect in L, then δkΘ is ∧-perfect in L.

(2) If Θ is ∀-perfect in L and L ⊇ δn
1 Θ for some n > 0, then δkΘ is ∀-perfect

in L.

(3) If Θ is ∧∀-perfect in L and L ⊇ δn
1 Θ for some n > 0, then δkΘ is ∧∀-

perfect in L.

Proof
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(1) Consider arbitrary formulas

Di := ∀y(Ai(y,x) ∨ (Ai(y,x) ⊃ Bi(x))) ∈ Sub(δkΘ)

for i = 1, . . . ,m, where y and x are disjoint lists of variables, |y| = k,

Bi(x) ∈ Sub(Θ), FV(Bi(x)) ⊆ r(x), FV(Ai(y,x)) ⊆ r(xy).

By ∧-perfection there exists B ∈ Sub(Θ) such that

L ⊢ B ⊃
∧

i

Bi(x);

we may assume that r(y) ∩ FV (B) = ∅. Put

C :=
∧

i

(Ai(y,x) ∨ (Ai(y,x) ⊃ B)).

By Lemma 2.13.26, QH ⊢ (C ⊃ B) ⊃ C, hence

L ⊢ C ∨ (C ⊃ B) ⊃
∧

i

(Ai(y,x) ∨ (Ai(y,x) ⊃ Bi(x))),

and so

L ⊢ ∀y(C ∨ (C ⊃ B)) ⊃
∧

i

∀y(Ai(y,x) ∨ (Ai(y,x) ⊃ Bi(x)))

by standard properties of quantifiers (Lemma 2.6.15). Since

∀y(C ∨ (C ⊃ B)) ∈ Sub(δkΘ), 42

we obtain the required property for
∧
i

Di.

(2) Suppose A ∈ Sub(Θ),

δkA = ∀y(P (y) ∨ (P (y) ⊃ A))

for |y| = k, where P does not occur in A,

(δkA)m(z) = ∀z∀y(Q(z,y) ∨ (Q(z,y) ⊃ Am(z))),

for |z| = m, r(y) ∩ r(z) = ∅, r(yz) ∩ FV (A) = ∅, Q ∈ PLk+m, where Q
does not occur in Am.

By ∀-perfection there is B ∈ Sub(Θ) such that L ⊢ B ⊃ ∀zAm(z); we may
assume that FV (B) ∩ r(yz) = ∅ and Q does not occur in B.43 Put

C := δk+m,QB = ∀z∀y(Q(z,y) ∨ (Q(z,y) ⊃ B)).

42In fact, if B ⊜ SB0 for B0 ∈ Θ, then ∀y(C ∨ (C ⊃ B)) ⊜ [C/P (y)]S(δk,P B0).
43If Q occurs in B, use another predicate letter in (δkA)m.
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Since L ⊢ B ⊃ Am(z), it follows that

L ⊢ C ⊃ (δkA)m(z). (3)

Since by the assumption (2) of the lemma δn
1B ∈ Sub(δn1Θ) ⊆ L, Proposi-

tion 2.13.22 implies L ⊢ δn
k+mB. Thus by Lemma 2.13.19, L ⊢ (C ⊃ B) ⊃

B. Also L ⊢ B ⊃ C by 2.13.8, hence

L ⊢ (C ⊃ B) ⊃ C, (4)

and so
L ⊢ C ∨ (C ⊃ B) ⊃ (δkA)m(z), (5)

by (3) and (4); eventually,

L ⊢ C′ ⊃ (δkA)m(z), (6)

where

C′ := ∀y(C ∨ (C ⊃ B)) ⊜ [C/R(x)] δk,RB, R ∈ PLk

(note that here ∀y is a dummy quantifier). Since C′ ∈ Sub(δkΘ), this
completes the proof.

(3) Follows from (1) and (2).

�

Similarly to 2.13.27(1) one can show

Proposition 2.13.28

(1) If Θ is ∧-perfect in L, then δ1∞Θ is ∧-perfect in L (and thus δn
∞Θ, δn

∗ Θ
are also ∧-perfect in L).

(2) If Θ is ∧∀-perfect in L, then δ1∞Θ is ∧∀-perfect in L (and δn
∞Θ, δn

∗ Θ as
well).

Lemma 2.13.27(2) allows us to prove 2.13.25 without applying 2.13.17; cf.
the proof of 2.13.16.

Since {⊥} is ∧∀-perfect in QH, we obtain

Corollary 2.13.29

(1) The sets {APn} and {AP+
n } are ∧-perfect in QH for n > 0.

(2) The sets {APn} and {AP+
n } are ∧∀-perfect in QH+AP+

r for all n, r > 0
(note that the case n ≥ r is trivial).

Remark 2.13.30 Moreover, these sets are arity-perfect in the sense of [Yokota,
1989].
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Proposition 2.13.31 QHP+
n = QH +AP+

r +APn for r ≥ n ≥ 0.

So APn and AP+
n are deductively equivalent in QHP+

r for a sufficiently
large r.

Proof By induction on n. Consider the induction step. We have

QHP+
n+1 = ∆(QHP+

n ) = QH + δ(QHP+
n ) ⊆ QH +AP+

r +APn+1,

by Lemma 2.13.13 (1a) applied to

L = QH +AP+
r , Θ1 = QHP+

n , Θ2 := {APn};

note that L + Θ1 = QHP+
n = L + Θ2 by the induction hypothesis, and Θ2 is

∀-perfect in L by Corollary 2.13.29 (2). �

Theorem 2.13.25 is clearly a particular case of this statement for n = r.
Therefore we obtain an alternative proof of Theorem 2.13.25 that does not use
2.13.18.

So we have

Corollary 2.13.32 QH +AP+
n = QH +AP+

r +APn for n < r.

Similarly we obtain

Proposition 2.13.33 If L = L0 + Θ, Θ is ∀-perfect in L0 and δr
1Θ ⊆ L0 for

some r > 0, then
L0 + ∆nL = L0 + δn

k Θ

and δn
k Θ is ∀-perfect in L0 for all k, n ≥ 0.

Proof By induction on n. The case n = 0 is trivial. Consider the induction
step from n to n+ 1. First note that by 2.13.8,

QH ⊢ δr
1A ⊃ δr

1δ
n
kA.

Hence δr
1δ

n
k Θ ⊆ L, and so δn+1

k Θ = δk(δn
k Θ) is ∀-perfect in L0 by the induction

hypothesis and Lemma 2.13.27.
Next, by the induction hypothesis and Lemma 2.13.13 (1a)

L0 + ∆n+1L = L0 + δ(∆nL) ⊆ L0 + δ(L0 + δn
k Θ) ⊆ L0 + δ(δn

k Θ) = L0 + δn+1
k Θ.

The converse inclusion

L0 + δn+1
k Θ ⊆ L0 + ∆n+1L

is trivial. �

Corollary 2.13.34 (1) ∆nL = L0 + δn
k Θ (in particular, ∆nL = L0 + δn

0 Θ),
whenever L0 ⊆ ∆nL.
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(2) If L0 = QHP+
r , L = L0 + Θ, Θ is ∀-perfect in L0, then

L0 + ∆nL = L0 + δn
k Θ.

Proof (1) Obvious.
(2) Recall that δr

1Θ ⊆ QHP+
r for any Θ by 2.13.10. �

Also note that δn
k Θ ⊆ ∆nL for any L and Θ ⊆ L and n ≥ 0, by Lemma

2.13.7.

Corollary 2.13.35 If L = L0 + Θ and δr
1Θ∀ ⊆ L0 for some r > 0, then

L0 + ∆nL = L0 + δn
k (Θ∀) for all k, n ≥ 0.

Proof Note that L0 + Θ = L0 + Θ∀ and Θ∀ is ∀-perfect (2.9.16). �

Actually we need only the case k = 0 of this statement, because the case
k = 1 (and thus, by 2.13.11, the case k > 0) readily follows from 2.13.24, without
any restriction on L0.

2.14 Adding equality

In this section we study correlation between a logic without equality L and
its minimal extension with equality L=. There exists an obvious translation
from formulas with equality to formulas without equality just replacing equality
with an ordinary predicate letter. In some cases specific equality axioms can
be reduced to finitely many formulas — then we obtain a reduction for the
corresponding decision problems.

Definition 2.14.1 For an N -m.p.l. L, let L= := QK=
N + L, and for an s.p.l.

L, let L= := QH= + L. L= is called the equality-expansion of L.
The other way round, for an m.p.l.= (s.p.l.=) L, we define the equality-free

fragment as L◦ := L ∩MFN (respectively, L ∩ IF ).

For any modal formula with equality A and Q ∈ PL2 that does not occur
in A, we define AQ as the formula obtained from A by replacing all occurrences
of ‘=’ with Q. For a set of N -modal formulas Γ put

ΓQ := {AQ | A ∈ Γ}, �∞Γ := {�αB | B ∈ Γ, α ∈ I∞N }.

Consider the following sets of formulas (for N ≥ 0)

EN := {∀x∀y(x = y ⊃ y = x), ∀x∀y∀z(x = y ∧ y = z ⊃ x = z), ∀x x = x}
∪ {∀x∀y(x = y ⊃ �i(x = y)) | 1 ≤ i ≤ N}

∪ {∀(
n∧

i=1

xi = yi ⊃• P
n
k (x1, . . . , xn) ≡ Pn

k (y1, . . . , yn)) | n, k ≥ 1, Pn
k 6= Q},

where all xj , yj are different.
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For a formula A, let MFN,A be the set of all N -modal formulas built from
predicate letters occurring in A:

EN,A := EN ∩MFN,A.

We shall omit N if it is clear from the context and use the notation �∞E ,
�∞EQ, MFA, EA, E

Q
A.

Lemma 2.14.2 If A ∈ Sub(EN ), then �∞EN ⊢QKN
∀A.

Proof The only nontrivial case is when

A = [B/P (x)] ∀(

n∧

i=1

xi = yi ⊃• P (x) ≡ P (y))

for P ∈ PLn, x = (x1, . . . , xn), y = (y1, . . . , yn).
Put

x ≡ y :=

n∧

i=1

xi = yi.

Then
∀A = ∀(x ≡ y ⊃• B ≡ [y/x]B).

We prove �∞EN ⊢QKN
∀A by induction on the complexity of B.

• If B is atomic and does not contain P , the claim is trivial.

• If B = P (z) for some list z (maybe not distinct), then [y/x]B = P (t),
where t = [y/x]z, i.e. every xi is replaced with yi, whenever it occurs in
z. Then obviously,

∀x(x = x) ⊢QKN
x ≡ y ⊃ z ≡ t. (1)

By Lemma 2.6.15 (xxv) we also have

∀(x ≡ y ⊃• P (x) ≡ P (y)) ⊢QKN
z ≡ t ⊃• P (z) ≡ P (t). (2)

Now (1) and (2) imply

�∞EN ⊢QKN
x ≡ y ⊃• P (z) ≡ P (t),

and it remains to apply generalisation.

• If B = B1 ⊛B2 for a propositional connective ⊛ and

�∞EN ⊢QKN
x ≡ y ⊃• Bi ≡ [y/x]Bi

by the induction hypothesis, then the claim follows by an argument in
classical propositional logic – note that the rule

A ≡ A′, B ≡ B′

A⊛B ≡ A′ ⊛B′
,

is admissible in the QKN -theory {x ≡ y} (with x, y considered as con-
stants) and apply the deduction theorem.
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• If B = �iC and

�∞EN ⊢QKN
x ≡ y ⊃• C ≡ [y/x]C,

we obtain by Lemma 2.7.11

�∞EN ⊢QKN
�i(x ≡ y) ⊃ �i(C ≡ [y/x]C)). (3)

Since
KN ⊢ �i(p ≡ q) ⊃• �ip ≡ �iq

(Lemma 1.1.2), it follows that

�∞EN ⊢QKN
�i(x ≡ y) ⊃• �iC ≡ �i[y/x]C. (4)

Now
EN ⊢QKN

xj = yj ⊃ �i(xj = yj).

implies
�∞EN ⊢QKN

x ≡ y ⊃ �i(x ≡ y). (5)

From (4) and (5) we have

�∞EN ⊢QKN
x ≡ y ⊃• �iC ≡ �i[y/x]C

and thus the claim holds for B.

• If B = ∀zC, we may assume z 6∈ xy (otherwise, after renaming z, B and
[y/x]B change to equivalent congruent formulas).

Suppose
�∞EN ⊢QKN

x ≡ y ⊃• C ≡ [y/x]C.

Then by ∀-introduction we deduce (in the same theory)

∀z(x ≡ y ⊃• C ≡ [y/x]C),

and hence
x ≡ y ⊃• ∀z(C ≡ [y/x]C) (6)

by Lemma 2.6.15(xi).

Finally
∀z(C ≡ [y/x]C) ⊃• ∀zC ≡ ∀z[y/x]C. (7)

by Lemma 2.6.15(xxvi).

So
∀(x ≡ y ⊃• ∀zC ≡ ∀z[y/x]C)

follows from (6) and (7) by transitivity and ∀-introduction.

• If B = ∃zC, we also have (6) by the induction hypothesis. Then, instead
of (7) we use

∀z(C ≡ [y/x]C) ⊃• ∃zC ≡ ∃z[y/x]C, (8)

which follows from 2.6.15(xxvi).
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�

Lemma 2.14.2 has an intuitionistic version:

Lemma 2.14.3 If A ∈ Sub(E0), then E0 ⊢QH A.

Proof Very similar to 2.14.2. Again we prove

E0 ⊢QH ∀(x ≡ y ⊃• B ≡ [y/x]B)

by induction. The reader can check that in all cases the argument is based only
on intuitionistic logic. �

Proposition 2.14.4 Let L be an N -m.p.l. Then for any N -modal formula A
with equality that does not contain Q

L= ⊢ A⇔ �∞EQ ⊢L AQ ⇔ �∞EQ
A ⊢L AQ.

If L is conically expressive, then

L= ⊢ A⇔ �∗EQ
A ⊢L A

Q.

Proof First note that EN is a set of axioms for L= above L (they are all L=-
theorems and the usual axioms follow from EN ). So by the deduction theorem
2.8.3,

L= ⊢ A⇔ �∞Sub(EN ) ⊢L A.

All formulas from �∞Sub(EN) are of the form �α∀B, where B ∈ Sub(EN),
so they are QKN -provable in �∞EN by 2.14.2, generalisation and �-introduc-
tion. Thus

L= ⊢ A⇔ �∞EN ⊢L A.

Replacing ‘=’ with Q does not affect the L-derivation (more precisely, the equiv-
alence Γ ⊢L A iff ΓQ ⊢L A

Q is checked by induction), so

L= ⊢ A⇔ �∞EQ
N ⊢L AQ, (9)

and thus
�∞EQ

A ⊢L A
Q ⇒ L= ⊢ A.

The other way round, suppose L= ⊢ A. Then �∞EQ
N ⊢L AQ. Let S be a

formula substitution replacing every atomic formula P (x) with ⊤ for any P 6= Q
that does not occur in A. We claim that

�∞EQ
N ⊢L B ⇒ �∞EQ

A ⊢L SB. (10)

In fact,
S(Q(x, y) ⊃• P (x) ≡ P (y)) = (x = y ⊃• ⊤ ≡ ⊤)

is obviously L-provable, so (10) holds for any B ∈ EQ
N − EQ

A.
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Then we can argue by induction, since S distributes over propositional con-
nectives and quantifiers. Eventually

�∞EQ
A ⊢L SA

Q(= AQ),

which completes the proof.
The observation about conical expressiveness follows from Lemma 2.8.6. �

Proposition 2.14.5 Let L be an s.p.l. Then for any A ∈ IF= without occur-
rences of Q

L= ⊢ A⇔ EQ
0 ⊢L A

Q ⇔ EQ
A ⊢L A

Q.

Proof Follows the same lines as 2.14.4. By 2.8.2,

L= ⊢ A⇔ Sub(E0) ⊢L A.

Hence by Lemma 2.14.3 and generalisation,

L= ⊢ A⇔ E0 ⊢L A,

which is equivalent to
EQ

0 ⊢L A
Q.

The implication
EQ

0 ⊢L AQ ⇒ EQ
A ⊢L AQ

is again proved by replacing redundant predicate letters with ⊤. �

In many cases the equality-expansion is conservative. To show this, for
logics without equality we define a weak analogue of equality – indiscernibility.
Namely, for P ∈ PLn and variables x, y we put

InP (x, y) := ∀z1 . . . ∀zn

n∧

j=1

([x/zj ]P (z1, . . . , zn) ≡ [y/zj]P (z1, . . . , zn)),

where of course, all zjs are different and x, y 6= zj . For a predicate formula A,
put

InA(x, y) :=
∧

{InP (x, y) | P occurs in A}.

Lemma 2.14.6 For P ∈ PLn

QH ⊢

n∧

i=1

InP (xi, yi) ⊃• P (x1, . . . , xn) ≡ P (y1, . . . , yn).

Proof Almost the same as for 2.6.16(iv).
We show by induction that

n∧

i=1

InP (xi, yi) ⊢QH [x1, . . . , xm/z1, . . . , zm]P (z) ≡ [y1, . . . , ym/z1, . . . , zm]P (z)
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for a list of new variables z = (z1, . . . , zn). For the induction step we again
consider

Am := [x1, . . . , xm/z1, . . . , zm]P (z),
Bm := [y1, . . . , ym/z1, . . . , zm]P (z).

By the induction hypothesis, ∀zm+1-introduction and 2.6.10(ii) we obtain

(1) [xm+1/zm+1]Am ≡ [xm+1/zm+1]Bm.

We also have

(2) [xm+1/zm+1]Bm ≡ [ym+1/zm+1]Bm.

In fact, Bm = P (y1, . . . , ym, zm+1, . . . , zn), so

InP (xm+1, ym+1) = ∀z
n∧

j=1

([xm+1/zj]P (z) ≡ [ym+1/zj]P (z))

⊢QH [y1, . . . , ym/z1, . . . , zm]
n∧

j=1

([xm+1/zj]P (z) ≡ [ym+1/zj]P (z))

by 2.6.10(xxv), and (2) is a conjunct in the latter formula. From (1), (2) by
transitivity it follows that

Am+1 = [xm+1/zm+1]Am ≡ [ym+1/zm+1]Bm+1 = Bm+1.

�

Lemma 2.14.7

(1) If L is a conically expressive N -m.p.l, then for any N -modal predicate
formula A that does not contain Q

[�∗InA(x, y)/Q(x, y)]�∗EQ
A ⊆ L.

(2) If L is an s.p.l., then for any A ∈ IF

[InA(x, y)/Q(x, y)]EQ
A ⊆ L.

Proof We have to prove the corresponding substitution instances of the ‘ax-
ioms’ from (�∗)EQ

A in L.

(1) The reflexivity of Q.
We have [x/zj]P (z) ≡ [x/zj ]P (z) by H, hence InP (x, x) by ∧- and ∀z-
introduction. Thus ∀xInA(x, x) in the intuitionistic case, ∀x�∗InA(x, x)
in the modal case — by ∧-, �∗- and ∀-introduction.

(2) The symmetry of Q.
By H we have

[x/zj]P (z) ≡ [y/zj]P (z) ⊢L [y/zj]P (z) ≡ [x/zj]P (z),
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hence InP (x, y) ⊢L InP (y, x) and next InA(x, y) ⊢L InA(y, x) by apply-
ing ∀zB ⊃ B, ∧- and ∀-introduction. Then L ⊢ InA(x, y) ⊃ InA(y, x) by
the deduction theorem. In the modal case this implies L ⊢ �∗InA(x, y) ⊃
�∗InA(x, y) by the monotonicity of �∗. So it remains to generalise over
x, y.

(3) The transitivity of Q.
Since ≡ is transitive in H, we have

[x/zj]P (z) ≡ [y/zj]P (z), [y/zj]P (z) ≡ [t/zj]P (z) ⊢L

[x/zj ]P (z) ≡ [t/zj]P (z),

which implies
InP (x, y), InP (y, t) ⊢L InP (x, t)

again by standard arguments with ∧ and ∀, and hence

InA(x, y), InA(y, t) ⊢L InA(x, t).

Since x, y, t are fixed in this proof, in the modal case we may apply Lemma
2.7.11 for �∗:

�∗InA(x, y),�∗InA(y, t) ⊢L �
∗InA(x, t).

Thus
L ⊢ ∀(�∗InA(x, y) ∧�∗InA(y, t) ⊃ �∗InA(x, t))

by the deduction theorem and ∀-introduction.

(4) ∀x∀y(Q(x, y) ⊃ �iQ(x, y)).
By 1.3.47L ⊢ �∗p ⊃ �i�

∗p, hence L ⊢ ∀x∀y(�∗InA(x, y) ⊃ �i�
∗InA(x, y))

by substitution and ∀-introduction.

(5) ∀

(
n∧

i=1

(�∗)InA(xi, yi) ⊃• P (x) ≡ P (y)

)

for P ∈ PLn ∩MFN,A, x = (x1, . . . , xn), y = (y1, . . . , yn).

By 2.14.6,

InA(x1, y1), . . . , InA(xn, yn) ⊢L P (x) ≡ P (y),

hence
�∗InA(x1, y1), , . . . ,�∗InA(xn, y) ⊢L P (x) ≡ P (y)

by the reflexivity of �∗. Now we can apply the deduction theorem and
∀-introduction.

�

Theorem 2.14.8 L= is a conservative extension of L, i.e. (L=)◦ = L for any
superintuitionistic predicate logic L and for any conically expressive m.p.l. L.
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Proof Let A be a formula without equality of the corresponding kind and
assume that Q does not occur in A. Then AQ = A. L= ⊢ A implies �∗EQ

A ⊢L A

in the modal case (by 2.14.4) and EQ
A ⊢L A in the intuitionistic case (by 2.14.5).

Hence L ⊢
∧
�∗EQ

A ⊃ A and respectively L ⊢
∧
EQ

A ⊃ A by the deduction
theorem.

By applying the substitution [�∗InA(x, y)/Q(x, y)] in the modal case, and
[InA(x, y)/Q(x, y)] in the intuitionistic case, we obtain

L ⊢
∧

[�∗InA(x, y)/Q(x, y)]�∗EQ
A • ⊃ A

or respectively,

L ⊢
∧

[InA(x, y)/Q(x, y)]EQ
A • ⊃ A.

Therefore L ⊢ A by Lemma 2.14.7. �

Problem 2.14.9 Does Theorem 2.14.8 hold for an arbitrary m.p.l. L?

Remark 2.14.10 T. Shimura and N.-Y. Suzuki obtained the following stronger
result for the superintuitionistic case. Fix a binary predicate letter P , and let

E•
P (x, y) := ∀z(P (x, z) ≡ P (y, z)).

Then for any L ∈ S, and for any Γ ⊆ IF= consisting of pure equality formulas
with only positive occurrences of ‘=’,

(L= + Γ)◦ = L+ [E•
p (x, y)/Q(x, y)]ΓQ

(cf. [Shimura and Suzuki, 1993, Theorem 3]).

Now recall a well-known definition from recursion theory [Rogers, 1987].

Definition 2.14.11 For sets of words (in a finite alphabet A) X,Y we say that
X is m-reducible to Y (notation X ≤m Y ) if there exists a recursive function
f : A∞ → A∞ such that X = f−1[Y ]; X is m-equivalent to Y (notation:
X ≡m Y ) if X ≤m Y and Y ≤m X.

Theorem 2.14.12 If L is an s.p.l. or a conically expressive m.p.l., then L ≡m

L=.

Proof L ≤m L=, since L= is conservative over L (2.14.8); the corresponding
function f sends every formula without equality to itself (and all other words
to ⊥, say).

L= ≤m L, since for a formula A without Q,

L= ⊢ A iff L ⊢
∧

(�∗)EQ
A • ⊃ AQ

by 2.14.4, 2.14.5 and 2.8.1. So the reducing function sends every formula A
without Q to

∧
(�∗)EQ

A • ⊃ AQ and every nonformula to ⊥. If a formula A
contains Q, first replace Q with another binary predicate letter that does not
occur in A. �
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Let us now consider some specific axioms of equality.

Definition 2.14.13 A logic (with equality) L is said to have stable (respec-
tively, decidable, closed) equality if it contains the corresponding formula (SE,
DE, or CE, see section 2.6). For a superintuitionistic predicate logic L (without
equality), let

L=d := L= +DE, L=s := L= + SE.

Similarly, for an N -m.p.l. L, we define

L=c := L= + {CE1, . . . , CEN}.

Obviously, L= ⊆ L=s ⊆ L=d.
Soon we will show that QH=d is conservative over QH. However, L=d is

not always conservative over L; the corresponding example will be given later
on.

As we do not substitute formulas for ‘=’ in predicate logics with equality,
the following lemma is an easy consequence of the deduction theorem.

Lemma 2.14.14

(1) L+DE ⊢ A iff L ⊢ DE ⊃ A

for a superintuitionistic logic with equality L and a formula A; similarly
for SE.

(2) L +
N∧

i=1

CEi ⊢ A iff L ⊢ �≤k
N∧

i=1

CEi ⊃ A for some k ∈ ω, where L is an

N -modal logic with equality.

For a 1-modal logic L ⊇ QT this can be simplified:

L+ CE ⊢ A iff L ⊢ �rCE ⊃ A for some r ∈ ω.

If L is conically expressive, then

L+

N∧

i=1

CEi ⊢ A iff L ⊢ �∗
N∧

i=1

CEi ⊃ A.

2.15 Propositional parts

Let us explicitly describe the construction of the propositional part Lπ for a
predicate logic L without equality, cf. [Ono, 1972/73] for the case of intermediate
logics.

Since all the sets PLn are countable, we can consider a bijection

π0 :


⋃

n≥0

PLn


 −→ PL0.
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Then for any formula A, let π(A) be the result of replacing each atomic sub-
formula of the form P (x) with π0(P ) and erasing all occurrences of quantifiers.
For a set of formulas Γ let

π(Γ) = {π(A) | A ∈ Γ}.

Obviously π(A) is equivalent (in QH or in QKN ) to a substitution instance
of A (cf. Lemma 2.6.15(I)(iv)). On the other hand, a propositional formula A
is a substitution instance of π(A). Thus we obtain

Proposition 2.15.1 Lπ = KN + π(L) or Lπ = H + π(L) for a predicate logic
L without equality (respectively, N -modal or superintuitionistic).

Proposition 2.15.2

(1) (QKN )π = KN ;

(2) (QH)π = H.

Proof By induction over a proof of A in QKN (or in QH) we show that
π(A) ∈ KN (resp. π(A) ∈ H). It is easily checked that π(A) ∈ KN if A is
a substitution instance of a QKN - axiom (for example, π(A) = (B ⊃ B) for
predicate axioms). If A is obtained by (MP) or (necessitation), then π(A) is
also obtained by the same rule. If A = ∀xB, then π(A) = π(B). �

Lemma 2.15.3 π(Sub(Γ)) = Subπ(π(Γ)) for any Γ ⊆ IF (or Γ ⊆ MFN ),
where Subπ denotes closure under propositional substitutions (of the correspond-
ing type).

Proof Since every substitution is a composition of simple substitutions, we
can consider only simple substitutions. It is easily proved that

π([C/P (x)]B) = [π(C)/π0(P )]π(B)

(by induction on B). On the other hand, every propositional formula can be
presented as π(C) for some predicate formula C. �

Proposition 2.15.4 (L+ Γ)π = Lπ +π(Γ) for a modal (or superintuitionistic)
logic L+ Γ.

In particular, (QKN + Γ)π = KN + π(Γ), (QH + Γ)π = H + π(Γ).

Proof [Modal case.] Let A ∈ (L+ Γ). By the deduction theorem,
(

k∧

s=1

�≤k∀As ⊃ A

)
∈ L

for some formulas As ∈ Sub(Γ). Then
(

k∧

s=1

�≤kπ(As) ⊃ π(A)

)
∈ Lπ,

while π(As) ∈ Subπ(π(Γ)) (by Lemma 2.15.3). Thus π(A) ∈ (Lπ + π(Γ)).
The converse inclusion is obvious by Proposition 2.15.1. �
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Definition 2.15.5 The quantified version of a modal (respectively, superintu-
itionistic) propositional logic Λ is:

QΛ := QKN + Λ (respectively, QΛ := QH + Λ).

Lemma 2.15.6

(1) For any propositional logic Λ and a set of propositional formulas Γ,

Q(Λ + Γ) = QΛ + Γ.

(2) For a propositional S4-logic Λ, T(QΛ) ⊇ QTΛ.

Proof

(1) Consider the intuitionistic case. Q(Λ+Γ) is the smallest s.p.l. containing
Λ + Γ, while QΛ + Γ is the smallest s.p.l. containing QΛ ∪ Γ. These two
logics coincide, since every s.p.l. containing Λ also contains QΛ.

(2) By 2.11.11, QTΛ ⊢ A implies QS4 + (TΛ)T ⊢ AT , hence QΛ ⊢ AT . Thus
QTΛ ⊆ T(QΛ).

�

Remark 2.15.7 We do not know if the equality T(QΛ) = QTΛ holds for any
propositional S4-logic. For example, this is unknown for Λ = S4.2Grz.

Definition 2.15.8 44 A predicate logic L is called a predicate extension of a
propositional logic Λ if L is called a conservative extension of Λ (i.e. if Lπ = Λ).

Proposition 2.15.9 For any modal or superintuitionistic propositional logic
Λ, QΛ is a predicate extension of Λ.

Proof Follows readily from Proposition 2.15.4 since π(Λ) ⊆ Λ. �

Obviously, QΛ is the weakest predicate extension of Λ.
To describe the greatest predicate extensions of propositional logics, we use

the formula
AU1 = ∀x∀y(P (x) ⊃ P (y))

from Section 2.6; recall that

L+AU1 = L+ ∃xP (x) ⊃ ∀P (x)

for any predicate logic L and

L+AU1 = L+ ∀x∀y(x = y)

for any predicate logic L with equality.
For a formula A with equality, let A⊤ be the result of replacing each occur-

rence of (x = y) in A with ⊤. Then (A ≡ A⊤) ∈ (QK=
N + AU1) (respectively,

QH= +AU1).

44Cf. [Ono, 1973].
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Lemma 2.15.10 Let A be a predicate formula without equality. Then
A ∈ QKN +AU1 + π(A) (in the modal case) or A ∈ QH +AU1 + π(A) (in the
intuitionistic case).

Proof First, given π(A), we can restore all occurrences of quantifiers from
A, because they are dummy in π(A). Next, every occurrence of π0(P ) in π(A)
coming from some P (x) in A, can be replaced with ∀P (x), which is equivalent
to P (x) in QKN +AU1. �

Proposition 2.15.11 Let L be a predicate logic without equality, modal or su-
perintuitionistic, and let Λ be a propositional logic of the corresponding kind.
Then

Lπ = Λ iff QΛ ⊆ L ⊆ QΛ +AU1.

Proof (QΛ +AU ′
1)π = Λ by Proposition 2.15.4 since

π(AU ′
1) = (π0(P ) ⊃ π0(P )) ∈ Λ.

On the other hand, if Lπ = Λ then L ⊆ QΛ + AU1. In fact, A ∈ L implies
π(A) ∈ Lπ = Λ and A ∈ QΛ +AU1 by Lemma 2.15.10. �

Therefore QΛ + AU1 is the greatest predicate extension of a propositional
logic Λ.

Corollary 2.15.12 The greatest intermediate predicate extension of an inter-
mediate propositional logic Λ is

(QΛ +AU1) ∩ QCL = QΛ +AU1 ∨ q ∨ ¬q.

Proof By Proposition 2.10.1 (2); recall that QCL = QH + q ∨ ¬q and
CD ∈ QH +AU1 ∨ q ∨ ¬q. �

Let us also mention the following result on the number of predicate exten-
sions.

Theorem 2.15.1345

(1) Every nonclassical superintuitionistic propositional logic has uncountably
many predicate extensions.

(2) Every modal propositional logic which does not contain S5, has uncount-
ably many predicate extensions.

Now let us give another description of the greatest predicate extensions.

Proposition 2.15.14

(I) Let L be a predicate logic (of any kind). Then the following conditions are
equivalent:

45[Suzuki, 1995].
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(a) L+A = L+ π(A) for any predicate formula A without equality;

(b) QH(=) +AU1 ⊆ L or QK
(=)
N +AU1 ⊆ L

(for the superintuitionistic or the modal case, respectively);

(c) L = QΛ(=) + AU1 for a propositional logic Λ (superintuitionistic or
modal, respectively).

Moreover, these conditions imply

(d) for any predicate formula A (in the language of L) there exists a
propositional formula A′ such that L+A = L+A′.

(II) If L is a logic without equality, all conditions (a)–(d) are equivalent.

Proof

(I) (a) ⇒ (b). L+AU1 = L since π(AU1) = (π0(P ) ⊃ π0(P )) ∈ H (or KN ).

(b) ⇒ (a). π(A) ∈ L+A by Proposition 2.15.1.

On the other hand, A ∈ QH + AU1 + π(A) or A ∈ QKN + AU1 + π(A),
by Lemma 2.15.10.

(a) ⇒ (d). If L is a logic with equality, we take A′ = π(A⊤).

(b) ⇒ (c). We can replace any A from L with A′ because (b) implies (d).

(II) (d) ⇒ (a). Let L+A = L+A′ for a propositional formula A′. Then

A′ ∈ (L+A)π = Lπ + π(A) ⊆ L+ π(A).

On the other hand, π(A) ∈ (L+A).

�

We say that L is a predicate logic with degenerate predicates if L satisfies the
condition (I)(d) from Proposition 2.15.14. Thus, QH +AU1 and QKN + AU1

are the weakest logics with degenerate predicates. On the other hand, there
exist logics with equality incomparable with QH= +AU1 and satisfying (I)(d),
e.g.

L = QH= + ∃x∃y (x 6= y ∧ ∀z(z = x ∨ z = y)).

It is clear how to describe the propositional fragments for these logics with
equality.

Lemma 2.15.15 Let L and L′ be predicate logics containing AU1 such that L
is without equality and L′ is with equality. Then the following conditions are
equivalent:

(1) L′
π = Lπ;

(2) (L′)◦ = L;

(3) L′ = L=.
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Proof 46

(1) ⇒ (2). By Proposition 2.15.14, (b) ⇒ (a).
(3) ⇒ (1). Let A be a propositional formula, A ∈ L=. Then by the deduction

theorem, the following formula is a theorem of L:

B := �≤k(∀x(x = x) ∧

k∧

s=1

∀(x = y ⊃ ([x/z]As ⊃ [y/z]As))) ⊃ A

for some k ≥ 0 and formulas A1, . . . , Ak ∈ MF=
N . Then its substitution in-

stance B⊤ belongs to L and π(B⊤) ∈ Lπ. Since π((∀x(x = x)⊤) = ⊤ and
π(([x/z]As)⊤) = π(([y/z]As)⊤), we obtain π(A) ∈ L, i.e. A ∈ Lπ.

(2) ⇒ (3). If (L′)0 = (L=)0 = L then L= ⊆ L′, and L= = L′ — because
(A ≡ A⊤) ∈ L= for any formula with equality A (recall that A⊤ is a formula
without equality). �

Corollary 2.15.16 Let L be a predicate logic with equality, Λ a propositional
logic. If

QΛ= ⊆ L ⊆ QΛ= +AU1

then Lπ = Λ.

Proof

QΛ= ⊆ L ⊆ QΛ= +AU1

implies

(QΛ=)π ⊆ Lπ ⊆ (QΛ= +AU1)π .

Next,

(QΛ= + AU1)π = (QΛ +AU1)=π = (QΛ +AU1)π,

by Lemma 2.15.15, and (QΛ +AU1)π = Λ, by Proposition 2.15.11. �

Corollary 2.15.17 Let L be a predicate logic without equality. Then

(1) (L=)π = (L=d)π = (L=s)π = Lπ for a superintuitionistic L;

(2) (L=)π = (L=c)π = Lπ for modal L.

Proof (Intuitionistic case.) Let Lπ = Λ, L ⊆ QΛ +AU1. Then

QΛ= ⊆ L= ⊆ L=s ⊆ L=d ⊆ QΛ= +AU1,

and we can apply Corollary 2.15.16. The modal case is analogous. �

46The implication (3) ⇒ (2) is proved in Proposition 2.14.8 for all superintuitionistic logics
and for 1-modal logics above QK4. Here we give a slightly simpler proof that fits for any
modal predicate language.
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Proposition 2.15.14 and Lemma 2.15.15 show that there exists a natural
bijection between intermediate propositional logics and extensions of the logics
QH(=) + AU1 (with or without equality), and similarly for the modal case.
The logic QΛ= + AU1 is a maximal predicate extension (with equality) of a
propositional logic Λ. Nevertheless, for any propositional logic Λ the greatest
predicate extension with equality does not exist. Indeed, later on we will show
that Lπ = Λ for the logic

L = QΛ= + ¬∀x∀y(x = y),

which is obviously incompatible with QΛ= +AU1.

2.16 Semantics from an abstract viewpoint

Consider a language with the set of well-formed formulas Φ, and a set of its
subsets Λ ⊆ 2Φ closed under arbitrary intersections. Elements of Λ are called
Λ-logics. We define a semantics for the set Λ as a quadruple S = (Φ,Λ,U ,�),
in which U is a class (whose elements are called U-frames), and � is a binary
relation between U and Φ (called the validity relation) such that the set

LS(F ) = {A ∈ Φ | F � A}

is a Λ-logic for any F ∈ U . LS(F ) is called the Λ-logic of the frame F (in S).
Sometimes we write F ∈ S instead of F ∈ U .

Since Λ is intersection closed, we obtain that for any class Σ ⊆ U , the set
LS(Σ) =

⋂
{LS(F ) | F ∈ Σ} is also a Λ-logic; it is called the Λ-logic of Σ. Logics

of this kind are called S-complete, and logics of the form LS(F ) are called simply
S-complete 47.

A semantics S gives rise to the logical consequence relation (between Γ ⊆ Φ
and A ∈ Φ):

Γ �S A iff ∀F ∈ U (Γ ⊆ LS(F ) ⇒ A ∈ LS(F )).

We say that F is a Γ-frame (in S) if Γ ⊆ LS(F ). Thus Γ �S A means that
A is valid in every Γ-frame. If F is a Γ-frame such that F 6�A, we say that F
separates A from a set Γ.

One can recognise a particular case of Galois correspondence here. This
correspondence is derived from the relation � in the standard way; cf. [Chapter
5, Theorem 19][Birkhoff, 1979]. So

CS(Γ) = {A ∈ Φ | Γ �S A}

is a closure operation on 2Φ, and the closed sets of formulas are just the S-
complete logics.

Hence we have

47As stated in [Ono, 1973, Theorem 2.2], completeness does not always imply simple com-
pleteness.
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Lemma 2.16.1 CS(Γ) is the smallest S-complete logic containing Γ. CS(Γ) is
called the S-completion of Γ.

Here is a simple criterion of completeness:

Lemma 2.16.2 A logic L is complete in a semantics S iff every formula A ∈
(Φ − L) is separated from L by a frame in S.

Proof In fact, by 2.16.1, L is complete iff CS(L) = L. �

We can compare different semantics for the same set of logics. A semantics
S1 is reducible to S2 (notation: S1 � S2) iff CS2 (L) ⊆ CS1 (L) for any L ∈ Λ.

Lemma 2.16.3

(1) S1 � S2 iff every S1-complete logic is S2-complete.

(2) S1 � S2 iff for any S1-frame F, LS1(F ) is S2-complete.

Proof

(1) Suppose S1 � S2. Then for any logic L,

L ⊆ CS2(L) ⊆ CS1(L).

If L is S1-complete then L = CS1(L) (by Lemma 2.16.1), and hence L =
CS2(L) which implies S2-completeness of Λ (again by Lemma 2.16.1).

Conversely, assume that S1-completeness implies S2-completeness. Then
CS1(L) is S2-complete, and thus CS2(L) ⊆ CS1(L) by Lemma 2.16.1.

(2) ‘Only if’ is an immediate consequence of (i) and Lemma 2.16.1.

To prove ‘if’ consider an arbitrary S1-complete logic

L = LS1(Σ) =
⋂

{LS1(F ) | F ∈ Σ}.

If each LS1(F ) is S2-complete, we have that LS1(F ) = LS2(ΨF ) for some
class ΨF . Then

L = LS1(Σ) =
⋂

{LS2(ΨF ) | F ∈ Σ} = LS2(
⋃

{ΨF | F ∈ Σ}),

showing that Λ is S2-complete.

�

Definition 2.16.4 Semantics S1 and S2 are called equivalent (S1 ≃ S2) if S1 �
S2 and S2 � S1; we say that S1 is weaker than S2 (notation: S1 ≺ S2) if S1 � S2

but not S2 � S1.

Lemma 2.16.3 readily implies:
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Lemma 2.16.5 S1 ≃ S2 iff S1-completeness is equivalent to S2-completeness.

Definition 2.16.6 A semantics S1 is simply reducible to S2 (notation: S1 ⊆
S2) if simple S1-completeness implies simple S2-completeness, i.e.

∀F1 ∈ S1∃F2 ∈ S2 (LS1(F1) = LS2(F2)).

Semantics S1 and S2 are called simply equivalent (notation: S1
∼= S2) if S1 ⊆ S2

and S2 ⊆ S1.

We do not usually distinguish between simply equivalent semantics; from this
viewpoint a semantics S = (Φ,Λ,U ,�) can be identified with the corresponding
set of simply complete logics {LS(F ) | F ∈ U}.

Lemma 2.16.7 S1 ⊆ S2 implies S1 � S2.

Proof Obvious, since complete logics are intersections of simply complete
ones. �

Example 2.16.8 For any set of logics Λ there exists a ‘trivial semantics’ T, in
which U = Λ (i.e. ‘frames’ are just logics) and L � A iff A ∈ L, i.e. LT(L) = L).

Definition 2.16.9 We say that a semantics S has the collection property (CP )
if every S-complete consistent logic is simply S-complete.

By Lemma 2.16.7, for semantics with the (CP), reducibility is equivalent to
simple reducibility, so their equivalence implies simple equivalence. But in gen-
eral equivalent semantics may be not simply equivalent; some counterexamples
will be given later on.

Example 2.16.10 In modal propositional logic we have semantics with the
(CP):

finite ≺ Kripke ≺ topological ≺ algebraic ∼= trivial.

‘Finite semantics’ consists of all finite Kripke frames, with the usual definition
of validity. So in this semantics simple completeness means tabularity and
completeness means the f.m.p.

Algebraic semantics is simply equivalent to trivial, since every logic is alge-
braically complete, by the Lindenbaum theorem.

For superintuitionistic propositional logics we have the following diagram:

finite ≺ Kripke ≺ topological � algebraic ∼= trivial.

The question, whether topological semantics is trivial, is Kuznetsov’s problem
mentioned in Section 1.17.
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Recall that in this book we consider four types of predicate logics — modal
or intuitionistic, with or without equality. So we alter the notation LS(F )
respectively. For example, if F is a frame in a semantics S for N -modal predicate
logics with equality, for {A ∈ MF=

N | F � A} we use the notation ML=(F )
rather than LS(F ); ML(F ) refers to semantics without equality. Similarly in
the intuitionistic case we use the notations IL=(F ), IL(F ).

Every semantics S for logics with equality generates a semantics S◦ for the
same kind of logics without equality, with the same frames and validity. So
LS◦(F ) = LS(F )◦. Loosely speaking, we call S◦-complete logics ‘S-complete’.

Remark 2.16.11 However it may happen that there exists a semantics for
logics without equality S′, with the same frames as S (and S◦), but with a
slightly different notion of validity. In these cases we define ML(F ) (or IL(F ))
as LS′(F ) and then prove that S′ = S◦. We will encounter such a situation in
Chapter 5.

Definition 2.16.12 Let S be a semantics for N -m.p.l. We say that S admits
equality if there exists a semantics S1 for N -m.p.l.= such that S ⊆ S◦

1, i.e.

∀F ∈ S∃F1 ∈ S1 LS(F ) = LS1
(F1)◦.

Proposition 2.16.13 If S admits equality and an N -m.p.l. L is S-complete,
then L= is conservative over L.

Proof Almost obvious. Suppose L is N -modal, L = ML(C) for a class of
S-frames C and ML(F ) = ML=(F1)◦ for any F ∈ C. Then

L =
⋂

F∈C

ML(F ) =
⋂

F∈C

ML=(F1)◦.

Put C1 := {F1 | F ∈ C}, then for any A ∈MFN

A ∈ L⇔ ∀F ∈ C F1 � A⇔ A ∈ ML=(C1).

Thus ML=(C1)◦ = L, i.e. ML=(C1) is conservative over L = ML(C). Since
ML=(C1) is a logic with equality containing L, it follows that L= ⊆ ML=(C1)
and thus L= is also conservative over L. �

Now let us prove a simple result on correlation between completeness of L
and L=.

Proposition 2.16.14 Let L be an m.p.l. or an s.p.l., S a semantics for the
corresponding logics with equality. If L= is conservative over L and S-complete,
then L is also S-complete.

Proof Consider the modal case only. Suppose L= = ML=(C) for a class of
S-frames C. Then by conservativity, L = (L=)◦ = ML=(C)◦, and obviously,
ML=(C)◦ = ML(C). Thus L is S-complete. �
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Corollary 2.16.15 If L is an s.p.l. or a conically expressive m.p.l. and L= is
complete in a semantics S, then L is also S-complete.

Proof By 2.16.14 and 2.14.8. �

Finally let us show the existence of modal counterparts using completeness.

Definition 2.16.16 Let M be a semantics for m.p.l.(=) extending QS4(=).
Then we define its intuitionistic version, the semantics TM for s.p.l.(=), with
the same frames as M such that for any M-frame F ,

LTM(F ) := TLM(F ).

Proposition 2.16.17 Every TM-complete s.p.l.(=) has a modal counterpart:

QH(=) + Γ = T(QS4(=) + ΓT ).

Proof The inclusion ⊆ is proved in Lemma 2.11.11. For the converse suppose
QH + Γ 6⊢A. By assumption QH + Γ is TM-complete, so there exists an M-
frame F such that Γ ⊆ LTM(F ), but A 6∈ LTM(F ). By Definition 2.16.16,
LTM(F ) = TLM(F ), hence ΓT ⊆ LM(F ), AT 6∈ LM(F ). Since M is a semantics
for modal logics above QS4, we have LM(F ) ⊇ QS4 + ΓT . Consequently
QS4 + ΓT 6⊢AT , i.e. T(QS4 + ΓT ) 6⊢A. �

As we shall see in Volume 2, the smallest modal counterpart of an TM-
complete logic may be M-incomplete. But completeness always transfers in the
other direction:

Proposition 2.16.18 If L ⊇ QS4(=) is M-complete, then TL is TM-complete.

Proof Suppose L = LM(C) for a class of M-frames C. Then

LTM(C) =
⋂

F∈C

LTM(F ) =
⋂

F∈C

TLM(F ) = {A | ∀F ∈ C AT ∈ LM(F )} = TLM(C),

so TL is M-complete. �

(B′, i, yj) is free (bound) (by induction hypothesis)
==============================
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Introduction: What is semantics?

In Chapter 2 we proposed a general approach to semantics, which is very formal
and does not help understand the meaning of language expressions.

For example, this approach allows for a degenerate semantics, where ‘frames’
are just logics and L � A iff L ⊢ A. In this case the completeness theorem is a
triviality, but of course such a semantics does not explain anything.1

To describe more plausible semantics we need to define notions of a model
and of the truth in a model that could tell us ‘how the logic works’. This is not
a serious problem for classical first-order logic: in this case model theory can be
developed within the standard semantics based on the well-known Tarski truth
definition. Due to Gödel’s completeness theorem (GCT), the standard semantics
works properly, and thus alternative types of semantics (such as sheaves, forcing,
polyadic algebras) are of less importance in the classical case.

The situation in nonclassical first-order logic is quite different. GCT does
not have direct analogues, and incompleteness phenomena enable us to consider
various semantics, without any obvious preference between them. Nonclassical
model theory is still rather miscellaneous, and our book is aimed at systematis-
ing some part of it.

The book does not cover all the semantics in equal proportion. So we begin
this part with a brief survey of important results in the area and some references
for further reading. This may help the reader to find his way through the
landscape of first-order logic.

Gödel’s completeness theorem: discussion

First let us explain why GCT is not always transferred to nonclassical logics.
Actually there exist two forms of Gödel’s theorem:

(GCT1) A formula A is a theorem of classical predicate calculus iff A is valid
in any domain.

(GCT2) Every consistent classical theory has a model.

These two statements are more or less equivalent: (GCT1) is equivalent to
(GCT2) for finitely axiomatisable theories.

However in the nonclassical area it is essential to distinguish between logics
and theories. A theory is an extension of some basic calculus by additional
axioms (and perhaps inference rules) postulating specific properties of objects
being studied; a typical example is Heyting arithmetic, which formalises the
intuitionistic viewpoint on natural numbers. A logic is a theory whose theorems
may be considered as ‘logical laws’ common for a certain class of theories and
not depending on specific ‘application domains’. We can treat logical laws as
schemata for producing theorems, and define a logic just as a substitution closed

1Of course in general we may have a new logic and several syntactical translations into
well-known logics. Such translations can be viewed as semantics and can be very illuminating.
See [Gabbay, 1996, Chapter 1].
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theory.2 So we can say that (GCT2) is a property of classical theories, and
(GCT1) is a property of classical logic.

Some results similar to (GCT2) can be proved for nonclassical theories. In
fact, it is well known that every consistent first-order normal modal theory S
is satisfied in some Kripke model, i.e. there exists a Kripke model M and a
possible world w ∈ M such that (M,w) � A for any A ∈ S. Moreover, M can
be chosen uniformly for all consistent theories [Gabbay, 1976]. Analogous claims
are true for superintuitionistic theories considered as pairs of sets of formulas,
cf. [Dragalin, 1988].

However finding nonclassical analogues of (GCT1) is more problematic. These
are completeness theorems of the following form:

(GCT1′) a formula A is a theorem of a logic L iff A is L-valid.

The main problem is in defining ‘reasonable’ notions of validity, for which
(GCT1′) may be true. In classical logic this is validity in a domain. In the
nonclassical case, as our logics are substitution closed, we need ‘substitution-
invariant’ notions of validity. So for a nonclassical logic L, the analogues of
domains are frames (or model structures), from which we can obtain models of
theories based on L if we specify interpretations of basic predicates; a formula
is valid in a frame iff it is true in every model over this frame.

It is usually required that the set of all formulas (in a certain language) true
in a model is a theory, and thus the set L(F) of all formulas valid in a frame
F is also a theory. The difference between models and frames is the following
substitution property implying that L(F) is a logic:

(SP) The set of all formulas valid in a frame F is substitution closed.

This motivates the general definition of semantics given in 2.16. Generally
speaking, there may be many kinds of ‘frames’ and ‘validity’ for the logics we
are studying.

For example, in the standard classical semantics ‘frames’ are just sets, and
the notion of validity is well known. So (GCT1) means that the classical predi-
cate logic is complete in this semantics.

Examples of incompleteness in first-order logic

In Chapter 1 we gave a picture of semantics in nonclassical propositional logic
and pointed out some rather strong completeness results. But in first-order logic
the situation becomes worse: there are very few completeness theorems known,
and incompleteness is very frequent.

Incompleteness already appears for logics extending the classical predicate
logic QCL. In fact, consider any formula A valid in all finite domains, but
refutable in some infinite domain (and thus refutable in any infinite domain, by

2Of course this definition is rather conventional, and there exist examples of ‘logics’ that
are not substitution closed.
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the Löwenheim–Skolem theorem). The logic QCL+A is incomplete, because the
set of all finitely valid formulas is not recursively axiomatisable [Trachtenbrot,
1950].

This argument seems to be just a trick with definitions. But in nonclassical
logic there exist more natural examples of incompleteness.

The first example of this kind was discovered by H.Ono [Ono, 1973], who
proved that the intermediate logic of the strong Markov principle

QHE = QH + ¬¬∃xP (x) ⊃ ∃x¬¬P (x)

is incomplete in the standard Kripke semantics (K).
Recall that K is generated by predicate Kripke frames; such a frame is a triple

F = (W,R,D), in which (W,R) is a propositional Kripke frame; D is a system
of ‘expanding individual domains’, i.e. a family of non-empty sets indexed by
possible worlds (Dw)w∈W , such that

∀u, v (uRv ⇒ Du ⊆ Dv).

The logics QS4 and QH are known to be K-complete. But their minimal
equality extensions (QS4=,QH=) are incomplete if the symbol ‘=’ is inter-
preted in every domain just as the identity. This is due to the formulas

DE = ∀x∀y (x = y ∨ ¬(x = y)) (decidable equality principle)

and

CE = ∀x∀y (✸(x = y) ⊃ x = y) (closed equality principle)

which are valid in all Kripke frames, but nonprovable respectively in QH= and
in QS4=.

We can also interpret equality in a world w in another natural way, as an
equivalence relation in Dw. Then we come to the semantics KE of Kripke frames
with equality (KFEs), in which QS4=,QH= become complete; so KE is stronger
than K. The latter observation and the definition of KE for the intuitionistic
case first appeared in [Dragalin, 1973] and then in [Dragalin, 1988].

Note that in the classical case these two approaches are equivalent: every
‘non-normal’ model, in which equality is an arbitrary equivalence relation can
be ‘normalised’ by identifying equal elements, so that its elementary theory does
not change.

For a Kripke frame with equality a similar construction is possible: one
can identify equivalent individuals at every possible world and obtain a Kripke
sheaf— this is a propositional Kripke frame (W,R) together with a system of
individual domains (Dw)w∈W and transition maps ρuv : Du −→ Dv for every
pair (u, v) in R. So every KFE corresponds to a Kripke sheaf with the same
modal logic.

Although the semantics KE was introduced for dealing with equality, it hap-
pens to be stronger than K even for logics without equality. This can be seen
again by analysing Ono’s counterexample QHE.
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Algebraic and Kripke-type semantics

The semantics KE is still inadequate in many cases, in particular for quantified
versions of all intermediate propositional logics of finite depths. K-incomplete-
ness of these logics was proved in [Ono, 1973], but the proof is easily transferred
to KE . Another counterexample (found independently by S. Ghilardi and V.
Shehtman & D. Skvortsov) is the intermediate logic of ‘the weak excluded mid-
dle’ with constant domains:

QHJD = QH + ¬p ∨ ¬¬p+ ∀x(P (x) ∨ q) ⊃ (∀xP (x) ∨ q).

So one can try to generalise KE in a ‘reasonable way’ . This can be done at
least in two directions.

The first way leads to the algebraic semantics AE described in Chapter 4.
In the intuitionistic case a frame in AE is a Heyting-valued set [Fourman and
Scott, 1979]. This is a set of ‘individuals’, in which every individual has a
‘measure of existence’ (an element of some Heyting algebra) and every pair of
individuals has a ‘measure of equality’. For the modal case Heyting algebras
are replaced by modal algebras. The neighbourhood (or topological) semantics
T E is a particular case of AE , involving only algebras of topological spaces (or
algebras of propositional neighbourhood frames for the modal case).

Both semantics AE , T E are not much investigated and seem to be rather
strong. We still do not know if there exist AE-incomplete logics. On the other
hand, we do not know simple and natural examples of logics that are AE-
complete, but KE-incomplete.

Another way leads us from KE to the semantics of Kripke quasi-sheaves
(KQ), and further to the semantics of Kripke bundles (KB). In Kripke bundles
transition maps ρuv : Du −→ Dv are replaced with transition relations ρuv ⊆
Du × Dv; they are unified in the accessibility (or inheritance, or counterpart)
relation between individuals. Every individual has an inheritor (not necessarily
unique) in any accessible world.

The idea of counterparts first appeared in [Lewis, 1968], and in a formal
setting — in [Shehtman and Skvortsov, 1990]. A Kripke bundle can be defined
as a p-morphism from a (propositional) frame of individuals (D+, ρ) onto a
frame of possible worlds (W,R). Then Kripke sheaves correspond exactly to
etale maps, similarly to the well-known fact in sheaf theory [Godement, 1958].

In Kripke bundles an individual may have several inheritors even in its own
possible world. Kripke quasi-sheaves are a subclass of Kripke bundles, in which
this is not allowed. Further generalisations of KB are the functor semantics
(FS), in which ‘frames’ are set-valued functors (or presheaves over categories);
the metaframe semantics studied in Chapter 5, the simplicial semantics from
[Skvortsov and Shehtman, 1993]3, and finally a very general hyperdoctrine se-
mantics generalising both simplicial and algebraic semantics. In hyperdoctrine
semantics every logic is complete, but this semantics is too abstract, and its
convenience is doubtful.

3In that paper simplicial frames are called ‘metaframes’.
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There are several other options we are going to consider in later Volumes
of this book, such as Kripke–Joyal–Reyes semantics [Goldblatt, 1984; Makkai
and Reyes, 1995] or ‘abstract realisability’ [Dragalin, 1988]. There are also
approaches with the basic language modified, e.g. by adding the existence pred-
icate [Fine, 1978], various kinds of quantifiers [Garson, 1978] or nonstandard
substitutions [Ghilardi and Meloni, 1988].

Remarks on the substitution property

Finally we make some technical remarks on general Kripke-type semantics, such
as Kripke bundle semantics, functor semantics etc. It turns out that in these
cases a straightforward definition of validity (viz., a formula is valid in a frame
if it is true in every model over this frame) does not imply the substitution
property. The corresponding simple counterexamples can be found in section
5.1 below. Since the set of valid formulas is a theory not a logic, the definition
of validity should be changed. So we introduce strong validity in a frame as the
validity (in the original sense) of a formula together with all its substitution
instances. Then the set L(F) of all formulas strongly valid in a frame F is a
logic (called the logic of F).

One may argue that after such a modification the notion of frame becomes
almost useless and can be replaced by the notion of model. For, in the same
manner we can define a ‘logic’ L(M) of an arbitrary Kripke modelM as the set of
all the formulas ‘strongly verifiable’ in M , i.e. of formulas with all substitution
instances true in M . Then we get a first-order version of general propositional
frames mentioned above. In this semantics (GCT2) follows from (GCT1), and
thus every modal or superintuitionistic first-order logic is complete.

None the less, there is some advantage in dealing with Kripke bundles
(or metaframes) rather than Kripke models. For, let us recall the two kinds
of substitutions considered in Chapter 2: a strict substitution does not add
new parameters to atomic formulas; a shift adds a certain fixed list of new
parameters to every atomic formula. Recall that a simple substitution in-
stance Ak of a formula A is obtained by replacing every atom Pn

i (x1, . . . , xn)
by Pn+k

i (x1, . . . , xn, y1, . . . , yk), where y1, . . . yk are variables not occurring in
A. As we know, every substitution is a composition of some strict and some
simple substitution and a variable renaming. One can prove that the set L−(F)
of all formulas valid in a Kripke bundle F is closed under strict substitutions
and variable renaming. Therefore the logic of F can be derived from L−(F) as
follows:

L(F) = {A | ∀k ≥ 0 Ak ∈ L−(F)}.

So to check strong validity of a formula A there is no need to verify all its
substitution instances, but only the Ak are sufficient. In other words, strong
validity is nothing but validity with arbitrarily many extra parameters.

Unlike that, the set of formulas true in a Kripke model M is usually not
closed under strict substitutions. So in general there is no way to describe the
logic of M other than checking the truth of all possible substitution instances
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of formulas. This may be very difficult even in the propositional case; in al-
gebraic terms, this means describing equations in a subalgebra of the modal
algebra of a Kripke frame with a given set of generators. So the semantics of
Kripke bundles is in some sense ‘more constructive’ than the semantics of Kripke
models (not frames!). Anyway the algebraic semantics AE is the strongest se-
mantics with (SP), that we know of. The Kripke-type semantics stronger than
the Kripke bundle semantics KB (such as the functor semantics FS or the
metaframe semantics MF) do not have the (SP) either, but here again only
simple substitutions are essential for strong validity.



Chapter 3

Kripke semantics

3.1 Preliminary discussion

There is no remembrance in former things; neither shall there be
any remembrance of things that are to come with those that shall
come after.
(Ecclesiastes, 1.11.)

In propositional modal logic Kripke semantics is widely used and is very helpful.
As pointed out in Chapter 1, natural logics turn out to be Kripke-complete, and
moreover, many of them have the finite model property. This makes Kripke
semantics an efficient model-theoretic instrument in the propositional case.

In the first-order case one can try to generalise the propositional Kripke
semantics in the following straightforward way.

Consider the first-order language L1 with a single modal operator � (Section
2.1). Let (W,R) be a 1-modal propositional Kripke frame (Definition 1.3.1). We
can define a ‘first-order Kripke model’ over (W,R) as a collection of classical
models parametrised by possible worlds:

M = (Mu)u∈W ,

where everyMu is a classical L-structure, i.e., at the world u the basic predicates
are interpreted as in Mu. This is not yet enough for a formal definition, because
we have to answer the following two questions:

• What are the individuals in M?

• How are the quantifiers interpreted?

The simplest way is to assume that every individual is an element of some
Mu; more exactly, if Du is the domain of Mu, then M has the set of individuals

D+ =
⋃

u∈W

Du.

215
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We can say that Du consists of the individuals existing in the world u. Thus
some individuals may exist in one world, but may not exist in another world. A
more realistic example is given by a moving lift. Here W is the set of moments
of time, R is the earlier–later relation, Du is the set of people inside the lift at
the moment u.

From this viewpoint, it is natural to quantify only over existing individuals;
thus ∀xϕ(x) must be true at the world u iff ϕ(a) is true for every a ∈ Du.

In our example, if P (x) is interpreted as

x is a child,

then u |= ∀xP (x) means that at the moment u (it is true that)

only children are in the lift.

Eventually, we can define the forcing relation u |= ϕ between a world u and a
Du-sentence (cf. 2.2) ϕ by induction on the complexity of ϕ, so that

u |= Pn
k (a1, . . . , an) iff Mu |= Pn

k (a1, . . . , an) (classically)
u |= ∀xϕ iff ∀a ∈ Du u |= [a/x]ϕ
u |= ∃xϕ iff ∃a ∈ Du u |= [a/x]ϕ
u |= �ϕ iff ∀v (uRv&ϕ is a Dv-sentence ⇒ v |= ϕ)

and with the standard clauses for the classical propositional connectives.
Returning again to our example, for a certain individual a (say, Robert

Smith) u |= �P (a) means: at the moment u it is true that

always in the future Robert Smith will use the lift only

while he is a child.

This is an essential point: we cannot state u |= P (a) for an individual a that is
not present in Du; and thus to check u � �P (a), we have to consider only those
v in R(u), which have a in their domain.

Once the forcing relation is defined, we can say that a formula ϕ is true in
M if u |= ∀̄ϕ for any u ∈ W . If FV (ϕ) = {x1, . . . , xn}, the latter is equivalent
to

u |= [a1, . . . , an/x1, . . . , xn] ϕ for any a1, . . . , an ∈ Du.

Now what formulas are true in every Kripke model? This set can be ax-
iomatised, but unfortunately, it may not be a modal predicate logic in the sense
of Chapter 2. To see what happens, consider the formula

α = �(p ∧ q) ⊃ �p

which is a theorem of K (propositional) and is obviously true in all models
defined above. However take the substitution instance of α:

β = �(P (x) ∧ P (y)) ⊃ �P (x).

This formula is not always true. For, consider the model with two possible
worlds u, v and two individuals a, b, such that
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R = {(u, u), (u, v)}, Du = {a, b}, Dv = {a},
u |= P (a) ∧ P (b), v 6|= P (a), see Fig. 3.1.

•

•

• •

•

a

b

a

vu

u � P (a) ∧ P (b) v 6� P (a)

DvDu

Figure 3.1.

Then we have u |= �(P (a) ∧ P (b)), since P (a) ∧ P (b) is not a Dv-sentence,
but u 6|= �P (a).

Here is a more natural analogue of this example: if

John and Mary always talk when they are in the lift together,

it may be not the case that

John always talks in the lift.

Now there are several options to choose:

A. If we need semantics for the logics described in the previous chapter, we
can try to amend the above definition.

B. Alternatively, we can change (actually, extend) the notion of a logic and
try to axiomatise the ‘logic’ which is complete with respect to the above
interpretation.

C. We can accept other definitions of semantics, using different kinds of in-
dividuals and different interpretations of quantifiers.

In this Volume we accept option A and keep the same notion of logic. There
is not so much to change in the original definition: it is enough to assume that
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‘individuals are immortal’, which in precise terms, means the expanding domain
condition:

(ED) uRv ⇒ Du ⊆ Dv.

Of course this requirement contradicts the viewpoint expressed in the epi-
graph to this section.1

But it saves the logic, and as we will see later on, this semantics is sound
and complete for a few well-known logics, such as QK, QS4, etc.

Furthermore, (ED) is essential in semantics of intuitionistic logic. In this
case (W,R) is an S4-frame, and we would like to keep the intuitionistic truth-
preservation principle (TP) from Lemma 1.4.4 for atomic Du-sentences:

u  Pn
k (a1, . . . , an) & uRv& a1, . . . , an ∈ Dv ⇒ v  Pn

k (a1, . . . , an).

The inductive definition of forcing from Section 1.3 can be extended to the
first-order case so that

u  ∃xϕ iff ∃a ∈ Du u  [a/x]ϕ.

Now, without (ED), we cannot guarantee the truth-preservation for all Du-
sentences. For, take a model based on a two-element chain:

W = {u, v}, R = {(u, u), (u, v), (v, v)}, Du = {a}, Dv = {b},
u  P (a), v 6 P (b).

• •u v

• •

ba

Figure 3.2.

In this case the truth-preservation holds for P (a) (because a exists only in
u), but it fails for ∃xP (x), because obviously,

u � ∃xP (x), v 6� ∃xP (x).

To restore the truth-preservation, we can change the definition, e.g. as follows:

u  ∃xϕ iff ∀v ∈ R(u) ∃a ∈ Dv u  [a/x]ϕ,

1Commonsense understanding of individuals is not easy to formalise, and there were many
philosophical debates on that subject. ‘What is an individual? — This is a good question!’
— Dana Scott writes in [Scott, 1970]. Note that in labelled deductive systems, individuals
are labelled and may be deemed to have internal structure. Wait for a later volume on this.
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cf. the clause for the implication in the intuitionistic case. Another alternative
is:

u  ∃xϕ iff ∃a ∈ Du ∀v ∈ R(u) u  [a/x]ϕ,

which means that only ‘immortal’ individuals are considered as existing. But
nevertheless without (ED), the semantics is not sound, and some intuitionistic
theorems may be false. For example, consider the formula P (x) ⊃ ∃xP (x). In
the above model we have u  P (a), but u 6 ∃xP (x), since uRv, and v 6 P (b),
b being the only individual in v. Thus u 6 P (a) ⊃ ∃xP (x).

We will return to this subject in Volume 2 of our book. Note that anyway,
the principle (ED) is quite natural for intuitionistic logic. It normalises the
situation, and the logic QH becomes sound and complete in an appropriate
semantics.

option B is close to Kripke’s treatment in [Kripke, 1963]; it will be also
considered later on (in Volume 2).

option C includes many different approaches; we mention some of them.
option C1 (modal case). As before, a Kripke model is a collection of classical

structures, but quantifiers now range over all possible individuals, i.e., over the
whole set D+. This is so-called possibilist quantification.

As individuals may not exist in some worlds, we have to add the unary
existence predicate E to our language. Now instead of Du-sentences we evaluate
D+-sentences (where arbitrary individuals are used as extra constants). The
truth condition for ∀ becomes

u |= ∀xϕ iff ∀a ∈ D+ u |= [a/x]ϕ.

Note that u |= [a/x]ϕ may also hold if a 6∈ Du.2

Option B can be realised within this approach as well, if we interpret ∀xϕ(x)
as ∀x(E(x) ⊃ ϕ(x)).

It turns out that the minimal logic QK is sound, but incomplete in this
semantics. This is due to the formula

∀x�P (x) ⊃ �∀xP (x)

found by Ruth Barcan and named after her. It is easily checked that the Barcan
formula is true in every model, but is not a theorem of QK, as the following
countermodel (of the type A) shows (Fig. 3.3).

Here we have u |= �P (a), and so u |= ∀x�P (x). On the other hand,
v 6|= ∀xP (x), and thus u 6|= �∀xP (x) since uRv.

Although axiomatising the minimal complete logic for the C1-semantics is
simple, this approach is controversial, because quantification over all individuals
is rather ambiguous, at least in natural language.3

Still option C1 is possible and useful by formal reasons.

2In natural language a non-existing individual can still have a name in the world u. We can
say: Sir Isaac Newton discovered the laws of motion, using the name of a person given
after the event had happened.

3Quantification in natural language is a complicated subject, not to be discussed here. We
remark only that in most cases quantification refers to the actual world, as in All students



220 CHAPTER 3. KRIPKE SEMANTICS

•

•

vu

aa

Du

Dv

•
b

u � P (a)

v � P (a)

v 6� P (b)

•

•

Figure 3.3.

option C2. This is actualist quantification (see [Fitting and Mendelsohn,
1998]), a combination of B and C1.

Now u |= ϕ is defined when ϕ is a D+-sentence, but u |= Pn
k (a1, . . . , an) is

put to be false when some of a1, . . . , an do not exist in the world u: only actual
individuals are allowed to have atomic properties.4

The inductive definition of forcing is the same as in the cases A,B. However,
there is a difference in the definition of the truth in a model:

M |= ϕ(x1, . . . , xn) iff u |= ϕ(a1, . . . , an) for any u, for any a1, . . . , an

in D+ (not only in Du).

This approach again breaks the logic: the formula ∀xP (x) ⊃ P (y) may be false,
while ∀y(∀xP (x) ⊃ P (y)) is always true.

further options. One may argue that one and the same individual cannot
exist in different worlds. In fact, nobody would identify a newly born baby and
an old man or woman. This suggests we consider disjoint individual domains,
together with transition maps (or relations) between them, as mentioned in the
Introduction to Part II.

Another idea is to treat individuals as changing entities and consider indi-
vidual concepts, that are partial functions from W to the set D+ (of ‘individual
images’).

have supervisors, but there also exists possibilist quantification, as in Any student has a

supervisor. In the latter case it is not quite clear whether the quantifier ranges over the
whole D+ or not. Cf. [Krongauz, 1998] studying these matters in Russian.

4Note that in the case C1 this is not required, and basic predicates may be true for non-
existing individuals. This happens in natural languages as well. For example, Mike likes

Socrates may be evaluated as true in the actual world.
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Now u |= P (a1, . . . , an) is defined if a1(u), . . . , an(u) exist, and

u |= ∀xϕ(x) iff ∀a (a(u) exists ⇒ u |= ϕ(a)).

In this case the logic grows much larger than QK and even becomes not recur-
sively axiomatisable. We shall return to this topic in Volume 2.

3.2 Predicate Kripke frames

Now let us turn to precise definitions and statements.

Definition 3.2.1 A system of domains over a set W 6= ∅ is a family of non-
empty sets D = (Du)u∈W .

Definition 3.2.2 Let F = (W,R1, . . . , RN) be a propositional Kripke frame.
An expanding system of domains over F is a system of domains D over W such
that

∀i ∈ IN ∀u, v ∈ W (uRiv ⇒ Du ⊆ Dv).

A predicate Kripke frame over F is a pair F = (F,D), in which D is an ex-
panding system of domains over F .

The set Du (sometimes denoted by D(u)) is called the individual domain of
the world u; the set

D+ :=
⋃

u∈W

Du

is the total domain of F; the frame F (also denoted by Fπ) is called the propo-
sitional base of F.

The following observation is an easy consequence of the definition.

Lemma 3.2.3 Let F = (F,D) be a predicate Kripke frame, v ∈ F ↑u. Then
Du ⊆ Dv.

Proof By Lemma 1.3.19, v ∈ Rα(u) for some α ∈ I∞N . Then we can apply
induction on |α|. In fact, for α = f we have v = u, so Du = Dv; if α = βi
and uRαv, then uRβwRiv for some w, so Du ⊆ Dw ⊆ Dv by the induction
hypothesis and 3.2.2. �

By default, we denote an arbitrary propositional Kripke frame by F =
(W,R1, . . . , RN ) and an arbitrary predicate Kripke frame by F = (F,D).

For an individual a ∈ D+ the set

E(a) := {u ∈W | a ∈ Du}

is called the measure of existence (or the extent). Since the system of domains
D is expanding, E(a) is a stable subset of F .



222 CHAPTER 3. KRIPKE SEMANTICS

For a tuple a ∈ (D+)n we also introduce the measure of existence

E(a) :=

n⋂

i=1

E(ai) = {u ∈W | r(a) ⊆ Du}.

The set is also stable in F . In particular, for an empty a we define E(f) as W
(since r(f) = ∅).

Definition 3.2.4 A (modal) valuation ξ in a system of domains (Dw)w∈W is a
function sending with every predicate letter Pm

k to a member of the set
∏

u∈W

2Dm
u ,

i.e. a family of m-ary relations on the domains:

ξ(Pm
k ) = (ξu(Pm

k ))u∈W ,

where ξu(Pm
k ) ⊆ Dm

u . To include the case m = 0, we assume that D0
u = {u};

so ξu(P 0
k ) is either {u} or ∅.

A valuation in a predicate Kripke frame F = (F,D) is a valuation in its
system of domains D. The pair M = (F, ξ), where ξ is a valuation in F, is
called a (predicate) Kripke model over F.

We may call the function ξu sending every n-ary predicate letter to an n-
ary relation on Du, a local valuation in F at u; this is nothing but a classical
valuation in Du. So we can say that ξ is a family of local valuations (ξu)u∈W .

Definition 3.2.5 Let M = (F, ξ) be a Kripke model. For u ∈M , the classical
model structure Mu := (Du, ξu) is called the stalk (or the fibre) of M at u.

Let us also define another kind of valuation in predicate Kripke frames.

Definition 3.2.6 A global valuation in a predicate Kripke frame F is a func-
tion γ sending every n-ary predicate letter P (n > 0) to an ‘n-ary 2W -valued
predicate on D+’, i.e., to a function γ(P ) : (D+)n → 2W such that for any
a ∈ (D+)n, γ(P )(a) ⊆ E(a), and every q ∈ PL0 to a subset of W .

So γ ↾ PL0 is a propositional valuation in the propositional frame F . We
can also regard it as an 0-ary predicate, i.e., as a function (D+)0 → 2W , where
(D+)0 = {f}. In this case the condition

γ(q)(a) ⊆ E(a)

trivially holds for any a ∈ (D+)0 (i.e., for f), since E(f) = W .

Lemma 3.2.7 Let F = (F,D) be a predicate Kripke frame.

(1) For any valuation θ in F there exists a global valuation θ+ such that for
any P ∈ PLm, m > 0, for any a ∈ (D+)m

θ+(P )(a) = {u ∈ W | a ∈ θu(P )}

and for q ∈ PL0

θ+(q) = {u | θu(P ) = {u}},
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(2) Every global valuation γ equals ξ+ for a unique valuation ξ.

Proof

(1) From the definition it is clear that

θ+(P )(a) ⊆ E(a)

for any P ∈ PLn, n > 0, a ∈ (D+)n.

(2) Put
ξu(Pm

k ) := {a | u ∈ γ(Pm
k )(a)}

for m > 0 and

θu(P 0
k ) :=

{
{u} if u ∈ γ(P 0

k ),

∅ otherwise.

Then for P ∈ PLm, m > 0

u ∈ γ(P )(a) iff a ∈ ξu(P ) iff u ∈ ξ+(P )(a),

and similarly for m = 0.

The uniqueness of ξ is also clear; γ = ξ+ means that for P ∈ PLm (m >
0), a ∈ (D+)m, u ∈ W

u ∈ γ(P )(a) ⇔ a ∈ ξu(P ),

and for q ∈ PL0

u ∈ γ(q) ⇔ u ∈ ξu(q).

�

Definition 3.2.8 A 1-modal predicate Kripke frame F is called S4-based, or
intuitionistic if its propositional base Fπ is an S4-frame. In this case a modal
valuation ξ in F (and the corresponding Kripke model) is called intuitionistic if
it has the truth preservation (or monotonicity) property:5

(TP) uRv ⇒ ξu(Pm
k ) ⊆ ξv(Pm

k ) (if m > 0);
uRv& u ∈ ξu(P 0

k ) ⇒ v ∈ ξv(P 0
k ).

A global valuation γ in F is called intuitionistic if all the sets γ(P )(a) for P ∈
PLn, a ∈ (D+)n and γ(P ) for P ∈ PL0 are stable in Fπ.

Lemma 3.2.9 Let F be an intuitionistic predicate Kripke frame. Then θ is an
intuitionistic valuation in F iff θ+ is a global intuitionistic valuation in F.

Proof (TP) for θ means exactly that the sets θ+(P )(a) (or θ+(P )) are stable.
�

5Recall that we omit the subscript ‘1’ in the 1-modal case.
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To define forcing, we use the notion of a D-sentence introduced in section
2.4.

Definition 3.2.10 For a Kripke model M = (F, ξ), F = (F,D),
F = (W,R1, . . . , RN ) we define the (modal) forcing relation M,u � A (in an-
other notation: ξ, u � A, or briefly: u � A) between worlds u ∈ W 6 and
Du-sentences A. The definition is inductive:

• M,u � P 0
k iff u ∈ ξu(P 0

k );

• M,u � Pm
k (a) iff a ∈ ξu(Pm

k ) (for m > 0);

• M,u � a = b iff a equals b;

• M,u 6� ⊥;

• M,u � B ∨ C iff (M,u � B or M,u � C);

• M,u � B ∧ C iff (M,u � B and M,u � C);

• M,u � B ⊃ C iff (M,u 6� B or M,u � C);

• M,u � �iB iff ∀v ∈ Ri(u) M, v � B;7

• M,u � ∃xB iff ∃a ∈ Du M,u � [a/x]B;

• M,u � ∀xB iff ∀a ∈ Du M,u � [a/x]B.

Remark 3.2.11 The above truth definition for propositional letters seems pe-
culiar. It is more natural to use truth values 1 and 0 rather than {u} and ∅.
But our definition will be convenient later on, in Chapter 5.

Now we readily obtain an analogue of Lemma 1.3.3:

Lemma 3.2.12 For any N -modal Kripke model, α ∈ IN :

u � ✸iB iff ∃v ∈ Ri(u) v � B;

u � ¬B iff u 6� B;

u � �αB iff ∀v ∈ Rα(u) v � B;

u � ✸αB iff ∃v ∈ Rα(u) v � B.

Similarly to the propositional case, we give the following inductive definition
of intuitionistic forcing.

Definition 3.2.13 Let M = (F, ξ) be an intuitionistic Kripke model. We de-
fine the intuitionistic forcing relation M,u  A between a world u ∈ F and an
intuitionistic Du-sentence A (also denoted by ξ, u  A or just by u  A) by
induction:

6Sometimes we write u ∈ F or u ∈ M instead of u ∈ W .
7Note that B is a Dv-sentence, since D is expanding.
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• M,u  A iff M,u � A for A atomic;

• M,u  B ∧ C iff M,u  B&M,u  C;8

• M,u  B ∨ C iff (M,u  B or M,u  C);

• M,u  B ⊃ C iff ∀v ∈ R(u) (M, v  B ⇒M, v  C);

• M,u  ∃xB iff ∃a ∈ Du M,u  [a/x]B;

• M,u  ∀xB iff ∀v ∈ R(u) ∀a ∈ Dv M, v  [a/x]B.

Hence we easily obtain

Lemma 3.2.14 The intuitionistic forcing has the following properties

• M,u  ¬B iff ∀v ∈ R(u) M, v 6 B;

• M,u  a 6= b iff a, b ∈ Du are not equal.

Definition 3.2.15 Let F be an S4-based Kripke frame; M a Kripke model over
F. The pattern of M is the Kripke model M0 over F such that for any u ∈ F
and any atomic Du-sentence without equality A

M0, u � A iff M,u � �A.

Obviously, every Kripke model M over F has a unique pattern; M0 is an
intuitionistic Kripke model and M0 = M if M is itself intuitionistic.

Lemma 3.2.16 If M0 is a pattern of M , then for any u ∈ M , for any intu-
itionistic Du-sentence A

M0, u  A iff M,u � AT ;

Proof Easy, by induction on the length of A. The atomic case follows from
Definition 3.2.15 (and is trivial for A of the form a = b). Let us check only the
case A = ∀xB; other cases are left to the reader.

M0, u  ∀xB iff ∀v ∈ R(u) ∀a ∈ Dv M0, u  [a/x]B (by Definition 3.2.13)
iff ∀v ∈ R(u) ∀a ∈ Dv M,u � ([a/x]B)T (by the induction hypothesis).

On the other hand, by Definition 3.2.10

M,u  AT (= �∀xBT ) iff ∀v ∈ R(u) ∀a ∈ Dv M,u � [a/x](BT ),

and it remains to note that ([a/x]B)T = [a/x](BT ), by 2.11.3. �

Lemma 3.2.17 Let u, v be worlds in an intuitionistic Kripke model M . Then
for any intuitionistic Du-sentence A

M,u  A & uRv ⇒ M, v  A.

8Here & is an abbreviation of ‘and’, and further on in this definition ∀v ∈ R(u) abbreviates
‘for any v in R(u)’, etc.
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Proof This easily follows by induction. The case when A = P (a) is atomic
follows from the monotonicity property (TP). The cases A = B ⊃ C,A = ∀xB
follow from the transitivity of R. For A = ∃xB note that M,u  A implies
M,u  [a/x]B for some a ∈ Du, and hence M, v  [a/x]B by the induction
hypothesis, which yields M, v  A.

Other cases are trivial. �

Lemma 3.2.18 Let M be an N -modal predicate Kripke model, A(x) an N -
modal formula with all its parameters in the list9 x, |x| = n. Then for any
u ∈M

M,u � ∀xA(x) iff ∀a ∈ Dn
u M,u � A(a).

Proof By induction on n. The base is trivial and the step is almost trivial:

u � ∀y∀xA(y,x) iff ∀b ∈ Du u � ∀xA(b,x)

iff ∀b ∈ Du ∀c ∈ Dn
u u � A(b, c) (by the induction hypothesis)

iff ∀a ∈ Dn+1
u u � A(a). �

In the intuitionistic case we have the following

Lemma 3.2.19 Let M be an intuitionistic Kripke model with the accessibility
relation R, u ∈M , A(x) an intuitionistic Du-formula with all its parameters in
the list x, |x| = n. Then

M,u  ∀xA(x) iff ∀v ∈ R(u)∀a ∈ Dn
v M, v  A(a).

Proof By induction, similar to the previous lemma. The base (with n = 0)
follows from Lemma 3.2.17. For the induction step we have:

u  ∀y ∀xA(y,x) iff ∀v ∈ R(u)∀b ∈ Dv v  ∀xA(b,x) (by 3.2.14)

iff ∀v ∈ R(u)∀b ∈ Dv ∀w ∈ R(v)∀c ∈ Dn
w w  A(b, c) (by the induction hypoth-

esis) iff ∀w ∈ R(u)∀a ∈ Dn+1
w w  A(a).

In the latter equivalence, ‘if’ follows from the transitivity of R and the in-
clusion Dv ⊆ Dw for w ∈ R(v); to prove ‘only if’, for given u,w, a, take v = w
and b = a1, c = (a2, . . . , an). �

Definition 3.2.20 A modal (respectively, intuitionistic) predicate formula A is
said to be true in a Kripke model (respectively, intuitionistic Kripke model) M
if its universal closure ∀̄A is true at every world of M .

This is denoted by M � A in the modal case and by M  A in the intuition-
istic case.

The set of all modal (respectively, intuitionistic) sentences that are true in

M is denoted by MT(=)(M) (respectively, IT(=)(M)) and called the modal
(respectively, the intuitionistic) theory of M (with or without equality).

9By default, in the notation A(x) we suppose that the list x is distinct.
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Lemma 3.2.21 Let M be an N -modal or intuitionistic predicate Kripke model
with a system of domains D, A(x1, . . . , xn) a predicate formula of the corre-
sponding type. Then

M � () A(x1, . . . , xn) iff ∀u ∈M ∀a1, . . . , an ∈ Du M,u � () A(a1, . . . , an).

Proof Follows easily from Lemma 3.2.18, 3.2.19. E.g. in the intuitionistic case
we have

M  ∀xA(x) iff ∀u ∀v ∈ R(u)∀a ∈ Dn
v M, v  A(a)

iff ∀v ∀a ∈ Dn
v M, v  A(a).

In the latter equivalence, ‘if’ is trivial; to show ‘only if’, take u = v. �

Definition 3.2.22 A modal (respectively, intuitionistic) predicate formula A is
said to be valid in a Kripke frame (respectively, S4-based Kripke frame) F if it
is true in all Kripke models (respectively, intuitionistic Kripke models) over F.

Validity is denoted by F � A in the modal case and by F  A in the
intuitionistic case. The set of all modal formulas valid in a Kripke frame F
is denoted by ML(F) or ML=(F), respectively, for the cases without or with
equality. For the intuitionistic case the set of valid formulas is denoted by IL(F)
or IL=(F).

Definition 3.2.23 Let Σ be a set of modal (respectively, intuitionistic) sen-
tences. We say that Σ is valid in a Kripke frame F (of the corresponding type)
if every formula from Σ is valid in F; or equivalently, we say that F is a Σ-frame.

F � Σ (or F  Σ) denotes that Σ is valid in F. The class of all Σ-frames is
denoted by V(Σ) and called modally (respectively, intuitionistically) definable
(by Σ).

Lemma 3.2.24 Let F be an N -modal (respectively, intuitionistic) Kripke frame,
A an N -modal (respectively, intuitionistic) propositional formula. Then F � A
iff Fπ � A (respectively, F  A iff Fπ  A), i.e., L(=)(F)π = L(Fπ), where L
is ML or IL.

Proof Easy from definitions. Valuations in Fπ are in principle the same
as valuations of proposition letters in F; more precisely, a valuation ξ in F
corresponds to the valuation ξ′ in Fπ such that

ξ′(q) = ξ+(q) = {u | u ∈ ξu(q)},

for any q ∈ PL0, and both ξ, ξ′ are extended to propositional formulas in the
same way. So (F, ξ), u � A iff (Fπ, ξ

′), u � A and similarly for the intuitionistic
case. Finally note that every propositional valuation in Fπ is ξ′ for some valua-
tion ξ in F. In fact, we can define ξ+ as ξ′ on propositional letters and trivially
on other predicate letters (e.g. by putting ξ+(P )(a) = ∅). This determines ξ
by 3.2.7(2). �
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Lemma 3.2.25 Let M be an S4-based predicate Kripke model, M0 its pattern.
Then for any A ∈ IF=, M0  A iff M � AT , and thus

A ∈ IT(M0) iff AT ∈ MT(M).

Proof From 3.2.14, 3.2.19. �

Proposition 3.2.26 Let F be an S4-based Kripke frame, A an intuitionistic
formula with equality. Then

F  A iff F � AT .

Proof (Only if.) Assume F  A. Then for any modal Kripke model M over
F we have M0  A, which implies M � AT by 3.2.24. Hence F � AT .

(If.) Assume F � AT . Then for any intuitionistic model M over F we have
M � AT , which implies M  A, by 3.2.24 (remember that M0 = M). Hence
F  A. �

Lemma 3.2.27 Let A(x), B(x) be congruent N -modal (respectively, intuition-
istic) formulas, |x| = n, and let M be an N -modal (respectively, intuitionistic)
Kripke model. Then for any u ∈M , a ∈ Dn

u

M,u � ()A(a) iff M,u � ()B(a).

Proof We begin with the modal case. Consider the following equivalence
relation between N -modal formulas:

A ∼ B := FV (A) = FV (B) and for any distinct list of variables x such that

FV (A) = r(x), for any u ∈M, a ∈ D
|x|
u

M,u � [a/x]A⇔M,u � [a/x[B. (♯)

Our aim is to show that A ⊜ B implies A ∼ B.
By Proposition 2.3.14 this implication follows from the properties (1)–(4).

So let us check these properties for ∼

(1) QyA ∼ Qz(A[y 7→ z]) for y 6∈ BV (A), z 6∈ V (A).

We consider only the case Q = ∃. Suppose FV (∃yA) = r(x) for a distinct
x. Then there are two subcases.

(i) y 6∈ FV (A) (and thus y 6∈ V (A)).

In this case A[y 7→ z] = A, so

∃z(A[y 7→ z]) = ∃zA, [a/x]∃yA = ∃y[a/x]A,
[a/x]∃zA = ∃z[a/x]A.

By 3.2.10 we have M,u � ∃y[a/x]A ⇔ M,u � [a/x]A, since y is not
free in [a/x]A. Similarly,

M,u � ∃z[a/x]A⇔M,u � [a/x]A,

so (♯) holds.
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(ii) y ∈ FV (A). Then again (since y 6∈ r(x))

[a/x]∃yA = ∃y[a/x]A, [a/x]∃z(A[y 7→ z]) = ∃z[a/x](A[y 7→ z]).

Hence

M,u � [a/x]∃yA⇔ ∃d ∈ Du M,u � [d/y][a/x]A(= [ad/xy]A = [a/x][d/y]A)

Similarly

M,u � [a/x]∃z(A[y 7→ z]) ⇔ ∃d ∈ Du M,u � [a/x][d/z](A[y 7→ z]).

But since y 6∈ BV (A), z 6∈ V (A), we have

[d/y]A = A[y 7→ d] = (A[y 7→ z])[z 7→ d] = [d/z](A[y 7→ z]).

Thus (♯) holds in this case too.

(2) Supposing A ∼ B, let us show that

QyA ∼ QyB for Q = ∀;

the case Q = ∃ is quite similar.

Obviously, FV (A) = FV (B) implies FV (∀yA) = FV (∀yB); let r(x) =
FV (∀yA). Then

M,u � [a/x]∀yA(= ∀y[a/x]A) ⇔ ∀d ∈ Du M,u � [d/y][a/x]A(= [ad/xy]A),

and similarly

M,u � [a/x]∀yB ⇔ ∀d ∈ Du M,u � [ad/xy]B.

Now if y ∈ FV (A) = FV (B), then we use the hypothesis (♯) forA,B,xy, ad.

If y 6∈ FV (A), then FV (A) = FV (B) = r(x),

[ad/xy]A = [a/x]A, [ad/xy]B = [a/x]B,

so we can use (♯) for A,B,x,a. Anyway

M,u � [a/x]∀yA⇔M,u � [a/x]∀yB.

(3) Supposing A ∼ A′, B ∼ B′, we prove that (A ∗ B) ∼ (A′ ∗ B′). Let us
consider the case ∗ = ∧.

Obviously

FV (A ∧B) = FV (A) ∪ FV (B) = FV (A′) ∪ FV (B′) = FV (A′ ∧B′).

Let r(x) = FV (A∧B). Then its subset FV (A) is r(x·σ) for some injection
σ and FV (B) = r(x · τ) for some injection τ . Obviously

[a/x]A = [a · σ/x · σ]A, [a/x]B = [a · τ/x · τ ]B,
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and similarly for A′, B′;

hence

M,u � [a/x](A ∧B) ⇔M,u � [a/x]A & M,u � [a/x]B ⇔
M,u � [a · σ/x · σ]A & M,u � [a · τ/x · τ ]B.

Similarly

M,u � [a/x](A′ ∧B′) ⇔M,u � [a · σ/x · σ]A′ & M,u � [a · τ/x · τ ]B′.

Since A ∼ A′, B ∼ B′, this implies (A ∧B) ∼ (A′ ∧B′).

(4) Supposing A ∼ B, let us show �iA ∼ �iB.

Obviously, FV (�iA) = FV (A) = FV (B) = FV (�iB). Next,

M,u � [a/x]�iA(= �i[a/x]A) ⇔ ∀v ∈ Ri(u) M, v � [a/x[A,

and similarly for B.

Since A ∼ B, these two conditions are equivalent.

In the intuitionistic case note that A ⊜ B implies AT ⊜ BT , by 2.11.4. So
by applying the modal case and Lemma 3.2.16 we obtain:

M,u  A(a) iff M,u � AT (a) iff M,u � BT (a) iff M,u  B(a).

�

Lemma 3.2.28 Let A be a modal (respectively, intuitionistic) formula valid in
a Kripke frame (respectively, an S4-based Kripke frame) F. Then every formula
congruent to A is valid in F.

In other words, the sets ML(=)(F), IL(=)(F) are closed under congruence.

Proof By Lemmas 3.2.27, 3.2.18, 3.2.19. �

Lemma 3.2.29 For any classical Du-formula A

M,u � A iff Mu � A (in the classical sense).10

Proof By induction. The classical and modal truth definitions coincide in
this case. �

Lemma 3.2.30 Let M be an N -modal (respectively, intuitionistic) Kripke model,
A an N -modal (respectively, intuitionistic) predicate formula such that M � A
(respectively, M  A). Then for any variable substitution [y/x], M � [y/x]A
(respectively, M  [y/x]A).

10Mu was defined in 3.2.5.
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Proof We consider only the modal case; the intuitionistic case is quite similar.
We may assume that FV (A) = r(x). We may also assume that r(y) ∩

BV (A) = ∅ (otherwise change A to a congruent formula with this property and
use 3.2.27). As y may be not distinct, we present it as y = z ·σ for some distinct
list z and a map σ : In −→ Im, where n = |y| = |x|, m = |z|. By 3.2.21,

M � [y/x]A iff ∀u ∈M ∀c ∈ Dm
u M,u � [c/z][y/x]A.

Now note that [c/z][y/x]A ⊜ [(c · σ)/x]A by 2.4.2 (4). By 3.2.21, M � A
implies M,u � [(c · σ)/x]A, hence M,u � [c/z][y/x]A by 3.2.27, and therefore
M � [y/x]A. �

Theorem 3.2.31 (Soundness theorem)

(I) The set ML(=)(F) of all modal predicate formulas (with equality) valid in
a predicate Kripke frame F is a modal predicate logic (with equality).

(II) The set IL(=)(F) of all intuitionistic predicate formulas (with equality)
valid in an S4-based Kripke frame F is a superintuitionistic predicate logic
(with equality). Moreover, IL(=)(F) = TML(=)(F).

Proof
(I) Let F be an N -modal predicate Kripke frame. The axioms of KN are

obviously valid, since they are valid in every propositional Kripke frame and we
can apply 3.2.24.

Let M be a Kripke model over F. The classical first-order axioms and the
axioms of equality are true in every Mu; so by Lemma 3.2.29, they are true in
M .

It is also easy to check that modus ponens preserves the truth in a Kripke
model. In fact, suppose M � A, A ⊃ B, and let x be a list of parameters of
(A ⊃ B), |x| = n. Then by 3.2.21, for any u ∈M, a ∈ Dn

u

M,u � [a/x]A, [a/x]A ⊃ [a/x]B,

hence M,u � [a/x]B. Thus M � B by 3.2.21.
To verify �-introduction, note that

M,u � [a/x]�A iff ∀v ∈ R(u) M, v � [a/x]A,

and the right hand side of the equivalence follows from M � A by 3.2.21.
Next, consider the ∀-introduction rule. If M � A(y, x1, . . . , xn), then by

Lemma 3.2.21,

∀u ∀b, a1, . . . , an ∈ Du M,u � A(b, a1, . . . , an),

and thus
∀u ∀a1, . . . , an ∈ Du M,u � ∀yA(y, a1, . . . , an);

hence M � ∀yA(y, x1, . . . , xn) again by Lemma 3.2.21. Thus ∀-introduction
preserves the truth in M .
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The only nontrivial part of the proof is to show that the substitution rule
preserves validity.

So suppose F � A, and consider a simple formula substitution S = [C(x,y)/P (x)],
where P occurs11 in A, P ∈ PLn, n > 012 and x, y are disjoint lists of different
variables such that

r(y) ⊆ FV (C) ⊆ r(xy).

Recall that SA is obtained by appropriate replacements from a clean version A◦

of A such that BV (A◦)∩ r(y) = ∅. By Lemma 3.2.28, A and A◦ are equivalent
with respect to validity, so we may assume that A is clean andBV (A)∩r(y) = ∅.
As we know from 2.5.26,

r(y) = FV (S) ⊆ FV (SA) ⊆ FV (A) ∪ FV (S),

so BV (A) ∩ FV (SA) = ∅.
Let us fix a distinct list z such that r(z) = FV (A) ∪ FV (S) (for example,

put z = yt, where r(t) = FV (A)−FV (S)); so r(y) ⊆ FV (SA) ⊆ r(z). Due to
our assumption, r(z) ∩BV (A) = ∅.

Now for an arbitrary Kripke model M = (F, ξ), let us show that M � SA,
i.e. for any u ∈ F and c ∈ Dm

u

M,u � [c/z]SA, (1)

where m = |z|.
To verify this (for certain fixed u and c), consider another model M1 = (F, η)

such that

• for any v ∈ F↑u, a ∈ Dn
v

M1, v � P (a) iff M, v � C(a, c′),

where c′ is the part of c corresponding to y (i.e., if y = z1 . . . zk, then
c′ = c1 . . . ck);

• for any other atomic Dv-sentence Q

M1, v � Q iff M, v � Q.

Thus ηv(P ) = {a ∈ Dn
v |M, v � C(a, c′)}.

Now consider a subformula B of A. Since FV (B) ⊆ FV (A) ∪ BV (A), we
can present B as B(z,q)13, where q is distinct, r(q) = BV (A).

Then by 2.5.26

FV (SB) ⊆ FV (S) ∪ FV (B) ⊆ r(zq),

11The case when P does not occur in A is trivial.
12There is a little difference in the case when n = 0 (then x is empty), but we leave this to

the reader.
13Of course, this only means that FV (B) ⊆ r(zq).
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So we can also present SB as (SB)(z,q).
Certainly we can use the same presentation in the trivial case when P does

not occur in B (and SB = B). Now let us prove the following

Claim. For any v ∈ F ↑u and tuple a in Dv such that |a| = |q|

M1, v � B(c,a) iff M, v � (SB)(c,a). (2)

This is proved by induction. It is essential that B (as a subformula of A) is
clean, otherwise the argument is inapplicable, because SB can be constructed
by induction only for clean formulas.

• The case when B is atomic and does not contain P is trivial, then SB = B
and

M1, v � B(c,a) ⇔M, v � B(c,a)

by the definition of M1.

• IfB is atomic and contains P , it has the form P (t1, . . . , tn), where t1, . . . , tn
are variables from the list zq, q consists of parameters of B that are not
in z (i.e. r(q) = FV (B) ∩BV (A)). So we have B = P ((zq) · σ) for some
σ : In −→ Ik, k = |zq|. Then

B(c,a) = [ca/zq]P ((zq) · σ) = P ((ca) · σ),

(SB)(c,a) = [ca/zq]SP ((zq) ·σ) = [ca/zq]C((zq) ·σ,y) = C((ca) ·σ, c′).

Recall that y transforms to c′ when z transforms to c. So in this case

M1, v � B(c,a) iff M, v � (SB)(c,a)

by the definition of M1.

• If B = B1 ∨B2, then
M1, v � B(c,a) iff (M1, v � B1(c,a) ∨M1, v � B2(c,a)) iff
(M, v � (SB1)(c,a) or M, v � (SB2)(c,a)) iff M, v � (SB)(c,a).

• If B = ∃tB1, then

M1, v � B(c,a) iff ∃d ∈ Dv M1, v � B1(c,a′) iff ∃d ∈ Dv M, v �
(SB1)(c,a′)

(by the induction hypothesis) iff M, v � (∃t SB1)(c,a)(= (SB)(c,a)).

Here a′ denotes the tuple obtained from a by putting d in the position
corresponding to t, i.e. if t = qi (in q), then bi = d and bj = aj for j 6= i.

Let us explain the first equivalence in more detail; the third equivalence
is checked in the same way. In fact, we have

B(c,a) = [ca/zq]B = [câi/zq̂i]B,

where q̂i is obtained by eliminating qi = t from q and respectively âi is
obtained by eliminating ai from a, since t is bound in B. So by definition,

M, v � B(c,a) iff ∃d ∈ Dv M, v � [d/t][câi/zq̂i]B1,

and the latter Dv-sentence is B1(c,a′).
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• If B = �iB1, then M1, v � B(c,a) iff

∀w ∈ Ri(v) M1, w � B1(c,a) iff ∀w ∈ Ri(v) M,w � (SB1)(c,a) (by the
induction hypothesis) iff M, v � �i(SB1)(c,a)(= (SB)(c,a)).

• The remaining cases: B = C ⊃ D, C ∧D, ∀xC(x, z) are quite similar.

Now (1) easily follows from (2). In fact, (1) is equivalent to

M,u � [ac/qz]SA

for any a ∈ Dn
u since r(q) ∩ FV (SA) = ∅. By (2), this is equivalent to

M1, u � [ac/qz]A (= [c/z]A),

which holds since F � A.
(II) By Proposition 3.2.26, F  A iff F � AT . This is exactly the same as

A ∈ IL(=)(F) iff AT ∈ ML(=)(F). So we obtain: IL(=)(F) = TML(=)(F), and

thus IL(=)(F) is an s.p.l. (=), by Proposition 2.11.8. �

In accordance with Section 2.16, the set ML(=)(F) is called the modal logic
of F (respectively, with or without equality). Similarly, for an intuitionistic F,

its superintuitionistic logic is IL(=)(F).
For a class of N -modal frames C we define the modal logic determined by C

(or complete w.r.t. C)

ML(=)(C) :=
⋂

{ML(=)(F) | F ∈ C},

and similarly for superintuitionistic logics.

Definition 3.2.32 (N -modal) Kripke (frame) semantics KN (or K=
N , for logics

with equality) is generated by the class of all N-modal predicate Kripke frames.

Similarly intuitionistic Kripke (frame) semantics K
(=)
int is generated by the class

of all intuitionistic predicate Kripke frames. K
(=)
N -complete or K

(=)
int -complete

logics are called Kripke (frame) complete (or K-complete if there is no confu-
sion).

Here is another version of soundness.

Lemma 3.2.33 Let M be a modal (respectively, intuitionistic) Kripke model,
L an m.p.l.(=) (respectively, s.p.l.(=)), Γ a modal (respectively, intuitionistic)
theory without constants, such that M �() L ∪ Γ. Then for any A ∈ IF (=),

Γ ⊢L A⇒M �() ∀A.

Proof By induction on the length of an L-deruvation of A from Γ.
If A ∈ Γ the claim is trivial.
If A ∈ L, then ∀A ∈ L, so the claim is also trivial.
It is clear that the truth in M respects MP , cf. the proof of 3.2.31.
Finally, if A = ∀xB and M � () ∀B, then also M � () ∀A, since QH ⊢

∀A ≡ ∀B and we can apply soundness. �
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Definition 3.2.34 If F is a propositional Kripke frame, K(F ) (or KF ) denotes

the class of all predicate Kripke frames based on F . ML(=)(K(F )) is called
the modal logic (with equality) determined over F . Similarly we define K(C)
(or KC) for a class of N -modal propositional frames C and the modal logic
determined over C.

We also define the superintuitionistic logic determined over a propositional
S4-frame F as IL(=)(KF ) and similarly for a class of S4-frames C.

We may regard KC as a semantics for a certain class of logics. In particular,
for a propositional modal logic Λ, the class KV(Λ) generates the semantics of
all Kripke-complete logics containing Λ.

Proposition 3.2.35 K
(=)
int is the intuitionistic version of KV(S4). Thus

IL(=)(C) = TML(=)(C) for any class of S4-based predicate frames C.

Proof According to Definition 2.16.16, the first assertion is equivalent to
3.2.26. The second one follows easily, cf. the proof of 2.16.18. �

Proposition 3.2.36 For a class of propositional Kripke frames C,

(ML(=)(KC))π = ML(C)

and
(IL(=)(KC))π = IL(C)

in the intuitionistic case.

Proof By Lemma 3.2.24, we obtain (where L is respectively ML or IL)

(L(=)(KC))π = (
⋂
{L(=)(F) | F ∈ KC})π =

⋂
{L(=)(F)π | F ∈ KC} =⋂

{L(F ) | F ∈ C} = L(C).

�

3.3 Morphisms of Kripke frames

In this section we extend the notions of a frame morphism, a generated subframe
and a p-morphism to the predicate case.

Definition 3.3.1 Let F = (F,D), F′ = (F ′, D′) be predicate Kripke frames
based on F = (W,R1, . . . , RN ), F ′ = (W ′, R′

1, . . . , R
′
N ) respectively. A mor-

phism from F to F′ is a pair f = (f0, f1) such that

(1) f0 : F −→ F ′ is a morphism of propositional frames;

(2) f1 = (f1u)u∈W ;

(3) every f1u : Du −→ D′
f0(u) is a surjective map;



236 CHAPTER 3. KRIPKE SEMANTICS

(4) uRiv ⇒ f1u = f1v ↾ Du.

f0 is called the world component, f1 the individual component of (f0, f1).

Definition 3.3.2 Let f = (f0, f1) be a morphism from F to F′.

• f is called an equality-morphism (briefly, =-morphism) if every f1u is a
bijection.

• f is called a p-morphism if f0 is surjective (i.e., f0 is a p-morphism of
propositional frames).

• f is called a p=-morphism if it is a p-morphism and an =-morphism.

• f is called an isomorphism if it is an =-morphism and f0 is an isomor-
phism of propositional frames.

Definition 3.3.3 A morphism of predicate Kripke models M = (F, ξ) and
M ′ = (F′, ξ′) is a morphism (f0, f1) of their frames F and F′ preserving the
truth values of atomic formulas, i.e., such that for any P ∈ PLm, m ≥ 0, u ∈
F ; b1, . . . , bm ∈ Du

M,u � P (b1, . . . , bm) iff M ′, f0(u) � P (f1u(b1), . . . , f1u(bm)).

A p-morphism of Kripke models is a morphism of Kripke models, which is
a p-morphism of their frames. Similarly for =-, p=-morphisms and isomor-
phisms.

The notation (f0, f1) : M −→M ′ means that (f0, f1) is a morphism from M
to M ′, and similarly for frames. As in the propositional case, p-morphisms of
predicate Kripke frames (models) are denoted by ։. We also use the notation
−→= for =-morphisms, ։= for p=-morphisms, ∼= for isomorphisms.

Lemma 3.3.4

(1) For a predicate Kripke frame F = (F,D), the identity morphism idF :=
(idW , f1), where f1u := idDu

for any u, is an isomorphism.

(2) For morphisms of predicate Kripke frames (f0, f1) : F −→ F′ and (g0, g1) :
F′ −→ F′′, consider the composition

(f0, f1) ◦ (g0, g1) := (g0, g1) · (f0, f1) := (f0 ◦ g0, (f1u ◦ g1u)u∈F ).

This is a morphism F −→ F′′.

(3) The composition of =-morphisms is an =-morphism; similarly for p(=)-
morphisms and isomorphisms.

(4) The statements (1)–(3) also hold for Kripke models, with obvious changes.
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Proof An easy exercise; use Lemma 1.3.32. �

Thus we obtain the categories PKF
(=)
N of N -modal predicate Kripke frames

and (=)-morphisms, with the composition ◦ and the identity morphism idF.
One can easily check the following

Lemma 3.3.5 Isomorphisms in PKF
(=)
N are exactly isomorphisms in the sense

of Definition 3.3.2.

In a similar way we can define the categories PKF
(=)
int of intuitionistic Kripke

frames, PKM
(=)
N of N -modal Kripke models, PKM

(=)
int of intuitionistic Kripke

models; the details are left to the reader.

Definition 3.3.6 Let F = (W,R1, . . . , RN ) be a propositional Kripke frame. A
predicate Kripke frame morphism over F is a morphism of the form (idW , f1) :
(F,D) → (F,D′).

The following is obvious

Lemma 3.3.7 The composition of (=)-morphisms over F is an (=)-morphism
over F .

Thus we can also consider the categories of frames over F and (=)-morphisms.
But the case with equality is not so interesting, because all =-morphisms over
F are isomorphisms.

Definition 3.3.8 Let F , F ′ be propositional Kripke frames, h : F ′ −→ F , and
let F = (F,D) be a predicate Kripke frame. Then we say that a Kripke frame
F′ = (F ′, D′) is obtained from F by changing the base along h if D′

u = Dh(u)

for all u ∈ F . This frame F′ is denoted by h∗F.

Lemma 3.3.9 Under the conditions of Definition 3.3.8, there exists a ‘canon-
ical’ =-morphism (h, g) : h∗F −→= F; if h is a p-morphism, then (h, g) is a
p=-morphism.

Proof Put
gu := idD′

u
: D′

u −→ Dh(u).

Then (h, g) : (F ′, D′) −→ (F,D) by Definition 3.3.1. �

Now let us show that every morphism is represented as a specific composi-
tion:

Proposition 3.3.10 Every (=)-morphism of predicate Kripke frames (f0, f1) :
F′ −→ F can be presented as a composition of an (=)-morphism over the propo-
sitional base F ′ of F′ and the canonical morphism:

(idW ′ , f1) (f0, g)
(f0)∗F F.F′
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Moreover, (idW ′ , f1) is a unique morphism (idW ′ , h1) over F ′ such that
(f0, f1) = (idW ′ , h1) ◦ (f0, g).

Proof In fact,

(idW ′ , h1) ◦ (f0, g) = (f0, f1)

iff idW ′ ◦ f0 = f0 (which is true) and for any u

f1u = h1u ◦ gu = h1u ◦ idD′
u

= h1u,

i.e. iff f1 = h1. �

Proposition 3.3.11 If (f0, f1) : M −→(=) M ′, then for any u ∈ M , B ∈

MS
(=)
N (Du)

M,u � B iff M ′, f0(u) � f1u ·B,

where f1u ·B is obtained from B by replacing occurrences of every a ∈ Du with
f1u(a).

If the models are intuitionistic, the same holds for the intuitionistic forcing
and B ∈ IS(=)(Du).

Proof By induction on the complexity of B we prove the claim for any u. Let
us check only two cases

(1) B = �jC. Then

M,u � B iff ∀v ∈ Rj(u) M, v � C iff ∀v ∈ Rj(u) M ′, f0(v) � f1v · C

by the induction hypothesis.

Since f0 is a morphism, we have R′
j(f0(u)) = f0[Rj(u)]. By Definition 3.3.1,

f1u(a) = f1v(a) for any a ∈ Du, v ∈ Rj(u); hence f1v · C = f1u · C for any
Du-sentence C.

So
M,u � B iff ∀v′ ∈ R′

j(f0(u)) M ′, v′ � f1u · C iff M ′, f0(u) � �j(f1u · C) (=
f1u · B).

(2) B = ∃xC(x,a), where ∃xC(x,y) is a generator of B, a is a tuple from
Du. Then

M,u � B iff ∃b ∈ Du M,u � C(b, a) iff

∃b ∈ Du M
′, f0(u) � C(f1u(b), f1u · a) (by induction hypothesis) iff

∃c ∈ D′
f0(u) M

′, f0(u) � C(c, f1u · a) (since f1u[Du] = D′
f0(u)) iff

M ′, f0(u) � ∃xC(x, f1u · a).

The intuitionistic case now follows easily by Gödel–Tarski translation. �

Proposition 3.3.12 Let (f0, f1) : F −→ F′, and let M ′ be a Kripke model
over F′. Then there exists a unique model M over F such that (f0, f1) : M −→
M ′, and similarly for ։, −→=, ։=. If M ′ is intuitionistic, then M is also
intuitionistic.
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Proof In fact, if M ′ = (F′, ξ′), then M = (F, ξ) is uniquely determined by
the equalities

ξv(Pm
k ) := {b ∈ Dm

v | f1v · b ∈ ξ′f0(v)(P
m
k )}

for any v ∈ F, m > 0, where

f1v · (b1, . . . , bm) := (f1v(b1), . . . , f1v(bm)),

and

ξv(P 0
k ) :=

{
{v} if ξ′f0(v)(P

0
k ) = {f0(v)},

∅ otherwise.

Now suppose ξ′ is intutionistic. Then vRu implies f0(v)R′f0(u) and next
ξ′f0(v)(P

m
k ) ⊆ ξ′f0(u)(P

m
k ) (for m > 0), whence by definition

ξv(Pm
k ) ⊆ ξu(Pm

k ).

In the same way, we obtain

vRu & v ∈ ξv(P 0
k ) ⇒ u ∈ ξu(P 0

k ).

Thus ξ is intutionistic. �

Now let M be a Kripke model over F and consider changing the base of F.
By applying 3.3.12 to the canonical morphism (h, g) : h∗F → F, we obtain a
unique Kripke model M ′ over h∗F such that (h, g) : M ′ →M . We also say that
M ′ is obtained from M by changing the base along h and denote M ′ by h∗M .

Proposition 3.3.13 14 If there exists a p(=)-morphism F։(=) F′, then ML(=)(F) ⊆

ML(=)(F′), and similarly, IL(=)(F) ⊆ IL(=)(F′) for intuitionistic Kripke frames.

Proof Consider the modal case only. Let (f0, f1) : F։ F′, and assume that
F′ 6� A(x1, . . . , xn). So by Lemma 3.2.21, for some u′ ∈ F′, a1, . . . , an ∈ D′

u′ ,
for some model M ′ over F′ we have

M ′, u′ 6� A(a′1, . . . , a
′
n).

By Proposition 3.3.12, there exists a model M over F such that

(f0, f1) : M ։M ′.

Now since f0 and f1u are surjective, there exist u, a1, . . . , an, such that

u′ = f0(u), a′1 = f1u(a1), . . . , a′n = f1u(an),

and thus by Lemma 3.3.11, we obtain M,u 6� A(a1, . . . , an).
Therefore, F′ 6� A implies F 6� A. �

14Cf. [Ono, 1972/73], Theorem 3.4.
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Proposition 3.3.14 If there exists a p-morphism F ′ ։ F , then ML(=)(KF ′) ⊆

ML(=)(KF ) (and IL(=)(KF ′) ⊆ IL(=)(KF ) in the intuitionistic case).

Proof Consider the modal case. Let h : F ′ ։ F . For any F ∈ KF we have

ML(=)(KF ′) ⊆ ML(=)(h∗F) ⊆ ML(=)(F)

by Lemma 3.3.9 and Proposition 3.3.13. Hence

ML(=)(KF ′) ⊆ ML(=)(KF ).

�

Definition 3.3.15 Let F = (W,R1, . . . , RN ) be a propositional Kripke frame,
F = (F,D) a predicate Kripke frame, V ⊆ W . A subframe of F obtained by
restriction to V is defined as

F ↾ V := (F ↾ V,D ↾ V ),

where D ↾ V := (Du)u∈V . If M = (F, ξ) is a Kripke model, we define the
submodel

M ↾ V := (F ↾ V, ξ ↾ V ),

where
(ξ ↾ V )(Pm

k ) := (ξu(Pm
k ))u∈V .

If V is stable, the subframe F ↾ V and the submodel M ↾ V are called generated.

The notation M1 ⊆M means that M1 is a submodel of M .

Definition 3.3.16 A submodel M1 ⊆ M is called reliable if for any u ∈ M1,
for any Du-sentence A

M1, u � A iff M,u � A.

In this case obviously, MT(M) ⊆ MT(M1).

Definition 3.3.17 Similarly to the propositional case (Definition 1.3.14), we
define cones, rooted frames and rooted models:

F↑u := F ↾ (W↑u), M↑u := M ↾ (W↑u).

Lemma 3.3.18 (Generation lemma) Let F be a predicate Kripke frame, M
a Kripke model over F, V a stable set of worlds in F. Then

(1) there is an =-morphism (j, i) : F ↾= V −→ F (and M ↾ V −→= M), in
which j : V −→ W is the inclusion map and every iu is the identity map
on the corresponding domain;

(2) M ↾ V is a reliable submodel of M ;

(3) ML(=)(F) ⊆ ML(=)(F ↾ V ); similarly, for the intuitionistic case.
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Proof

(1) Obvious.

(2) Apply Proposition 3.3.11 and (1).

(3) Every valuation ξ′ in F ↾ V equals ξ ↾ V for a valuation ξ in F such that
ξu = ξ′u whenever u ∈ V . Such a ξ obviously exists, e.g. put

ξu(P ) :=

{
ξ′u(P ) if u ∈ V,
∅ otherwise.

If ξ′ is intuitionistic, then ξ is also intuitionistic, since V is stable. Now
the claim follows from (2).

�

Definition 3.3.19 If f : F −→ F′ is a morphism of Kripke frames and V is
stable in F, then f ↾ V := (j, i) ◦ f , where (j, i) is a morphism from 3.3.18(1),
is called the restriction of f to V . Restrictions of Kripke model morphisms are
defined in the same way.

Now Lemma 3.3.4 readily implies

Lemma 3.3.20 A restriction of an (=)-morphism (of Kripke frames or models)
to a generated subframe (or submodel) is an (=)-morphism (respectively, of
frames or models).

If G = F ↾ V , we also denote f ↾ V by f ↾ G.

Lemma 3.3.21 (1) ML(=)(F) =
⋂

u∈F

ML(=)(F↑u)

and analogously in the intuitionistic case.

(2) Every Kripke complete modal or superintuitionistic logic is determined by
a class of rooted predicated Kripke frames:

L(=)(C) = L(=)(C ↑),

where L is ML or IL,

C ↑:= {F↑u | F ∈ C, u ∈ F}.

Proof

(1) Similar to Lemma 1.3.26 (an exercise).

(2) Follows from (1).

�



242 CHAPTER 3. KRIPKE SEMANTICS

Definition 3.3.22 The notions ‘path’, ‘connectedness’, ‘component’, ‘non-
oriented path’ are obviously extended to the predicate case. Viz., a predicate
Kripke frame is called connected if its propositional base is connected; a non-
oriented path in (F,D) is the same as in F ; a component in (F,D) is its
restriction to a component in F .

Now we have a predicate version of 1.3.39.

Proposition 3.3.23 Let (Fi | i ∈ I) be a family of all different components of
a predicate Kripke frame F.

Then

(1) for any morphism f : F −→ G, every f ↾ Fi is a morphism;

(2) for any family of morphisms fi = (gi, hi) : Fi −→ G there is a joined
morphism

⋃
i∈I

fi : F −→ G defined as (g, h), with

g :=
⋃
i∈I

gi, h := (hu)u∈F , hu := (hi)u for u ∈ Fi;

(3) every morphism f : F −→ G is presented as
⋃
i∈I

(f ↾ Fi).

Proof

(1) Follows from Lemma 3.3.20.

(2) g is a morphism of propositional bases, by Propositon 1.3.39. Every hu

is surjective, since it coincides with some (hi)u. Finally, if u ∈ Fi, uRjv,
then v ∈ Fi, thus for any a ∈ Du

hu(a) = (hi)u(a) = (hi)v(a) = hv(a),

i.e. hu = hv ↾ Du.

(3) Trivial, by definition.

�

We write F1 ։ F2 to denote that there is a p-morphism from F1 onto F2.
Similarly to the propositional case, we give

Definition 3.3.24 A predicate Kripke frame F1 is called (=)-reducible to a
rooted predicate Kripke frame F2 if there exists u ∈ F1 such that
F1 ↑u։

(=) F2.

Definition 3.3.25 Let C1, C2 be classes of predicate Kripke frames. We say
that C1 is (=)-reducible to C2 if for any F2 ∈ C2 for any v ∈ F2 there exists
F1 ∈ C1 that is (=)-reducible to F2 ↑ v.

In the similar way reducibility is defined for classes of propositional Kripke
frames.
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C1 red
(=) C2 denotes that C1 is (=)-reducible to C2. It is clear that =-

reducibility implies reducibility.

Proposition 3.3.26 If C1 red
(=) C2 for classes C1, C2 of predicate Kripke frames,

then L(=)(C1) ⊆ L(=)(C2) (where L denotes ML in the modal case and IL in
the intuitionistic case).

Proof Suppose C1 red
(=) C2. Then for any F2 ∈ C2, v ∈ F2 there is F1 ∈

C1, u ∈ F1 such that F1 ↑u։
(=) F2 ↑v. Hence by 3.3.18 and 3.3.13

L(=)(F1) ⊆ L(=)(F1 ↑u) ⊆ L(=)(F2 ↑v),

and thus L(=)(F1) ⊆ L(=)(F2) by 3.3.21. Therefore L(=)(C1) ⊆ L(=)(F2) for
any F2 ∈ C2, which implies L(=)(C1) ⊆ L(=)(C2). �

Lemma 3.3.27 Let F be a propositional Kripke frame, u ∈ F . Then

K(F ↑u) = {F↑u | F ∈ KF}.

We shall denote the latter class by (KF ) ↑ u.

Proof The inclusion (KF ) ↑ u ⊆ K(F ↑ u) is trivial. The other way round, if
F′ = (F ↑ u,D′), then F′ = F ↑ u for the frame F = (F,D), where

Dv :=

{
D′

v if v ∈ F ↑u,
D′

u otherwise.

The system of domains D is expanding, since by 3.2.3, D′
u ⊆ D′

v for any v ∈
F ↑u. Thus F′ ∈ (KF ) ↑ u. �

Proposition 3.3.28 Let C be a class of N -modal propositional Kripke frames,

C ↑ := {F ↑u | u ∈ F, F ∈ C}.

Then

(1) K(C ↑) = (KC)↑ (= {F↑u | u ∈ F, F ∈ KC})

(2) ML(=)(KC) = ML(=)(K(C ↑)),

(3) IL(=)(KC) = IL(=)(K(C ↑)) if C is a class of S4-frames.

Proof (1) In fact,

K(C ↑) =
⋃
{K(F ↑u) | u ∈ F, F ∈ C},

(KC)↑=
⋃
{(KF )↑u | u ∈ F, F ∈ C},

and we can apply 3.3.27.
(2), (3) follow from (1) and 3.3.21(2). �
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Lemma 3.3.29 Let F1, F2 be propositional Kripke frames such that F1 redF2.
Then (KF1) red= (KF2).

Proof By assumption, there exists h : F1 ↑ u ։ F2 for some u. So by 3.3.9,
for any F2 ∈ KF2 there is a canonical

γ : h∗F2 ։
= F2,

and h∗F2 ∈ K(F1 ↑ u) = (KF1) ↑ u (by 3.3.27). Since h is surjective, for any
v ∈ F2, there is w ∈ F1 ↑u such that h(w) = v. Then by 1.3.32, the restriction
of h is a p-morphism

F1 ↑w = (F1 ↑u)↑w ։ F2 ↑v,

and it follows that
(h∗F2)↑w ։= F2 ↑v

by the restriction of γ. Since (h∗F2)↑w ∈ (KF1)↑w, we obtain (KF1) red= (KF2).
�

Proposition 3.3.30 If C1 red C2 for classes C1, C2 of propositional Kripke
frames, then (KC1) red= (KC2).

Proof Let F2 ∈ KC2, i.e. F2 ∈ KF2 for some F2 ∈ C2; then F2 ↑ v ∈ (KF2) ↑
v = K(F2 ↑v). Since C1 red C2, there exists F1 ∈ C1 such that F1 red (F2 ↑v).

By Lemma 3.3.29, (KF1) red= K(F2 ↑ v); thus F1 red
=(F2 ↑ v) for some

F1 ∈ KF1 ⊆ KC1. Therefore (KC1) red= (KC2). �

Corollary 3.3.31 If C1 red C2 for classes C1, C2 of propositional Kripke frames,
then ML(=)(KC1) ⊆ ML(=)(KC2) (and IL(=)(KC1) ⊆ IL(=)(KC2) for S4-
frames).

Proof By 3.3.30 and 3.3.26. �

Definition 3.3.32 We say that a Kripke frame (F,D′) is obtained by domain
restriction from (F,D) if for some V ⊆ D+, D′

u = Du ∩ V .
In this case we denote (F,D′) by (F,D) ∩ V .

Obviously this definition is sound iff V ∩Du 6= ∅ for any u ∈ F .

Proposition 3.3.33 If F is rooted, then (F,D) red (F,D) ∩ V .

Proof There exists a p-morphism over F

(idF , g) : (F,D)։ (F,D′) = (F,D) ∩ V.

In fact, we can define gu as an identity map on D′
u sending every a 6∈ V to some

fixed element of V . Then obviously, gv ↾ Du = gu whenever uRiv. �
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Definition 3.3.34 Let (Fi)i∈I be a family of predicate Kripke frames, Fi =
(Fi, Di). The disjoint sum (or disjoint union) of the family (Fi)i∈I is the frame

⊔

i∈I

Fi :=

(
⊔

i∈I

Fi, D

)
,

where
D(u,i) := (Di)u × {i}

for i ∈ I, u ∈ Fi.
If for each i ∈ I, Mi = (Fi, θi) is a Kripke model over Fi, the disjoint sum

(union) of (Mi)i∈I is the Kripke model

⊔

i∈I

Mi :=

(
⊔

i∈I

Fi, θ

)
,

where
θ(u,i)(P ) := {((a1, i), . . . , (an, i)) | (a1, . . . , an) ∈ (θi)u(P )}

for P ∈ PLn, n > 0 and

θ(u,i)(P ) :=

{
{(u, i)} if (θi)u(P ) = {u},
∅ otherwise

for P ∈ PL0.

Obviously, there exists an isomorphism from Fk (respectively, Mk) onto a
generated subframe in

⊔
i∈I

Fi (respectively,
⊔
i∈I

Mi), given by the pair (f0, f1)

such that
f0(u) := (u, k), f1u(a) := (a, k).

In particular, the definition of θ(u,i) yields

⊔

i∈I

Mi, (u, k) � P (f1u(a1), . . . , f1u(an)) iff Mk, u � P (a1, . . . , an).

Now we have an analogue of 1.3.38.

Proposition 3.3.35 Let (Fi | i ∈ I) be a family consisting of all different
components of a predicate Kripke frame F. Then F ∼=

⊔
i∈I

Fi.

Proof A required isomorphism is the map f from the proof of 1.3.38 together
with the family (idDu

)u∈F (as usual, we assume that F = (F,D)). �

Proposition 3.3.36

(1) ML(=)

(⊔
i∈I

Fi

)
=
⋂
i∈I

ML(=)(Fi), MT(=)

(⊔
i∈I

Mi

)
=
⋂
i∈I

MT(=)(Mi)

for the modal case.
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(2) IL(=)

(⊔
i∈I

Fi

)
=
⋂
i∈I

IL(=)(Fi), IT(=)

(⊔
i∈I

Mi

)
=
⋂
i∈I

IT(=)(Mi) for the

intuitionistic case.

Proof Similar to Lemma 1.3.28 using Lemma 3.3.21; a simple exercise for the
reader. �

Corollary 3.3.37 Kripke frame semantics K
(=)
N , K

(=)
int have the Collection Prop-

erty (cf. Definition 2.16.9).

Proposition 3.3.38 Every modally or intuitionistically definable class of pred-
icate Kripke frames is closed under generated subframes, disjoint sums and p(=)-
morphic images.15

Proof Validity is preserved for generated subframes by 3.3.18, for p(=)-morphic
images by 3.3.13, for disjoint sums by 3.3.36. �

Finally let us prove a predicate analogue of Lemma 1.3.45.

Lemma 3.3.39 Let L be a conically expressive N-m.p.l.(=). Then for any N -
modal Kripke model M such that M � L for any u ∈ M , for any Du-sentence
A

M,u � �∗A⇔ ∀v ∈ R∗(u)M, v � A,

where R∗ is the same as in Lemma 1.3.19.

Proof Similar to 1.3.45 and the soundness of the substitution rule in 3.2.31.
We fix M such that M � L, u ∈ M and a Du-sentence A. We may further
assume that M = M↑u. In fact, by 3.3.18, M ↾ u � L, and also

M,u � �∗A⇔M↑u, u � �∗A,

M, v � A⇔M↑u, v � A,

for any v ∈ R∗(u) (i.e., for any v ∈M↑u, by 1.3.19).
Now let M0 be a propositional model over the same propositional frame as

M(= M↑u), such that for any v ∈M

M0, v � p⇔M, v � A.

Then by induction we obtain for any propositional formula X(p) for any
v ∈M .

M0, v � X(p) ⇔M, v � X(A).

In particular, for any u ∈M and C from 1.3.43

M0, u � C(p) ⇔M,u � C(A) (= �∗A)

and so by 1.3.43,
M,u � �∗A⇔M0 ↑u(= M0) � p.

But by the choice of M0

M0 � p⇔ ∀v ∈ R∗(u) M0, v � p⇔ ∀v ∈ R∗(u) M, v � A.

Hence the claim follows. �
15p=-morphic images — if the class is definable by a set of formulas with equality.
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3.4 Constant domains

Definition 3.4.1 A predicate Kripke frame F has a constant domain (or F is
a CD-frame ) iff Du = Dv for any u, v ∈ F.

A CD-frame (F,D), in which V = Du for all u ∈ F , is denoted by F ⊙ V .

Proposition 3.4.2

(1) A rooted N -modal predicate Kripke frame F has a constant domain iff
∀i ∈ IN F � Bai.

(2) A rooted intuitionistic Kripke frame F has a constant domain iff F  CD.

Proof (1) (Only if.) Suppose M is a Kripke model over F and M,u |=
✸i∃xP (x). Then M, v |= P (a) for some v ∈ Ri(u), a ∈ Dv = Du. Hence
M,u |= ✸iP (a) and thus M,u � ∃x ✸iP (x).

(If.) Let u0 be a root of F. If F does not have a constant domain, then
Du 6= Dv for some u, v ∈ F, and thus Du 6= Du0 or Dv 6= Du0 . Consider
the first option. Then there exists a path u0Ri1u1, . . . , uk−1Rik

uk = u, so
Du0 ⊆ Du1 ⊆ . . . ⊆ Du. It follows that for some k Duk

⊂ Duk+1
.

Thus for some i, u, v we have Du ⊂ Dv, v ∈ Ri(u). Let a0 ∈ (Dv − Du).
Consider a model M = (F, ξ) such that (for a certain P ∈ PL1)

ξw(P ) :=

{
{a0} if a0 ∈ Dw,

∅ otherwise.

Then we have M, v |= ∃xP (x), and thus M,u |= ✸i∃xP (x); but M,u 6|=
∃x✸iP (x), since a0 6∈ Du.

(2) Let R be the relation in F.
(Only if.) IfM is an intuitionistic Kripke model over F andM,u  ∀x(P (x)∨

q), but M,u 6 q and M,u 6 ∀xP (x), then M, v 6 P (a) for some v ∈
R(u), a ∈ Dv = Du. Hence M,u 6 P (a) ∨ q, which contradicts M,u 
∀x(P (x) ∨ q) and uRu.

(If.) Let u be the root of F, and suppose Du 6= Dv for some v ∈W = R(u).
Since uRv, we have Du ⊂ Dv, so there exists a0 ∈ (Dv − Du). Consider the
valuation ξ in F such that for any w

ξw(P ) := Du,

ξw(q) :=

{
∅ if wRu,

{w} otherwise,

for a certain P ∈ PL1, q ∈ PL0 and ξw(Q) = ∅ for all other predicate letters
Q. It is clear that ξ is intuitionistic. Under this valuation we have u 6 q,
v 6 P (a0), and thus u 6 ∀xP (x) ∨ q; but u  ∀x(P (x) ∨ q).

In fact, suppose uRw. If wRu, then obviously Dw = Du, and thus w  P (a)
for any a ∈ Dw; on the other hand, w 6Ru implies w  q.

Therefore u 6 CD. �
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From Definition 3.4.1 it is clear that the class of CD-frames is closed under
generated subframes.

Definition 3.4.3 Modal and intuitionistic Kripke semantics with constant do-
mains are generated by CD-frames:

CK
(=)
N := {ML(=)(X ) | X is a class of N-modal CD-frames};

CK
(=)
int := {IL(=)(X ) | X is a class of intuitionistic CD-frames}.

The class of CD-frames is not closed under disjoint sums (the reader can easily
construct a counterexample), but there is an equivalent semantics generated by
a class with this property.

Definition 3.4.4 A predicate Kripke frame F = ((W,R1, . . . , RN ), D) is called
a local CD-frame if it satisfies

(*) ∀i∀u∀v (uRiv ⇒ Du = Dv).

Lemma 3.4.5 (1) For an N -modal frame F, F �
∧

i∈IN

Bai iff every cone F↑u

has a constant domain iff F is a local CD-frame.
(2) Similarly, for an intuitionistic F, F is a local CD-frame iff F  CD iff all
cones in F have constant domains.

Proof Easily follows from 3.4.2. �

Proposition 3.4.6

(1) The class of local CD-frames is closed under disjoint sums, generated sub-
frames and p-morphic images.

(2) CD-frames and local CD-frames generate equivalent semantics.

Proof
(1) By 3.4.5 and 3.3.38 this class is modally (or intuitionistically) definable, so
we can apply 3.3.38.
(2) Note that every CD-frame is a local CD-frame; on the other hand, if X is a
class of (N -modal) local CD-frames, then by Lemma 3.3.21,

ML(=)(X ) =
⋂
{ML(=)(F) | F ∈ X} =

⋂
{ML(=)(F↑u) | F ∈ X , u ∈ F}

= ML(=)({F↑u | F ∈ X , u ∈ F}),

and all the F↑u are CD-frames. �

Exercise 3.4.7 Show that the class of CD-frames is not closed under p-morphic
images, but closed under p=-morphic images.

Let us now describe morphisms of local CD-frames.
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Lemma 3.4.8 Every connected local CD-frame is a CD-frame.

Proof In a local CD-frame, if u, v are in the same component, then Du = Dv.
This easily follows by induction on the length of a non-oriented path from u
to v. �

Proposition 3.4.9

(1) If (f0, f1) : (F,D) ։ (F ′, D′) for a connected CD-frame (F,D), then all
the maps f1u (and certainly their targets D′

f0(u)) for u ∈ F coincide and

(F ′, D′) is a connected CD-frame.

(2) Conversely, assume that (F,D), (F ′, D′) are connected CD-frames, f :
F ։ F ′ and g : Du −→ D′

u is a surjective map. Then
(f, f1) : (F,D)։ (F ′, D′) for f1 = (g)u∈F .

Proof

(1) Again we show f1u = f1v by induction on the length of a non-oriented
path from u to v. It suffices to consider the case when uRiv. Then
f1u = f1v ↾ Du, so f1u = f1v as functions, since Du = Dv. The targets
coincide, due to the surjectivity.

From Lemma 1.3.42 we know that F ′ is connected. By 3.4.6, (F ′, D′) is
local CD, so it is CD by 3.4.8.

(2) Trivial by definition.

�

The p-morphism described in 3.4.9 is briefly denoted by f ⊙ g.

Corollary 3.4.10 Let F be a local CD-frame, (Fi | i ∈ I) a family of all its
different components. Then the p-morphisms F ։ G are exactly the maps of
the form

⋃
i∈I

fi, where every fi : Fi ։ G (as a p-morphism onto its image) has

the form described in 3.4.9.

Proof Note that every Fi is a CD-frame by 3.4.8 and apply Proposition 3.3.23.
�

Every Kripke frame over a propositional frame F is reducible to some Kripke
frame F ⊙ V ; for example, with a singleton V . More precisely, the following
proposition holds (its intuitionstic version was proved in [Ono, 1972/73]).

Proposition 3.4.11 Let F = (F,D) and F′ = F ′ ⊙ V be predicate Kripke
frames such that F is reducible to F ′ and |Du| ≥ |V | for any u ∈ F .

Then F is reducible to F′ and thus16 ML(F) ⊆ ML(F′) (and IL(F) ⊆
IL(F′) for the intuitionistic case).

16By Proposition 3.3.26.
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Proof Supposing h : F ↑ v ։ F ′ ↑ w, let us show

F ↑ v ։ F′ ↑ w.

To simplify notation, we assume that F = F↑v and F′ = F′↑w. Let a0 be a
fixed element of V , gv : Dv −→ V a surjective map. For every u ∈ F consider
the following surjective function gu : Du −→ V .

gu(a) :=

{
gv(a) if a ∈ Dv,

a0 otherwise.

It is clear that uRiu
′ implies gu = gu′ ↾ Du, so we obtain (h, g) : F ։ F′, and

thus ML(F) ⊆ ML(F′) by Proposition 3.3.13. �

Remark 3.4.12 Proposition 3.4.11 is not transferred to the case with equality.
In fact, 3.4.11 implies that

IL(F ⊙ V ) ⊆ IL(F ⊙ V ′) if |V | ≥ |V ′|.

But a similar assertion does not hold for logics with equality (even for infinite
V ′). In fact, consider the following formula [Skvortsov, 1989]:

A0 := ∃x∃y (x 6= y ∧ (P (x) ≡ P (y))).

Lemma 3.4.13 For a rooted F

F ⊙ V  A0 iff |HA(F )| 6≥ |V |.17

Proof Let M be an intuitionistic model over F ⊙ V and let u be the root of
F . Consider the sets

Ξa := {v ∈ F |M, v  P (a)}

for a ∈ V . It is clear that Ξa ∈ HA(F ).
(If.) If |HA(F )| � |V |, then Ξa = Ξb for some a 6= b (from V ) — otherwise

the map a 7→ Ξa embeds V in HA(F ). Then18 M,u  a 6= b ∧ (P (a) ≡ P (b)),
and thus M,u  A0.

(Only if.) Suppose |V | ≤ |HA(F )|. Let h : V −→ HA(F ) be an injection,
and consider a model M over F ⊙ V such that for any w

M,w  P (a) iff w ∈ h(a).

Then Ξa = h(a), and thus Ξa 6= Ξb, whenever a 6= b. Hence M,u 6 P (a) ≡ P (b)
whenever a, b ∈ V , a 6= b, and thus M,u 6 A0. �

Now consider an infinite rooted p.o. set F and a set V such that |V | > 2|F |.
Then |V | > |HA(F )|, so F ⊙ V  A0, by 3.4.13. On the other hand, if a set
V ′ is countable, for the same F we have F ⊙ V ′ 6 A0, by 3.4.13. Therefore
A0 ∈ (IL=(F ⊙ V ) − IL=(F ⊙ V ′)), while certainly |V ′| < |V |.

17Of course, we can replace 6≥ with < if we accept Axiom of Choice.
18Recall that M, u  a 6= b iff a, b are different.
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3.5 Kripke frames with equality

3.5.1 Introduction

Let us first make some informal comments about interpreting equality. In Kripke
frame semantics this interpretation is the simplest (Definition 3.2.10):

u � a = b iff a equals b.

But does this properly correspond to our intuitive understanding of equality?
In fact, we should evaluate a = b with respect to a certain world, so it might

happen that a and b are the same in a world u, but different in another world.
Examples of this kind are quite popular in literature.

As mentioned in the Introduction to Part II, there are also more formal rea-
sons for modifying the notion of predicate Kripke frame. For example, Lemma
3.10.5 (see below) shows that the principle of decidable equality DE is valid in
any intuitionistic Kripke frame. But from the intuitionistic point of view, equal-
ity is not always decidable. In particular, DE does not hold in intuitionistic
analysis — for real numbers or functions. So we should choose the interpreta-
tions of equality appropriately.

In classical model theory there exist two ways of dealing with equality. The
standard way is to interpret equality as coincidence of individuals (‘normal
models’). The second way is to interpret equality as an equivalence relation
preserving values of basic predicates. It is well-known that in classical logic
these two approaches are equivalent, because we can always take the quotient
domain modulo the equivalence relation corresponding to equality, and obtain
a logically equivalent ‘normal’ interpretation.

In Kripke models for intuitionistic or modal logics every stalk Mu is a clas-
sical ‘normal model’. But we can also use the second (‘equivalence’) approach
and interpret equality in a predicate Kripke frame as an equivalence relation on
every individual domain Du. Thus we obtain the notion of a predicate Kripke
frame with equality (KFE) and the corresponding semantics KE . This seman-
tics is stronger than the semantics of Kripke frames K for formulas with equality
— the crucial formula DE can be refuted in a KFE. Moreover, as we shall see,
KE is stronger than K for logics without equality.

We will also describe an equivalent semantics of ‘Kripke sheaves’. Kripke
sheaves are obtained from KFEs by taking quotients of individual domains
through the corresponding equivalence relation.

3.5.2 Kripke frames with equality

Definition 3.5.1 A predicate Kripke frame with equality (KFE) is a triple
(F,D,≍), in which (F,D) is a predicate Kripke frame and ≍ is a valuation for
the binary predicate symbol ‘=’ satisfying the standard equality axioms. In more
detail, if F = (W,R1, . . . , RN ), then ≍= (≍u)u∈W is a family of equivalence
relations (≍u ⊆ Du ×Du), which is Ri-stable for every i ∈ IN :

uRiv & a ≍u b⇒ a ≍v b.
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The following lemma gives an alternative definition of KFEs presenting them
as a kind of Ω-sets (see Chapter 4).

Lemma 3.5.2 (1) Let (F,D,≍) be a KFE, F = (W,R1, . . . , RN ). Consider
the function E : D+ ×D+ −→ 2W , such that for any a, b ∈ D+

E(a, b) = {u | a ≍u b}.

Then the following holds:

(E1) E(a, b) = E(b, a);

(E2) E(a, b) ∩ E(b, c) ⊆ E(a, c);

(E3)
⋃

a∈D+

E(a, a) = W ;

(E4) Ri(E(a, b)) ⊆ E(a, b) for i ∈ IN .

(2) Given a propositional Kripke frame F , a non-empty set D+, and a func-
tion E satisfying (E1)–(E4), we can uniquely restore the corresponding KFE as
(F,D,≍), with

Du := {a ∈ D+ | u ∈ E(a, a)}, ≍u := {(a, b) | u ∈ E(a, b)}.

Proof

(1) (E1), (E2) follow respectively from the symmetry and the transitivity of
≍u. The reflexivity of ≍u implies (E3) — it follows that u ∈ E(a, a)
for a ∈ Du, and such an a exists since Du 6= ∅. (E4) follows from the
Ri-stability of ≍.

(2) Note that

E(a, b) = E(a, b) ∩ E(b, a) ⊆ E(a, a)

by (E1), (E2) and similarly, E(a, b) ⊆ E(b, b). Thus u ∈ E(a, b) implies
u ∈ E(a, a) ∩ E(b, b), i.e. ≍u ⊆ Du ×Du.

(E1) implies the symmetry of ≍u, and (E2) implies the transitivity.

(E3) implies the non-emptiness of every Du. The reflexivity of ≍u is
obvious.

The Ri-stability of ≍ follows from (E4).

�

E(a, b) is called the measure of identity of a and b. E(a, a) is called the
measure of existence (or the extent) of a, and is also denoted by E(a).
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Definition 3.5.3 A KFE-model over a Kripke frame with equality F = (F,D,≍)
is a pair M = (F, ξ), where ξ is a valuation in (F,D) respecting the relations
≍u, i.e. such that for every P ∈ PLn, n ≥ 1 and a1, . . . , an, b1, . . . , bn ∈ D+

(a1, . . . , an) ∈ ξu(P ) & a1 ≍u b1 & . . . & an ≍u bn ⇒ (b1, . . . , bn) ∈ ξu(P ).

Then we define forcing M,u � A (for u ∈ F and a Du-sentence A) by the same
conditions as in Definition 3.2.10, with the following difference:

• M,u � a = b iff a ≍u b.

A KFE-model M is called intuitionistic if the corresponding model without
equality (F, ξ) is intuitionistic. In this case we define forcing M,u  A according
to Definition 3.2.13 with the only difference:

• M,u  a = b iff a ≍u b.

A modal predicate formula A is called true in M if ∀A is true at every world
of M ; similarly for the intuitionistic case.

Definition 3.5.4 A modal (respectively, intuitionistic) predicate formula A is
called valid in a KFE (respectively, S4-based KFE) F iff it is true in all KFE-
models (respectively, intuitionistic KFE-models) over F.

Again we use the notation M � A, F � A for the modal case; M  A, F  A
for the intuitionistic case.

Lemma 3.2.12 obviously transfers to KFE-models. Lemma 3.2.14 has the
following analogue.

Lemma 3.5.5 • M,u  ¬B iff ∀v ∈ R(u) M, v 6 B;

• M,u  a 6= b iff ∀v ∈ R(u) a 6≍v b.

We also have an analogue of 3.2.17:

Lemma 3.5.6 For an intuitionistic model M and Du-sentence A

M,u  A & uRv ⇒ M, v  A

Next we obtain analogues of 3.2.18, 3.2.19, 3.2.21 by the same arguments.

Lemma 3.5.7

(1) Let M be an N -modal KFE-model, A(x) an N -modal formula with FV (A) =
r(x), |x| = n. Then

(i) for any u ∈M

M,u � ∀xA(x) iff ∀a ∈ Dn
u M,u � A(a),

(ii) M � A(x) iff ∀u ∈M ∀a ∈ Dn
u M,u � A(a).
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(2) Let M be an intuitionistic KFE-model with the accessibility relation R, A(x)
an intuitionistic formula with FV (A) = r(x), |x| = n. Then

(i) for any u ∈M

M,u  ∀xA(x) iff ∀v ∈ R(u) ∀a ∈ Dn
v M, v  A(a),

(ii) M  A(x) iff ∀u ∈M ∀a ∈ Dn
u M,u  A(a).

Definition 3.5.8 Let F be an S4-based KFE, M a KFE-model over F. The
pattern of M is the intuitionistic KFE-model M0 over F such that for any u ∈ F
and any atomic Du-sentence A without equality

M0, u  A iff M,u � �A.

Let us check soundness of this definition:

Lemma 3.5.9 The pattern exists for every S4-based KFE-model.

Proof According to 3.5.3, we have to show that for any P ∈ PLn, a,b ∈ Dn
u

such that ∀i ai ≍u bi,

M,u � �P (a) iff M,u � �P (b). (∗)

In fact, by 3.5.1 for any v ∈ R(u), ai ≍v bi; hence

M, v � P (a) iff M, v � P (b)

by 3.5.3. Then

∀v ∈ R(u) M, v � P (a) iff ∀v ∈ R(u) M, v � P (b),

which implies (*).
Thus M0 always exists; it is intuitionistic by definition. �

Now there is an analogue of 3.2.16.

Lemma 3.5.10 Let M0 be the pattern of M ; then for any u ∈ M and for any
intuitionistic Du-sentence A

M0, u  A iff M,u � AT ,

and for any intuitionistic sentence A

M0  A iff M � AT

Proof The same as for 3.2.16, with a difference in the case when A is atomic
of the form a = b. Then we have

M0, u  a = b⇔ a ≍u b,
M, u � AT (= �(a = b)) ⇔ ∀v ∈ R(u) a ≍v b,

which is equivalent to a ≍u b by Definition 3.5.1. �
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Proposition 3.5.11 Let F be an S4-based KFE, A ∈ IF=. Then

F  A iff F � AT .

Proof The same as for 3.2.26 based on 3.5.7 and 3.5.10.
�

Corollary 3.5.12 For a class C of S4-based KFEs

IL(=)(C) = TML(=)(C).

Proof Follows from 3.5.11 as in the proof of 2.16.18. �

The set of formulas valid in a KFE F is denoted by ML(=)(F) (or IL(=)(F)).
This notation is not quite legal before we show soundness; the proof of soundness
is postponed until Section 3.6.

Lemma 3.5.13 For any KFE (F,D,≍), ML(F,D) ⊆ ML(F,D,≍).

Proof For formulas without equality the definitions of forcing in (F,D,≍)
and (F,D) are the same. Every valuation in (F,D,≍) is a valuation in (F,D),
so refutability of a formula in (F,D,≍) implies its refutability in (F,D). �

Remark 3.5.14 Not all valuations in (F,D) are admissible in (F,D,≍), so
it may happen that ML(F,D,≍) 6= ML(F,D). A trivial counterexample is
(F,D,≍) where F is a reflexive singleton, D is two-element and ≍ is univer-
sal. Then obviously (F,D) 6� ∃xP (x) ⊃ ∀xP (x), while (F,D,≍) � ∃xP (x) ⊃
∀xP (x).

On the other hand, predicate Kripke frames can be regarded as a particular
kind of KFEs.

Lemma 3.5.15

(1) Every Kripke frame F = (F,D) is associated with a simple KFE F= =

(F,D,≍), in which ≍u= idDu
for any u ∈ F . Then ML(=)(F) =

ML(=)(F=), and IL(=)(F) = IL(=)(F=) in the intutionistic case.

(2) A KFE (F,D,≍) is simple iff

∀a, b ∈ D+(a 6= b⇒ E(a, b) = ∅),

where E is the measure of identity (3.5.2).

Proof

(1) Valuations and the corresponding forcing relations in F and F= are just
the same.

(2) In fact, in a simple KFE, u ∈ E(a, b) implies a = b. The other way round,
if E(a, b) = ∅ whenever a 6= b, then a ≍u b holds only for a = b.
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�

Proposition 3.5.16 Let C be a class of N -modal propositional frames. Then
ML(KEC) = ML(KC). Similarly, for a class C of intuitionistic propositional
frames, IL(KEC) = IL(KC).

Proof Consider the modal case. If A ∈ ML(KEC), then A is valid in every
KFE over C. In particular, for any F ∈ KC, A is valid in the associated simple
frame F=. So by Lemma 3.5.15, A ∈

⋂
{ML(F) | F ∈ KC} = ML(KC).

The other way round, suppose A ∈ ML(KC). Then for any (F,D,≍) with
F ∈ C, we have A ∈ ML(F,D) ⊆ ML(F,D,≍) by Lemma 3.5.13. Hence
A ∈ ML(KEC). �

3.5.3 Strong morphisms

In this section we consider strong morphisms defined in an obvious way — as
morphisms of Kripke frames preserving equality. A larger class of morphisms
will be considered in Section 3.7.

Definition 3.5.17 Let F = (F,D,≍), F′ = (F ′, D′,≍′) be Kripke frames with
equality. A strong (p-)morphism from F to F′ is a (p-)morphism of frames
without equality f = (f0, f1) : (F,D) −→ (F ′, D′) (Definition 3.3.1) such that
for any u ∈ F, a, b ∈ D+

a ≍u b iff f1u(a) ≍′
f0(u) f1u(b).

A strong isomorphism is a strong morphism which is an isomorphism of frames
without equality.19 Strong morphisms of KFE-models are defined as morphisms
of their frames satisfying the reliability condition from Definition 3.3.2; similarly
for strong p-morphisms and strong isomorphisms.

Obviously, if the KFEs F = (F,D,≍), F′ = (F ′, D′,≍) are simple, then a
strong KFE-morphism from F to F′ is nothing but an =-morphism from (F,D)
to (F ′, D′).

Strong morphisms of KFE-frames and models are denoted by −→=, strong
p-morphisms by ։=, strong isomorphisms by ∼=.

Lemma 3.3.4 easily transfers to KFEs:

Lemma 3.5.18

(1) For a KFE F = (F,D,≍) the identity morphism idF := id(F,D) is a strong
isomorphism.

(2) The composition of strong morphisms (in the sense of 3.3.4) is a strong
morphism; similarly for p-morphisms and isomorphisms.

19Definition 3.3.2.
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This yields the categories ofN -modal KFEs and strong morphisms, intuitionistic
KFEs and strong morphisms, and similarly, of KFE-models.

Lemma 3.5.19 Strong isomorphisms are exactly isomorphisms in the category
of N -modal KFEs and strong morphisms.

Proof An exercise. �

Now we have an analogue of Proposition 3.3.11

Lemma 3.5.20 If (f0, f1) : M −→= M ′, for KFE-models M, M ′, then for
any u ∈ F and for any Du-sentence B

M,u � B iff M ′, f0(u) � f1u ·B,

where f1u · B is obtained from B by replacing occurrences of every c ∈ Du

with f1u(c).
If the models are intuitionistic, the same holds for any intuitionistic Du-

sentence (and the intuitionistic forcing).

Lemma 3.5.21 Let (f0, f1) : F −→= F′ be a KFE-morphism, and let M ′ be
a KFE-model over F′. Then there exists a unique model M over F such that
(f0, f1) : M −→= M ′, and similarly for ։=.

Proof As in the proof of 3.3.12, we put

ξu(P ) := {b |M ′, f0(u) � P (f1u · b)}

for any u ∈ F, P ∈ PLm. Then M = (F, ξ) is a KFE-model. In fact, we have
to check that

a ∈ ξu(P ) & ∀i ai ≍u bi ⇒ b ∈ ξu(P ),

i.e.
M ′, f0(u) � P (f1u · a) & a ≍u b ⇒M ′, f0(u) � P (f1u · b), (1)

where
a ≍u b := ∀i ai ≍u bi.

But (1) holds, since

a ≍u b ⇒ (f1u · a) ≍f0(u) (f1u · b)

by the definition of a strong KFE-morphism, and

M ′, f0(u) � P (f1u · a) & (f1u · a) ≍f0(u) (f1u · b) ⇒M ′, f0(u) � P (f1u · b)

by the definition of a KFE-model. The claim (f0, f1) : M −→ M ′ and the
uniqueness of M ′ follow easily. �

Hence we have an analogue of 3.3.13:

Proposition 3.5.22 If F։= F′ for KFEs F, F′, then ML=(F) ⊆ ML=(F′),
and similarly, IL=(F) ⊆ IL=(F′) in the intuitionistic case.

Proof Along the same lines as 3.3.13, now using 3.5.21, 3.5.7, 3.5.20. �
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3.5.4 Main constructions

Now let us extend the definition of subframes and submodels 3.3.15 to the case
with equality.

Definition 3.5.23 Let F = (W,R1, . . . , RN ) be a propositional Kripke frame,
F = (F,D,≍) a KFE, V ⊆W . A subframe of F obtained by restriction to V is

F ↾ V := (F ↾ V,D ↾ V,≍↾ V ),

where D ↾ V is the same as in 3.3.15, ≍↾ V := (≍u)u∈V .
If M = (F, ξ) is a KFE-model, we define the submodel

M ↾ V := (F ↾ V, ξ ↾ V ),

where ξ ↾ V is the same as in 3.3.15. If V is stable, F ↾ V , M ↾ V are called
generated.

It is obvious that M ↾ V is a KFE-model, since ξ ↾ V coincides with ξ on V .
The definitions of reliability, rooted frames (models) and cones are trivially

extended to frames and models with equality.

Lemma 3.5.24 (Generation lemma) Let F be a KFE, M a KFE-model over
F, V a stable set of worlds in F. Then

(1) M ↾ V is a reliable submodel of M ;

(2) ML(=)(F) ⊆ ML(=)(F ↾ V ); similarly, for the intuitionistic case.

Proof Almost the same as for 3.3.18. We use the same map (j, i) and apply
Lemma 3.5.20. To prove (2), we need a valuation ξ in F such that ξu = ξ′u for
u ∈ V , viz.

ξu(P ) :=

{
ξ′u(P ) if u ∈ V,

∅ otherwise.

This is really a valuation; ξ respects ≍u for u ∈ V , since it coincides with the
valuation ξ′; and for u 6∈ V there is nothing to prove. �

We define cones exactly as in 3.3.17:

Definition 3.5.25

F↑u := F ↾ (W↑u), M↑u := M ↾ (W↑u).

Then we obtain an analogue of 3.3.21:

Lemma 3.5.26

(1) ML(=)(F) =
⋂

u∈F

ML(=)(F↑u)

and similarly for the intuitionistic case.
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(2) For a class C of N -modal or intuitionistic KFEs,

L(=)(C) = L(=)(C ↑),

where L is ML or IL, C ↑ is the class of all cones of frames from C.

Lemma 3.5.27 Let F be a propositional Kripke, u ∈ F , then

KE(F ↑ u) = (KEF ) ↑ u,

where (KEF ) ↑ u := {F ↑ u | F ∈ KEF}.

Proof Similar to 3.3.27. Given a KFE G = (F ↑u,D,≍), we have to show that
G is F ↑ u for some KFE F over F . It suffices to extend the domain function
D to the whole F ; ≍ is extended in the trivial way (as identity at every world).
We do this by putting

D′
w :=

{
Du if w 6∈ F↑u,
Dw if w ∈ F↑u.

Then D′ is obviously expanding, since F↑u is a generated subframe and Du ⊆
D′

w for any w ∈ F . �

This implies an analogue of 3.3.28:

Proposition 3.5.28 Let C be a class of N -modal or intuitionistic propositional
Kripke frames. Then

(1) KE(C ↑) = (KEC)↑

(2) L(=)(KEC) = L(=)(KE(C ↑)), where L is ML or IL respectively.

Proof Similar to 3.3.28; apply 3.5.27 and 3.5.26(2). �

Let us also define disjoint sums:

Definition 3.5.29 Let Fi = (Fi, Di,≍i) be predicate Kripke frames with equal-
ity. Then

⊔

i∈I

Fi :=

(
⊔

i∈I

Fi, D,≍

)
,

where
D(u, i) := Di(u) × {i}, (a, i) ≍u,i) (b, i) := a ≍i b

for i ∈ I, u ∈ Fi, a, b ∈ Du.

Since Fi is isomorphic to a generated subframe of
⊔
i∈I

Fi, we obtain an analogue

of 3.3.36:

Lemma 3.5.30 ML(=)

(⊔
i∈I

Fi

)
=
⋂
i∈I

ML(=)(Fi), and similarly

IL(=)

(⊔
i∈I

Fi

)
=
⋂
i∈I

IL(=)(Fi) for the intuitionistic case.
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3.6 Kripke sheaves

Now let us consider semantical equivalents of KFEs called ‘Kripke sheaves’. To
define them, let us begin with the S4-case. In this case a Kripke sheaf is a
set-valued functor defined on a certain category.

Recall that a category consists of objects (‘points’) and morphisms (‘arrows’)
between some of these points. In precise terms, it can be defined as a tuple.

C = (X,Y,o, t, I, ◦),

where X, Y are non-empty classes, o, t, I are functions:

o, t : Y −→ X;

I : X −→ Y;

◦ is a partial function Y × Y −→ Y.
X is called the class of objects of C and is also denoted by ObC. Y is called

the class of morphisms of C and is also denoted by MorC. For a morphism f ,
the object o(f) is called the origin of f , and t(f) the target of f .

The notation f : a −→ b or a
f

−→ b means that o(f) = a and t(f) = b; this
is read as ‘f is a morphism from a to b’ (or between a and b).

C(a, b) denotes the class of all morphisms in C between a and b. I(a) is called
the identity morphism of a and is also denoted by 1a.

There are also the following conditions (‘axioms’):

(1) 1a : a −→ a;

(2) α ◦ β is defined iff o(β) = t(α) (i.e. iff arrows α, β are consecutive);

(3) if x
α

−→ y
β

−→ z, then x
α◦β
−→ z;

(4) if x
α

−→ y
β

−→ z
γ

−→ u, then (α ◦ β) ◦ γ = α ◦ (β ◦ γ);

(5) if x
α

−→ y, then 1x ◦ α = α ◦ 1y = α.

A standard example of a category is SET, the category of sets, in which
objects are arbitrary sets, morphisms are maps.

There is a well-known canonical way of associating a category C = CatF
with an S4-frame F = (W,R) [Goldblatt, 1984]. Viz., we put

Ob C := W, Mor C := R, C(u, v) := {(u, v)}, 1u := (u, u).

So arrows of C just represent the relation R. The composition is defined accord-
ing to the ‘triangle rule’:

(u, v) ◦ (v, w) := (u,w).
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Definition 3.6.1 An (S4-based, or intuitionistic) Kripke sheaf over an S4-
frame F is a SET-valued co-functor defined on CatF . This means that a Kripke
sheaf is a triple Φ = (F,D, ρ) where (F,D) is a system of domains, ρ = (ρuv |
uRv) is a family of functions ρuv : Du −→ Dv (transition maps) satisfying the
following functoriality conditions:

(1) for every u ∈ F, ρuu = idDu
(the identity function on Du);

(2) uRvRw ( in F ) implies ρuv ◦ ρvw = ρuw.

We call ρuv(a) the inheritor of the individual a (from Du) in the world v. The
domains Du are also called the fibres or the stalks of Φ.

To extend this definition to arbitrary frames, recall that an arbitrary propo-
sitional Kripke frame F = (W,R1, . . . , RN ) is associated with an S4-frame
F ∗ := (W,R∗), where R∗ is the reflexive transitive closure of R1 ∪ . . . ∪RN .

Definition 3.6.2 A Kripke sheaf over a propositional Kripke frame F is a
triple Φ = (F,D, ρ) such that Φ∗ := (F ∗, D, ρ) is an S4-based Kripke sheaf over
F ∗.

The frame F is called the (propositional) base of Φ = (F,D, ρ) and denoted
by Φπ. (F,D, ρ) is called N -modal if F is N -modal.

Note that in Definition 3.6.20 ρ is a system of functions parameterised by
R∗, i.e. ρ = (ρuv | uR∗v), satisfying the conditions 3.7.1 (1), (2) for R∗.

Lemma 3.6.3 Let F = (W,R1, . . . , RN ) be a propositional Kripke frame, (F,D)
a predicate Kripke frame, ρ = (ρiuv | uRiv, 1 ≤ i ≤ N) a family of functions
ρiuv : Du −→ Dv satisfying the following ‘coherence’ conditions:

(1) if uRi0u1Ri1u2 . . . ukRik
u for some k ≥ 0,

then ρi0uu1◦ρi1u1u2◦ · · · ◦ρikuku = idDu
;

(2) if uRi0u1Ri1u2 . . . ukRik
v and uRj0v1Rj1v2 . . . vmRjm

v, then
ρi0uu1◦ρi1u1u2◦ · · · ◦ρikukv = ρi0uv1◦ρj1v1v2◦ · · · ◦ρjmvmv.

Then there exists a unique Kripke sheaf (F,D, ρ∗) such that ρiuv = ρ∗uv whenever
uRiv.

20

Proof For any pair (u, v) ∈ R∗ we can define a function ρ∗uv : Du −→
Dv such that ρ∗uu := idDu

and ρ∗uv := ρi0uu1◦ρi1u1u2◦ · · · ◦ρikukv for any path
(u, i0, u1, i1, . . . , uk, ik, v). The conditions (1), (2) show that ρ∗uv is well defined.
Then it follows that ρ∗ determines a Kripke sheaf over F ∗. �

Of course for S4-based Kripke sheaves the above conditions (1), (2) follow
from Definition 3.6.1. So every Kripke sheaf can be presented in the form
described in 3.6.3. Viz. for Φ = (F,D, ρ) put ρiuv := ρuv whenever uRiv. Then

20So in particular, ρiuu = idDu
if uRiu; ρiuv = ρjuv if uRiv and uRjv.



262 CHAPTER 3. KRIPKE SEMANTICS

the conditions 3.6.3 (1), (2) hold and the corresponding Kripke sheaf (F,D, ρ∗)
is just Φ. So 3.6.3 yields an alternative definition of a Kripke sheaf.

If (F,D, ρ) is a Kripke sheaf, a ∈ Du, uR
∗v, we sometimes use the notation

a|v := ρuv(a) and a|v := (a1|v, . . . , an|v) for a = (a1, . . . , an) ∈ Dn
u . But this

notation should be used carefully, because it is ambiguous if the fibres are not
disjoint (then it may happen that ρu1v(a) 6= ρu2v(a) for a ∈ Du1 ∩Du2).

Definition 3.6.4 A valuation in a Kripke sheaf Φ = (F,D, ρ) is just a valua-
tion in the frame (F,D). If ξ is a valuation, M = (Φ, ξ) is called a Kripke sheaf
model over D.

Forcing relation M,u � A between a world u in an N -modal Kripke sheaf
model and an N -modal Du-sentence. A is defined by the same clauses as in
predicate Kripke frames (Definition 3.2.10), with the only difference:

• M,u � �iB(a1, . . . , an) iff ∀v ∈ Ri(u) M, v � B(ρuv(a1), . . . , ρuv(an)).

Definition 3.6.5 A valuation ξ in an S4-based Kripke sheaf (and the corre-
sponding Kripke sheaf model) is called intuitionistic if it satisfies the following
conditions:

• uRv& (a1, . . . , an) ∈ ξu(Pn
k ) ⇒ (ρuv(a1), . . . , ρuv(an)) ∈ ξv(Pn

k ),

• uRv& u ∈ ξu(P 0
k ) ⇒ v ∈ ξv(P 0

k ).

Then the intuitionistic forcing in M is defined by the following clauses (cf.
Definition 3.2.10):

• u  Pn
k (a1, . . . , an) iff (a1, . . . , an) ∈ ξu(Pn

k ) (for n > 0);

• u  P 0
k iff u ∈ ξu(P 0

k );

• u 6 ⊥;

• u  B ∧C iff u  B& u  C;

• u  B ∨C iff u  B ∨ u  C;

• u  (B ⊃ C)(a1, . . . , an) iff

∀v ∈ R(u) (v  B(ρuv(a1), . . . , ρuv(an)) ⇒ v  C(ρuv(a1), . . . , ρuv(an)));

• u  ∃xA(x) iff ∃a ∈ Du u  A(a);

• u  ∀xB(x, a1, . . . , an) iff ∀v ∈ R(u)∀c ∈ Dv v  B(c, ρuv(a1), . . . , ρuv(an)).

Lemma 3.6.6 Let u, v be worlds in an intuitionistic Kripke sheaf model M .
Then for any intuitionistic Du-sentence A(a)

M,u  A(a) & uRv ⇒ M, v  A(ρuv · a).
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Proof Similar to 3.2.17. �

Lemma 3.6.7 The intuitionistic forcing relation has the following properties:

M,u  ¬B(a) iff ∀v ∈ R(u) M, v 6 B(ρuv · a),

M, u  a 6= b iff ∀v ∈ R(u) ρuv(a) 6= ρuv(b).

Proof Obvious from 3.6.5. �

Definition 3.6.8 An N -modal predicate formula A is called true in an N -modal
Kripke sheaf model M if ∀A is true at every world of M . A is called valid in a
Kripke sheaf Φ if it is true under any valuation in Φ.

The definitions for the intuitionistic case are similar.

The notation for the truth and validity is the same as in the case of Kripke
frames.

Lemma 3.6.9 Let M be an N -modal Kripke sheaf model, A(x) an N -modal
formula with FV (A(x)) = r(x), |x| = n. Then for any u ∈M

M,u � ∀xA(x) iff ∀a ∈ Dn
u M,u � A(a).

Proof Similar to 3.2.18. �

Lemma 3.6.10 Let M be an intuitionistic Kripke sheaf model with the acces-
sibility relation R, u ∈M , A(x) an intuitionistic Du-formula with FV (A(x)) =
r(x), |x| = n. Then

M,u  ∀xA(x) iff ∀v ∈ R(u)∀a ∈ Dn
v M, v  A(ρuv · a).

Proof Similar to 3.2.19. �

Definition 3.6.11 Let Φ be an S4-based Kripke sheaf; M a model over F. The
pattern of M is the model M0 over F such that for any u ∈ F and any atomic
Du-sentence without equality A

M0, u � A iff M,u � �A.

As in the case of Kripke frames, the pattern is an intuitionistic model and
it always exists.

Lemma 3.6.12 If M0 is a pattern of a Kripke sheaf model M , then

(1) for any u ∈M , for any intuitionistic Du-sentence A

M0, u  A iff M,u � AT ;

(2) for any A ∈ IF=

M0  A iff M � AT .
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Proof Similar to 3.2.16 and 3.2.25. �

Definition 3.6.13 For a set Σ of modal (or intuitionistic) sentences, a Σ-sheaf
is a Kripke sheaf (of the corresponding type) validating every formula from Σ.
Φ � Σ (or Φ  Σ) denotes that Σ is valid in Φ.

The class of all Σ-sheaves is denoted by VKS(Σ) and called modally (respec-
tively, intuitionistically) definable (by Σ).

Lemma 3.6.14 Let Φ be an N -modal (respectively, intuitionistic) Kripke sheaf
over a propositional frame F , A an N -modal (respectively, intuitionistic) propo-
sitional formula. Then Φ � ()A iff Φπ � ()A.

Proof Similarly to the case of Kripke frames (Lemma 3.3.32), validity for
propositional formulas in Φ is the same as in F . �

Proposition 3.6.15 Let Φ be an S4-based Kripke sheaf, A ∈ IF=. Then

Φ  A iff Φ � AT .

Proof Along the same lines as 3.2.26, now using 3.6.11. �

Now we have an analogue of 3.2.27:

Lemma 3.6.16 Let A(x), B(x) be congruent modal (or intuitionistic) formu-
las, |x| = n, and let M be a modal (respectively, intuitionistic) Kripke sheaf
model. Then for any u ∈M, a ∈ Dn

u

M,u � () A(a) iff M,u � () B(a).

Thus the set of formulas valid in a Kripke sheaf is closed under congruence.

Proof Along the same lines as 3.2.27. Again we consider the equivalence
relation on modal formulas

A ∼ B iff FV (A) = FV (B)

and for any distinct x with FV (A) = r(x), for any u ∈M, a ∈ D
|x|
u

M,u � [a/x]A⇔M,u � [a/x]B.

We have to check the properties 2.3.14(1)–(4) for this relation. For (1)–(3) the
proof is the same as in 3.2.27. For (4) there is a slight difference: now

M,u � [a/x]�iA⇔ ∀v ∈ Ri(u) M, v � [ρuv · a/x]A

and similarly for B. So A ∼ B implies �iA ∼ �iB. �

Theorem 3.6.17 (Soundness theorem)
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(I) The set of all modal predicate formulas (with equality) valid in a Kripke
sheaf is a modal predicate logic (with equality).

(II) The set of all intuitionistic predicate formulas (with equality) valid in an
S4-based Kripke sheaf is a superintuitionistic predicate logic (with equal-
ity).

Proof Along the same lines as 3.2.31. The main thing is to check that formula
substitutions preserve validity.

So we assume that Φ � A for a formula A and a Kripke sheaf Φ and show
that Φ � SA for S = [C(x,y)/P (x)], where P ∈ PLn occurs in A, the list xy
is distinct, and r(y) ⊆ FV (C) ⊆ r(xy).

By Lemma 3.6.16 we can replace A with a congruent formula, so we assume
that A is clean, BV (A) ∩ r(y) = ∅. Again we choose a distinct list z such that
FV (A) ∪ r(y) = r(z); then

r(y) ⊆ FV (A) ⊆ r(z), r(z) ∩BV (A) = ∅.

Letm = |z|. Given a modelM = (Φ, ξ), we show that for any u ∈ Φ, c ∈ Dm
u

M,u � [c/z]SA.

Let c′ be the part of c corresponding to y. We define M1 = (Φ, η) similarly to
3.2.31:

• for any v ∈ Φ↑u, a ∈ Dn
v

M1, v � P (a) iff M, v � C(a, c′|v);

• for any other atomic Dv-sentence Q

M1, v � Q iff M, v � Q.

Then every subformula of A has the form B(z,q), where q is distinct, r(q) =
BV (A); so by 2.5.26 we present SB as (SB)(z,q).

Then we prove the claim:

∀v ∈ Φ↑u ∀a ∈ D|q|
v (M1, v � B(c|v,a) ⇔M, v � (SB)(c|v,a))

by induction. The only difference with 3.2.31 is in the case B = �iB1:

M1, v � B(c|v,a) iff ∀w ∈ Ri(v) M1, w � B1(c|w,a|w)
iff ∀w ∈ Ri(v) M,w � (SB1)(c|w,a|w) (by the induction hypothesis)
iff M, v � �i(SB1)(c|v,a)(= (SB)(c|v,a)).

Here we use the equality (a|v)|w = a|w, which follows from Definition 3.6.1.
�

Remark 3.6.18 One can similarly define forcing and validity for the case when
ρ does not satisfy the coherence conditions (1), (2) from 3.6.3. But then the set
of validities is not necessarily substitution-closed. These ‘frames’ are a special
kind of Kripke bundle considered in Chapter 5; note that validity in Kripke
bundles is not substitution closed either, cf. Exercise 5.2.13.
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Every predicate Kripke frame corresponds to a Kripke sheaf, in which uRiv
always implies Du ⊆ Dv and ρuv is the inclusion map, i.e. ρuv(a) = a for any a ∈
Du.

More generally, every KFE F = (W,R1, . . . , RN , D,≍) corresponds to a
Kripke sheaf Θ(F) constructed as follows. Let au be the class of a ∈ Du modulo
≍u. We define Θ(F) as the Kripke sheaf with the fibres D′

u := {au | a ∈ Du}
and the transition maps ρuv(au) := av for uRiv; Θ(F) is well defined, due to
Lemma 3.6.3 and since uRiv implies Du ⊆ Dv and ≍u ⊆≍v.

The following is almost obvious:

Lemma 3.6.19 Valuations (both modal and intuitionistic) in a KFE F and in
the Kripke sheaf Θ(F) are associated. Namely, a valuation ξ in F corresponds
to the valuation Θ(ξ) in Θ(F) such that

(Θ(ξ))u(P ) = {((a1)u, . . . , (an)u) ∈ (D′
u)n | (a1, . . . , an) ∈ ξu(P )}

for P ∈ PLn, n > 0, and Θ(ξ)u, ξu coincide on PL0. The other way round,
every valuation in Θ(F) has the form Θ(ξ) for some valuation ξ in F. ξ is
intuitionistic iff Θ(ξ) is intuitionistic.

Proof The above definition of Θ(ξ) is sound; recall that (a1, . . . , an) ∈ ξu(P )
depends only on classes of a1, . . . , an modulo ≍u.

Now if η is a valuation in Θ(F), we define ξ by

ξu(P ) := {a | au ∈ ηu(P )}

where

au := ((a1)u, . . . , (an)u) for a = (a1, . . . , an), n > 0.

This definition is sound, because au = bu iff ∀i ai ≍u bi. Then obviously
η = Θ(ξ).

The argument for the intuitionistic case is left to the reader. �

Lemma 3.6.20

(1) For any N -modal formula A(x1, . . . , xn), a valuation ξ in F, for any u ∈
F ; a1, . . . , an ∈ Du:

ξ, u |= A(a1, . . . , an) (in F) iff Θ(ξ), u |= A((a1)u, . . . , (an)u) (in Θ(F));

and similarly for the intuitionistic case.

(2) If F is an N -modal KFE, A is an N -modal formula, then F � A iff
Θ(F) � A.

(3) If F is an intuitionistic KFE, A is an intuitionistic formula, then F  A
iff Θ(F)  A.
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Proof (1) By induction on the complexity of A. For example,

ξ, u |= a = b iff a ≍u b iff au = bu iff Θ(ξ), u |= a = b;

ξ, u |= �iB(a) iff ∀v ∈ Ri(u) ξ, v |= B(a) iff ∀v ∈ Ri(u) Θ(ξ), v |= B(av) iff
Θ(ξ), u |= �iB(au), since av = ρuv · au.

The remaining cases are left to the reader.
The claims (2), (3) now follow from 3.6.19, 3.6.9, 3.6.10. �

Due to Theorem 3.6.17 and Lemma 3.6.20, we obtain

Theorem 3.6.21 (Soundness theorem)

(I) The set of all modal predicate formulas (with equality) valid in a KFE is
a modal predicate logic (with equality).

(II) The set of all intuitionistic predicate formulas (with equality) valid in an
S4-based KFE is a superintuitionistic predicate logic (with equality).

These logics are denoted by ML(=)(F), IL(=)(F) as usual.
According to the general definitions from Section 2.16, the modal predicate

logic of a class of Kripke sheaves F is

ML(=)(F) :=
⋂

{ML(=)(Φ) | Φ ∈ F}.

The superintuitionistic logic IL(=)(F) is defined analogously.
The other way round, every Kripke sheaf is equivalent to one of the form

Θ(F). To show this, let us introduce a convenient subclass of Kripke sheaves.

Definition 3.6.22 A Kripke sheaf is said to be disjoint if all its fibres are dis-
joint.

Definition 3.6.23 An isomorphism between Kripke sheaves (F,D, ρ) and
(F,D′, ρ′) is a family of bijections fu : Du −→ D′

u such that fu · ρ′uv = fv · ρuv

whenever uR∗v.

A more general notion of morphism will be discussed in the next section. It
is almost obvious that isomorphic Kripke sheaves have the same modal (or
superintuitionistic) logics; for a precise proof, one should check the equivalence

M,u � B(a) iff M ′, u � B(fu · a)

for any Du-sentence B(a) if it holds for any atomic Du-sentence. We leave this
as an exercise for the reader.

Lemma 3.6.24 Every Kripke sheaf is isomorphic to a disjoint Kripke sheaf
over the same propositional frame.

Proof In fact, we can replace each Du with D′
u = {(a, u) | a ∈ Du} and

change the functions ρuv appropriately, viz., put ρ′uv(a, u) := (ρuv(a), v). �
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For a disjoint Kripke sheaf (F,D, ρ) and a ∈ Du, uRiv, we sometimes write
aRiv and say that a is Ri-related to v.

Now let Φ = (F,D, ρ) be a disjoint Kripke sheaf. Consider the KFE G(Φ) :=
(F,D′,≍′), where

D′
u :=

⋃
{Dw | w ∈ F, u ∈ F↑w},

≍′
u := {(a, b) ∈ (D′

u)2 | (a|u) = (b|u)}.

Here is an equivalent presentation of G(Φ) in the form described in Lemma
3.5.2:

D′+ :=
⋃

u∈F

Du,

E′(a, b) := {w ∈ (F↑u ∩ F↑v) | (a|w) = (b|w)}

for a ∈ Du, b ∈ Dv; u, v ∈ F .
It follows easily that D′

u ⊆ D′
v and ≍′

u ⊆≍′
v, whenever uRiv; thus G(Φ) is

really a KFE.
Speaking informally, D′

u absorbs Du and the domains of all R∗-predecessors
of u; ≍′

u makes every individual from Du equivalent to all its predecessors. So
there is a natural bijection between Du and D′

u/ ≍′
u. This observation is used

in the proof of the following

Lemma 3.6.25 The Kripke sheaves Φ and Θ(G(Φ)) are isomorphic.

Proof We have Θ(G(Φ)) = (F,D′′, ρ′′), where D′′ = (D′
u/ ≍′

u)u∈F , and the
transition map ρ′′uv sends every equivalence class a/ ≍′

u to a/ ≍′
v (for a ∈ D′

u).
Now, every class a′′ = (b/ ≍′

u) ∈ D′′
u contains a single element a from Du,

namely, a = (b|u). So there exists a well-defined bijection θu : D′′
u → Du such

that θu(b/ ≍′
u) = b|u. (For the surjectivity, note that (a|u) = a for a ∈ Du.)

Finally, uRiv implies

ρuv(θu(b/ ≍′
u)) = ρuv(b|u) = b|v,

and
θv(ρ′′uv(b/ ≍′

u)) = θv(b/ ≍′
v) = b|v.

Thus ρuv · θu = θv · ρ′′uv, which means that the family of functions (θu | u ∈ F )
is an isomorphism between the Kripke sheaves Θ(G(Φ)) and Φ. �

So we can introduce semantics generated by predicate Kripke frames with
equality. Due to Lemmas 3.6.20 and 3.6.25, the same semantics are generated
by Kripke sheaves.

Definition 3.6.26 The N -modal Kripke sheaf semantics KE
(=)
N is generated

by the class of all N-modal predicate Kripke frames with equality (or Kripke

sheaves). Similarly the intuitionistic Kripke sheaf semantics KE
(=)
int is generated

by the class of all intuitionistic KFEs (or Kripke sheaves). Logics complete in
these semantics are called Kripke sheaf complete, or just KE-complete.
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As we pointed out at the end of Subsection 3.4.2, every predicate Kripke

frame is equivalent a simple KFE. Thus K
(=)
N � KE

(=)
N and actually K

(=)
N ≺

KE
(=)
N , as we shall see later on; the same is true for the intuitionistic semantics.
Similarly to Corollary 3.3.37 we obtain

Proposition 3.6.27 Kripke sheaf semantics has the collection property.

Proof Obvious, by Lemma 3.5.30. �

For Kripke and Kripke sheaf semantics there also exists a stronger version of
completeness.

Definition 3.6.28 An N -modal theory Γ is called satisfiable in an N -modal
Kripke frame (respectively, KFE) F if there exists a model (respectively, KFE-
model) M over F and a world u ∈M such that M,u � Γ, i.e. M,u � A for any
A ∈ Γ.

An intuitionistic theory (Γ,∆) is called satisfiable in an intuitionistic Kripke
frame (or KFE) F if there exists an intuitionistic model (or KFE-model) M over
F and a world u ∈ M such that M,u  (Γ,∆), i.e. M,u  A for any A ∈ Γ
and M,u 6 B for any B ∈ ∆.

Lemma 3.6.29 A theory (modal or intuitionistic) is satisfiable in an L-KFE
iff it is satisfiable in a Kripke sheaf validating L.

Proof In fact, by Lemma 3.6.20, F and Θ(F) have the same logic (of the cor-
responding kind); a sentence A is satisfiable at F, u iff it is satisfiable at Θ(F), u.
On the other hand, by Lemma 3.6.25, every Kripke sheaf Φ is isomorphic to
Θ(G(Φ)), so satisfiability in Φ and G(Φ) is the same. �

Definition 3.6.30 An N -modal predicate logic L (with or without equality) is
called strongly Kripke complete (respectively, strongly Kripke sheaf complete)
if every L-consistent N -modal theory (respectively, with or without equality)
is satisfiable in some Kripke L-frame (respectively, L-KFE). Similarly, an in-
tuitionistic predicate logic L (with/without equality) is called strongly Kripke
(Kripke sheaf) complete if every L-consistent intuitionistic theory (with/ with-
out equality) is satisfiable in some Kripke L-frame (L-KFE).

Thanks to Lemma 3.6.29, the notions of strong completeness are the same
for Kripke sheaves and KFEs.

Lemma 3.6.31 Every strongly complete m.p.l.(=) or s.p.l. (=) is complete (in
the corresponding semantics of Kripke frames or Kripke sheaves).

Proof In fact, in the modal case, if A 6∈ L, then {¬A} is L-consistent. So
if L is strongly complete, then ¬A is satisfiable in an L-frame F , and thus F
separates A from L. Therefore L is complete by Lemma 2.16.2.

In the intuitionistic case, if A 6∈ L, then (∅, {A}) is L-consistent; the re-
maining argument is the same as in the modal case. �
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3.7 Morphisms of Kripke sheaves

Kripke sheaf morphisms are a natural generalisation of predicate Kripke frame
morphisms defined in 3.3.1:

Definition 3.7.1 Let Φ = (F,D, ρ), Φ′ = (F ′, D′, ρ′) be Kripke sheaves over
the frames F = (W,R1, . . . , RN ), F ′ = (W ′, R′

1, . . . , R
′
N ). A morphism from

Φ to Φ is a pair f = (f0, f1) satisfying the conditions (1)–(3) from Definition
3.3.1 and also

(5) the following diagram commutes whenever uRiv:

Dv

Du D′
f0(u)

D′
f0(v)

ρ′f0(u)f0(v)

f1v

f1u

ρuv

The latter condition can be briefly written as

f1v(a|v) = f1u(a)|f0(v)

(for a ∈ Du, uRiv), but strictly speaking, this makes sense only for disjoint
sheaves.

Exercise 3.7.2 Show that under the conditions of 3.7.1 the diagram (5) com-
mutes whenever uR∗v.

Definition 3.7.3 A morphism of Kripke sheaf models M = (Φ, ξ) and M ′ =
(Φ′, ξ′) is a morphism (f0, f1) : Φ −→ Φ′ such that for any P ∈ PLm, m ≥ 0,
u ∈ Φ, a ∈ Dm

u

M,u � P (a) iff M ′, f0(u) � P (f1u · a).

The notions ‘=-morphism’, ‘p(=)-morphism’, ‘isomorphism’ are transferred to
Kripke sheaves in an obvious way.

Now we easily obtain an analogue to Lemma 3.3.4:

Lemma 3.7.4

(1) The identity morphism idΦ := (idW , (idDu
)u∈W ) is an isomorphism of

Kripke sheaves.

(2) The composition of morphisms (f0, f1) : Φ −→ Φ′ and (g0, g1) : Φ′ −→ Φ′′

defined as (f0 ◦ g0, f1u ◦ g1u)u∈W ) is a morphism Φ −→ Φ′, similarly for
all other kinds of morphism.
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This yields us different categories of Kripke sheaves as in the case of Kripke
frames.

Next, we have analogues to 3.3.6, 3.3.8–3.3.10:

Definition 3.7.5 A Kripke sheaf morphism over a propositional Kripke frame
F is a morphism of Kripke sheaves over F , in which the world component is the
identity map.

Definition 3.7.6 Let Φ = (F,D, ρ), Φ′ = (F ′, D′, ρ′) be Kripke sheaves, h :
F ′ −→ F a morphism of propositional frames. We say that Φ′ is obtained by
changing the base along h if D′

u = Dh(u) for any u ∈ F and ρ′uv = ρh(u)h(v) for
any pair (u, v) ∈ Ri. We use the notation h∗Φ for Φ′.

Remark 3.7.7 This definition is sound in the case when h is only monotonic,
i.e., for a ‘more traditional category of sheaves’.

Proposition 3.7.8 Under the conditions of the Definition 3.7.6, there exists a
‘canonical’ =-morphism (h, g) : h∗Φ −→= Φ. Every morphism (h, f1) : Φ′′ −→
Φ, where Φ′′

π = F ′, can be uniquely presented as a composition Φ′′ −→ h∗Φ −→
Φ of a morphism over F ′ and the canonical morphism.

The next claim is analogous to 3.3.11:

Proposition 3.7.9 If (f0, f1) : M −→= M ′ for N -modal Kripke sheaf models

M,M ′, then for any u ∈M , A ∈MS
(=)
N (Du)

M,u � A iff M ′, f0(u) � f1u ·A,

where f1u ·A is obtained by replacing every a ∈ Du with f1u(a).
The same holds in the intuitionistic case.

Proof We check only the �-case. Let Ri, R
′
i be the accessibility relations in

M,M ′. If A = �iB(a) (for a formula B(x)), then

M,u � A iff ∀v ∈ Ri(u) M, v � B(ρuv ·a) iff ∀v ∈ Ri(u) M ′, f0(v) � B(f1v ·(ρ·a))

by the induction hypothesis. By 3.7.1 (5), the latter is equivalent to

∀v ∈ Ri(u) M ′, f0(v) � B(ρ′f0(u)f0(v) · (f1u · a)),

which is the same as

∀w ∈ f0[Ri(u)] M ′, w � B(ρ′f0(u)w · (f1u · a)).

Since f satisfies the conditions 3.3.1 (1)–(3), we have f0[Ri(u)] = R′
i(f0(u)).

Eventually
M,u � A iff M ′, f0(u) � �iB(f1u · a)

as required. �
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Lemma 3.7.10 Let f : Φ −→ Φ′ be a morphism of Kripke sheaves, M ′ a
Kripke sheaf model over Φ′. Then there exists a unique model M over Φ such
that f : M −→ M ′. The same holds for all kinds of morphism. If M ′ is
intuitionistic, then M is also intuitionistic.

Proof Similar to 3.3.12; an exercise for the reader. �

Proposition 3.7.11 Let Φ1 and Φ2 be Kripke sheaves. If there exists a p(=)-
morphism from Φ1 onto Φ2, then ML=(Φ1) ⊆ ML=(Φ2) (or IL=(Φ1) ⊆
IL=(Φ2) in the intuitionistic case).

Proof Similar to 3.3.13. Use Lemmas 3.6.9, 3.6.10 and 3.7.10. �

In the case of disjoint Kripke sheaves there exists en equivalent definition of
a morphism. Let us first present disjoint Kripke sheaves in an equivalent form.

Definition 3.7.12 A morphism of propositional Kripke frames

f : F = (W,R1, . . . , RN ) −→ F ′ = (W ′, R′
1, . . . , R

′
N )

is called etale if it has the unique lift property

∀u ∈W ∀v′ ∈W ′ (f(u)R′∗v′ ⇒ ∃!v (f(v) = v′ & uR∗v)).

In this case every restriction f ↾ (F ↑ u) is an isomorphism to F ′ ↑ f(u). In
fact, this is a bijection, due to the monotonicity and the unique lift property.
Its converse is also monotonic, due to the lift property.

Proposition 3.7.13

(1) Let Φ = (F,D, ρ) be a disjoint Kripke sheaf over a frame F = (W,R1, . . . , RN ).
Consider the frame of individuals F+ := (D+, ρ+

1 , . . . , ρ
+
N), where

D+ =
⋃

u∈W

Du, ρ+
i :=

⋃

uRiv

ρuv.

Let τ : D+ −→ W be the map sending every individual to its world (i.e.
τ(a) = u ⇐⇒ a ∈ Du). Then τ : F+ ։ F is etale.

(2) Conversely, for any etale p-morphism of propositional frames τ : F ′ ։ F
there exists a disjoint Kripke sheaf Φ = (F,D, ρ), in which F ′ is the frame
of individuals and Du = τ−1(u).

Proof

(1) The monotonicity and the lift property of τ hold, since ρuv is a function
from Du to Dv whenever uRiv. The unique lift property

uR∗v & a ∈ Du ⇒ ∃!b ∈ Dv a(ρ+)∗b

holds, since (ρ+)∗ induces a function ρuv : Du −→ Dv for any pair (u, v) ∈
R∗, according to 3.6.1, 3.6.2.
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(2) In fact, for uR∗v we can define the function ρuv : Du −→ Dv by the
condition ρuv(a) = b ⇐⇒ τ(b) = v & a(ρ′)∗b. Since τ is etale, this b is
always unique. The unique lift property also implies the properties 3.6.1
(1), (2) for (F ∗, D, ρ).

�

Proposition 3.7.14

(1) Let Φ = (F,D, ρ), Φ′ = (F ′, D′, ρ′) be disjoint Kripke sheaves over N -
modal frames, and let τ : F+ ։ F , τ ′ : F ′+ ։ F ′ be the corresponding
etale morphisms. Also let (f0, f1) : Φ −→ Φ′ be a morphism (in the sense
of 3.7.1). Consider the map f+

1 : D+ −→ D′+ of total domains such that
f+
1 (a) = f1u(a) for a ∈ Du (i.e., f+

1 =
⋃

u∈F

f1u). Then f+
1 : F+ ։ F ′+

and the following diagram commutes:

F+

F F ′

F ′+

τ ′

f+
1

f0

τ

f+
1 is surjective on all fibres; it is a p-morphism whenever f0 is a p-

morphism.

(2) Conversely, every morphism g : F+ −→ F ′+, for which every g ↾ Du is a
surjective map onto Df0(u), equals f+

1 for some morphism (f0, f1) : Φ −→
Φ′.

Proof (1) Let us show that f+
1 is monotonic. Suppose aρ+

i b, a ∈ Du, b ∈ Dv.
Then by definition, b = a|v, f+

1 (a) = f1u(a), f+
1 (b) = f1v(b), uRiv. By 3.7.1,

f1v(b) = f1u(a)|f0(v), f0(u)R′
if0(v),

and thus f+
1 (a)ρ′i

+f+
1 (b).

The commutativity of the diagram is almost obvious: for a ∈ Du,

τ ′(f+
1 (a)) = τ ′(f1u(a)) = f0(u),

since f1u : Du −→ D′
f0(u). But f0(u) = f0(τ ′(a)).

Now we can check the lift property for f+
1 . In fact, suppose a ∈ Du, f+

1 (a) =

f1u(a)ρ′i
+b′. Then b′ = f1u(a)|v′ for some v′ ∈ R′

i(u
′), where f1u(a) ∈ Du′ , i.e.,

u′ = τ ′(f+
1 (a)) = f0(τ(a)) = f0(u).
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Since f0 has the lift property, we obtain v ∈ Ri(u) such that f0(v) = v′. Then
by definition, aρ+

i (a|v). On the other hand, we obtain

f+
1 (a|v) = f1v(a|v) = f1u(a)|f0(v) = b′,

by 3.7.1. Therefore f+
1 is a morphism. It is surjective, since every f1u is surjec-

tive, by 3.3.1.
(2) Given g, we define f1 := (f1u)u∈F , with f1u = g ↾ Du. Then for any

a ∈ Du, uRiv
f1v(a|v) = g(a|v) ∈ Df0(v).

Since aρ+
i (a|v), it follows that f1u(a) = g(a)ρ′i

+
g(a|v), i.e. g(a|v) = g(a)|f0(v).

Thus (f0, f1) satisfies 3.7.1 (5), and so it is a morphism, g = f+
1 . �

The definitions of a subframe, etc. from Section 3.3 can also be transferred
to Kripke sheaves.

Definition 3.7.15 Let Φ = (F,D, ρ) be a Kripke sheaf over a propositional
frame F = (W,R1, . . . , RN ), and let V ⊆W . Then we define the corresponding
subsheaf as follows:

Φ ↾ V := (F ↾ V,D ↾ V, ρ ↾ V ),

where F ↾ V is the same as in Definition 1.3.13.

D ↾ V := (Du)u∈V , ρ ↾ V := (ρuv)(u,v)∈R∗↾V .

For u ∈ F , the subsheaf generated by u or the cone Φ↑u is defined as
Φ ↾ (W↑u).

Exercise 3.7.16 (1) Prove an analogue to Generation lemma 3.3.18 for Kripke
sheaves.

(2) Define disjoint sums of Kripke sheaves and prove an analogue to Proposi-
tion 3.3.36.

Lemma 3.7.17 For a Kripke sheaf Φ over a frame F

ML(=)(Φ) =
⋂

{ML(=)(Φ↑u) | u ∈ F},

and similarly for the intuitionistic case.

Proof Cf. Lemma 3.3.21. �

Note that if u ≈R v (i.e. if u, v are in the same cluster) in a Kripke S4-frame
F , then in every predicate Kripke frame F = (F,D) we have Du = Dv. So we
can define the skeleton of F:

F∼ := (F∼, D∼),
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where F∼ is the skeleton of F (Definition 1.3.41) and for a cluster u∼, D∼
u∼ :=

Du.
Analogously, one can easily see that for u ≈R v in an S4-based Kripke sheaf

Φ = (F,D, ρ), the function ρuv is a bijection between Du and Dv with the
converse ρvu. Thus for any model over Φ,

u � A(a1, . . . , an) iff v � A(a1|v, . . . , an|v).

So we can properly define the skeleton Φ∼ of an S4-based Kripke sheaf Φ. Then
we obtain an analogue to 1.4.14:

Lemma 3.7.18 For an intuitionistic Kripke frame F, IL(F) = IL(F∼); simi-
larly, for intuitionistic Kripke sheaves.

Proof Consider the case of Kripke sheaves. For an intuitionistic valuation ξ
in Φ there exists an intuitionistic valuation ξ∼ in Φ∼ such that

ξ∼u∼(P ) = ξu(P )

for any P, u. Then the map u 7→ u∼ is a p-morphism (Φ, ξ) ։ (Φ∼, ξ∼). It
remains to note that every intuitionistic valuation in Φ∼ has the form ξ∼. �

Therefore, in the semantics KE int is generated by Kripke sheaves over posets
(and similarly, for the semantics Kint).

Finally note that Kripke sheaf morphisms are appropriate also for KFEs.
Viz., we can define a morphism F −→ F′ of KFEs just as an arbitrary morphism
of associated Kripke sheaves Θ(F) −→ Θ(F′).

Every strong morphism of KFEs corresponds to a morphism in this sense,
but not the other way round. E.g. consider KFEs F = (F,D,E) and F′ =
(F,D′, E′), where F is a reflexive singleton u, |Du| = 1, |D′

u| = 2 and E, E′ are
universal. Then obviously Θ(F) ∼= Θ(F′), but there is no strong isomorphism
from F to F′.

3.8 Transfer of completeness

In this section we show that in some simple cases Kripke and Kripke sheaf
completeness transfer to extensions.

We begin with a lemma analogous to 1.3.46. Its proof is based on the
existence of exact KFE-models for logics with equality, which will be proved in
Chapter 6 (cf. Proposition 6.1.27).

Lemma 3.8.1 If an m.p.l.(=) L is conically expressive, then the rule
A

�∗A
is

admissible in L.

Proof Since L has a characteristic model, it suffices to show that for any
KFE-model, for any A, M � A implies M � �∗A. We can argue similarly to
3.2.31, if we consider the Kripke model with the accessibility relation R∗.
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If M � A(x1, . . . , xn), then for any u ∈ M for any a1, . . . , an ∈ Du, M, u �
A(a1, . . . , an), by 3.5.7.

Hence, M,u � �∗A(a1, . . . , an) by 3.3.39.
But obviously,�∗A(a1, . . . , an) = (�∗A)(a1, . . . , an). ThusM � �∗A(x1, . . . ,

xn), by 3.5.7. �

Definition 3.8.2 A pure equality sentence is a predicate sentence with equality
that does not contain predicate letters other than ‘=’.

In particular, every closed propositional formula is a pure equality sentence.

Theorem 3.8.3 If a conically expressive m.p.l.= or an s.p.l.= L is Kripke
frame (respectively, Kripke sheaf) complete and C is a pure equality sentence in
the language of L, then L+C is also Kripke frame (respectively, Kripke sheaf)
complete.

Proof (I) Modal case. If L+C 6⊢ A, then L 6⊢ �∗C ⊃ A, since by Lemma 3.8.1,
L+ C ⊢ �∗C. By completeness, there exists a Kripke frame (or a KFE) F � L
and a Kripke (respectively, KFE) model M over F such that M,u � �∗C ∧¬A
for some u. Hence M↑u, u � �∗C∧¬A by Lemma 3.3.18 (1), and thus M↑u � C,
by Lemmas 3.3.39 and 1.3.19. But C is a simple equality sentence, so its truth
value at every world does not depend on the valuation. Thus F↑u � C. We also
have F↑u � L by Lemma 3.3.18 (2), and therefore A is refuted in an (L + C)-
frame.

(II) Intuitionistic case. The proof is very similar. If L + C 6⊢ A, then
L 6⊢ C ⊃ A. By completeness, there exists an intuitionistic Kripke frame F  L
and a Kripke model M over F such that M,u 6 C ⊃ A for some u. Hence
M, v  C and M, v 6 A for some v accessible from u. Then M↑v, v  C and
M↑v, v 6 A, by Lemma 3.3.18 (1), and thus M↑v  C (by 3.2.17). Since C is
a pure equality sentence, it follows that F↑v � C. F↑v � L by Lemma 3.3.18
(2), so A is refuted in an (L+ C)-frame. �

An analogue of this theorem holds for strong completeness:

Theorem 3.8.4 Let L be an s.p.l.(=) or an m.p.l.(=), Γ a set of pure equality
sentences in the language of L. If L is strongly Kripke (respectively, Kripke
sheaf) complete, then L+ Γ is also strongly Kripke (Kripke sheaf) complete.

Proof (I) Modal case. If a theory ∆ is (L+Γ)-consistent, then it is (L+�∞Γ)-
consistent, since obviously L+Γ ⊢ �∞Γ. So the theory �∞Γ∪∆ is L-consistent.
By strong completeness, there exists a Kripke frame (or a KFE) F � L such
that M,u � �∞Γ ∪ ∆ for some world u in a Kripke model M over F. Then
M,u � �αB for any B ∈ Γ, α ∈ I∞N , so by 3.2.12 it follows that M, v � Γ
for any v ∈ R∗(u). Then as in the proof of 3.8.3, it follows that F↑u is an
(L+ Γ)-frame satisfying ∆ at u.

(II) Intuitionistic case. If a theory (∆,Ξ) is L+Γ-consistent, then the theory
(Γ∪∆,Ξ) is L-consistent. By strong completeness, it is satisfiable in an L-frame
Φ at some world u. Then similarly to the modal case, we obtain that (∆,Ξ) is
satisfiable in the (L + Γ)-frame Φ↑u. �
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Now let us consider equality expansions and prove some results generalising
[Shimura and Suzuki, 1993].

Lemma 3.8.5 Let M = (Φ, ξ) be an L-modal (respectively intuitionistic) Kripke
model over N -modal (respectively, an S4-)KFE Φ = (F,D+, E) such that

M � () EQ
A and Q does not occur in A.

Let Φ′ := (F,D+, E′), where

E′(a, b) := {u |M,u � Q(a, b)},

M ′ := (Φ′, ξ′), where for any u ∈ F, P ∈ PL

ξ′u(P ) :=

{
ξu(P ) if P occurs in A or P = Q,
∅ otherwise.

Then

(1) Φ′ is an N -modal (respectively, S4-) KFE;

(2) M ′ is a modal (respectively, intuitionistic) KFE-model;

(3) for any u ∈M , for any modal (respectively, intuitionistic) Du-sentence B
in the same predicate letters as A

M,u �() BQ iff M ′, u �() B.

The same statements are true under the assumption M � () EQ, with the
following changes: ξ′ = ξ; (3) holds for any Du-sentence B without occurrences
of Q.

Proof (1) In fact,

M � ∀x∀y(Q(x, y) ⊃ Q(y, x))

implies

E′(a, b) ⊆ E′(b, a)

for any a, b ∈ D+; hence obviously E′(a, b) = E′(b, a).
Similarly the other members of E are responsible for the properties (2)–(4)

from Lemma 3.5.2.
For example,

M,u � ∀xQ(x, x)

means that

M,u � Q(a, a)

for any a ∈ Du, hence

u ∈
⋃

a∈D+

E′(a, a).
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(2) Next, let us show that M ′ is a KFE-model. In fact, according to 3.5.2
and 3.5.3, we have to check

(a1, . . . , an) ∈ ξ′u(Pn
k ) & u ∈

n⋂

i=1

E′(ai, bi) ⇒ (b1, . . . , bn) ∈ ξ′u(Pn
k ). (∗)

If Pn
k occurs in A, this means

M,u � Pn
k (a1, . . . , an) ∧Q(a1, b1) ∧ . . . ∧Q(an, bn) ⊃ Pn

k (b1, . . . , bn),

which follows from M � EQ
A.

If Pn
k = Q, (*) is equivalent to

M,u � Q(a1, a2) ∧Q(a1, b1) ∧Q(a2, b2) ⊃ Q(b1, b2),

which also follows from EQ
A.

If Pn
k does not occur in A, Pn

k 6= Q, (*) holds trivially.

(3) Let MF
(=)
A (Du) be the set of all Du sentences constructed from MF

(=)
A .

By definition of M ′,
M ′, u � B iff M,u � B

for any u ∈M , for any atomic B ∈MFA(Du), and thus the equivalence

M,u � BQ iff M ′, u � B

holds for any atomic B ∈MF=
A (Du).

By induction we obtain that it holds for any B ∈ MF=
A (Du), since Φ, Φ′

are based on the same (F,D). �
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Theorem 3.8.6

(1) Let C be a class of N -modal propositional Kripke frames such that ML(C)
is conically expressive. Then ML=(KEC) = ML(KEC)=.

(2) If C is a class of propositional Kripke S4-frames, then IL=(KEC) =
IL(KEC)=.

Proof (1) Since ML(C) is conically expressive, ML(KEC) is also conically
expressive. So let us show that if a modal sentence A does not contain Q, then

(♯) A ∈ ML=(KEC) ⇔ �∗
(∧

EQ
A

)
⊃ AQ ∈ ML(KEC).

(⇒) Suppose

�∗
(∧

EQ
A

)
⊃ AQ 6∈ ML(KEC).

Then
M,u � �∗

(∧
EQ

A

)
∧ ¬AQ

for a KFE-model M over F ∈ C and for some u ∈M . By the generation lemma

M ↑u, u � �∗
(∧

EQ
A

)
∧ ¬AQ.

Hence by a KFE-analogue of Lemma 3.3.39, M ↑u � EQ
A.

Then by Lemma 3.8.5, M ↑u, u � ¬AQ implies

(M ↑u)′, u � ¬A.

Since (M ↑u)′ is a KFE-model over F ↑u, we have A 6∈ ML=(KE(C ↑u)), whence
A 6∈ ML=(KEC) by Proposition 3.5.28.

(⇐) Suppose for some F ∈ C, A 6∈ ML=(KEF ). Then there exists a KFE
Φ = (F,D,≍) and a model N = (Φ, ξ) such that N, u 6� A at some world u.

Consider a model M over Φ with the trivial equality such that for any
v ∈M,a, b ∈ Dv

M, v � Q(a, b) iff a ≍v b,

and
M, v � B iff N, v � B

for any Dv-sentence B without Q and equality. Then M � EQ
A , as one can easily

check, and N = M ′, so we can apply Lemma 3.8.5. Thus N, u 6� A implies
M,u 6� AQ, and therefore �∗(

∧
EQ

A) ⊃ AQ 6∈ ML(KEF ) ⊆ ML(KEC).
The equivalence (♯) together with Proposition 2.14.4 show that sentences

without Q are the same in ML=(KEC) and ML(KEF )=. Now if A contains
Q, it can be replaced with another letter Q′ that does not occur in A. If
A′ := [Q′(x, y)/Q(x, y)]A, then A = [Q(x, y)/Q′(x, y)]A′; so for any logic L,
A ∈ L iff A′ ∈ L. Therefore all sentences in these logics are the same. Since for
any formula A and a logic L, A ∈ L iff ∀A ∈ L, the logics are really equal.
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(2) Similarly, in the intuitionistic case due to Proposition 2.14.5, it is suffi-
cient to show that for a sentence A and an extra predicate letter Q

A ∈ IL=(KEC) ⇔
∧

EQ
A ⊃ AQ ∈ IL(KEC). (♯♯)

The proof is quite similar to the modal case.
(⇒) Suppose EQ

A ⊃ AQ 6∈ IL(KEC). Then for some intuitionistic KFE-model
M over F ∈ C and for some u ∈M

M,u  EQ
A and M,u 6 AQ,

so by the generation lemma

M ↑u  EQ
A and M ↑u, u 6 AQ.

Then by Lemma 3.8.5,
(M ↑u)′, u 6 A,

which implies A 6∈ IL=(KE(C ↑)), and so A 6∈ IL=(KEC) by Proposition 3.5.28.
(⇐) Given Φ = (F,D,≍) and an intuitionistic N = (Φ, ξ) such that N, u 6

A, the same construction as in the modal case yields an intuitionistic M such
that N = M ′. We leave the details to the reader. �

Theorem 3.8.7 Let L be a strongly KE-complete m.p.l. or s.p.l. Then L= is
also strongly KE-complete.

Proof
(I) Consider the modal case first. Let Γ be an L=-consistent N - modal theory.
We may assume that Q does not occur in Γ — to avoid Q, we can appropriately
rename all letters in Γ. Then the theory �∞EQ

N ∪ ΓQ is L-consistent.
In fact, otherwise by 2.8.1

�∞EQ
N ⊢L ¬(AQ

1 ∧ . . . ∧AQ
k )

for some A1, . . . , Ak ∈ Γ. Hence L= ⊢ ¬(A1 ∧ . . . ∧Ak) by 2.14.4, which means
that Γ is L=-inconsistent.

Since L is strongly KE-complete, there exists a KFE Φ = (F,D+, E)21 such
that Φ � L and for some model M = (Φ, ξ) and some world u0 we have M,u0 �

ΓQ ∪�∞EQ
N .

We may also assume that u0 is the root of M ; in fact, otherwise M and Φ
can be replaced with M ↑u0, and Φ↑u0, respectively, since by Lemma 3.3.18,

M ↑u0, u0 � ΓQ ∪�∞EQ
N and Φ↑u0 � L.

Thus M,u0 � �αB
Q for any B ∈ EN , and so by 3.2.12, M � EQ

N , since every
u ∈M is covered by some Rα(u0) (Lemma 1.3.19).

21We use an equivalent definition of a KFE from Lemma 3.5.2.
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Now consider Φ′ = (F,D+, E′), where

E′(a, b) := {u |M,u � Q(a, b)},

and M ′ = (Φ′, ξ′) as in Lemma 3.8.5. Then Φ′ is a KFE and M ′, u0 � Γ by
Lemma 3.8.5.

Since all equality axioms are valid in Φ′, it remains to show that Φ′ � L. It
is again sufficient to check that Φ′ � A for any A ∈ L without Q, since otherwise
Q can be renamed. So for an arbitrary KFE-model M2 = (Φ′, θ), let us show
that M2 � A.

Since Q does not occur in A the truth values of A do not depend on θ+(Q).
So we may further assume that for any u,

M1, u � Q(a, b) ⇔ u ∈ E′(a, b).

M2 remains a KFE-model under this assumption, because

E′(a1, a2) ∩ E′(a1, b1) ∩E′(a2, b2) ⊆ E′(b1, b2).

Now put M1 := (Φ, θ). Then M1 is also a KFE-model.
In fact, the latter means

(1) (a1, . . . , an) ∈ θu(Pn
k ) & u ∈

n⋂
i=1

E(ai, bi) ⇒ (b1, . . . , bn) ∈ θu(Pn
k ).

Since M ′
1 is a KFE-model, we have

(2) (a1, . . . , an) ∈ θu(Pn
k ) & u ∈

n⋂
i=1

E′(ai, bi) ⇒ (b1, . . . , bn) ∈ θu(Pn
k ).

Now (1) follows from (2), and the observation that

(3) E(a, b) ⊆ E′(a, b) holds for any a, b ∈ D+.

To check (3), note that it is equivalent to

(4) M,u � a = b ⊃ Q(a, b)
provided a, b ∈ Du.

But this holds, since

M,u � a = b ∧Q(a, a) ⊃ Q(a, b)

as soon as M is a KFE-model, and M,u � Q(a, a) as we already know.
By definition, it follows that M2 = M ′

1 as in Lemma 3.8.5. Now Φ � L
implies M1 � A. A = AQ, since A is without equality; hence M2 � A by Lemma
3.8.5.

(II) The intuitionistic case is considered in a very similar way. If (Γ,∆) is

an L=-consistent intuitionistic theory, then (ΓQ ∪ EQ
0 ,∆

Q) is also L-consistent.
In fact, otherwise by 2.7.14,

ΓQ ∪ EQ
0 ⊢L

∨
∆Q

1
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for some finite ∆1 ⊆ ∆, which implies
∧

ΓQ
1 ∪EQ

0 ⊢
∨

∆Q
1 for some finite Γ1 ⊆ Γ

by 2.8.1. Hence L= ⊢
∧

Γ1 ⊃
∨

∆1 by 2.14.5, so (Γ,∆) is L=-inconsistent.
By strong completeness, there exists a KFE Φ = (F,D+, E) such that Φ � L

and for some intuitionistic model M = (Φ, ξ) and some world u0, M,u0 

(ΓQ ∪EQ
0 ,∆

Q). As in the modal case, we may assume that u0 is the root of M ,

and thus M  EQ
0 . So we can define a KFE Φ′ := (F,D+, E′) such that

E′(a, b) := {u |M,u  Q(a, b)}

and M ′ = (Φ′, ξ′) as in 3.8.5. Then by 3.8.5, M ′ is a KFE-model such that

M,u  AQ iff M ′, u  A

for any u ∈M and Du-sentence A. Hence M ′, u0  (Γ,∆).
Φ′  L is proved as in the modal case — every intuitionistic model over Φ′

corresponds to an intuitionistic model over Φ (for the basic language L0). �

Theorem 3.8.8 Let L be a KE-complete s.p.l. or a conically expressive m.p.l.
Then L= is also KE-complete.

Proof Essentially the same as for 3.8.7, but now we should take care of
finiteness.

(I) Let us begin with the modal case. Consider an arbitrary formula A in
the language of L such that L= 6⊢ A.

Then by 2.14.4

�∗EQ
A 6⊢L AQ,

i.e.
L 6⊢ (

∧
�∗EQ

A) ⊃ AQ,

and thus by completeness, there exists a KFE Φ = (F,D+, E) such that Φ � L

and for some world u0 in some KFE-model M = (Φ, ξ) we have M,u0 � �
∗EQ

A ∪
{¬AQ}.

As in 3.8.7, we may assume that u0 is the root of M and define

Φ′ := (F,D+, E′),

where
E′(a, b) := {u |M,u � Q(a, b)}.

and M ′ = (Φ′, ξ′) according to Lemma 3.8.5. Then M ′ is a KFE-model.
By 3.8.5 we obtain

M,u � BQ iff M ′, u � B

for any u ∈M , for any Du-sentence B using predicate letters only from A, and
so M ′, u0 6� A. The proof of Φ′ � L is exactly the same as in 3.8.7.

(II) In the intuitionistic case suppose L= 6⊢ A. Then by 2.14.5, EQ
A 6⊢L AQ,

i.e. L 6⊢
∧
EQ

A ⊃ AQ, and thus the latter formula is refuted in an intuitionistic
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KFE-model M = (Φ, ξ) over a KFE Φ validating L. Again we may assume that
M is rooted and

M,u0  (EQ
A , {A

Q})

for the root u0 of M . Now we define Φ′, M ′ as in 3.8.5. Then M ′ is intuitionistic
and

M,u  BQ iff M ′, u  B

for any u, whenever B is a Du-sentence in predicate letters from A. Eventually
we obtain Φ′  L and M ′, u0 6 A. i.e. Φ′ separates A from L=. �

Remark 3.8.9 The analogue of 3.8.8 does not hold for K-completeness. In fact,
QH and QS4 are K-complete, as we shall see in Chapter 7, but the equality-
expansions QH=, QS4= are K-incomplete, by 3.10.6 below.

Corollary 3.8.10 If L is an s.p.l. or a conically expressive m.p.l., then L is
KE-complete iff L= is KE-complete.

Proof ‘If’ follows from 2.16.15, ‘only if’ – from 3.8.8. �

Now let us prove an analogue of 2.16.14 for strong completeness.

Proposition 3.8.11 Let L be an m.p.l. or an s.p.l., S a semantics of Kripke
frames or Kripke sheaves for the corresponding logics with equality. If L= is
conservative over L and strongly S-complete, then L is also strongly S-complete.

Proof Consider the modal case. Suppose Γ is an L-consistent theory. Then
Γ is L=-consistent, due to the conservativity. So Γ is satisfiable in an L=-frame
(in the corresponding semantics), which is obviously an L-frame. �

Corollary 3.8.12 If L is an s.p.l. or a conically expressive m.p.l., then L is
strongly KE-complete iff L= is strongly KE-complete.

Proof ‘If’ follows from 2.14.8 and 3.8.11, ‘only if’ – from 3.8.7. �

3.9 Simulation of varying domains

Consider a formula A in a language with or without equality, and let U be a new
unary predicate letter. Let AU be the formula obtained from A by relativising
all quantifiers under U ; formally:

AU := A for A atomic;
(∃xB)U = ∃x(U(x) ∧BU );
(∀xB)U = ∀x(U(x) ⊃ BU );
(B ∗ C)U = BU ∗CU for ∗ ∈ {⊃,∨,∧}.

Next, put
A∗

U := ∃xU(x) ⊃ AU .
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Let M = (F, θ) be a Kripke model over a rooted frame F = (W,R,D) with root
v0, such that M, v0  ∃xU(x). Consider the frame FU := (W,R,DU ) with

DU
v := {a ∈ Dv |M, v  U(a)}

and a Kripke model MU := (FU , θU ) such that

(θU )+(P (a1, . . . , an)) := {v | a1, . . . , an ∈ DU
v } ∩ θ+(P (a1, . . . , an)) =

{v |M, v  P (a1, . . . , an) ∧
n∧

i=1

U(ai)}

for P 6= U ,
(θU )+(U(a)) := {v | a ∈ Dv}.

FU is well defined. In fact, DU
v0

6= ∅ since M, v0  ∃xU(x); by truth
preservation DU

w ⊆ DU
v whenever wRv.

The model MU is intuitionistic, since M is intuitionistic.
We can obviously extend the relativisation to formulas with constants. Then

the following holds:

Lemma 3.9.1 For any world v in M , for any Dv-sentence B that does not
contain U

M, v  BU ⇔MU , v  B.

Proof Easy by in induction. By definition,

M, v  B ⇔MU , v  B.

for any atomic Dv-sentence B. �

Lemma 3.9.2 For every Kripke model M ′ = (F,D′, θ′) over a poset F with
root v0 there exists a Kripke model M = (F ⊙ V, θ) over F with a constant
domain such that M, v0  ∃xU(x) and MU = M ′.

Proof In fact, put

V := (D′)+;
θ+(U(a)) := {v | a ∈ D′

v};

θ+(P (a)) := {v |M ′, v  P (a) ∧
n∧

i=1

U(ai)}

for P ∈ PLn, a = (a1, . . . , an).
Then obviously M,u0  ∃xU(x) and

a ∈ DU
v ⇔M, v  U(a) ⇔ a ∈ D′

v,

and for any v ∈M, P ∈ PLn

a ∈ (Dv)n iff M, v  P (a) iff M ′, v  P (a).

Therefore M ′ = MU . �
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Theorem 3.9.3

(1) Let F be a rooted poset, A a sentence without equality and without occur-
rences of U . Then

A ∈ IL(KF ) ⇔ AU ∈ IL(CKF ).

(2) Similarly, if A ∈ IF=, then

A ∈ IL=(KEF ) ⇔ AU ∈ IL=(CKEF ).

Proof We prove only (1); the proof of (2) is similar. First, there exist a
model M0 over F ⊙ V and a world v0 ∈ F such that M0, v0  ∃xU(x) and
M0, v0 6 AU . Put M := M0 ↑ v0. Then by the generation lemma and Lemma
3.9.1, MU , v0 6 A. Thus A 6∈ IL(K(F ↑v0)), and so A 6∈ IL(KF ).

The other way round, suppose A 6∈ IL(KF ), i.e. there exists a frame F′ =
(F,D′) with a model M ′ such that M ′, v0 6 A; now v0 is root of F . Consider a
model M according to Lemma 3.9.2. Then M ′ = MU , so M, v0 6 AU by 3.9.1.
Hence AU ∈ IL(CKF ). �

Corollary 3.9.4

(1) IL(KF ) ≤m IL(CKF ).

(2) IL=(KEF ) ≤m IL=(CKEF ).

3.10 Examples of Kripke semantics

According to the general definition from Chapter 2, the Kripke semantics gen-
erated by a class C of Kripke sheaves (or KFEs) is

S(C) = {ML(Φ) | Φ ∈ C}.

Let us consider three examples of Kripke semantics.

Definition 3.10.1 A Kripke frame with equality F = (F,D,≍) is called monic
if

(∗) ∀u, v ∈ F ∀a, b ∈ (Du ∩Dv) (a ≍u b⇔ a ≍v b);

F is a KFE with closed equality (or CE-KFE) if for any i for any a, b ∈ D+

for any u, v ∈ F

(∗∗) ∀i ∀u, v ∈ F (uRiv ⇒ ∀a, b ∈ Du (a ≍u b⇔ a ≍v b));

or equivalently, the premise uRiv can be replaced with uR∗v. An intuitionistic
KFE with closed equality is also called a KFE with decidable equality, or a
DE-KFE.
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If F is presented in the form (F,D+, E) as in Lemma 3.3.2, then the above
conditions are rewritten as follows:

(*′) ∀a, b ∈ D+ (E(a, b) = ∅ ∨ E(a, b) = E(a) ∩ E(b));

(**′) ∀a, b ∈ D+ ∀i E(a) ∩E(b) ∩R−1
i E(a, b) ⊆ E(a, b).

Definition 3.10.2 A disjoint Kripke sheaf Φ = (F,D, ρ) is called monic if for
any a, b ∈ D+, u, v ∈ F

(1) aR∗u & bR∗u & aR∗v & bR∗v & (a|u) = (b|u) ⇒ (a|v) = (b|v);

Φ is a CE-sheaf (or a DE-sheaf in intuitionistic case) if

(2) ∀u, v ∈ F ∀a, b ∈ Du ∀i (uRiv & (a|v) = (b|v) ⇒ a = b).

The necessary modification for the non-disjoint case is quite obvious.
These three types of KFEs and Kripke sheaves fully correspond to each other

and generate equal semantics:

Lemma 3.10.3

(1) A disjoint Kripke sheaf Φ is monic iff the KFE G(Φ) is monic. The other
way round, a KFE F is monic iff the Kripke sheaf Θ(F) is monic.

(2) F is a CE-KFE iff Θ(F) is a CE-sheaf.

Thus a Kripke sheaf Φ is CE iff the KFE G(Φ) is CE. Recall that Θ(G(Φ)) is
isomorphic to Φ.

Proof
Consider the monic case (the CE-case is quite obvious).
Let F = (F,D,≍) be a monic KFE,

Θ(F) = (F,D′, ρ), D′
u = (Du/ ≍u), ρuv(au) = av if v ∈ Fu, a ∈ Du ⊆ Dv.

Assume wR∗y, wR∗v, w′R∗u, w′R∗v, aw ∈ D′
w, bw′ ∈ Du ∩ Dv and a ≍u b.

Then a ≍v b since F is monic, i.e. ρwv(aw) = ρw′v(bw′).
Now, let Φ = (F,D, ρ) be a monic disjoint Kripke sheaf, G(Φ) = (F,D′,≍′).

Let u, v ∈ F, a, b ∈ D′
u ∩ D′

v, a ≍′
u b, i.e. a ∈ Dw, b ∈ Dw′ for some w,w′ ∈

(R∗)−1(u)∩ (R∗)−1(v) and ρwu(a) = ρw′u(b). Then ρwv(a) = ρw′v(b) since Φ is
monic, i.e. a ≍′

v b. �

Example 3.10.4 (Warning) In general if Θ(F) is monic, then F is not nec-
essarily monic (even in the intuitionistic case). In fact, let us consider the KFE
F = (F,D,≍) based on the poset F = {u, v}, in which u and v are incompara-
ble, Du = Dv = {a, b}, ≍u= (Du)2, ≍v= idDv

. Then F is not monic, since
a ≍u b, but not a ≍v b. On the other hand,

Θ(F) = (F,D′, ρ), D′
u = {au}, D

′
v = {av, bv}, ρuu = idD′

u
, ρvv = idD′

v
.
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This Kripke sheaf is monic, since

aR∗w & aR∗w′ ⇒ w = w′

in Θ(F).
Speaking informally, the individual au = bu in Θ(F) does not know that it

corresponds to av 6= bv.
One can construct a similar example based on a rooted S4-frame.

Lemma 3.10.5

(1) For any N -modal predicate Kripke frame F, i ≤ N

F � ∀x∀y(x 6= y ⊃ �i(x 6= y)).22

(2) For any intuitionistic Kripke frame F, F � DE.

Proof

(1) If u � a 6= b for a, b ∈ Du, then a 6= b, and thus v � a 6= b for any
v ∈ Ri(u); hence u � �i(a 6= b).

(2) We have to show that u  a = b ∨ a 6= b for any a, b ∈ Du. In fact, if
a = b, then u  a = b, by definition. If a 6= b, then v 6 a = b for any
v ∈ R(u); thus u  a 6= b, by definition.

�

Proposition 3.10.6 The logics QK=,QH= are K-incomplete.
Moreover, let Λ be a modal propositional logic such that K ⊆ Λ ⊆ S4 or

S4 ⊆ Λ ⊂ S5, or an intermediate propositional logic 6= CL. Then QΛ= is
K-incomplete.

Proof In this case a two-element reflexive chain Z2 validates Λ. Thus Λ (and
QΛ=) is valid in the Kripke sheaf Φ = (Z2, D, ρ), in which D = {a, b}, D1 =
{c}, a|1 = b|1 = c. Obviously, Φ 6�CE and Φ 6 DE. Therefore we obtain
QΛ= 6⊢ CE in the modal case and QΛ= 6⊢ DE in the intuitionistic case. But
by Lemma 3.10.5, QK= �K CE, QH= �K DE, which yields incompleteness.

�

The semantics generated by monic KFEs (or Kripke sheaves) is denoted by

MK
(=)
N , MK

(=)
int , and the semantics generated by CE-KFEs (or Kripke sheaves)

is denoted by KCE
(=)
N , KCE

(=)
int . Obviously every monic KFE is CE (and similarly

for Kripke sheaves). Lemma 3.10.5 shows that every simple KFE (or a simple
Kripke sheaf — with inclusions ρuv) is also monic. So we have:

K
(=)
N ⊆ MK

(=)
N ⊆ KCE

(=)
N ,

and similarly for superintuitionistic logics. All these inclusions are actually
strict, as we will see later on.

22Recall that this formula is denoted by CEi (Section 2.6).



288 CHAPTER 3. KRIPKE SEMANTICS

Lemma 3.10.7

(1) A KFE (or a Kripke sheaf) is CE iff it validates CE : ∀x∀y (✸(x = y) ⊃
(x = y)).

(2) An intuitionistic KFE (or a Kripke sheaf) is DE iff it validates DE :
∀x∀y ((x = y) ∨ (x 6= y)).

Proof

(1) immediate

(2) (for KFEs). Let a, b ∈ Du. Clearly u 6� (a = b) ∨ (a 6= b) iff ¬(a ≍u

b) & ∃v (uRv & a ≍v b).

�

Example 3.10.4 shows that monic KFEs do not have an adequate logical
characterisation. In fact, KFEs F and G(Θ(F)) have the same modal logic, but
only one of them is monic. A similar example can be constructed for monic
Kripke sheaves.

In some special cases the three semantics introduced are equivalent. Let us
give two examples.

Recall that simple Kripke sheaves correspond to Kripke frames with trivial
equality.

Lemma 3.10.8 Every CE-Kripke sheaf over an S4-tree F is isomorphic to a
simple Kripke sheaf over F .

Proof Let Φ = (F,D, ρ) be the original Kripke sheaf (which we suppose dis-
joint) and let F = (W,R). Consider the following relation between individuals:

a ∼ b := ∃d (dρa & dρb).

Since F is a tree, ∼ is an equivalence relation. In fact, if a ∼ b, b ∼ c and
dρa, dρb, eρc, eρb, d ∈ Du, e ∈ Dv, then both u, v see the world of b, and thus
they are comparable. We may assume that uRv. So dρd′ for some d′ ∈ Dv, and
also d′ρb. Hence dρd′, so by (CE) it follows that d′ = e, and thus dρc, which
implies a ∼ c.

Then we factorise the domains: D̃u := Du/ ∼. It follows that D̃u ⊆ D̃v

whenever uRv, hence we obtain a PKF (F, D̃). One can easily show that Φ is
isomorphic to Θ(F ). �

Definition 3.10.9 A propositional Kripke frame (W,R) is called

• directed iff ∀x, y ∈ W R(x) ∩R(y) 6= ∅;

• weakly directed iff ∀x, y ∈W (R(x)∩R(y) is directed (if it is non-empty)
as the frame with the relation R or R−1 restricted to it).
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Lemma 3.10.10 Every CE-sheaf over a weakly directed frame is monic.

Proof Assume that individuals a, b in a given CE-sheaf Φ are both related to
worlds u, v. Also assume that (a|u) = (b|u), uRw, vRw. Then

(a|w) = (a|u)|w = (b|u)|w = (b|w),

i.e.
(a|v)|w = (b|v)|w,

and thus (a|v) = (b|v) by (2). Similarly we obtain (a|v) = (b|v) in the case,
when a, b are related to some world in R−1(u) ∩R−1(v). �

Lemma 3.10.11 Let Φ = (W,R,D, ρ) be a monic Kripke sheaf over a directed
frame. Then ML(Φ) = ML(F) for some PKF F over (W,R).

Proof Since (W,R) is directed and the inheritance relation ρ is transitive,
we can construct the direct limit

D+
0 = lim

→
(Du : u ∈W ).

Namely, we take D+
0 = D+/ ∼, where

a ∼ b iff a, b have a common inheritor.

There exist natural embeddings iu : Du −→ D+
0 (the injectivity follows from

(1)), such that the diagram

Du

ρuv

iu

D+
0

Dv

iv

commutes. Consider the PKF F = (W,R,D0) with (D0)u = iu(Du). It can
be easily proved that Φ and Θ(F) (see Section 3.3) are isomorphic. Thus,
ML(Φ) = ML(F) by Lemma 3.3.4. �

Corollary 3.10.12 Kdir = MKdir = KCEdir, where dir means the restriction
to directed frames.

Definition 3.10.13 A KFE is called a KFE with a constant domain if all its
individual domains are equal.

We use the notation F = (F ⊙ V,≍) for KFEs with a constant domain (where
V = Du for all u ∈ F ).
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Definition 3.10.14 A KFE with a set of possible worlds W is called flabby if
the measure of existence of every its individual is W .

So, a KFE is flabby iff it has a constant domain.
Now let us describe flabby Kripke sheaves corresponding to flabby KFEs.

Definition 3.10.15 A Kripke sheaf Φ = (F,D, ρ) is called flabby if there exists
a domain D0 and a family of surjections ρ0u : D0 −→ Du for u ∈ F such that
ρ0v = ρ0u ◦ ρuv, whenever uR∗v in F ,

Lemma 3.10.16

(1) If F = (F,D,≍) is a flabby KFE, then Θ(F) is a flabby Kripke sheaf.

(2) For a flabby Kripke sheaf Φ = (F,D, ρ) there exists a flabby KFE F such
that Θ(F) is isomorphic to Φ.

Proof

(1) Let D0 be the domain of any world in F and ρ0(a) = au(= a/ ≍u) for
u ∈ F .

(2) Let F = (F ⊙D0,≍), where a ≍u b iff ρ0u(a) = ρ0u(b).

�

Definition 3.10.17 A Kripke sheaf (F,D, ρ) is called meek if all the maps ρuv

(for uR∗v) are surjective. A KFE (F,D,≍) is called meek if

∀i∀u ∀v ∈ Ri(u)∀b ∈ Dv ∃a ∈ Du a ≍u b,

i.e. if any individual in any accessible world is locally equal to some individual
from the present world.

Obviously, every flabby Kripke sheaf (or KFE) is meek — if ρ0u ◦ ρuv is
surjective, then ρuv is surjective. Every flabby KFE is meek, since it has a
constant domain.

Lemma 3.10.18 Meek Kripke sheaves, meek KFEs, flabby Kripke sheaves, and
flabby KFEs generate the same semantics.

Proof Note that every meek Kripke sheaf over a rooted frame is flabby. �

Lemma 3.10.19 CDT ∈ (QS4 +Ba).

Proof This follows from Kripke completeness of QS4+Ba, see Chapter 7. A
syntactic proof is an exercise for the reader. �



3.10. EXAMPLES OF KRIPKE SEMANTICS 291

Remark 3.10.20 In Chapter 7 we will show that

IL(S4-PKFs with constant domains) = QH + CD,

ML(N -modal PKFs with constant domains) = QS4 + {Ba1, . . . , BaN}.

Remark 3.10.21 In a meek Kripke sheaf the following holds:

u � ∀xB(x, a1, . . . , an) iff ∀c ∈ Du u � B(c, a1, . . . , an).

Lemma 3.10.22 (i) Let Φ be an S4-based Kripke sheaf. Then:

CD ∈ IL(Φ) iff Ba ∈ ML(Φ) iff Φ is meek.

(ii) For an S4-based KFE F,

F  CD iff F is meek.

(iii) For an S4-based PKF F,

F  CD iff every its cone F↑u has a constant domain.

(1m) For a N -modal Kripke sheaf Φ,

Φ �

N∧

i=1

Bai iff Φ is meek.

(2m) For an N -modal KFE F

F �

N∧

i=1

Bai if F is meek.

(3m) For an N -modal PKF F,

F �

N∧

i=1

Bai iff every F↑u has a constant domain.

Proof
(1) Let us consider only the 1-modal case; the intuitionistic case is similar.

(Only if.) Let v, w ∈ F, vRw and suppose there is b0 ∈ Dw − ρvw(Dv). Take
the valuation ξ in Φ such that ξ, u � P (a) iff vRu and a ∈ ρvu(Dv).

Then v � ∀x�P (x), since u � P (ρvu(a)) for any u such that vRu and for
any a ∈ Dv. On the other hand, w 6� P (b0). It follows that w 6� ∀xP (x) and
v 6� �∀xP (x).

(If.) Suppose that ξ, u � ∀x�P (x) and ξ, u 6� �∀P (x) for some valuation ξ
in Φ and u ∈ F . Then ξ, v 6� P (b) for some v such that uRv and some u ∈ Dv.
Since Φ is meek, we can take a ∈ Du such that b = ρuv(a). Then u 6� �P (a)
and u 6� ∀x�P (x). This is a contradiction.
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(2) (Only if.) Let v, w ∈ F, vRw, and suppose there is b0 ∈ Dw such that
∀b ∈ Dv b 6≍w b0. Take the valuation ξ in F such that:

ξ, u  Q iff vRu& u 6= v,

ξ, u  P (a) iff vRu& ∃a′ ∈ Dv a ≍u a
′.

Then v  ∀x(Q ∨ P (x)), since v  P (a) for any a ∈ Dv and u  Q for any
u ∈ R(v) with u 6= v. On the other hand, v 6 Q and v 6 ∀xP (x) since
w 6 P (b0).

(If.) Suppose that ξ, u  ∀x(Q ∨ P (x)), ξ, u 6 Q, u 6 ∀xP (x) for some
valuation ξ in F and u ∈ F . Then v 6 P (b) for some v ∈ R(u), b ∈ Dv. Since F
is meek, we can take a ∈ Du such that b ≍v a. Then u 6 P (a) and u 6 Q∨P (a).
This is a contradiction.

(3) This directly follows from (2) and from the obvious fact that a PKF F
has a constant domain iff its corresponding KFE with trivial equality is meek.

�

As we noticed, every flabby Kripke sheaf is meek. On the other hand, a
rooted meek Kripke sheaf is flabby.

Therefore, flabby Kripke sheaves generate the semantics equivalent to meek
Kripke sheaves. Moreover, this semantics equals the semantics of flabby KFEs.

Let CK be the semantics generated by all PKFs with constant domains.

Definition 3.10.23 A Kripke sheaf is called bijective if all its transition maps
are bijections.

Let BK be the semantics generated by all bijective Kripke sheaves.

Proposition 3.10.24 CK ⊂ BK.

Proof CK ⊆ BK since every PKF with a constant domain F corresponds to
the bijective Kripke sheaf Θ(F). To prove that the converse inclusion is not
true, consider the bijective Kripke sheaf Φ0 := (W,R,D, ρ), where

W = {u, v, w}, D = {a, b, c, d}, Du = {a}, Dv = {b}, Dw = {c, d},

R = idW ∪ {(u, v)}, ρ = idD ∪ {(a, b)},

see Fig. 3.4.
Let

C := ∀x∀y(P (x) ⊃ P (y)),

K ′ := q ⊃ �q.

Then obviously,
Φ0 � C

′ ∨K ′,

but
Φ0 6� C′.
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•

•
• •
c d w

v b

au

Figure 3.4.

However, for every PKF F = F ⊙ V , we have

|V | = 1 ⇒ F � C,

and
|V | > 1 & F 6� K ′ ⇒ F 6� C′ ∨K ′;

so
F � C′ ∨K ′ only if (F � C′ or F � K ′).

Thus ML(Φ0) 6∈ CK. �

The above example also shows:

Lemma 3.10.25 CK lacks the collection property (CP ) from Section 2.16.

Proof In fact,
ML(Φ0) = ML(Φ1) ∩ ML(Φ2),

where Φ1 are Φ2 the restrictions of Φ0 respectively to {u, v} and {w}; on the
other hand,

ML(Φ1), ML(Φ2) ∈ CK.

�

Nevertheless, CK and BK are equivalent, as we shall see below.

Lemma 3.10.26 Let Φ = (F,D, ρ) be a bijective Kripke sheaf over a rooted
frame F . Then ML(Φ) ∈ CK.

Proof Let u0 be the root of F , D0 = Du0 , and consider the PKF F = F ⊙D0.
Since ρ gives rise to a family of bijections between D0 and each Du, the Kripke
sheaves Θ(F) and Φ are isomorphic. So, ML(Φ) = ML(F) by Lemma 3.3.4.

�

Corollary 3.10.27 CKr = BKr (r means the restriction to rooted frames).
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Lemma 3.10.28 Every logic from BK is CK-complete.

Proof Let Φ be a bijective Kripke sheaf over F . Then

ML(Φ) =
⋂

u∈F

ML(Φ↑u)

by Lemma 3.7.17. Thus ML(Φ) is CK-complete by Lemmas 3.10.26 and 2.16.3.
�

Lemmas 3.10.24, 3.10.28 and Corollary 2.12.4 yield

Corollary 3.10.29 CK ≃ BK.

Here is the sequence of all Kripke semantics considered above:

BK ≃ CK ≺ K ≺ MK ≺ KCE ≺ KE.

3.11 On logics with closed or decidable equality

In this section we show that unlike equality-expansions, extensions with closed
or decidable equality may be nonconservative.

3.11.1 Modal case

Consider the following modal formula:

Ba1 := ✸∃xP (x) ⊃ ∃x✸∃y(P (y) ∧ ✸(x = y)).

Note that
QS4= + Ba1 ⊆ QS4= +Ba.

We will see that these inclusions are actually strict (Lemma 3.11.4). Neverthe-
less:

Lemma 3.11.1 QS4=c +Ba = QS4=c +Ba1.

Proof We shall use ‘naive reasoning’ in QS4=c +Ba1. Assume that ✸∃xP (x).
Then (from Ba1)

∃x✸∃y(P (y) ∧ ✸(x = y)).

Using ✸(x = y) ⊃ x = y, we obtain

∃x✸∃y(P (y) ∧ (x = y)),

i.e. ∃x✸P (x). �

Corollary 3.11.2 QS4= +Ba1 �K Ba.

Lemma 3.11.3 Let Φ be an S4-based Kripke sheaf. Then Φ � Ba1 iff Φ satis-
fies:
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(1) ∀u∀v (uRv ⇒ ∀b ∈ Dv ∃a ∈ Du ∃w (vRw&ρuw(a) = ρvw(b))).

Proof (Only if.) Let u, v ∈ F, uRv and suppose there is b ∈ Dv such that
∀a ∈ Du ∀w (uRw ⇒ ρuw(a) 6= ρuw(b)). Take the valuation ξ in Φ such that

ξ, s � P (c) iff s = v and c = b.

Then clearly ξ, u � ✸∃xP (x). On the other hand, suppose ξ, u � ∃x✸∃y(P (y)∧
✸(x = y)). Then there are a ∈ Du, w ∈ F and c ∈ Dw such that ξ, w �
P (c) ∧ ✸(ρuv(a) = c). Since ξ, w � P (a), we have w = v and c = b. We have
ξ, v � ✸(ρuw(a) = b), which leads to a contradiction.

(If.) Suppose there is a valuation ξ in Φ and u ∈ F such that ξ, u � ✸∃xP (x)
and ξ, u 6� ∃x✸(∃y(P (y) ∧ ✸(x = y)). Then there are v ∈ F and b ∈ Dv such
that uRv and ξ, v � P (b). Since Φ satisfies (1), there are a ∈ Du and w ∈ F
such that vRw and ρuw(a) = ρvw(b). It follows that ξ, v � ✸(ρuv(a) = b) and
thus ξ, v � ∃y(P (y) ∧ ✸(ρuv(a) = y)). We have a contradiction. �

Lemma 3.11.4 QS4= +Ba1 6�KE Ba.

Proof Consider the Kripke sheaf Φ depicted at Figure 3.5. It is easily seen
that Φ satisfies (2), but it is not meek since b1 does not have a predecessor in
u0; thus Φ � Ba1, Φ 6� Ba. �

• •

•
a0

b1a1

a2

•

u0

u1

u2

Figure 3.5.

Corollary 3.11.5

(1) LB1 := QS4= +Ba1 is K-incomplete.

(2) K ≺ KE.
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Remark 3.11.6 One can repeat the argument for logics without equality: Ba1

should be replaced with

Ba′1 := �∀xQ(x, x) ∧ ✸∃xP (x) ⊃ ∃x✸∃y(P (y) ∧ ✸Q(x, y)).

3.11.2 Intuitionistic case

We shall use the following intuitionistic formulas:

E := ¬¬∃xP (x) ⊃ ∃x¬¬P (x);
E1 := ∃x∀y(¬P (x) ⊃ ¬P (y));
E2 := ∃x∀y(¬P (y) ⊃ ¬P (x));
F := ∃x∀y(P (x) ⊃ P (y));
F0 := ∀x¬¬P (x) ⊃ ¬¬∀xP (x);
G := ∃x∀y(P (y) ⊃ P (x));
U := ∀x∀y(P (x) ⊃ P (y));
U0 := ∀x∀y(¬P (x) ⊃ ¬P (y));
C := ¬¬p ⊃ p;
J := ¬¬q ∨ ¬q;
Z := (p ⊃ q) ∨ (q ⊃ p).

The corresponding logics were considered in [Umezawa, 1959], where many in-
clusions and equalities between them were proved, in particular:

(1) QH + E = QH + E1 = QH + E2,

(2) QH + F0 = QH + ¬¬F .

One can easily see that

QH= + U0 ⊂ QH= + ¬¬U ⊂ QH= + U = QH= + ∀x∀y(x = y).

We also have:

Lemma 3.11.7

(1) QH=s + U = QH=s + U0;

(2) QH=s +U0∨A = QH=s +U∨A for every sentence A without occurrences
of P .

Proof
(1) From R(x) ⊃ ∀y¬¬R(y) by substitution we obtain

z = x ⊃ ∀y¬¬ z = y,

and
x = x ⊃ ∀y¬¬ x = y.

Now, x = x and ¬¬ x = y ⊃ x = y (in QH=s) yield ∀x∀y(x = y).
(2) Similar. �
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Lemma 3.11.8 (U ∨ J) ∈ (QH=s + E).

Proof (‘Naive argument’). Due to 3.11.7 it is sufficient to show that

(U0 ∨ J) ∈ (QH=s + E).

E1 and E2 provide x1, x2 such that

∀y(¬P (y) ⊃ ¬P (x1))

and
∀y(¬P (x2) ⊃ ¬P (y)).

If x1 = x2 we have U0, so suppose x1 6= x2. Let

R(x) := (¬¬q ∧ (x = x1)) ∨ (¬q ∧ (x = x2)).

It is easily seen that ¬¬∃xR(x), so due to E, there exists x0 such that ¬¬R(x0).
Since (x0 = x1) ∨ (x0 6= x1), we obtain J . �

Corollary 3.11.9 QH + E �K U ∨ J .

Lemma 3.11.10 QH + E 6�KE U ∨ J .

Proof The Kripke sheaf Φ depicted at Figure 3.6, does not validate U∨J , as it
is easily seen. If u � ¬¬∃xP (x) in some model on Φ then v1 � P (b), V2 � P (ci)
for some i and so, u � ¬¬P (ai).

• •
a1 a2

b c1 c2
v1

u

v2

• • •

Figure 3.6.

�

Corollary 3.11.11

(1) QH + E is K-incomplete.
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(2) K ≺ KE (intuitionistic case).

(3) QH=c + E is not conservative w.r.t. QH + E.

Remark 3.11.12 Kripke-incompleteness (i.e. K-incompleteness) of QH + E
was first observed by H.Ono [1973]. Namely, he proved that QH + E �K CD
but QH+E 6�CT CD (the semantics CT will be defined in Chapter 4). Actually
QH + E 6�KE CD also holds, and Figure 3.7 shows a Kripke sheaf needed for
the proof.

t2

...

a0
n−2 a2

2

t1 a0
n−1

. . .
a1

1

t0 a0
n

. . .
a0

1

a0
0

b′ cn

v1

cmnbmnu

v2 bn c′

Figure 3.7.

3.12 Translations into classical logic

In Section 1.8 we showed that in many cases Kripke-complete modal or su-
perintuitionistic propositional logics are recursively axiomatisable and complete
w.r.t. countable frames. To prove these results, we used the standard trans-
lation of propositional modal formulas into classical first-order formulas. In
this section we extend this translation to modal first-order formulas, cf. [van
Benthem, 1983].

Let us consider the two-sorted classical predicate language L2N . The vari-
ables of the first sort (ranging over individuals) are taken from the same set V ar
as in our basic language LN . The second sort has a countable set of variables
(ranging over worlds) Wvar := {wn | n ∈ ω}. L2N also contains equality23

23Strictly speaking, there are two kinds of equality - for worlds and for individuals.
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and binary predicate letters R1, . . . , RN , U ; Ri are of type (worlds × worlds)
and U is of type (worlds × individuals); thus atomic formulas are of the form

Ri(wm, wn) or U(wm, vn) or wm = wn or vm = vn. L2⋆
N is the expansion of L2N

with (n+ 1)-ary predicate symbols Pn⋆
j of type (worlds × individualsn) corre-

sponding to n-ary predicate symbols Pn
j (x) of our basic language LN . Consider

the following classical L2⋆
N -theory:

Γ0 := {Exd} ∪ {An
j | n, j ≥ 0},

where

Exd := ∀w0∃v0U(w0, v0) ∧ ∀v0∃w0U(w0, v0)∧
N∧

i=1

∀w1∀w2∀v0(Ri(w1, w2) ∧ U(w1, v0) ⊃ U(w2, v0)),

An
j := ∀w0∀v1 . . . ∀vn(Pn⋆

j (w0, v1, . . . , vn) ⊃
n∧

i=1

U(w0, vi)).

The intended interpretation of the formula U(w0, x) is x ∈ Dw0 . So the con-
juncts of Exd respectively mean that every individual domain is non-empty,
every individual belongs to some domain, and the domains are expanding with
respect to Ri. The formula Pn⋆

j (w0,x) asserts that w0 � P
n
j (x); thus An

j means
that an atomic formula can be true at world w0 only for individuals from Dw0 .

Given a Kripke frame F = (F,D) based on a propositional frame F =
(W,ρ1, . . . , ρN), we can construct the following (associated) L2N -structure F⋆

expanding F⋆ and satisfying Exd, in which the universes of sorts 1 and 2 are
the sets W and D+ respectively, and for any u1, u2, u, a

F⋆ � Ri(u1, u2) iff u1ρiu2,
F⋆ � U(u, a) iff a ∈ Du.

Next, a Kripke model M = (F,D, ξ) gives rise to an associated L2⋆
N -structure

M⋆ satisfying Γ0 and expanding F⋆ such that for any u, a

M⋆ � Pn⋆
j (u, a) iff a ∈ Dn

u &M,u � Pn
j (a).

Then we have

Lemma 3.12.1 Every classical model of Exd is associated with some predicate
Kripke frame. Every classical model of Γ0 is associated with some predicate
Kripke model.

Proof In fact, let µ be a model of Γ0. To define M , let D+ be the domain of
the first sort, W the domain of the second sort. The accessibility relations ρi in
M are taken from µ. Then put for every u ∈W ,

Du := {a ∈ D+ | µ � U(u, a)},

and
ξ+(Pn

k (a)) := {u ∈ W | µ � Pn⋆
k (u, a)},

for a ∈ Dn
u . From the above remarks it follows that µ = M⋆. In the same way

a model of Exd can be presented as F⋆ for some F. �
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Now by induction let us construct an L2⋆
N -formula A⋆(w0,x), the standard

translation of a first-order modal formula A(x):

Pn
j (x)⋆ := Pn⋆

j (w0,x),

(x1 = x2)⋆ := (x1 = x2),
⊥⋆ := ⊥,
(B ⊃ C)⋆ := B⋆ ⊃ C⋆,
(∃yB)⋆ := ∃y(U(w0, y) ∧B⋆),
(�iB)⋆(w0,x) := ∀w1(R(w0, w1) ⊃ B⋆(w1,x)).

Lemma 3.12.2 (1) M,u � A(a) (modally) iff M⋆ � A⋆(u, a) (classically)
for any N -modal Kripke model M , N -modal formula A, u ∈M, a ∈ Dn

u .

(2) F � A iff ∀ξ (F, ξ)⋆ � ∀w0A
⋆(w0) for an LN -sentence A and an N -

modal frame F.

Proof
(1) By induction. Let us consider the case A(x) = �kB(x).

M,u � A(a) ⇔ ∀u1 ∈ ̺k(u) M,u1 � B(a)
⇔ ∀u1 ∈ ̺k(u) M⋆ � B⋆(u1,a) (by the induction hypothesis)
⇔M⋆ � ∀w(Rk(u,w) ⊃ B⋆(w,a)) ⇔M⋆ � (�kB)⋆(a).

(2) F � A⇔ ∀ξ∀u ∈ F (F, ξ), u � A
⇔ ∀ξ∀u ∈ F (F, ξ)⋆ � A⋆(u) (by (1)) ⇔ ∀ξ (F, ξ)⋆ � ∀w0A

⋆(w0). �

Lemma 3.12.3 (1) M,u  A(a) iff M⋆ � (AT )⋆(u, a) for any intuitionis-
tic Kripke model M , an intuitionistic formula A, u ∈M, a ∈ Dn

u .

(2) F  A iff for any intuitionistic ξ, (F, ξ)⋆ � ∀w0(AT )⋆(w0) for an intu-
itionistic sentence A and an S4-based frame F.

Proof
(1) M,u  A(a) iff M,u � AT (a) (by Lemma 3.2.16)

iff M⋆ � (AT )⋆(u, a) (by Lemma 3.12.2).
(2) Easily follows from (1). �

The next two definitions are predicate analogues of Definition 1.8.2.

Definition 3.12.4 Let C be a class of N -modal predicate Kripke frames. We
say that C is ∆-elementary (respectively, R-elementary) if the class of associ-
ated L2N -structures C⋆ := {F⋆ | F ∈ C} is ∆-elementary (respectively, R-
elementary).

Definition 3.12.5 A modal or superintuitionistic predicate logic L is called
∆-elementary (respectively, R-elementary) if the class V(L) of all L-frames is
∆-elementary (respectively, R-elementary).
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Definition 3.12.6 A predicate Kripke frame F = (F,D) is called countable if
the set of its worlds and the set of its individuals (D+) are both countable. We
say that F has a countable base if the set of worlds is countable and that F has
a countable domain if D+ is countable.

Definition 3.12.7 Let C be a class of Kripke frames, L = ML(=)(C) its modal
logic. We say that L has

• the countable frame property (c.f.p.) in C if

L = ML(=)({F | F ∈ C, F is countable }),

• the countable domain property (c.d.p.) in C if

L = ML(=)({F | F ∈ C, F has a countable domain}),

• the countable base property (c.b.p.) in C:

L = ML(=)({F | F ∈ C, F has a countable base}).

and similarly for the intuitionistic case.

Obviously, the c.f.p. implies the c.d.p. and the c.b.p.

Proposition 3.12.8

(1) If a class of Kripke frames C is R-elementary, then its modal predicate logic

ML(=)(C) is recursively axiomatisable (i.e. RE). Similarly, the intermedi-

ate logic IL(=)(C) is recursively axiomatisable for any R-elementary class
C of intuitionistic Kripke frames.

(2) If C is a ∆-elementary class of Kripke frames, then ML(=)(C) has the
c.f.p. in C, and similarly for the intuitionistic case.

Proof Similar to 1.8.5. Let C be the class of models of an L2N -theory Σ, C1

the class of all countable models of Σ. Then by Lemma 3.12.1, the L2⋆
N -models

of Σ ∪ Γ0 are exactly the structures of the form (F, ξ)⋆, where F � Σ. Now by
Lemma 1.8.4 and Gödel’s completeness theorem we obtain for any sentence A:

A ∈ ML(C) ⇔ Σ ∪ Γ0 � ∀w0A
⋆(w0) (in the classical sense)

⇔ Γ0 ∪ Σ ⊢ ∀w0A
⋆(w0) (in classical predicate logic).

Hence the set of all sentences in ML(C) is RE. Since for any formula A, A ∈
ML(C) iff ∀A ∈ ML(C), the whole logic is reducible to this set, and thus (1)
follows.

For the intuitionistic case, it suffices to note that IL(=)(C) = T ML(=)(C),

by 3.2.31, thus IL(=)(C) is reducible to ML(=)(C).
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Similarly to the above, we obtain that for any sentence A:
A ∈ ML(C1) iff for any countable L2⋆

N -structure µ, (µ � Σ ∪ Γ0 ⇒ µ �
∀w0A

⋆(w0)).
By Lemma 3.12.1 and the Löwenheim-Skolem theorem, the latter is equiv-

alent to Σ ∪ Γ0 � ∀w0A
⋆(w0), and thus (as we have shown) to A ∈ ML(C).

Therefore ML(C) = ML(C1), which proves (2).
In the intuitionistic case note that

IL(C) = T(ML(C)) = T(ML(C1)) = IL(C1).

�

The following refinement of (2) is also useful.

Proposition 3.12.9 Let L be a ∆-elementary modal or superintuitionistic pred-
icate logic, F an L-frame, M a Kripke model over F, S a countable set of worlds
in M . Then there exists a countable reliable submodel of M containing S, whose
frame also validates L.

Proof Let V(L)⋆ be the class of models of an L2N -theory Σ. Then M⋆ � Σ.
By the Löwenheim–Skolem–Tarski theorem, M⋆ has a countable elementary
substructure µ containing S. Then µ � Γ0 ∪ Σ, so by Lemma 3.12.1 it follows
that µ = M⋆

1 for some Kripke model M1. If F1 is the frame of M1, we obtain

that F⋆
1 � Σ, i.e. F1 ∈ V(L).

Since M⋆
1 ≺M⋆, we have for any u ∈M , A(a) ∈ L(u):

M⋆ � A(u, a) iff M⋆
1 � A(u, a).

Hence by Lemma 3.12.3

M,u � A(a) iff M1, u � A(a),

which means that M1 is reliable. �

Remark 3.12.10 In the intuitionistic case we can define a slightly different
translation. Namely, we can include the axioms of quasi-ordering (or partial
ordering) for R in Exd and add the following truth-preservation clause to An

j :

∀z1∀z2∀x (R(z1, z2) ∧ Pn⋆
j (z1,x) ⊃ Pn⋆

j (z2,x)).

For an intuitionistic predicate formula A(x), the L2⋆
0 -formula Ā(z0,x) is con-

structed as follows:

Pj(x) = P⋆
j (z0,x);

(x1 = x2) = (x1 = x2);

(A1σA2) = Ā1σĀ2 for σ = ∧,∨;

(A1 ⊃ A2)(z0,x) = ∀z1(R(z0, z1) ∧ Ā1(z1,x) ⊃ Ā2(z1,x));

∃x0A0(x0,x) = ∃x0(U(z0, x0) ∧A0(x0,x));

∀x0A0(x0,x) = ∀z1∀x0(R(z0, z1) ∧ U(z1, x0) ⊃ Ā0(z1, x0,x)).
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Recall (Section 3.2) that for a class of propositional Kripke frames Z, K(Z)
denotes the class of all Kripke frames based on frames from Z. By CK(Z) we
denote the class of all frames with constant domains from K(Z).

Corollary 3.12.11 Let L be a ∆-elementary predicate logic, M a Kripke model
over an L-frame F, u0 ∈ M . Then there exists a countable reliable submodel
M0 ⊆M over an L-frame containing u0 such that MT(M) = MT(M0).

Proof For any sentence A 6∈ MT(M) (in the language of L) there exists a
world uA ∈M such that M,uA 6� A. Put

S := {u0} ∪ {uA | A 6∈ MT(M)}

and apply the previous proposition. The resulting submodel M0 is reliable, so
MT(M) ⊆ MT(M0).

On the other hand, if A 6∈ MT(M), then M,uA 6� A, so M0, uA 6� A by
reliability of M0. Therefore MT(M0) ⊆ MT(M). �

Corollary 3.12.12 Let Z be a class of propositional Kripke frames.

(1) If Z is R-elementary, then the logics determined over Z ML(=)(K(Z))

and ML(=)(CK(Z)), are recursively axiomatisable.

(2) If Z is ∆-elementary, then ML(=)(K(Z)) has the c.f.p. in K(Z), and

ML(=)(CK(Z)) has the c.f.p. in CK(Z).

Analogous properties hold for the intuitionistic case.

Proof For the case of constant domains we have to add the axiom

∀z1∀z2∀x (U(z1, x) ≡ U(z2, x)),

or, if one prefers,
∀z∀xU(z, x).

Equivalently, we can drop the conjuncts containing U in the definition of Ā. �

Examples
Consider the following R-elementary classes:

• Wn, the class of all posets of width ≤ n;

• Hn, the class of all posets of height ≤ n;

• Bn, the class of all posets of branching ≤ n.

So the superintuitionistic predicate logics of the following classes of posets
are recursively axiomatisable (and satisfy the countable frame property):

(a) IL(=)(K(Wm)),
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(b) IL(=)(K(Pn ∩Wm)), etc.

If m ≥ 2, explicit axiom systems for these intermediate logics are unknown.
On the other hand, explicit recursive axiomatisations are known for the logics

IL(=)(K(Pn)), IL(=)(K(Pn ∩ Bm)), IL(=)(K(Bm)), see Chapter 7.
In particular, we have:

IL(=)(K(B1)) = QH(=) + Z;

IL(=)(K(Bm)) = QH(=) for m ≥ 2.

In this connection note that the logic

IL

(
K

(
Bm ∩

⋃

n<ω

Pn

))

of frames of finite heights and of finite branching bounded by m in all finite
heights is not RE if m ≥ 2, see Chapter 11; recall that the corresponding
propositional logic is H + Bm (Chapter 1). The same holds for the logics
IL(K(Wm ∩

⋃
n<ω

Pn)), IL(K(Pm ∩
⋃

n<ω
Wn)), etc.

Also note that explicit finite axiomatisations of the classes of frames with
constant domains in the cases (a), (b) are known, see Chapter 8.

Corollary 3.12.13 Every predicate logic determined over a finite propositional
Kripke frame F is recursively axiomatisable, and satisfies the c.d.p. (in K(F )).

Proof (cf. [Skvortsov, 1995], [Skvortsov, 1991]). It is well known that ev-
ery finite classical structure is finitely axiomatisable. So the class {F} is R-
elementary for a finite propositional Kripke frame F ; if F = ({a1, . . . , am}, R),
then up to isomorphism, F is defined by the following C1-sentence:

∃z1, . . . , zm


 ∧

aiRaj

R(zi, zj) ∧
∧

¬aiRaj

¬R(zi, zj) ∧ ∀z0

(
m∨

i=1

(z0 = zi)

)
∧
∧

i6=j

(zi 6= zj)


 .

�

However in many cases the predicate logics of R-elementary classes of frames
are not recursively axiomatisable. For example, for a class Z of rooted posets,
IL(Z) is RE iff Z is finite, see Chapter 11.

Remark 3.12.14 We have defined a translation from a modal logic language
into a classical language based on Kripke frame semantics. Similar translations
can be defined for Kripke sheaves and for other Kripke-style semantics consid-
ered in further chapters. Recursive axiomatisability and countable frame (or
countable domain) property also can be established for logics complete in these
semantics. The constructions are rather straightforward, and we do not discuss
them in detail.
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We have established the countable domain property for any finite propo-
sitional Kripke frame. It turns out that the c.d.p. can be extended to any
countable propositional Kripke frame as well. H. Ono proved this result for
the intuitionistic case by a straightforward argument (see Theorem 1.1 in [Ono,
1972/73]). Here we give a model-theoretic proof for the modal case which is
based again on the translation into a classical language.

Proposition 3.12.15 Let F be a propositional Kripke frame of infinite cardi-
nality κ. Then

(1) ML(=)(K(F )) = ML(=){(F,D) | ∀u ∈ F |Du| ≤ κ}, and similarly for

the logic IL(=)(F ) of any intuitionistic propositional Kripke frame F of
cardinality κ.

(2) ML(=)(CK(F )) = ML(=){(F ⊙ V ) | |V | ≤ κ}.

Corollary 3.12.16 Let Z be a class of countable propositional frames. Then

ML(=)(K(Z)) = ML(=){(F,D) | F ∈ Z & ∀u ∈ F |Du| ≤ ℵ0},

and similarly for CK(Z).

Proof We prove Proposition 3.12.15 for the modal case. For the intuitionistic
case one can repeat the proof or just apply Gödel–Tarski translation.

(i) We add a set of individual constants of sort 1 of cardinality κ

T = {cα | α < κ}

to L2⋆
N and fix a bijection

ν : T → F.

We denote the resulting language by L2⋆
Nκ.

Given a Kripke model ((F,D),�), we can construct a model M+
κ of L2⋆

Nκ

by taking an L2⋆
N -model M+ and putting

M+
κ � u = cα iff u = ν(cα).

Due to the downward Löwenheim–Skolem–Tarski theorem, it has an elementary
substructure of cardinality κ, which we denote by M+′

κ . Obviously, its universe

of sort 1 must coincide with F , and so its L2⋆
N -reduct corresponds to some

Kripke model ((F,D),�′) based on F . Since D′+ is the universe of sort 2 in
M+′

κ , we have |D′+| ≤ κ, and thus ∀u |D′
u| ≤ κ. For any modal predicate

formula A(x) we have

(F,D), u � A(x) iff M+
κ � Ā(u,x) iff M+′

κ � Ā(u,x) iff (F,D′), u �′ A(x).

Therefore, if A(x) 6∈ ML(=)(K(F )), it is refuted in a frame (F,D′) such that
|D′

u| ≤ κ for any u ∈ F .
(ii) Note that if (F,D) has a constant domain, then M+

κ � ∀z∀xU(z, x) and
thus M+′

κ � ∀z∀xU(z, x) and (F,D′) has a constant domain. �
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On the other hand, let F be a propositional frame which is well-ordered of
the type κ, κ being an infinite cardinal, cf. [Skvortsov, 1989]. Consider the
formula

KF = ¬¬∀x(P (x) ∨ ¬P (x)),

see Section 2.3. Then KF 6∈ IL(=)(K(F )), since KF 6∈ IL(F ⊙ V ) if |V | ≥ κ.
In fact, let (aββ < κ) be a sequence of distinct elements in V , and consider the
valuation ξ such that for every α < κ

ξα(P ) = {aβ | β ≤ α}.

Then
ξ, 0  ¬KF.

Also we have
KF ∈ IL(F,D) if |D+| < κ.

In fact, take an arbitrary valuation ξ in (F,D); for every a ∈ D+ take an ordinal
βa ≤ κ such that

ξ, α  P (a) iff βa ≤ α.

Also take α0 < κ such that

∀a (βa < κ⇒ βa ≤ α0).

Then
ξ, α0  ∀x(P (x) ∨ ¬P (x)).

Also note that
|D+| ≤ ℵ1 if ∀α < κ |Dα| ≤ ℵ0.

In fact,

|{α < κ | Dα 6⊆
⋃

β<α

Dβ}| ≤ ℵ1.

Therefore, we cannot replace |Du| ≤ κ with |Du| ≤ ℵ0 in Proposition 3.12.15
say for F = ℵ2. Let us also note that for F = κ

KF 6∈ IL(F,D) if Dα = {aβ | β ≤ α},

and
∀α < κ |Dα| < κ;

thus
KF 6∈ IL{(F,D) | ∀α < κ |Dα| ≤ ℵ0}

for F = ℵ1.
Let us consider another similar example. Let F be a denumerable tree (with

the root OF ), in which Fu is nonlinear (e.g. the tree ω∗ of all finite sequences
of natural numbers, or the binary tree {0, 1}∗ of all finite (0,1)-sequences, etc.).
Let F be the coatomic tree obtained by adding maximal points wτ above every
branch (maximal chain) τ of F . Let us consider the following formula:

C∗ := ∀x((¬P (x) ⊃ q) ⊃ q) ∧ ¬¬∃xP (x) ⊃ q.

Then
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Lemma 3.12.17 (i) C∗ ∈ IL(F ⊙ V ) for a denumerable V ;

(ii) C∗ 6∈ IL(F ⊙ V ) if |V | ≥ |F − F | (e.g. if |V | ≥ 2ℵ0).

Proof

(i) Suppose that

u0 6|= q, u0 |= ∀x[(¬P (x) ⊃ q) ⊃ q], u0 |= ¬¬∃xP (x), V = {an : n > 0}.

Then
∀u 6|= q ∀n > 0 ∃v (uRv& v |= ¬P (an) & v 6|= q),

and there exists a chain u0Ru1Ru2R . . . such that ∀n > 0 [un |= ¬P (an) &
, un 6|= q]. Then wτ |= ¬∃xP (x) for a branch τ containing all un. This is
a contradiction.

(ii) Take different elements aτ from V for wτ ∈ (F − F ), and the following
valuation in F ⊙ V :

u |= P (a) iff ∃τ (u = wτ & a = aτ );

u |= q iff ∃τ(u = wτ ).

Then OF 6|= q, OF |= ¬¬∃xP (x). We also have

∀u ∈ F ∀a ∈ D0 u 6|= ¬P (a) ⊃ q

since for a = aτ , there exists v ∈ Fu such that v 6∈ τ , i.e. v |= ¬P (a).
Thus OF |= ∀x((¬P (x) ⊃ q) ⊃ q).

�

Remark 3.12.18 This example is also related to the formula KF . It is known
[Gabbay, 1981] that the predicate logic QH + KF is Kripke-complete (w.r.t.
denumerable atomic trees). Moreover, QH + KF = IL(ω∗) = IL({(ω∗, D) :
∀u |Du| ≤ ℵ0]}) (and similarly for the binary tree {0, 1}∗). The corresponding
predicate logic with constant domains is also Kripke-complete:

QH +KF + CD = IL({F ′ ⊙ V | {0, 1}∗ ⊂ F ′ ⊂ ω∗, F ′ is coatomic})

for a denumerable V . On the other hand, the above mentioned example shows
that

QH + K + CD ⊂ IL(ω∗ ⊙ V )

for a denumerable V .

Remark 3.12.19 For the case of constant domains (without equality), Propo-
sition 3.12.15 also shows that

MLC(QF ) = ML(F ⊙ V )

for any countable F and any constant infinite domain V . This follows from
3.4.11:

ML(F ⊙ V ) ⊆ ML(F ⊙ V ′),

provided |V | ≥ |V ′|.
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The translation into classical logic and the well-known generalised form of the
Löwenheim–Skolem theorem shows that

ML=(F ⊙ V ) = ML=(F ⊙ V ′)

for any finite F and infinite V, V ′, cf. Corollary 3.12.13.
The intuitionistic case is quite similar. On the other hand, if a poset F

contains an infinite cone then

C∗ ∈ (IL=(F ⊙ V ) − IL=(F ⊙ V ′)),

for |V ′| = ℵ0, |V | ≥ 2|F |, cf. Corollary 3.12.13.
Thus we obtain the following claim (cf. Theorem 1 in [Skvortsov, 1995]):

Theorem 3.12.20 IL=(F ⊙ V ) = IL=(F ⊙ V ′) for any infinite constant do-
mains V, V ′ iff all the cones in F are finite.



Chapter 4

Algebraic semantics

4.1 Modal and Heyting valued structures

As we know from Chapter 1, every propositional Kripke frame F corresponds
to a modal algebra MA(F ); so Kripke semantics can be treated as a particular
case of algebraic semantics. Likewise, in the predicate case Kripke frames with
equality admit a straightforward algebraic generalisation.

Recall that by Lemma 3.5.2, every KFE can be represented as a propositional
Kripke frame F with individuals such that for every two individuals a, b their
measure of equality E(a, b) is defined. E(a, b) is a set of possible worlds, and
thus an element of the corresponding modal algebra MA(F ). This suggests for
the following generalization of KFEs: replace MA(F ) by an arbitrary modal
algebra (or a Heyting algebra for the intuitionistic case) and E with a function
taking values in this algebra. To make the corresponding semantics sound, E
should satisfy the properties cited in Lemma 3.5.2.

Thus we come to the following two definitions.

Definition 4.1.11 Let Ω be a complete Heyting algebra (a ‘locale’). An Ω-
valued set is a triple (Ω, D,E), where D is a set, E : D ×D −→ Ω is a map
such that for any a, b, c ∈ D

(E1) E(a, b) = E(b, a);

(E2) E(a, b) ∧E(b, c) ≤ E(a, c).

If also

(E3)
∨

a ∈ D

E(a, a) = 1,

the triple (Ω, D,E) is called an Ω-valued structure or a Heyting valued structure
(H.v.s) over Ω. D is called its individual domain, the elements of D are called
individuals. The elements of Ω are called truth values.

1Cf. [Borceaux, 1994; Fourman and Scott, 1979; Dragalin, 1988].
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Obviously, (E3) implies that D is non-empty.

Definition 4.1.2 Let Ω = (Ω, ∪, ∩, −, 0, 1,�1, . . . ,�N ) be a complete modal
algebra. An Ω-valued structure or a modal valued structure (m.v.s) over Ω is
a triple (Ω, D,E), where D is a set, E : D ×D −→ Ω is a map such that for
any a, b, c ∈ D, i ∈ {1, . . . , N}

(E1) E(a, b) = E(b, a),

(E2) E(a, b) ∩ E(b, c) ≤ E(a, c),

(E3)
⋃

a∈D

E(a, a) = 1,

(E4) E(a, b) ≤ �iE(a, b).

The condition (E3) again implies the non-emptiness of D.
Since every Boolean algebra is a Heyting algebra (where ∨ is ∪, ∧ is ∩ and

a→ b = a ⋑ b = −a∪b), an m.v.s (Ω, D,E) over a modal algebra Ω corresponds

to the H.v.s (Ω♭, D,E), where Ω♭ is the Boolean part of Ω.
The other way round, if Ω is an S4-algebra, then an m.v.s. (Ω, D,E),

corresponds to the H.v.s. (Ω◦, D,E), where Ω◦ is the pattern of Ω.
Definitions and results for H.v.s. and m.v.s. are often quite similar. In these

cases we talk about ‘structures’ and denote all operations in a Heyting-algebraic
style.

As in Chapter 3, we call E(a, b) the measure of equality of individuals a, b;
they are ‘fully equal’ if E(a, b) = 1 and ‘fully different’ if E(a, b) = 0. The truth
value E(a, a) (which in general may be not equal to 1) is called the measure of
existence of a.

We also introduce the measure of equality for tuples a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ Dn:

E(a,b) := E(a1, b1) ∧ . . . ∧ E(an, bn)

and the following abbreviations:2

Eab := E(a,b), Ea := E(a) := Eaa.

We can also include the degenerate case n = 0. A 0-tuple is just f (the void
sequence), and we put

E ff := 1.

As we said above, Definitions 4.1.1, 4.1.2 generalise the situation in Kripke
frames with equality. In that case D corresponds to the set of all individuals
D+, the conditions (E1)–(E3) in Definition 4.1.2 are exactly the same as in
Lemma 3.5.2 (1), and the condition (E4) in 4.1.2 is obviously equivalent to (E4)
in 3.5.2(1). Therefore we have

2The reader will notice that our notation is ambiguous. For example, for a, b ∈ D, Eab
abbreviates both E(a, b) and E(ab) = Ea ∧ Eb. Nevertheless we use it, when there is no
confusion.
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Lemma 4.1.3

(1) Let F = (F,D,≍) be a KFE, F = (W,R1, . . . , Rµ), and for every two
individuals a, b ∈ D+ put E(a, b) = {u | a ≍u b}. Then MV (F) :=
(MA(F ), D+, E) is an m.v.s.

(2) Similarly, if F is an S4-frame, the triple HV (F) := (HA(F ), D+, E) is
an H.v.s.

Proof In fact, (E1)–(E4) in 4.1.2 follow readily from 3.5.2(1). In particular,
(E3) means that every individual domain Du is non-empty. �

The conditions (E1), (E2) in the above Definitions 4.1.1, 4.1.2 correspond to
the symmetry and the transitivity of equality; more exactly, they are intended
to make the corresponding first-order formulas true (see below). To prove the
reflexivity, the condition (E3) is necessary. The condition (E4) corresponds to
a theorem in 2.6.18(3):

x = y ⊃ �i(x = y);

it is necessary for verifying the substitution instances of the equality axiom
(Ax17).

Lemma 4.1.4 For any structure (Ω, D,E), individuals a, b ∈ D and tuples
a,b, c ∈ Dn:

(1) E(a, b) ≤ E(a, a);

(2) Eab ≤ Eaa;

(3) Eab ∧ Ebc ≤ Eac;

(4) E(a) ≤ �iE(a) (in the modal case);

(5)
∨

a∈Dn

E(a) = 1.

Proof This easily follows from Definition 4.1.2. In fact,

E(a, b) = E(a, b) ∧ E(b, a) ≤ E(a, a);

hence

Eab =
n∧

i=1

Eaibi ≤
n∧

i=1

Eaiai = Eaa;

Eab ∧Ebc =
n∧

i=1

(Eaibi ∧Ebici) ≤
n∧

i=1

Eaici = Eac;

∨
a∈Dn

E(a) =
∨
{Ea1a1 ∧ . . . ∧ Eanan | a1, . . . , an ∈ D} ≥

∨
a∈D

n∧
i=1

Eaa = 1.

In the modal case we also have

E(a) = Ea1a1 ∩ . . . ∩ Eanan ≤ �iEa1a1 ∩ . . . ∩�iEanan = �iE(a).

�
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Definition 4.1.5 A structure F = (Ω, D,E) has a constant domain (or briefly,
F is a CD-m.v.s. or a CD-H.v.s. or a CD-structure) if the equality is trivial,
i.e. for any a, b ∈ D

E(a, b) =

{
1 iff a = b,
0 iff a 6= b.

Such a structure is denoted simply by (Ω, D).

Definition 4.1.6 A structure (Ω, D,E) is called flabby if E(a, a) = 1 for every
a ∈ D and keen if E(a, b) = 0 whenever a 6= b.

So a CD-structure is both flabby and keen.
Every structure F = (Ω, D,E) gives rise to a flabby structure (of the same

type) Ffl := (Ω, D,Efl), where

Efl(a, b) :=

{
1 if a = b,
E(a, b) otherwise,

to a keen structure Fke := (Ω, D,Eke), where

Eke(a, b) :=

{
E(a, a) if a = b,
0 otherwise,

and to a CD-structure
Fcd := (Ω, D).

Definition 4.1.7 For a structure F = (Ω, D,E), an n-ary F -predicate (or an
Ω-valued predicate on D) is a map A : Dn −→ Ω. Such a predicate is called
strict (or Scott) if A(a) ≤ E(a,a) for any a ∈ Dn, and congruential if for any
a,b ∈ Dn, for any i ∈ In

∀j 6= i aj = bj ⇒ Eaibi ∧ A(a) ≤ A(b).

For a,b ∈ Dn we will use the notation

a =i b := ∀j 6= i aj = bj.

Lemma 4.1.8 For any congruential predicate A : Dn −→ Ω, for any a,b ∈ Dn

(1) Eab ∧ A(a) ≤ A(b),

(2) Eab ≤ A(a) ↔ A(b).

Proof We prove (1) by induction on n.
If n = 1, the condition a =1 b holds trivially, so the claim is obvious.
Suppose (1) holds for n for any congruential A and consider a,b ∈ Dn+1.

Let a = a1a
′, b = b1b

′. Then

(∗) A(a) ∧Eab = A(a) ∧ Ea1b1 ∧Ea′b′ ≤ A(b1a
′) ∧Ea′b′
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since A is congruential. The n-ary predicate B : c 7→ A(b1c) is also congruential.
In fact, for c,d ∈ Dn the condition c =i d implies b1c =i+1 b1d, thus

B(c) ∧Ecidi = A(b1c) ∧Ecidi ≤ A(b1d) = B(d),

since A is congruential.
By the induction hypothesis,

A(b1a
′) ∧Ea′b′ = B(a′) ∧Ea′b′ ≤ B(b′) = A(b),

therefore by (*), we obtain (1):

A(a) ∧Eab ≤ A(b).

Now (1) implies
Eab ≤ A(a) → A(b)

hence by symmetry
Eba ≤ A(b) → A(a),

which eventually implies (2). �

A 0-ary predicate A : {f} −→ Ω can be treated just as an element A(f) of
Ω. This predicate is always congruential and strict, since E(f,f) = 1.

Lemma 4.1.9

(1) A structure F is flabby iff all F -predicates are strict.

(2) A structure F is keen iff all F -predicates are congruential.

Proof

(1) (Only if.) E(ai, ai) = 1 implies A(a) ≤ E(a,a).
(If). Suppose Ea0 6= 1 for some a0 ∈ D. Then the predicate A sending
every a to 1 is not strict, since A(a0) 6≤ Ea0.

(2) (Only if.) If a 6= b, then Eab = 0, and obviously Eaibi ∧ A(a) ≤ A(b).
If a = b, then Eab ∧ A(a) ≤ A(a) = A(b).
(If). Suppose E(a0, b0) = α 6= 0 for some a0 6= b0 and consider the unary
F -predicate A sending a0 to α and every a 6= a0 to 0. Then

Ea0b0 ∧ A(a0) = α 6≤ 0 = A(b0),

thus A is not congruential.

�

Definition 4.1.10 For n-ary F -predicates we introduce the ordering

A � B := ∀a ∈ Dn B(a) ≤ A(a).
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Lemma 4.1.11 For an n-ary F -predicate A put

As(a) := A(a) ∧ Ea.

Then

(1) As � A;

(2) As is strict;

(3) for any n-ary strict F -predicate B

B � A ⇒ B � As;

(4) if A is congruential, then As is congruential.

Thus As is the greatest strict predicate “below” A; we call it the strict version
of A.

Proof (1), (2), (3) are obvious.
(4) Suppose a,b ∈ Dn and a =i b. Then

(♯) As(a) = A(a) ∧Ea ∧Eaibi ≤ A(b),

since A is congruential. Also

Eaibi ≤ Ebi

by 4.1.4(4), hence

(♯♯) Ea ∧Eaibi ≤ Eb,

and thus
As(a) ∧ Eaibi ≤ A(b) ∧ Eb = As(b).

by (♯), (♯♯). Therefore As is congruential. �

Note that trivially As = A for 0-ary A.
Let us now prove a dual to Lemma 4.1.11.

Lemma 4.1.12 For an n-ary F -predicate A put

Ac(a) := A(a) ∨

n∨

i=1

∨

d=ia

(A(d) ∧Eaidi).

Then

(1) A � Ac;

(2) Ac is congruential;



4.1. MODAL AND HEYTING VALUED STRUCTURES 315

(3) for any n-ary congruential F -predicate B

A � B ⇒ Ac � B;

(4) A is strict iff Ac is strict.

So Ac is the least congruential predicate ‘above’ A; we call it the congruential
version of A.

Proof (1), (3) are obvious.

(2) Suppose a =k b. Then

Ac(a) ∧Eakbk = A(a) ∧Eakbk ∨

n∨

i=1

∨

d=ia

(A(d) ∧Eaidi ∧Eakbk).

by well-distributivity (Section 1.2).

Now if i = k, then

Eaidi ∧Eakbk = Eakdk ∧Eakbk ≤ Ebkdk

by 4.1.1(1), (2). If i 6= k, then ai = bi, so

Eaidi ∧Eakbk = Ebidi ∧Eakbk ≤ Ebidi.

Thus

n∨

i=1

∨

d=ia

(A(d) ∧ Eaidi ∧Eakbk) ≤

n∨

i=1

∨

d=ib

(A(d) ∧Ebidi).

Also note that
A(a) ∧Eakbk = A(a) ∧Ebidi

for d = a, i = k. Hence

Ac(a) ∧Eakbk ≤

n∨

i=1

∨

d=ib

(A(d) ∧Ebidi) ≤ Ac(b).

(4) Since A � Ac, it follows that Ac(a) ≤ Ea implies A(a) ≤ Ea.

The other way round, assume that A is strict. Then for any i and d =i a,

A(d) ∧Eaidi ≤ Ed ∧ Eaidi =
∧

j 6=i

Eai ∧Eaidi ≤ Ea,

since Eaidi ≤ Eai by 4.1.4(1). By assumption A(a) ≤ Ea, so all the
disjuncts in Ac(a) are bounded by Ea, and thus Ac(a) ≤ Ea.

�
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Remark 4.1.13 Note that the disjuncts A(a) ∧Eaiai corresponding to d = a
are obviously redundant in the definition of Ac. On the other hand, for a strict
A we have

Ac(a) =
∨

i

∨

d=ia

(A(d) ∧Eaidi),

since A(a) = A(a) ∧Eaiai.

Remark 4.1.14 For an arbitrary predicate A, we can construct a strict con-
gruential version

(⋆) (As)c(a) = (Ac)s(a) =
∨
i

∨
d=ia

(A(d) ∧Eaidi).

In fact, As is strict, so by Remark 4.1.13

(As)c(a) =
∨
i

∨
d=ia

(As(d) ∧Eaidi) =
∨
i

∨
d=ia

(A(d) ∧ Ed ∧Eaidi)

=
∨
i

∨
d=ia

(A(d) ∧Ea ∧Eaidi).

The latter equality holds since Eai ∧Eaidi = Edi ∧Eaidi (which easily follows
from 4.1.4 (1)), and thus for d =i a

Ed ∧Eaidi =
∧

j 6=i

Eaj ∧Edi ∧Eaidi =
∧

j 6=i

Eaj ∧Eai ∧ Eaidi = Ea ∧Eaidi.

On the other hand,

(Ac)s(a) = Ac(a) ∧Ea = A(a) ∧Ea ∨

∨

i

∨

d=ia

(A(d) ∧Ea ∧Eaidi)

by well-distributivity. The first disjunct is redundant as it equals A(a) ∧Ea ∧

Eaiai, hence (⋆) follows.
Note that

As � (As)c � Ac,

but in general A and (As)c are �-incomparable. E.g. consider a unary A
such that A(a) 6≤ Eaa for some a. Then A(a) 6≤ (As)c(a), since (As)c(a) ≤
Eaa. And if A(d) ∧ Ebd 6≤ A(b) for some b, d, then (As)c(b) 6≤ A(b), since
A(d) ∧ Ebd ≤ (As)c(b).

Exercise 4.1.15 Show that (As)c = A iff A is strict and congruential.

Remark 4.1.16 As we are interested in algebraic models satisfying the axioms
of equality, atomicD+-sentences should be evaluated by congruential predicates.
This requirement also makes sense for logics without equality. A similar situa-
tion is in Kripke semantics — as we know from Chapter 3, including equality
in semantics is crucial for completeness.
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Remark 4.1.17 The strictness property is quite natural for evaluation of for-
mulas — the underlying idea is that a D+-sentence may be true only within
the “life-zone” of all occurring individuals. But as we shall see, this does not
matter for semantics, because replacing every A with As does not change the
notion of validity.

However evaluating formulas with arbitrary predicates simplifies the induc-
tive truth definition, see Definition 4.2.4. This happens because strict predicates
are not closed under all Boolean operations (for example, under negation, since
A(a) ≤ Ea does not imply −A(a) ≤ Ea if Ea 6= 1).

4.2 Algebraic models

Definition 4.2.1 A valuation is an m.v.s. (H.v.s.) F = (Ω, D,E) is a map
ϕ : AFD −→ Ω sending every D-sentence to Ω such that

ϕ(P (a)) ∧Eaibi ≤ ϕ(P (b))

whenever P ∈ PLn, a,b ∈ Dn, a =i b. Then the n-ary F -predicate ϕP : a 7→
ϕ(P (a)) is called associated to ϕ and P . The pair (F, ϕ) is called an algebraic
model over F .

From the definitions it follows that all the predicates ϕP are congruential.

Definition 4.2.2 A valuation ϕ is called strict if every predicate associated to
ϕ is strict, i.e. if

ϕ(P (a)) ≤ Ea

for any P ∈ PLn, a ∈ Dn.

Definition 4.2.3 For an arbitrary valuation ϕ we define its strict version ϕs

such that
ϕs(P (a)) := ϕ(P (a)) ∧Ea.

for any a ∈ Dn, P ∈ PLn.

Thus (ϕs)P = (ϕP )s, and so the definition is sound, since (ϕP )s is congruential
by Lemma 4.1.11.

Certainly ϕs = ϕ if ϕ is strict.

Definition 4.2.4 For a valuation ϕ in an m.v.s. (respectively, H.v.s.) F =
(Ω, D,E) we define its (unique) ‘large’ extension to all modal (respectively, in-
tuitionistic) D-sentences in the natural way:

(1) ϕ(⊥) := 0;

(2) ϕ(a = b) := E(a, b);

(3) ϕ(A ∨B) := ϕ(A) ∨ ϕ(B);
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(4) ϕ(A ∧B) := ϕ(A) ∧ ϕ(B);

(5) ϕ(A ⊃ B) := ϕ(A) → ϕ(B);

(6) ϕ(�iA) := �iϕ(A);

(7) ϕ(∃xA) :=
∨

d∈D

(Ed∧ ϕ([d/x]A))).

(8) ϕ(∀xA) :=
∧

d∈D

(Ed→ ϕ([d/x]A)).

Then for any D-formula A and a distinct list of variables x ⊇ FV (A) of
length n, we may define the associated F -predicate

ϕA,x : Dn −→ Ω

such that
ϕA,x(a) := ϕ([a/x]A)

for any a ∈ Dn. In particular, ϕP (x),x = ϕP .
To simplify notation, we sometimes write ϕA rather than ϕA,x.
Let us check that every predicate ϕA,x is congruential. We begin with a

simple observation.

Lemma 4.2.5

(1) ϕP remains congruential after fixing some parameters. In precise terms:
let P ∈ PLn, c ∈ Dn, let x, y be disjoint distinct list of variables of
length n and m respectively, let σ : Im −→ In be an injection, and let
B = [c/x][y/x · σ]P (x). Then ϕB,y is congruential.

(2) Let A be an atomic D-formula without equality with FV (A) ⊆ {x}. Then
for any algebraic model (F, ϕ) with the individual domain D, for any a, b ∈
D

ϕ([a/x]A) ∧ Eab ≤ ϕ([b/x]A).

Proof (1) First note that

ϕ([a/y]B) = ϕ(P (a′)),

where

a′i :=

{
ci if i 6∈ r(σ),
aσ−1(i) otherwise.

This is clear, since

B[y 7→ a] = P (x)[x · σ 7→ a][x 7→ c].

Similarly we have
ϕ([b/y]B) = ϕ(P (b′)),
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where b′ is constructed from b in the same way as a′. Now a =i b implies
a′ =σ(i) b′, and thus, since ϕP is congruential,

ϕ([a/y]B) ∧Eab = ϕ(P (a′)) ∧Eab ≤ ϕ(P (b′)) = ϕ([b/y]B),

as required.
(2) If A is a D-sentence, the claim is trivial. Otherwise we have

A = [xm/y]B,

for some B as in (1), if A contains P and x occurs m times in A.
By (1), ϕB,y is congruential, hence by Lemma 4.1.8,

E(am, bm) ∧ ϕ(B(am)) ≤ ϕ(B(bm)).

Now since E(am, bm) = Eab, B(am) = A(a) and B(bm) = A(b), we obtain (2).
�

Lemma 4.2.6 The predicate ϕA,x is congruential for any D-formula A with
FV (A) ⊆ {x}.

Proof By induction on the complexity of A we prove

ϕ([a/x]A) ∧Eab ≤ ϕ([b/x]A).

(1) If A is ⊥, there is nothing to prove.

(2) If A is x = c or c = x, then by 4.1.1 we have:

ϕ(A(a)) ∧Eab = Eac∧Eab ≤ Ebc = ϕ(A(b)).

(3) If A is x = x, then

ϕ(A(a)) ∧Eab = Eaa∧ Eab ≤ Ebb = ϕ(A(b)).

(4) If A is atomic without equality, the claim follows from Lemma 4.2.5.

(5) In the modal case, if A is �iB, then by Definition 4.1.2(4) and the induc-
tion hypothesis

ϕ(A(a))∩Eab ≤ �iϕ(B(a))∩�iEab = �i(ϕ(B(a))∩Eab) ≤ �iϕ(B(b)) =
ϕ(A(b)).

(6) If A is B ⊃ C and ϕB, ϕC are congruential, then

ϕ(A(a)) ∧Eab = (ϕ(B(a)) → ϕ(C(a))) ∧ Eab;
thus
ϕ(A(a)) ∧Eab∧ ϕ(B(b)) =
(ϕ(B(a)) → ϕ(C(a))) ∧ ϕ(B(b)) ∧Eab ≤
(ϕ(B(a)) → ϕ(C(a))) ∧ ϕ(B(a)) ∧Eab (since ϕB is congruential)
≤ ϕ(C(a)) ∧ Eab (by properties of Heyting algebras)
≤ ϕ(C(b)) (since ϕC is congruential).

Therefore

ϕ(A(a)) ∧Eab ≤ ϕ(B(b)) → ϕ(C(b)) = ϕ(A(b)).
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(7) If A(x) is ∃y B(y, x), then we may assume that y 6= x (otherwise A is a
sentence), and thus

ϕ(A(a)) =
∨

d∈D

ϕ(B(d, a))).

So by well-distributivity, and the induction hypothesis applied to B(d, x),
we obtain

ϕ(A(a)) ∧ Eab =
∨

d∈D

(ϕ(B(d, a)) ∧Eab) ≤
∨

d∈D

ϕ(B(d, b)) = ϕ(A(b)).

(8) If A = B ∨ C, and the claim is proved for B, C, we have

ϕ(A(a)) ∧Eab ≤ (ϕ(B(a)) ∨ ϕ(C(a))) ∧Eab =
= (ϕ(B(a)) ∧Eab) ∨ (ϕ(C(a)) ∧Eab) ≤ ϕ(B(b)) ∨ ϕ(C(b)) = ϕ(A(b)).

(9) The simple case A = B ∧ C is left to the reader.

(10) Let A = ∀yB(y, x), and assume that y ∈ FV (B), and that the claim holds
for B. Then

ϕ(A(a)) ∧Eab ≤ ϕ(A(b))

is equivalent to

Eab∧

∧

c ∈ D

(Ec→ ϕ(B(c, a))) ≤
∧

c ∈ D

(Ec→ ϕ(B(c, b))).

It suffices to show that for any c ∈ D,

Eab∧ (Ec → ϕ(B(c, a))) ≤ Ec→ ϕ(B(c, b)),

i.e.
Eab∧ (Ec→ ϕ(B(c, a))) ∧Ec ≤ ϕ(B(c, b)).

The latter follows by properties of Heyting algebras and the induction
hypothesis:

Eab ∧ (Ec→ ϕ(B(c, a))) ∧Ec ≤ Eab∧ ϕ(B(c, a)) ≤ ϕ(B(c, b)).

�

Lemma 4.2.7 The predicate ϕA,x is congruential for any D-formula A and
r(x) ⊇ FV (A).

Proof Assume a =i b for a,b of the same length as x. Fix all the parameters
of A but xi, so put

B(xi) := A(a1, . . . , ai−1, xi, ai+1, . . . , an).

Then

ϕ(A(a)) ∧Eaibi = ϕ(B(ai)) ∧Eaibi ≤ ϕ(B(bi)) = ϕ(A(b))

by Lemma 4.2.6. �
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However, as we mentioned in Remark 4.1.17, the predicate ϕA is not necessarily
strict, even for a strict ϕ. So we introduce another extension of ϕ to D-sentences.

Let F = (Ω, D,E) be a structure, A a D-sentence of the corresponding type.
Then we put

E(A) :=
∧

{Ea | a ∈ D, a occurs in A}.

In particular, E(A) = 1 if A is a usual sentence (without constants from D).

Definition 4.2.8 For a valuation ϕ in a structure F = (Ω, D,E) we define an
Ω-valued function ϕ♮ on corresponding D-sentences as follows.

(1) ϕ♮(⊥) := 0;

(2) ϕ♮(a = b) := E(a, b);

(3) ϕ♮(A) := ϕ(A) ∧E(A) for all other atomic A;

(4) ϕ♮(A ∨B) := E(A ∨B) ∧ (ϕ♮(A) ∨ ϕ♮(B));

(5) ϕ♮(A ∧B) := ϕ♮(A) ∧ ϕ♮(B);

(6) ϕ♮(A ⊃ B) := E(A ⊃ B) ∧ (ϕ♮(A) → ϕ♮(B));

(7) ϕ♮(�iA) := E(�iA) ∩�iϕ
♮(A) (in the modal case);

(8) ϕ♮(∃xA) :=
∨

d∈D

ϕ♮([d/x]A).

(9) ϕ♮(∀xA) := E(∀xA) ∧
∧

d∈D

(Ed→ ϕ♮([d/x]A)).

We also define another associated predicate

ϕ♮
A,x : Dn −→ Ω

such that for any a ∈ Dn

ϕ♮
A,x(a) := ϕ♮([a/x]A).

Again we often abbreviate ϕ♮
A,x to ϕ♮

A.

Lemma 4.2.9 Let (F, ϕ) be an algebraic model, with the domain D, A a cor-
responding D-sentence. Then

ϕ♯(A) = ϕ(A) ∧ E(A).

Proof By induction.

(1) If A is ⊥, the claim is trivial.

(2) If A is a = b, then by 4.1.4 (1) and symmetry,

ϕ(A) = Eab ≤ Ea ∧Eb = E(A).
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(3) If A is a = a, then ϕ(A) = Eaa = E(A).

(4) If A is atomic without equality, the claim holds by definition.

(5) If A is a modal formula �iB, then by the induction hypothesis,

ϕ♯(A) = �iϕ
♯(B) ∩ E(A) = �iϕ(B) ∩�iE(B) ∩ E(A).

Next,
�iE(B) ∩ E(A) = �iE(A) ∩ E(A) = E(A)

by 4.1.4 (4), and thus

ϕ♯(A) = �iϕ(B) ∩ E(A) = ϕ(A) ∩ E(A).

(6) If A is B ∨ C, then by the induction hypothesis,

ϕ♯(A) = (ϕ♯(B) ∨ ϕ♯(C)) ∧E(A) =
(ϕ(B) ∧ E(B) ∧ E(A)) ∨ (ϕ(C) ∧ E(C) ∧ E(A)).

Since E(A) ≤ E(B), E(C), we obtain

ϕ♯(A) = (ϕ(B) ∧ E(A)) ∨ (ϕ(C) ∧ E(A)) = ϕ(A) ∧ E(A).

(7) If A is B ∧ C and the claim holds for B, C, we have

ϕ♯(A) = ϕ(B) ∧ ϕ(C) = ϕ(B) ∧E(B) ∧ ϕ(C) ∧E(C) =
(ϕ(B) ∧ ϕ(C)) ∧ (E(B) ∧ E(C)) = ϕ(A) ∧E(A).

(8) If A is B ⊃ C, then by the induction hypothesis

ϕ♯(A) = E(A) ∧ (ϕ♯(B) → ϕ♯(C)) =
E(A) ∧ (ϕ(B) ∧E(B) → ϕ(C) ∧ E(C)).

Let us show that this equals

E(A) ∧ ϕ(A) = E(A) ∧ (ϕ(B) → ϕ(C)).

In fact,
ϕ(B) ∧ E(A) ≤ ϕ(B) ∧E(B),

hence
ϕ(B) ∧ E(A) ∧ (ϕ(B) ∧ E(B) → ϕ(C) ∧ E(C)) ≤
ϕ(B) ∧ E(B) ∧ (ϕ(B) ∧ E(B) → ϕ(C) ∧ E(C)) ≤
ϕ(C) ∧ E(C) ≤ ϕ(C).

So
E(A) ∧ (ϕ(B) ∧E(B) → ϕ(C) ∧ E(C)) ≤ ϕ(B) → ϕ(C).

The other way round

(ϕ(B) → ϕ(C)) ∧ ϕ(B) ≤ ϕ(C),
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hence,

E(A) ∧ (ϕ(B) → ϕ(C)) ∧ ϕ(B) ∧ E(B) ≤ E(A) ∧ ϕ(C) ≤ ϕ(C) ∧ E(C)

thus

E(A) ∧ (ϕ(B) → ϕ(C)) ≤ ϕ(B) ∧E(B) → ϕ(C) ∧ E(C).

(9) If A = ∃xB(x) and x is a parameter of B(x), then by the induction
hypothesis and Definition 4.2.4 we have

ϕ♯(A) =
∨

d∈D

ϕ♯(B(d)) =
∨

d∈D

(ϕ(B(d)) ∧E(B(d))) =
∨

d∈D

(ϕ(B(d)) ∧Ed∧E(A)) = E(A) ∧
∨

d∈D

(ϕ(B(d)) ∧Ed) = E(A) ∧ ϕ(A).

If A = ∃xB(x) and B(x) is a D-sentence, then B(x) = B(d) for any
d ∈ D, E(B(d)) = E(A). So

ϕ♯(A) =
∨

d∈D

ϕ♯(B(d)) =
∨

d∈D

(ϕ(B(d)) ∧E(B(d))) = E(A) ∧
∨

d∈D

ϕ(B(d))

= E(A) ∧ ϕ(A).

(10) Finally let A = ∀xB(x) and first assume that x ∈ FV (B(x)). Then

ϕ♯(A) = E(A) ∧
∧

d∈D

(Ed→ ϕ♯(B(d)) =

E(A) ∧
∧

d∈D

(Ed→ E(A) ∧Ed∧ ϕ(B(d)))

by the induction hypothesis; thus

ϕ♯(A) ≤ E(A) ∧

∧

d∈D

(Ed→ ϕ(B(d))) = E(A) ∧ ϕ(A).

The other way round,

E(A) ∧ (Ed→ ϕ(B(d))) ∧Ed ≤ E(A) ∧Ed∧ ϕ(B(d)),

E(A) ∧ (Ed→ ϕ(B(d))) ∧Ed ≤ E(A) ∧Ed∧ ϕ(B(d)),

hence

(∗) E(A) ∧ (Ed→ ϕ(B(d))) ≤ Ed→ E(A) ∧Ed∧ ϕ(B(d)),

which implies
E(A) ∧ ϕ(A) ≤ ϕ♯(A).

If B(x) is closed, the argument is slightly different, because now B(d) =
B(x) and E(B(d)) = E(A). By the induction hypothesis we have

ϕ♯(A) = E(A) ∧
∧

d∈D

(Ed→ E(A) ∧ ϕ(B(d)))

≤ E(A) ∧
∧

d∈D

(Ed→ ϕ(B(d))) = E(A) ∧ ϕ(A).
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The other way round, (∗) implies

E(A) ∧ (Ed→ ϕ(B(d))) ≤ Ed→ E(A) ∧ ϕ(B(d)),

so
E(A) ∧ ϕ(A) = E(A) ∧

∧
d∈D

(Ed→ ϕ(B(d))) ≤

E(A) ∧
∧

d∈D

(Ed→ E(A) ∧ ϕ(B(d))) = ϕ♯(A).

�

Lemma 4.2.10 Let (F, ϕ) be an algebraic model with a domain D. Then for

any D-formula A with FV (A) ⊆ r(x) the predicate ϕ♮
A,x is congruential; it is

also strict if FV (A) = r(x).

Proof Strictness readily follows from the previous lemma, since

ϕ♮
A,x(a) = ϕ♮(A(a)) ≤ E(A(a)) = Ea.

To prove the congruentiality, assume that |x| = n and consider a =i b in Dn.
If xi 6∈ FV (A), then [a/x]A = [b/x]A, so the inequality

ϕ♯([a/x]A) ∧Eaibi ≤ ϕ♯([b/x]A)

is trivial.
If xi ∈ FV (A), then by the previous lemma and Lemma 4.2.7,

ϕ♯([a/x]A) ∧ Eaibi = ϕ([a/x]A) ∧E([a/x]A) ∧Eaibi
≤ ϕ([b/x]A) ∧E([a/x]A) ∧Eaibi.

Since a =i b and Eaibi ≤ Ebi, we have

E([a/x]A) ∧Eaibi ≤ E([b/x]A);

thus
ϕ♯([a/x]A) ∧Eaibi ≤ ϕ♯([b/x]A)

by 4.2.7. �

Lemma 4.2.11 Let (F, ϕ) be an algebraic model with a domain D, ϕs the cor-
responding strict valuation such that for any P ∈ PLn, a ∈ Dn,

ϕs(P (a)) = ϕ(P (a)) ∧Ea,

i.e. (Lemma 4.1.11)
ϕs

P = (ϕP )s.

Then
(ϕs)♮(A) = ϕ♮(A)

for any D-sentence A.
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Proof By the choice of ϕs, for any A ∈ AFD

ϕs(A) = ϕ(A) ∧E(A) = ϕ♮(A),

so

(ϕs)♮(A) = ϕs(A) ∧E(A) = ϕ♮(A).

Since the maps (ϕs)♮, ϕ♮ coincide on AFD and they are uniquely prolonged
according to 4.2.8, they also coincide on all D-sentences. �

Lemma 4.2.12 Let (F, ϕ) be an algebraic model, A a sentence of the corre-
sponding type. Then

ϕ(A) = ϕs(A) = ϕ♮(A) = (ϕs)♮(A).

Proof By 4.2.11,

ϕ♮(A) = (ϕs)♮(A).

Since E(A) = 1, by Lemma 4.2.9 we also have

ϕ♮(A) = ϕ(A), (ϕs)♮(A) = ϕs(A).

�

Lemma 4.2.13 Let F = (Ω, D,E) be a structure, (F, ϕ) an algebraic model,
A(x) a D-formula of the corresponding type with r(x) = FV (A(x)), |x| = n, x
distinct. Then

(1) ϕ(∀xA(x)) =
∧

a∈Dn

(Ea → ϕ(A(a))).

(2) ϕ(∀xA(x)) = 1 iff ∀a ∈ Dn Ea ≤ ϕ(A(a)).

Thus ϕ(∀xA(x)) does not depend on the ordering of x, so we may use the
notation ϕ(∀̄A).

Proof (1) By induction on n. The base is trivial. Consider the step from n
to n+ 1. If x = yz, |y| = n, then ∀xA(x) = ∀y∀zA(y, z), so by the induction
hypothesis and Lemma 1.2.3,

ϕ(∀xA(x) =
∧

a∈Dn

(Ea → ϕ(∀zA(a, z)))

=
∧

a∈Dn

(Ea →
∧

c∈D

(Ec → ϕ(A(a, c)))) =
∧

a∈Dn

∧
c∈D

(Ea → (Ec → ϕ(A(a, c))))

=
∧

(a,c)∈Dn+1

(Ea ∧ Ec→ ϕ(A(a, c))) =
∧

b∈Dn+1

(Eb → ϕ(A(b)))

as required.
(2) Readily follows from (1). �



326 CHAPTER 4. ALGEBRAIC SEMANTICS

Definition 4.2.14 A closed formula A is called true in an algebraic model
(F, ϕ) (notation: (F, ϕ) � A or (F, ϕ)  A in the intuitionistic case) if ϕ(A) =
1; an arbitrary formula A is called true in (F, ϕ) (with the same notation) if
∀̄A is true.

Definition 4.2.15 A predicate A : Dn −→ Ω is called true in a structure
F = (Ω, D,E) (notation: F � A or F  A) if Ea ≤ A(a) for any a ∈ Dn.

Thus
F � A iff ∀a ∈ Dn Ea = A(a).

for a strict A,
F � A iff A(f) = 1.

for a 0-ary A, and
F � A iff F � As.

Lemma 4.2.16 The following conditions are equivalent (where � stands for 
in the intuitionistic case)

(1) (F, ϕ) � A,

(2) (F, ϕs) � A,

(3) F � ϕA, i.e. ∀a ∈ Dn Ea ≤ ϕ(A(a)),

(4) F � ϕs
A, i.e. ∀a ∈ Dn ϕs(A(a)) = Ea,

(5) F � ϕ♮
A, i.e. ∀a ∈ Dn Ea ≤ ϕ♮(A(a)),

(6) F � (ϕs)♮
A, i.e. ∀a ∈ Dn (ϕs)♮(A(a)) = Ea.

Proof By 4.2.12 and 4.2.13. �

Definition 4.2.17 A formula A is valid in a structure F (of the corresponding
kind) if A is true in every model over F (or equivalently, in every strict model
over F ).

Validity is denoted again by � in the modal case,  in the intuitionistic case.

Remark 4.2.18 If in the definition of validity we also allow for ‘valuations’ ϕ
in F = (Ω, D,E), for which ϕP is not congruential (they are just valuations in
the corresponding D-structure (Ω, D)), then some QK=

N - (or QH=-) theorems
become nonvalid. For instance, if P ∈ PL1 and ϕP is not congruential, then
the formula

A := ∀x∀y(x = y ∧ P (x) ⊃ P (y))

is not true in (Ω, ϕ) (in the sense of Definition 4.2.14).
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In fact, suppose
Eab ∧ ϕ(P (a)) 6≤ ϕ(P (b))

for some a, b ∈ D. Then by Lemma 4.2.13 (the proof of which does not use
congruentiality),

ϕ(A) ≤ Ea ∧Eb→ (Eab ∧ ϕ(P (a)) → ϕ(P (b)))
= Ea ∧ Eb ∧ Eab ∧ ϕ(P (a)) → ϕ(P (b))
= Eab ∧ ϕ(P (a)) → ϕ(P (b)) 6= 1,

by our assumption.

Lemma 4.2.19 For any valuation ϕ in an m.v.s.,

(1) ϕ♮(¬A) = E(A) − ϕ♮(A);
(2) ϕ♮(✸iA) = E(A) ∩ ✸iϕ

♮(A).

Proof The equality (1) is checked easily, so let us check (2). In fact, by (1),
we have:

ϕ♮(✸iA) = ϕ♮(−�i −A) = E(A) ∩ −�i(E(A) ∩ −ϕ♮(A)) =
E(A) ∩ (−�iE(A) ∪−�i − ϕ♮(A)) = E(A) ∩ ✸iϕ

♮(A)

since E(A) ≤ �iE(A). �

4.3 Soundness

We begin with an analogue of Lemma 3.2.24.

Lemma 4.3.1 Let F be a modal or Heyting-valued structure with a set of indi-
viduals D, and let A(x), B(x) be congruent formulas of the corresponding type,
|x| = n. Then for any a ∈ Dn, for any valuation φ in F ;

(I) ϕ(A(a)) = ϕ(B(a)), ϕ♯(A(a)) = ϕ♯(B(a))

(II) for A, B without constants, F � ()A⇐⇒ F � ()B.

Proof

(I) Along the same lines as 3.2.22. Consider the equivalence relation on modal
(or intuitionistic) formulas:

A ∼ B iff FV (A) = FV (B) and for any distinct list x such that r(x) =
FV (A), for any a ∈ D|x|

ϕ([a/x]A) = ϕ([a/x]B).

It is sufficient to show that ∼ has the properties 2.3.14(1)–(4).

(1) QyA ∼ Qz(A[y 7→ z]) for y 6∈ BV (A), z 6∈ V (A).

We only consider the case Q = ∀. If FV (∀yA) = r(x) for a distinct x, we
have two options:
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(i) If y 6∈ FV (A), then y 6∈ V (A), A[y 7→ z] = A,

∀z(A[y 7→ z]) = ∀zA, [a/x]∀yA = ∀y[a/x]A,
[a/x]∀zA = ∀z[a/x]A.

By Definition 4.2.4,

ϕ(∀y[a/x]A) =
∧

d∈D

(Ed→ ϕ([a/x]A)),

since y does not occur in [a/x]A. Hence by Lemma 1.2.4 and 4.1.1(E3),

ϕ(∀y[a/x]A) =
∨

d∈D

Ed→ ϕ([a/x]A) = ϕ([a/x]A).

By the same reason

ϕ(∀z[a/x]A) = ϕ([a/x]A),

so (1) holds in this case.

(ii) If y ∈ FV (A), then

[a/x]∀yA = ∀y[a/x]A,
[a/x]∀z(A[y 7→ z]) = ∀z[a/x](A[y 7→ z]),

and so

ϕ([a/x]∀yA) =
∧

d∈D

(Ed→ ϕ([d/y][a/x]A)),

ϕ([a/x]∀z(A[y 7→ z)) =
∧

d∈D

(Ed→ ϕ([d/z][a/x](A[y 7→ z]))).

It remains to note that

[d/y][a/x]A = [d/z][a/x](A[y 7→ z]),

since y 6∈ BV (A), z 6∈ V (A).

(2) Supposing A ∼ B, let us show that

∀yA ∼ ∀yB.

We have FV (A) = FV (B), FV (∀yA) = FV (∀yB); let r(x) = FV (∀yA).
Then

ϕ([a/x]∀yA) =
∧

d∈D

(Ed→ ϕ([ad/xy]A)),

ϕ([a/x]∀yB) =
∧

d∈D

(Ed→ ϕ([ad/xy]B)).

Now A ∼ B implies

ϕ([ad/xy]A) = ϕ([ad/xy]B),

and the claim follows.

The argument for ∃ is quite similar.
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(3) A ∼ A′ & B ∼ B′ ⇒ (A ∗B) ∼ (A′ ∗B′).

Consider the case ∗ =⊃. We argue similarly to 3.2.22. If r(x) = FV (A ⊃
B), then FV (A) = x · σ, FV (B) = x · τ for injections σ, τ . Now A ∼
A′ & B ∼ B′ implies FV (A ⊃ B) = FV (A′ ⊃ B′) and

ϕ([a/x](A ⊃ B)) = ϕ([a · σ/x/ · σ]A ⊃ [a · τ/x · τ ]B) =
= ϕ([a · σ/x · σ]A) → ϕ([a · τ/x · τ ]B)
= ϕ([a · σ/x · σ]A′) → ϕ([a · τ/x · τ ]B′)
= ϕ([a/x](A′ ⊃ B′)).

The proof of (4) is trivial.

Since E(A(a)) = E(B(a)), by Lemma 4.2.9 it follows that ϕ♯(A(a)) =
ϕ♯(B(a)).

(II) is an obvious consequence of (I).

�

Theorem 4.3.2 (Soundness theorem)

(1) For an N -m.v.s. F , the set

ML(=)(F ) := {A ∈MF
(=)
N | F � A}

is an m.p.l. (=).

(2) For an H.v.s. F , the set

IL(=)(F ) := {A ∈ IF (=) | F  A}

is an s.p.l. (=).

Proof First let us show that the set of valid formulas is substitution closed.
The argument resembles the proof of Lemma 3.2.17, but the detail is slightly
different. Assume that F = (Ω, D,E) � A. Let S = [C(x,y)/P (x)] be a
simple formula substitution, where x, y are distinct lists such that r(y) ⊆
FV (C(x,y)) ⊆ r(xy). We may also assume that P occurs in A (otherwise
SA = A) and y ∩ FV (A) = ∅, due to Lemma 4.3.2 (cf. the proof of Lemma
3.2.17). Since SA is defined up to congruence and validity respects congruence
(Lemma 4.3.1), we may further assume that A is clean and BV (A) ∩ y = ∅;
then SA is obtained by replacing every subformula of the form P (x′) with
C(x′,y). By Lemma 2.5.25 we also have FV (SA) = y ∪ FV e(S,A), where
FV e(S,A) ⊆ FV (A) is the set of essential parameters, see Definition 2.5.24.
Let

FV (A) = r(z), FV e(S,A) = r(z′), z = z′z′′.

For an algebraic model (F, ϕ) let us show that (F, ϕ) � () SA, i.e. (Lemma
4.2.16) for any b ∈ Dm, c ∈ Dj (where m = |y|, j = |z′|)

(♯) ϕ([c,b/z′,y]SA) ≥ Eb ∧Ec.
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Given tuples b, c, we construct a valuation η in F such that for any a ∈ Dn

(where n = |x|)

• η(P (a)) := ϕ(C(a,b));

• η(B) := ϕ(B) for any other B ∈ AFD.

Let us check that η is a valuation. In fact, let a =i d; then by Lemma 4.2.7

Eaidi ∧ η(P (a)) = Eaidi ∧ ϕ(C(d,b)) ≤ ϕ(C(a,b)) = η(P (d)).

Then we claim that for any formula B(u), with a distinct u such that

FV (B(u)) ⊆ r(u), r(u) ∩ r(y) = r(u) ∩BV (B(u)) = r(y) ∩ V (B(u)) = ∅,

and for any d ∈ Dl (where l = |u|)

(1) η(B(d)) = ϕ([d,b/u,y]SB),

or in a simpler notation,

η(B(d)) = ϕ(SB(d,b)).

Note that SB(d,b) is a D-sentence, since FV (SB) ⊆ uy, by Lemma 2.5.25.
The claim (1) is proved by induction.
The case when B is atomic and does not contain P , is trivial.
Assume that B is atomic, B = P (x′), x′ = u · σ, where σ : In −→ Il. Then

we have:
B(d) = [d/u][u · σ/x]P (x) = [d · σ/x]P (x) = P (a),

where a = d · σ. On the other hand, SB = C(u · σ,y), and so

[d,b/u,y]SB = [d,b/u,y]C(u · σ,y) = C(d · σ,b) = C(a,b).

Thus by definition of η,

η(B(d)) = ϕ(SB(d,b)).

Let B = B1∗B2, SB = SB1∗SB2, where ∗ is ∨, ∧ or ⊃. Then by Definition
4.2.4 and the induction hypothesis

η(B(d)) = (η(B1(d)) ⋆ η(B2(d))) = ϕ(SB1(d,b)) ⋆ ϕ(SB2(d,b))
= ϕ(SB1(d,b)) ∗ SB2(d,b)) = ϕ(SB(d,b)),

where ⋆ is the corresponding operation in Ω.
If B = ∀xB1, then by our assumption x 6∈ uy, so SB = ∀xSB1, and thus

by Definition 4.2.4 and the induction hypothesis

η(B(d)) =
∧

a∈D

(Ea→ η(B1(a,d))) =
∧

a∈D

(Ea → ϕ(SB1(b, a,d)))

= ϕ(∀xSB1(b,d)) = ϕ(SB(b,d)).
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The case B = ∃xB1 is similar and is left to the reader.

Now let us verify (♯). Take an arbitrary e ∈ Dk−j and the corresponding
d = ce ∈ Dk. Then by (1) we have:

(2) ϕ([d,b/z,y]SA) = η([d/z]A).

But

(3) [d,b/z,y]SA = [c,b/z′,y]SA, [d/z]A = [c/z′]A,

since FV (A) = r(z), FV (SA) = r(yz′).
By our assumption, F � A, and so by (2), (3), and Lemma 4.2.16, we obtain

ϕ([c,b/z′,y]SA) = η([d/z]A) = η([c/z′]A) ≥ Ec ≥ Eb ∧Ec,

i.e. (♯) holds.

The remaining properties (m0)–(m3), (m5)=, (s1), (s3) from Definitions
2.6.1, 2.6.2, 2.6.3 are verified in a standard way. We check only some of them.

Note that the value ϕ(A) of a propositional formula A in a structure F =
(Ω, D,E) is exactly the same as in the algebra Ω. So, since all propositional
axioms are valid in Ω (Lemma 1.2.6), they are also valid in F .

Let us check the validity of (Ax12): ∀xP (x) ⊃ P (y). In fact, consider an
algebraic model (F, ϕ). We have

Ea∧ ϕ(∀xP (x)) = Ea∧
∧

d∈D

(Ed→ ϕ(P (d)))

≤ Ea∧ (Ea → ϕ(P (a))) ≤ ϕ(P (a)),

hence

Ea ≤ ϕ(∀xP (x)) → ϕ(P (a)) = ϕ(∀xP (x)) → ϕ(P (a)) = ϕ(∀xP (x) ⊃ P (a)),

i.e. (F, ϕ) � ∀xP (x) ⊃ P (y), by Lemma 4.2.16.

Let us also show the validity of (Ax14): ∀x(P (x) ⊃ q) ⊃ (∃xP (x) ⊃ q). In
fact, ϕ(∀x(P (x) ⊃ q) ⊃ (∃xP (x) ⊃ q)) = 1
iff ϕ(∀x(P (x) ⊃ q)) ≤ ϕ(∃xP (x) ⊃ q) = ϕ(∃xP (x)) → ϕ(q)
iff ϕ((∀x(P (x) ⊃ q)) ∧ ϕ(∃xP (x)) ≤ ϕ(q).

Transforming the left part of the latter inequality by well-distributivity, we
obtain ∧

d∈D

(ϕ(P (d)) → ϕ(q)) ∧
∨

a∈D

ϕ(P (a))

=
∨

a∈D

[ϕ(P (a)) ∧
∧

d∈D

(ϕ(P (d)) → ϕ(q))]

≤
∨

a∈D

[ϕ(P (a)) ∧ (ϕ(P (a)) → ϕ(q))] ≤ ϕ(q)

as required.
And finally let us consider modus ponens. Suppose F � A(x,y), A(x,y) ⊃

B(y, z), where FV (A(x,y)) = r(x,y), FV (B(y, z)) = r(yz), r(x) ∩ r(z) = ∅
and the lists xy,yz are distinct (and some of them may be empty). Let l,m, n be
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the lengths of x,y, z respectively. By 4.2.16, for any a ∈ Dl, b ∈ Dm, c ∈ Dn

and valuation ϕ

E(ab) ≤ ϕ(A(a,b)), E(abc) ≤ ϕ(A(a,b) ⊃ B(b, c)).

Hence

E(abc) = E(ab) ∧ E(abc) ≤ ϕ(A(a,b)) ∧ ϕ(A(a,b) ⊃ B(b, c)) ≤ ϕ(B(b, c)).

As this happens for any a ∈ Dl, we obtain

∨

a∈Dl

E(abc) ≤ ϕ(B(b, c)).

But
∨

a∈Dl

E(abc) =
∨

a∈Dl

(E(a) ∧ E(bc)) ≤ (
∨

a∈Dl

E(a)) ∧ E(bc) = E(bc),

by 4.1.4(5). Thus
E(bc) ≤ ϕ(B(b, c)),

which implies F � B(y, z), by 4.2.16. �

Let us now consider a particular kind of H.v.s. — those arising from S4-
m.v.s.

Definition 4.3.3 The pattern of an S4-m.v.s. F = (Ω, D,E) is the H.v.s.
F ◦ = (Ω◦, D,E).

An H.v.s. of this form is called ‘basic’. More generally:

Definition 4.3.4 A locale is said to be basic if it is isomorphic to the pattern
of a complete S4-algebra. An H.v.s. over a basic locale is also called basic.

For basic H.v.s. the intuitionistic truth definition matches with the modal defi-
nition. In precise terms, this means the following.

Lemma 4.3.5 Let ϕ be a valuation in an S4-m.v.s F = (Ω, D,E), and put

ψ(A) := �ϕ(A) for every A ∈ AFD.

Then ψ is a valuation in F ◦ and ψ(A) = ϕ(AT ) for every A ∈ IF=
D .

Proof By Lemma 4.2.7, ψ is congruential. The required equality is easily
proved by induction. Let us consider the induction step for A = ∀xB(x), where
B(x) is a D-formula, FV (B(x)) ⊆ {x}. Then according to Definitions 4.2.4,
2.11.1 and Proposition 1.2.7, we have:

ψ(A) =
∧

d∈D

(Ed→ ψ(B(d))) = �
⋂

d∈D

�(Ed ⋑ ϕ(BT (d)))

≤ �
⋂

d∈D

(Ed ⋑ ϕ(BT (d))) = ϕ(AT ).
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On the other hand,

⋂

d∈D

(Ed ⋑ ϕ(BT (d))) ≤ Ed ⋑ ϕ(BT (d)),

hence
ϕ(AT ) = �

⋂

d∈D

(Ed ⋑ ϕ(BT (d))) ≤ �(Ed ⋑ ϕ(BT (d))),

and thus
ϕ(AT ) ≤

⋂

d∈D

�(Ed ⋑ ϕ(BT (d))),

which implies

ϕ(AT ) = �ϕ(AT ) ≤ �
⋂

d∈D

�(Ed ⋑ ϕ(BT (d))) = ψ(A),

and eventually
ϕ(AT ) = ψ(A).

The case A = ∃xB(x) is left to the reader. �

Lemma 4.3.6 Let F = (Ω, D,E) be an S4-m.v.s., ψ a valuation in F ◦, ψ∼

the same valuation in F . Then ψ(A) = ψ∼(AT ) for every A ∈ IF=
D .

Proof Apply Lemma 4.3.5 to the case when ϕ = ψ∼. �

Proposition 4.3.7 For any S4-m.v.s. F and intuitionistic formula A(x),

F ◦ � A(x) iff F � AT (x), i.e. IL(=)(F ◦) = s(ML(=)(F )).

Proof We may assume that x = FV (A).
(⇐) Suppose F � AT and consider a valuation ψ in F ◦. Let ψ∼ be the same

valuation in F ; then ψ∼(∀xAT (x)) = 1, and thus ψ∼(� ∀xAT (x)) = 1. By
Lemma 2.11.7,

QS4 ⊢ �∀xAT (x) ≡ (∀xA(x))T ;

hence by Lemmas 4.3.2, 4.3.6

ψ∼(�∀xAT (x)) = ψ∼((∀xA(x))T ) = ψ(∀xA(x)) = 1.

Since ψ is arbitrary, it follows that F ◦ � A.
(⇒) Suppose F ◦ � A. For an arbitrary valuation ϕ in F , let us show that

ϕ(∀xAT (x)) = 1. Let ψ be a valuation in F ◦ described in Lemma 4.3.5. Then
by Lemmas 2.11.7, 4.3.2 and since F ◦ � A, we obtain

ϕ(�∀xAT (x)) = ϕ((∀xA(x))T ) = ψ(∀xA(x)) = 1,

and therefore ϕ(∀xAT (x)) = 1. �
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Definition 4.3.8 We introduce general algebraic semantics for our four types
of logics (M,M=,S,S=):

AEm= := {ML=(F ) | F is an m.v.s},
AEm := {ML(F ) | F is an m.v.s},
AEs= := {IL=(F ) | F is an H.v.s},
AEs := {IL(F ) | F is an H.v.s}.

An algebraic semantics is a semantics generated by a class of m.v.s (or H.v.s.).

Let us also introduce some particular cases of algebraic semantics.

Definition 4.3.9 For superintuitionistic logics the semantics

AE−
s(=) := {IL(=)(F ) | F is a basic H.v.s.}.

is called basic general algebraic.

The question, whether every locale is basic, seems open, and so we do not
know if AE−

s(=) and AEs(=) are equivalent.

Neighbourhood frames generate a special kind of modal algebras, so we can
define the associated algebraic semantics.

Definition 4.3.10 A neighbourhood frame with equality is a triple Φ =
(F,D,E) such that F is a neighbourhood frame and (MA(F ), D,E) is an m.v.s.
The latter m.v.s. is denoted by MV (Φ). If F is a topological space, we call Φ a
topological frame with equality and define

HV (Φ) := (HA(F ), D,E) (= MV (Φ)◦).

The corresponding logics are defined in an obvious way:

ML(=)(Φ) := ML(=)(MV (Φ));

IL(=)(Φ) := IL(=)(HV (Φ)).

Definition 4.3.11 We define general neighbourhood/topological semantics as
follows:

T Em(=) := {ML(=)(Φ) | Φ is a neighbourhood frame with equality};

T Es(=) := {IL(=)(Φ) | Φ is a topological frame with equality }.

From the definitions and since Kripke frames correspond to a special kind
of neighbourhood frames, we have:

Lemma 4.3.12
KEm(=) � T Em(=) � AEm(=);

KEs(=) � T Es(=) � AE−
s(=) � AEs(=).
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4.4 Morphisms of algebraic structures

In this section we consider maps between algebraic structures preserving valid-
ity; they are analogues of p-morphisms used in propositional logic. Let us begin
with the intuitionistic case.

Definition 4.4.1 Let F1 = (Ω, D1, E1) and F2 = (Ω, D2, E2) be H.v.s. A p-
morphism γ : F1 −→ F2 is a map α : D1 × D2 −→ Ω (an ‘Ω-valued graph’)
satisfying the following conditions for any a ∈ D1, b ∈ D2:

(E1) α(a, b) ∧ E1(a) ≤ E2(b);

(E2) α(a, b) ∧ E2(b) ≤ E1(a);

(Q1) E1(a) ≤
∨

b∈D2

α(a, b) (‘totality’);

(Q2) E2(b) ≤
∨

a∈D1

α(a, b) (‘surjectivity’).

If instead of (E1), (E2), α satisfies the conditions

(I1) α(a1, b1) ∧ α(a2, b2) ∧ E1(a1, a2) ≤ E2(b1, b2) (‘functionality’);

(I2) α(a1, b1) ∧ α(a2, b2) ∧ E2(b1, b2) ≤ E1(a1, a2) (‘injectivity’);

it is called a p=-morphism.
A p(=)-morphism α is called a p(=)-embedding if for any a, a′ ∈ D1, b, b

′ ∈
D2:

(ε) E2(b′, b) ∧ α(a, b) ≤ α(a, b′).

It is obvious that (I1) implies (E1), and (I2) implies (E2), so every p=-morphism
is a p-morphism. It is also clear that every p(=)-morphism α : F1 −→ F2

gives rise to the converse p(=)-morphism α−1 : F2 −→ F1, where α−1(a, b) =
α(b, a). This is because the conditions (E1), (E2), (Q1), (Q2), (I1), (I2) are
‘symmetrical’.

Definition 4.4.2 A p(=)-morphism α is called a p(=)-equivalence if both α, α−1

are p(=)-embeddings, i.e. α satisfies (ε) and

(ε′) E1(a′, a) ∧ α(a, b) ≤ α(a′, b).

The diagram below shows the correlation between different kinds of morphisms:

p= −morphism ⇒ p−morphism
⇑ ⇑

p= − embedding ⇒ p− embedding
⇑ ⇑

p= − equivalence ⇒ p− equivalence

For a = (a1, . . . , an) ∈ Dn
1 , b = (b1, . . . , bn) ∈ Dn

2 , let α(a,b) :=
n∧

i=1

α(ai, bi).
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Lemma 4.4.3 If α : F1 −→ F2 is a p-morphism of H.v.s., then for any a, c ∈
Dn

1 ; b ∈ Dn
2 ,

α(a,b) ∧ α(c,b) ∧ E1(c) ≤ E1(a, c).

Proof In fact, the condition (E1) yields:

α(ci, bi) ∧ E1(ci) ≤ E2(bi).

On the other hand, from (I2) we have:

α(ai, bi) ∧ α(ci, bi) ∧E2(bi) ≤ E1(ai, ci).

These two inequalities imply

α(ai, bi) ∧ α(ci, bi) ∧ E1(ci) ≤ E1(ai, ci),

whence the statement follows easily. �

Lemma 4.4.4 Let α : F1 −→ F2 be a p(=)-morphism, x = (x1, . . . , xn), A(x) ∈
IF (=)), FV (A) ⊆ x, a ∈ Dn

1 , b ∈ Dn
2 . Then α(a,b) ∧ E1(A(a)) ≤ E2(A(b)).

Proof Easy by (E1). �

We will use the following abbreviations:

ϕA := ϕ(A), ψ∼A := ψ∼(A).

Definition 4.4.5 Let α : F1 −→ F2 be a p-morphism of H.v.s. Valuations ϕ1

in F1 and ϕ2 in F2 are said to be matching if

α(a,b) ≤ ϕ1P (a) ↔ ϕ2P (b),

for any P ∈ PLn, a ∈ Dn
1 , b ∈ Dn

2 .

The above condition is equivalent to

α(a,b) ∧ ϕ1P (a) = α(a,b) ∧ ϕ2P (b)

and can be replaced with the following two:

α(a,b) ∧ ϕ1P (a) ≤ ϕ2P (b);
α(a,b) ∧ ϕ2P (b) ≤ ϕ1P (a).

Lemma 4.4.6 Let α : F1 −→ F2 be a p(=)-morphism, x = (x1, . . . , xn), A(x) ∈
IF (=), FV (A) ⊆ x, a ∈ Dn

1 , b ∈ Dn
2 .

Then
α(a,b) ≤ ϕ∼

1 A(a) ↔ ϕ∼
2 A(b),

whenever valuations ϕ1 in F1 and ϕ2 in F2 are matching.
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Proof By induction on A we check the following two properties:

(*) α(a,b) ∧ ϕ∼
1 A(a) ≤ ϕ∼

2 A(b);

(**) α(a,b) ∧ ϕ∼
2 A(b) ≤ ϕ∼

1 A(a).

• The atomic case is obvious; if A is (x1 = x2), apply the conditions (I1),
(I2).

• The case A = B ∧ C is trivial.

• Let A = B ∨ C. Then

α(a,b) ∧ ϕ∼
1 A(a) = α(a,b) ∧ E1(A(a)) ∧ (ϕ∼

1 B(a) ∨ ϕ∼
1 C(a)) ≤

E2(A(b)) ∧ (ϕ∼
2 B(b) ∨ ϕ∼

2 C(b)) = ϕ∼
2 A(b)

by the inductive hypothesis and Lemma 4.4.4; similarly we obtain (**).

• Let A = B ⊃ C. Then we have:

α(a,b) ∧ ϕ∼
1 A(a) = α(a,b) ∧E1(A(a)) ∧ (ϕ∼

1 B(a) → ϕ∼
1 (C(a))

≤ α(a,b) ∧ E2(A(b)) ∧ (ϕ∼
1 B(a) → ϕ∼

1 (C(a))

by Lemma 4.4.4.

Next,

α(a,b) ∧ (ϕ∼
1 B(a) → ϕ∼

1 C(a)) ∧ ϕ∼
2 B(b)

≤ α(a,b) ∧ (ϕ∼
1 B(a) → ϕ∼

1 C(a)) ∧ ϕ∼
1 B(a)

by the induction hypothesis for B
≤ α(a,b) ∧ ϕ∼

1 C(a) by the property of Heyting algebras
≤ ϕ∼

2 C(b)

by the inductive hypothesis for C, so we obtain:

α(a,b) ∧ (ϕ∼
1 B(a) → ϕ∼

1 (C(a)) ≤ ϕ∼
2 B(b) → ϕ∼

2 C(b).

Thus

α(a,b) ∧ ϕ∼
1 A(a) ≤ E2(A(b)) ∧ (ϕ∼

2 B(b) → ϕ∼
2 C(b)) = ϕ∼

2 A(b).

Similarly one can check (**).

• Let A(x) = ∃yB(y,x), y ∈ FV (B). Then by Definition 4.2.1, we have:

α(a,b) ∧ ϕ∼
1 A(a) = α(a,b) ∧

∨
c∈D1

ϕ∼
1 B(c,a)

=
∨

c∈D1

(α(a,b) ∧ E1(c) ∧ ϕ∼
1 B(c,a)).

Now, since by (Q1),

E1(c) ≤
∨

d∈D2

α(c, d)
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and by the inductive hypothesis,

α(a,b) ∧ α(c, d) ∧ ϕ∼
1 B(c,a) ≤ ϕ∼

2 B(d,b),

we obtain:
∨

c∈D1

(α(a,b) ∧E1(c) ∧ ϕ∼
1 B(c,a)) ≤

∨

d∈D2

ϕ∼
2 B(d,b) = ϕ∼

2 A(b).

So A satisfies (*). To check (**), note:

α(a,b) ∧ ϕ∼
2 A(b) = α(a,b) ∧

∨
d∈D2

ϕ∼
2 B(d,b)

=
∨

d∈D2

(α(a,b) ∧ E2(d) ∧ ϕ∼
2 B(d,b)) ≤

∨
c∈D1

ϕ∼
1 B(c,a) = ϕ∼

1 A(a),

by the inductive hypothesis and since E2(d) ≤
∨

c∈D1

α(c, d) by (Q2).

• Let A(x) = ∃yB(x), y 6∈ FV (B); then

α(a,b) ∧ ϕ∼
1 A(a) = α(a,b) ∧

∨
c∈D1

ϕ∼
1 B(a)

= α(a,b) ∧ ϕ∼
1 B(a) ≤ ϕ∼

2 B(b) =
∨

d∈D2

ϕ∼
2 B(b) = ϕ∼

2 B(b).

• Let A(x) = ∀yB(y,x). For any d ∈ D2 we have:

α(a,b) ∧
∧

c∈D1

(E1(c) → ϕ∼
1 B(c,a)) ∧ E2(d)

= α(a,b) ∧
∧

c∈D1

(E1(c) → ϕ∼
1 B(c,a)) ∧ E2(d) ∧

∨
c∈D1

α(c, d) (by (Q2))

≤
∨

c∈D1

(α(a,b) ∧ E2(d) ∧ α(c, d) ∧ (E1(c) → ϕ∼
1 B(c,a)))

(by distributivity)
≤

∨
c∈D1

(α(a,b) ∧ α(c, d) ∧ E1(c) ∧ (E1(c) → ϕ∼
1 B(c,a)))

by (E2)
≤

∨
c∈D1

(α(a,b) ∧ α(c, d) ∧ ϕ∼
1 B(c,a))

(since in Heyting algebras x ∧ (x→ y) ≤ y)
=

∨
c∈D1

(α(ca, db) ∧ ϕ∼
1 B(c,a)) ≤ ϕ∼

2 B(d,b)

(by IH).

Hence we obtain (∗):

α(a,b) ∧ ϕ∼
1 A(a) = α(a,b) ∧ E1(A(a)) ∧

∧
c∈D1

(E1(c) → ϕ∼
1 B(c,a)) ≤

≤ E2(A(b)) ∧
∧

d∈D2

(E2(d) → ϕ∼
2 B(d,b)) = ϕ∼

2 A(b).

Similarly, for any c ∈ D1 we have:

α(a,b) ∧
∧

d∈D2

(E2(d) → ϕ∼
2 B(d,b)) ∧ E1(c) ≤ ϕ∼

1 B(c,a),
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and thus we obtain (∗∗):

α(a,b) ∧ ϕ∼
2 A(b) = α(a,b) ∧E2(A(b)) ∧

∧
d∈D2

(E2(d) → ϕ∼
2 B(d,b)) ≤

≤ E1(A(a)) ∧
∧

c∈D1

(E1(c) → ϕ∼
1 B(c,a)) = ϕ∼

1 A(a).

�

Lemma 4.4.7 If α : F1 −→ F2 is a p(=)-embedding, then

(1) every valuation ϕ1 in F1 matches with some valuation ϕ2 in F1;

(2) IL(=)(F2) ⊆ IL(=)(F1).

Proof

(1) Given ϕ1, we define

ϕ2P (b) :=
∨

c∈Dn
1

(α(c,b) ∧ ϕ1P (c))

for every b ∈ Dn
2 . Then

α(a,b) ∧ ϕ2P (b) =
∨

c∈Dn
1

(α(a,b) ∧ α(c,b) ∧ ϕ1P (c))

=
∨

c∈Dn
1

(α(a,b) ∧ α(c,b) ∧ E1(c) ∧ ϕ1P (c))

(since ϕ1P (c) ≤ E1(c) for the valuation ϕ1)
≤

∨
c∈Dn

1

(E1(a, c) ∧ ϕ1P (c)) ≤ ϕ1P (a),

by Lemma 4.4.3 and Definition 4.2.1.

This ϕ2 is a valuation in F2. Indeed,

E2(d,b) ∧ ϕ2P (b) =
∨

c∈Dn
1

(α(c,b) ∧ E2(d,b) ∧ E1(c) ∧ ϕ1P (c)) ≤

∨
c∈Dn

1

(α(c,d) ∧ ϕ1P (c)) = ϕ2P (d),

by (ε). Also ϕ2P (b) ≤ E2(b), since by (E1), α(c,b) ∧ E1(c) ≤ E2(b) for
any c ∈ Dn

1 .

(2) Let us show that A 6∈ IL(=)(F1) implies A 6∈ IL(=)(F2). We may assume
that A is a sentence. Let ϕ1 be a valuation in F1 such that ϕ∼

1 A 6= 1,
and let ϕ2 be a valuation in F2 matching with ϕ1. By Lemma 4.4.6 (for
n = 0), ϕ∼

1 A↔ ϕ∼
2 A = 1, and thus ϕ∼

2 A 6= 1.

�

Corollary 4.4.8 If α : F1 −→ F2 is a p(=)-equivalence, then IL(=)(F1) =

IL(=)(F2).
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Definition 4.4.9 Let F1 = (Ω, D1, E1) and F2 = (Ω, D2, E2) be two H.v.s. A
map g : D1 −→ D2 is called a strong p-morphism if for any a ∈ D1, b ∈ D2

(1) E1(a) = E2(g(a));

(2) E2(b) ≤
∨

a∈D1

E2(b, g(a)).

A strong p=-morphism is a map g satisfying (ii) and

(3) E1(a1, a2) = E2(g(a1), g(a2)).

for any a1, a2 ∈ D1. An isomorphism is a bijection g : D1 −→ D2 satisfying
(iii).

Note that (ii) obviously holds if g is surjective and that (iii) implies (i). So a
surjective g is a strong p=-morphism iff (iii) holds. It is also obvious that every
isomorphism is a strong p=-morphism and that every strong p=-morphism is a
strong p-morphism.

Lemma 4.4.10 For H.v.s. F1 = (Ω, D1, E1), F2 = (Ω, D2, E2) and a map
g : D1 −→ D2, consider α : D1 ×D2 −→ Ω2 such that

α(a, b) := E2(b, g(a))

for a ∈ D1, b ∈ D2. Then

• g is a strong p-morphism iff α is a p-morphism;

• g is a strong p=-morphism iff α is a p=-morphism (or a p-embedding,
p-equivalence, p=-embedding, p=-equivalence).

Proof First note that α satisfies

(E1) α(a, b) ∧ E1(a) ≤ E2(b).

In fact, this means
E2(b, g(a)) ∧ E1(a) ≤ E2(b),

which obviously holds, by Lemma 4.1.4(1).
Let us show that (E2) for α and (i) for g are equivalent. The condition

(E2) α(a, b) ∧ E2(b) ≤ E1(a)

is equivalent to
E2(b, g(a)) ≤ E1(a);

this follows from (i) and implies E2(g(a)) ≤ E1(a) if we take b = g(a).
The condition

(Q1) E1(a) ≤
∨

b∈D2

α(a, b)
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is equivalent to

E1(a) ≤
∨

b∈D2

E2(b, g(a));

this follows from (i), since E2(g(a)) = E2(g(a), g(a)) ≤
∨

b∈D2

E2(b, g(a)). On

the other hand, this condition implies E1(a) ≤ E2(g(a)), since E2(b, g(a)) ≤
E2(g(a)) for any b ∈ D2.

Next, the condition

(Q2) E2(b) ≤
∨

a∈D1

α(a, b)

is equivalent to

E2(b) ≤
∨

a∈D1

E2(b, g(a)),

which is the same as the condition (ii).
Therefore g is a strong p-morphism iff α is a p-morphism.
Next, let us show that g satisfies (iii) if α satisfies (I1) and (I2). In fact, the

condition
(I1) α(a1, b1) ∧ α(a2, b2) ∧ E1(a1, a2) ≤ E2(b1, b2)

means
E2(b1, g(a1)) ∧ E2(b2, g(a2)) ∧ E1(a1, a2) ≤ E2(b1, b2),

and
(I2) α(a1, b1) ∧ α(a2, b2) ∧ E2(b1, b2) ≤ E1(a1, a2)

means
E2(b1, g(a1)) ∧ E2(b2, g(a2)) ∧ E2(b1, b2) ≤ E1(a1, a2).

These two conditions follow from (iii) and taken together, imply (iii) if we put
b1 = g(a1), b2 = g(a2).

The condition

(ε) E2(b′, b) ∧ α(a, b) ∧ E1(a) ≤ α(a, b′)

means
E2(b′, b) ∧ E2(b, g(a)) ∧ E1(a) ≤ E2(b′, g(a))

and holds by Definition 4.1.2.
The condition

(ε′) E1(a′, a) ∧ α(a, b) ∧ E2(b) ≤ α(a′, b)

means
E1(a′, a) ∧ E2(b, g(a)) ∧ E2(b) ≤ E2(b, g(a′))

and thus follows from (iii)
This proves the second part of the Lemma. �
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Remark 4.4.11 One can consider a more natural, but slightly more restrictive
definition of p(=)-morphism. Viz., the conditions (E1), (E2) can be replaced
with a stronger one:

(E′) α(a, b) ≤ E2(b) ∧ E1(a).

In this case the conjunct E1(a) in (ε), etc. should be omitted. Note that a strong
p(=)-morphism g gives rise to the p(=)-morphism α in this stronger sense.

Problem 4.4.12 Does the existence of a p(=)-morphism (p(=)-embedding in
our form) imply the existence of a p(=)-embedding satisfying (E′)?

Now let us consider the modal case. It is clear that if F = (Ω, D,E) is an

m.v.s., then its Boolean part F ♭ = (Ω♭, D,E) is an H.v.s. So we can give

Definition 4.4.13 A p(=)-morphism (respectively, p(=)-embedding, p(=)- equiv-
alence) α : F1 −→ F2 from a µ-m.v.s. F1 = (Ω, D1, E1) to an m.v.s. F2 =
(Ω, D2, E2) is a p(=)-morphism (respectively, p(=)-embedding, p(=)-equivalence)
of the Boolean parts F ♭

1 −→ F ♭
2 satisfying the condition

(E0) α(a, b) ≤ ✷iα(a, b)

for all i ∈ Iµ.

Thus a p-morphism is a map α : D1 × D2 → Ω satisfying (E0) and the
conditions (for any a ∈ D1, b ∈ D2):

(E1) α(a, b) ∩ E1(a) ≤ E2(b),

and so on.
The following is rather trivial.

Lemma 4.4.14 If F1, F2 are m.v.s. over the same S4-algebra, F ◦
1 , F

◦
2 are

the corresponding H.v.s., α : F1 −→ F2 is a p(=)-morphism (respectively, p(=)-
embedding, p(=)-equivalence), then the same map α is a p(=)-morphism (respec-
tively, p(=)-embedding, p(=)-equivalence) F ◦

1 −→ F ◦
2 of the corresponding H.v.s.

The definition of matching valuations in the modal case is the same as Def-
inition 4.4.5:

Definition 4.4.15 Let α : F1 −→ F2 be a p-morphism of m.v.s. Valuations ϕ1

in F1 and ϕ2 in F2 are matching if

α(a,b) ≤ (ϕ1P (a) ≏ ϕ2P (b)),

for any P ∈ PLn, a ∈ Dn
1 , b ∈ Dn

2 .

Lemma 4.4.16 Let α : F1 −→ F2 be a p(=)-morphism, A(x) ∈ MF (=),
FV (A) ⊆ x = (x1, . . . , xn),a ∈ Dn

1 , b ∈ Dn
2 . Then

α(a,b) ≤ (ϕ1A(a) ≏ ϕ2A(b))

whenever valuations ϕ1 in F1 and ϕ2 in F2 are matching.
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Proof By induction on A.
The atomic case and the cases of ∧, ∨, ⊃, ∃, ∀ were considered in the

proof of Lemma 4.4.6.
Consider the case A = �iB. By induction hypothesis, we have:

α(a,b) ∩ ϕ1B(a)) ≤ ϕ2B(b),

and thus

�iα(a,b) ∩ ✷iϕ1B(a) ≤ �i(α(a,b) ∩ ϕ1B(a)) ≤ �iϕ2B(b).

Hence, by (E0),

(1) α(a,b) ∩ ✷iϕ1B(a) ≤ �iϕ2B(b).

By Lemma 4.4.4 (which obviously holds in the modal case),

(2) α(a,b) ∩ E1(A(a)) ≤ E2(A(b)).

So
α(a,b) ∩ ϕ1A(a) = α(a,b) ∩ E1(A(a)) ∩�iϕ1B(a)
≤ E2(A(b)) ∩�iϕ2B(b)

by (1) and (2)
= ϕ2A(b).

�

Let us also define some auxiliary kinds of morphism.

Definition 4.4.17 Let Fi = (Ω, Di, Ei), i = 1, 2, be two H.v.s (respectively,
m.v.s) over the same algebra Ω. A regular morphism γ : F1 −→ F2 is a mapping
γ : D1 −→ D2 such that for any a, b ∈ D1

(1) E1(a, b) ≤ E2(γ(a), γ(b)),

(2) E1(a, a) = E2(γ(a), γ(a)).

Ω-Hvs (respectively, Ω-mvs) denotes the category of H.v.s. (respectively,
m.v.s.) over Ω and regular morphisms.

In particular, every strong p=-morphism in the sense of Definition 4.4.9 is a
regular morphism.

Remark 4.4.18 For H.v.s. there also exists another kind of morphisms, which
we call weak morphisms [Goldblatt, 1984; Borceaux, 1994]. A weak morphism
is defined as a mapping α : D1 ×D2 → Ω with the following properties:

• E2(b, b′) ∧ α(a, b′) ≤ α(a, b);

• α(a, b) ∧E1(a, a′) ≤ α(a′, b);
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• α(a, b) ∧ α(a, b′) ≤ E2(b, b′);

• E1(a, a) =
∨
{α(a, b) | b ∈ D2}.

It is clear that every regular morphism γ corresponds to a weak morphism
α, such that

α(a, b) = E(b, γ(a)).

Moreover, the category of Ω-sets and weak morphisms is equivalent to its
full subcategory of complete Ω-sets, and in the latter subcategory all weak
morphisms correspond to regular morphisms [Borceaux, 1994]. However, weak
morphisms are not logically faithful (see the discussion below). Thus the above
equivalence is not sufficient for showing the equivalence between the semantics
of H.v.s. and the semantics of complete H.v.s.

4.5 Presheaves and Ω-sets

In this section we consider an equivalent representation of algebraic semantics
using presheaves. The connection between presheaves and Ω-sets is well known
in topos theory. Every presheaf corresponds to an Ω-set in a standard way
[Fourman and Scott, 1979]; this construction can be used to define logics of
presheaves. On the other hand, for the case of sheaves there exist a connection in
the opposite direction; Higgs’s theorem [Higgs, 1984], also cf. [Borceaux, 1994;
Goldblatt, 1984; Makkai and Reyes, 1977; Fourman and Scott, 1979], states the
equivalence between the category of sheaves and sheaf morphisms and some full
subcategory of Ω-sets (so called ‘complete’ Ω-sets). It also turns out that the
latter subcategory is ‘representative’, i.e. equivalent to the whole category of Ω-
sets [Goldblatt, 1984]. Unfortunately, this result does not help for our purpose,
because the Ω-set isomorphisms used in this theorem are not logically faithful.
So in this section we describe another construction showing that the logic of
any m.v.s. can be presented as the logic of some presheaf.

First, let us recall (Chapter 3) that every poset (F,R) corresponds to a
category Cat(F,R), in which (u, v) is the unique morphism from u to v whenever
uRv. For every locale Ω let Cat(Ω) := Cat(Ω,≥).

Definition 4.5.1 A presheaf (of sets) over a locale Ω is defined as a functor

F : Cat(Ω) SET.

This means that we have a family of sets (F(u) : u ∈ Ω) and a family of
functions (restriction maps)

F(u, v) : F(u) −→ F(v),

where u, v ∈ Ω, u ≥ v, and the following conditions hold:

(1) F(u, u) = idF(u) (the identity function);
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(2) F(v, w) ◦ F(u, v) = F(u,w), provided u ≥ v ≥ w.

A presheaf F is called inhabited if
∨
{u | F(u) 6= ∅} = 1.

The set F(u) is called the (domain) of F at u; its elements are called indi-
viduals (or sections) over u. The set of all the individuals

F∗ =
⋃

{F(u) | u ∈ Ω}

is called the total domain of F .

Definition 4.5.2 A morphism f : F1 −→ F2 of presheaves over Ω is a functor
morphism (natural transformation) i.e. a family of mappings

fu : F1(u) → F2(u),

such that the following diagram commutes (provided u ≥ v).

F1(v) F2(v)

F1(u) F2(u)

fv

fu

F1(u, v) F2(u, v)

An isomorphism is an invertible morphism, as usual; this is equivalent to
bijectivity of every fu.

Presheaves over Ω and morphisms constitute a category Psh(Ω).

Definition 4.5.3 A presheaf F over Ω is disjoint if

∀u, v ∈ Ω (u 6= v ⇒ F(u) ∩ F(v) = ∅).

Lemma 4.5.4 Every presheaf is isomorphic to some disjoint presheaf.
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Proof Almost obvious. Given a presheaf F , let

F ′(u) := F(u) × {u},
F ′(u, v)(a, u) := (F(u, v)(a), v).

Then F ′ is a disjoint presheaf, and there exists an isomorphism f : F → F ′

such that
fu(a) = (a, u).

In fact, f is obviously bijective, and the corresponding diagram commutes, since

F ′(u, v) ◦ fu : a 7→ (a, u) 7→ (F(u, v)(a), v)

and also
fv ◦ F(u, v) : a 7→ (F(u, v)(a), v).

�

Thanks to the above lemma, we can assume that all presheaves are disjoint.
In a disjoint presheaf F every individual belongs to a unique F(u); the

corresponding u is called the extent of a and denoted by |a|.

Definition 4.5.5 If v ≤ |a|, the restriction of a to v is

a|v := F(|a|, v)(a).

Definition 4.5.1 for disjoint presheaves can be reformulated as follows.

Lemma 4.5.6 Let F be a disjoint presheaf, a ∈ F∗, w ≤ v ≤ |a|. Then

(1) a | (|a|) = a;

(2) (a|v)|w = a|w.

The following simple lemma yields an equivalent definition of a morphism of
disjoint presheaves as a map of domains preserving extents and commuting
with restrictions:

Lemma 4.5.7 Let f : F1 −→ F2 be a morphism of disjoint presheaves. Con-
sider a map g : F∗

1 −→ F∗
2 such that

g(a) := f|a|(a).

Then g has the following properties.

(1) |g(a)| = |a|;

(2) g(a|v) = g(a) | v.

The other way round, given a map g satisfying (1), (2), we can define a
morphism f : F1 −→ F2 by putting

f|a|(a) := g(a).
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Proof Straightforward. �

Proposition 4.5.8 Let F be an inhabited disjoint presheaf over a locale Ω, and
for a, b ∈ F∗ let

X(a, b) = {u ∈ Ω | u ≤ |a| ∧ |b|, a|u = b|u},

E(a, b) =
∨
X(a, b).

Then the triple
HV (F) = (Ω,F∗, E)

is an H.v.s.

Proof The equality E(a, b) = E(b, a) is trivial, since X(a, b) = X(b, a).∨
{E(a, a) | a ∈ F∗} = 1 holds, because E(a, a) = |a| and F is inhabited.

Since by Lemma 4.5.7,

w ≤ v ≤| a |⇒ (a | v) | w = a | w,

X(a, b) is ≥-stable, that is

v ∈ X(a, b) & v ≥ w ⇒ w ∈ X(a, b).

So for any u ∈ X(a, b), v ∈ X(b, c) we have

(u ∧ v) ∈ X(a, b) ∩X(b, c) ⊆ X(a, c).

Hence it follows that

E(a, b) ∧E(b, c) =
∨

{u∧ v | u ∈ X(a, b), v ∈ X(b, c)} ≤
∨
X(a, c) = E(a, c).

�

Obviously, if the locale Ω is basic, isomorphic to Ξ0, for some S4-algebra Ξ,
and E is the same as in Proposition 4.5.8, then

MV (F) = (Ξ,F∗, E)

is an S4-m.v.s.

Lemma 4.5.9 If F1, F2 are isomorphic disjoint presheaves over Ω, then the
corresponding H.v.s. HV (F1), HV (F2) are isomorphic; similarly for m.v.s.
(and basic Ω).

Proof Let X1, X2 be the functions corresponding to F1, F2 described in
Proposition 4.5.8. If g : F∗

1 −→ F∗
2 is a bijective map satisfying Lemma 4.5.7 (i),

(ii), then one can easily check that X1(a, b) = X2(g(a), g(b)). Thus E1(a, b) =
E2(g(a), g(b)), which means that g is an isomorphism of H.v.s. �
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Definition 4.5.10 If F is an inhabited presheaf over a locale Ω, we define its
superintuitionistic logic (with or without equality) via the corresponding H.v.s.:

IL(=)(F) = IL(=)(HV (F1)),

where F1 is a disjoint presheaf isomorphic to F .
If Ω is basic, we also define the modal logic

ML(=)(F) = ML(=)(MV (F1)).

These logics are well-defined. In fact, by Lemma 4.5.9, an isomorphism of
disjoint presheaves F1, F2 gives rise to an isomorphism of the associated H.v.s.
(m.v.s.), and thus the corresponding logics are equal, by Corollary 4.4.8.

Proposition 4.5.11

(1) For any H.v.s. G over a Heyting algebra Ω there exists a disjoint presheaf
G over Ω such that IL=(G) = IL=(G).

(2) For any m.v.s. G over an S4-algebra Ω there exists a disjoint presheaf G
over Ω0 such that ML=(G) = ML=(G).

Proof We prove only (1), leaving (2) for the reader.
For every u ∈ Ω let

G0(u) = {(u, a) | a ∈ D, u ≤ Eaa},

and let ≈u be the following equivalence relation in G0(u):

(u, a) ≈u (u, b) ⇔ u ≤ Eab

We denote the equivalence class (u, a)/ ≈u by [u, a].
Now we define the presheaf G as follows:

(*) G(u) := G0(u)/ ≈u;

(**) G(u, v)([u, a]) := [v, a] (provided v ≤ u).

The map G(u, v) is well-defined, since [u, a] = [u, b] means that u ≤ Eab,
which implies v ≤ Eab, i.e. [v, a] = [v, b].

Now let us show that IL=(G) = IL=(G).
It is clear that (*), (**), really define a presheaf, and we may assume that

G is disjoint. G is inhabited, since
∨
{u | G(u) 6= ∅} =

∨
{u | G0(u) 6= ∅}

=
∨
{u | ∃a ∈ D u ≤ Eaa} =

∨
{Eaa | a ∈ D} = 1.

Recall that IL=(G) = IL=(HV (G)), where HV (G) = (Ω,G∗, E∗) is the H.v.s.,
in which

G∗ =
⋃

u∈Ω

G(u) = {[u, a] | a ∈ D, u ≤ Eaa},

E∗([u, a], [v, b]) =
∨
{w | w ≤ u ∧ v, [w, a] = [w, b]}

=
∨
{w | w ≤ u ∧ v, w ≤ Eab} = u ∧ v ∧ Eab.
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In particular, we have:

E∗([u, a]) = u ∧ E(a) = u.

Consider the map α : G∗ ×D −→ Ω such that

α([u, a], b) := u ∧ Eab.

This map is well-defined, since if [u, a] = [u, a′], i.e. if u ≤ Eaa′, then u∧Eab =
u ∧Ea′b. Let us show that

α : G→ HV (G)

is a p=-equivalence (Definitions 4.4.1, 4.4.2).

(Q1) E(b) ≤
∨

c∈G∗

α(c, b), since E(b) = α([E(b), b], b).

(Q2) EE∗([u, a]) ≤
∨

b∈D

α([u, a], b), since E∗([u, a]) = u = u∧Eaa = α([u, a], a).

(I1) α([u1, a1], b1) ∧ α([u2, a2], b2) ∧ Eb1b2 =
= u1∧Ea1b2∧u2∧Ea2b2∧Eb1b2 ≤ u1∧u2∧Ea1a2 = E∗([u1a1], [u2, a2]).

(I2) α([u1, a1], b1) ∧ α([u2, a2], b2) ∧ E∗([u1, a1], [u2, a2]) =
= u1 ∧Ea1b1 ∧ u2 ∧ Ea2b2 ∧ u1 ∧ u2 ∧ Ea1a2 ≤ Eb1b2.

(ε) E∗([u′, a′], [u, a]) ∧ α([u, a], b) =
u′ ∧ u ∧ Ea′a ∧ u ∧ Eab ≤ u′ ∧ Ea′b = α([u′, a′], b).

(ε′) Eb′b ∧ α([u, a], b) =
Eb′b ∧ u ∧Eab ≤ u ∧Eab′ = α([u, a], b′).

Therefore IL=(G) = IL=(HV (G)), by Corollary 4.4.8. �

Corollary 4.5.12 Every algebraic semantics can be obtained from a class of
presheaves. In particular, the general algebraic semantics AE is generated by
the class of all presheaves.

4.6 Morphisms of presheaves

Lemma 4.6.1 Let F1,F2 be two inhabited disjoint presheaves over a locale Ω,
g : F1 → F2 a morphism (in the sense of Lemma 4.5.7). Then g is a strong
morphism from HV (F1) to HV (F2) (in the sense of Definition 4.4.17).

Proof
Let HV (Fi) = (Ω,F∗

i , Ei). Then

E1(a, b) =
∨
{u | u ≤ |a| ∧ |b|, a|u = b|u},

E2(g(a), g(b)) =
∨
{u | u ≤ |g(a)| ∧ |g(b)|, g(a)|u = g(b)|u}
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(see Proposition 4.5.8). Since g is a morphism, we have:

|g(a)| = |a|, g(a)|u = g(a|u), g(b)|u = g(b|u).

So u ∈ X1(a, b) implies

g(a)|u = g(a|u) = g(b|u) = g(b)|u,

and thus u ∈ X2(g(a), g(b)). Hence X1(a, b) ⊆ X2(g(a), g(b)), and so

E1(a, b) ≤ E2(g(a), g(b)).

On the other hand,

X1(a, a) = {u | u ≤ |a|},

and thus

E1(a, a) = |a|;

similarly,

E2(g(a), g(a)) = |g(a)|;

hence

E1(a, a) = E2(g(a), g(a))

holds, and the proof is completed. �

So we obtain

Proposition 4.6.2 There exist functors

HV: Psh(Ω) Ω−Hvs

for any locale Ω;

MV: Psh(Ω) Ω−mvs

for any basic locale Ω,

such that HV (F), MV (F) are defined as above, and for a strong morphism f ,
HV(f) = MV(f) = f .

The converse to Proposition 4.6.2 is in general false.

Example 4.6.3 Let F1 and F2 be inhabited disjoint presheaves shown at Fig.
4.1. Let g : F∗

1 −→ F∗
2 be the map such that

g(a) = a, g(a|u) = b, g(a|x) = a|x

for x = v or w. Then g is not a morphism of presheaves. On the other hand,
g is a strong morphism of the corresponding H.v.s. (Definition 4.4.17), since
E2(a, b) = u = E1(a, a|u).
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Figure 4.1.

Proposition 4.6.4 Let F1 and F2 be two inhabited disjoint presheaves over a
locale Ω. Every strong morphism f : HV (F1) −→ HV (F2) (Definition 4.4.17)
is a morphism of presheaves if F2 satisfies the following condition:

∀v ∈ Ω ∀b, c ∈ F2(v) (E2(b, c) = v ⇒ b = c).

Moreover, every strong H.v.s.-morphism f : HV (F1) −→ HV (F2) is a mor-
phism of presheaves F1 −→ F2 iff for any strong H.v.s.-morphism g : HV (F1) −→
HV (F2) the following holds:

(∗) ∀u > v ∀a ∈ g(F1(u))∀b ∈ F2(v) (E2(a, b) = v ⇒ a|v = b).

Proof (If.) Let f be a morphism of H.v.s. Let us show that f(x|v) = f(x)|v for
x ∈ F1(u), v < u. Take a = f(x), b = f(x|v). Then E2(a, b) ≥ E1(x, x|v) = v,
and thus E2(a, b) = v and a|v = b, by the condition (*) applied to f .

(Only if.) Assume that every strong H.v.s.-morphism HV (F1) −→ HV (F2)
is a morphism of presheaves F1 −→ F2. Suppose there exists an H.v.s.-
morphism g : HV (F1) −→ HV (F2) that does not satisfy (*), i.e. for some
u > v, x ∈ F1(u), b ∈ F2(v) we haveE2(a, b) = v, a|v 6= b for a = f(x) ∈ F2(u).
By our assumption, g is a morphism of presheaves, and thus g(x|v) = a|v. Con-
sider the map f : F∗

1 → F∗
2 defined as follows

f(y) :=

{
b if y = x|v,
g(y) otherwise.

Then f is not a morphism of presheaves, since f(x|v) = b, but f(x)|v = a|v 6= b.
On the other hand, f is a strong morphism of H.v.s.

In fact, let us show that E1(y, z) ≤ E2(f(y), f(z)) for y, z ∈ F∗
1 . It is

sufficient to consider the case y 6= z = x|v. Then

E1(y, z) ≤ E2(g(y), a|v) =
E2(g(y), a|v) ∧ E2(a|v, b) ≤ E2(g(y), b) = E2(f(y), f(z)),
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since

E2(g(u), a|v) ≤ E2(a|v, a|v) = v = E2(a, b) ∧E2(a|v, a) ≤ E2(a|v, b).

�

Definition 4.6.5 Let F1, F2 be (inhabited) disjoint presheaves over a locale Ω.
A pre-morphism from F1 to F2 is a map g : F∗

1 −→ F∗
2 preserving extents, i.e.

such that
(1) |g(a)| = |a| for any a.

A pre-morphism g is called a p-morphism if it satisfies

(3) for any u ∈ Ω, b ∈ F2(u)

u =
∨

{v ≤ u | ∃a ∈ F∗
1 (v ≤ |g(a)| & b|v = g(a)|v)}

A p=-morphism is a p-morphism satisfying

(4) if a1 ∈ F1(u1), a2 ∈ F1(u2), then for any w
w ≤ u1 ∧ u2 & g(a1)|w = g(a2)|w
⇒ w ≤

∨
{u | u ≤ u1 ∧ u2 & a1|u = a2|u};

(5) if a ∈ F1(u), v ≤ u, then
v =

∨
{w ≤ v | g(a)|w = g(a|v)|w}.

A p-embedding is a p-morphism satisfying (4).

Note that
(2) g(a|u) = g(a)|u

implies (5); (3) holds for every surjective pre-morphism; (4) holds for every
injective morphism.

The definition of a p(=)-morphism of presheaves is rather complicated, but
it exactly corresponds to the definition of a p-morphism of H.v.s. (Definition
4.4.9). More precisely, the following holds.

Lemma 4.6.6

(1) A map g : F∗
1 −→ F∗

2 is a p(=)-morphism of presheaves iff g is a strong
p(=)-morphism of corresponding H.v.s. g : HV (F1) −→ HV (F2).

(2) If there exists a p-embedding g : F1 −→ F2 (respectively, p=-morphism)
of disjoint presheaves, then IL(F1) ⊆ IL(F2) (respectively, IL=(F1) ⊆
IL=(F2)).

(Cf. Lemma 4.4.7 stating the converse inclusion: IL(=)(F2) ⊆ IL(=)(F1).)

Proof Let us check items (i)–(iii) from Definition 4.4.9.

(i) E1(a) = E2(g(a)) ⇔ |a| = |g(a)| ⇔ (1).
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(ii) E2(b) ≤
∨

a∈D1

E2(b, g(a))

⇔ |b| ≤
∨

a∈D1

∨
{v | v ≤ |b| ∧ |g(a)|, b|v = g(a)|v} ⇔ (3).

(iii) E2(g(a1), g(a2)) ≤ E1(a1, a2) ⇔
⇔
∨
{v | v ≤ |g(a1)| ∧ |g(a2)|, g(a1)|v = g(a2)|v} ≤

≤
∨
{u | u ≤ |a1| ∧ |a2|, a1|u = a2|u}

⇔ ∀v (v ≤ |g(a1)| ∧ |g(a2)| & g(a1)|v = g(a2)|v) ⇒
⇒ v ≤

∨
{u | u ≤ |a1| ∧ |a2|, a1|u = a2|u}) ⇔ (4).

E1(a1, a2) ≤ E2(g(a1), g(a2)) ⇔
⇔
∨
{u | u ≤ |a1| ∧ |a2|, a1|u = a2|u} ≤

≤
∨
{v | v ≤ |g(a1)| ∧ |g(a2)|, g(a1)|v = g(a2)|v} ⇔

(♯) ∀u (u ≤ |a1| ∧ |a2| & a1|u = a2|u⇒
⇒ u ≤

∨
{v | v ≤ |g(a1)| ∧ |g(a2)|, g(a1)|v = g(a2)|v}).

This condition (♯) implies (5). In fact, let a ∈ F1(u), v ≤ u. Take a1 =
a, a2 = a|v); then a1|v = a2|v. Thus

v ≤
∨

{w | w ≤ v, g(a)|w = g(a|w)|v}

(recall that |g(a)| = u ≥ v = |g(a|v)|, by (1)).

On the other hand, (5) implies (♯). Indeed, assume that a1 ∈ F1(u1), a2 ∈
F2(u2), u ≤ u1 ∧ u2, a1|u = a2|u. Take the sets

Xi := {w | w ≤ u, g(ai)|w = g(ai|u)|w}

for i = 1, 2. Then by (5),

u =
(∨

X2

)
∧
(∨

X2

)
=
∨

{w1 ∧ w2 | w1 ∈ X1, w2 ∈ X2}

(recall that Ω is a complete Heyting algebra). And if v = w1 ∧ w2, wi ∈ Xi,
then

v ≤ u ≤ u1 ∧ u2 = |g(a1)| ∧ |g(a2)|,
(a1)|v = (g(a1)|w1)|v = (g(a1|u)|w1)|v = g(a1|u)|v = g(a2|u)|v
= (g(a2|u)|w2)|v = (g(a2)|w2)|v = g(a2)|v.

Note that a p(=)-morphism is not necessarily a morphism (because the con-
dition (2) does not always hold). On the other hand, (1) and (2) implies (5); in
fact, g(a)|v = g(a|v) = g(a|v)|v.

Also note that every surjective pre-morphism is a p-morphism: the condition
(3) holds if b = g(a) for some a ∈ F∗

1 . Every isomorphism (i.e. a bijective
morphism) is a p=-morphism; in fact, (4) follows from (2) and the bijectivity.

�
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4.7 Sheaves

In this and the next section we look more closely at topological semantics. First
let us show that in this case presheaves can be replaced with sheaves.

Recall (cf. [Godement, 1958]) that a sheaf (over a locale Ω) is a presheaf F
satisfying two conditions:

(F1) if u =
∨
i∈I

ui, a, b ∈ F(u) and (a|ui) = (b|ui) for all i ∈ I, then a = b;

(F2): if u =
∨
i∈I

ui, ai ∈ F(ui) and (ai|ui ∧ uj) = (aj |ui ∧ uj) for all i, j ∈ I,

then

∃a ∈ F(u) ∀i ∈ I (a|ui) = ai.

Every disjoint presheaf F over a topological space (W,✷) gives rise to the
canonical sheaf F̃ defined as follows.

For x ∈W consider the set

F0(x) := {a ∈ F∗ | x ∈ |a|}

with the equivalence relation

(a ≡x b) := x ∈ E(a, b).

The equivalence class ax := (a/ ≡x) is called the germ of a at x. The set
F(x) := (F0(x)/ ≡x) of all the germs at x is called the stalk (or the fibre) of F
at x. We define F̃(u) as the set of maps from u to F∗ sending every x ∈ u to
some germ at x. More precisely,

F̃(u) := {f ∈
∏

x∈u

F(x) | ∀x ∈ u ∃v ⊆ u ∃a ∈ F(v) (x ∈ v & ∀y ∈ v f(y) = ay)},

and for v ⊆ u, let

F̃(u, v)(f) := (f ↾ v),

the restriction of the map f from u to v.
The following fact is well-known [Godement, 1958]:

Proposition 4.7.1

• F̃ is a sheaf;

• the family of mappings αu : F(u) −→ F̃(u) such that

αu(a) = f ⇔ ∀x ∈ u f(x) = ax

is a morphism of presheaves;

• α is isomorphic iff F is a sheaf.
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For a ∈ F∗ let us denote
ã := α|a|(a).

Lemma 4.7.2 Let F be a presheaf over a topological space, F̃ its canonical
sheaf. Let HV (F) = (Ω,F∗, E), HV (F̃) = (Ω, F̃∗, Ẽ).

Then for any a, b ∈ F∗ E(a, b) = Ẽ(ã, b̃).

Proof Let Ω be the Heyting algebra of the given topological space. Then by
Definition 4.3.4,

x ∈ E(a, b) ⇔ ∃u ∈ Ω (x ∈ u & u ≤ |a| ∩ |b| & a|u = b|u)
⇔ ∃u ∈ Ω (x ∈ u & u ≤ |a| ∩ |b| & ∀z ∈ u az = bz)

⇔ ∃u ∈ Ω (x ∈ u & u ≤ |a| ∩ |b| & ã|u = b̃|u)

⇔ x ∈ Ẽ(ã, b̃).

�

Lemma 4.7.3 Consider the same F , F̃ as in the previous lemma. Let g :
F∗ −→ F̃∗ be the map such that g(a) = ã for a ∈ F∗. Then g is a strong
p=-morphism HV (F) −→ HV (F̃).

Proof By Lemma 4.7.2 and because g is surjective (see remarks after Definition
4.4.9). �

Proposition 4.7.4 IL=(F) = IL=(F̃), ML=(F) = ML=(F̃)

Proof Follows from the previous lemma, by Lemma 4.4.10 and Corollary
4.4.8; recall that in the modal S4-case p(=)-morphisms are just the same as in
the intuitionistic case. �

Corollary 4.7.5 T E is generated by the class of all sheaves over topological
spaces.

Question 4.7.6 Is the semantics AE generated by the class of all sheaves over
locales (or complete modal algebras)?

4.8 Fibrewise models

In this section we show that validity in a presheaf F over a topological space can
be defined via a forcing relation between points and formulas, similarly to Kripke
semantics. Instead of Kripke models, we can use ‘fibrewise models’, which are
collections of classical models on fibres of F . As in Definition 3.2.2, a system of
domains over a non-empty set W (whose elements are called possible worlds, or
points) is a pair (W,D), where D is a family of non-empty sets D = (Du)u∈W .
A classical valuation in a non-empty set V is a map ξ from PL to relations on V
such that ξ(P ) ⊆ V n, whenever P ∈ PLn (V 0 is treated as a certain singleton).
A (modal) valuation in a system of domains (W,D) is a family (ηu)u∈W , where
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ηu is a classical valuation in Du such that ηu(p) ⊆ {u} for every proposition
letter p. A (modal) model over (W,D) is a triple (W,D, η), where η is a valuation
in (W,D).

Definition 4.8.1 Let F be a presheaf over a topological space (W,�). We
associate with F the system of domains F+ := (W,D) with Du = F(u) (the
fibre at u). A fibrewise model over F is a model over F+.

Definition 4.8.2 For a fibrewise model M = (W,D, η) we define the (modal)
forcing relation M,u � A (or briefly: u � A) between u ∈W and a Du-sentence
A:

• M,u � P 0
k iff u ∈ ηu(P 0

k );

• M,u � Pm
k (a) iff a ∈ ηu(Pm

k ) (for m > 0);

• M,u � a = b iff a equals b;

• M,u 6� ⊥;

• M,u � B ∨ C iff M,u � B or M,u � C;

• M,u � B ∧ C iff M,u � B&M,u � C;

• M,u � B ⊃ C iff M,u 6� B or M,u � C;

• M,u � ∃xA iff ∃a ∈ Du M,u � [a/x]A;

• M,u � ∀xA iff ∀a ∈ Du M,u � [a/x]A;

• M,u � ✷A((a1)u, . . . , (an)u) iff there exist an open U such that u ∈ U ,
U ⊆ |a1| ∩ . . . ∩ |an| and ∀v ∈ U M, v � A((a1)v, . . . , (an)v).

Let us check that forcing is well-defined. This has to be done only for the
last item. More precisely, we have to show that if

Lemma 4.8.3 Let M = (F , D, η) be a fibrewise model. Consider the algebra
Ω = MA(W,�) and define the map η̂ : AFF∗ −→ Ω as follows:

(*) η̂(A(a)) = {u ∈ E(a) | u � A(a)},

where FV (A) ⊆ x, A(a) = [a/x]A. Then η̂ is a valuation on F and (*) is true
for every A(a) ∈MF=

F∗.

Proof η̂ is a valuation since

η̂(P (a)) ∩E(a,b)) = {w ∈ E(a,b) |M,w � P (a)} ⊆
{w ∈ E(b) | w |= P (b)} = η̂(P (b))

(here au = bu for u ∈ E(a, b), by the definition of germs). The second claim is
proved by induction on the length of A. Let us consider two cases.
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(i) w ∈ η̂(a = b) ⇔ w ∈ E(a, b) ⇔ ∃U ∋ w(a|U = b|U) ⇔ aw = bw ⇔ w |=
a = b;

(ii) w ∈ η̂(✷A(a)) iff ∃U ∋ w (U ⊆ η̂(A(a)))
iff ∃U ∋ w ∀v ∈ U (v |= A(a)) (∗)
w � ✷A(a) iff
∃U ∋ w ∃b ∈ F(u)n(aw = bw & ∀v ∈ U(v |= A(b))) (∗∗)

It is clear that (*)⇒(**). Conversely, assume (**). Since (aw = bw), there
exists an open V ⊆ U containing w such that (∀i (ai|V ) = (bi|V )); thus (∀v ∈
V av = bv), and so v |= A(bv), by (**). �

Proposition 4.8.4 A modal formula is valid in F iff it is true in every fibrewise
model over F .

Proof It is sufficient to show that every valuation ϕ in F equals η̂ for some
fibrewise valuation η. In fact, define η by

ηu(P ) := {au | u ∈ ϕ(P (a))}.

η is well-defined, since au = bu implies x ∈ E(a,b), and therefore u ∈ ϕ(P (a))
iff u ∈ ϕ(P (b)), by Definition 4.2.1. �

4.9 Examples of algebraic semantics

Definition 4.9.1 A presheaf F over a locale Ω is called constant if all its
domains are the same (usually, non-empty) and all its restriction maps are
identity functions. A constant presheaf over Ω with the domain D is denoted
by C(Ω, D). A presheaf F has a constant domain (or briefly, is a CD-presheaf)
if every F(u, v) is bijective (for u ≥ v).

It is clear that every constant presheaf is a sheaf. It is also clear that every
CD-presheaf F over Ω is isomorphic to the constant sheaf C(Ω,F(1)).

One can easily see that for a CD-m.v.s. (Ω, D) the corresponding presheaf
constructed in Proposition 4.5.11 is isomorphic to C(Ω, D). Using these obser-
vations, we obtain:

Proposition 4.9.2 The following classes correspond to equal semantics:

(1) the class of constant presheaves;

(2) the class of CD-presheaves;

(3) the class of CD-m.v.s. (or H.v.s.).

Remark 4.9.3 Note that HV (C(Ω, D)) 6= (Ω, D). In fact, the domain of
HV (C(Ω, D) contains not only the individuals a ∈ D with E(a) = 1, but
also the restrictions a|u such that E(a|u) = E(a, a|u).
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Thus we obtain the algebraic semantics with constant domains denoted by A.
Historically, it was introduced earlier than the general semantics AE [Rasiowa
and Sikorski, 1963, Ch. X, §15, Ch XI], [Takano, 1987].

Similarly to Lemma 3.10.25 we have:

Lemma 4.9.4 The semantics T and A do not satisfy (CP).

Proof Consider the Kripke sheaf Θ0 from the proof of Proposition 3.10.24.
From the proof of Lemma 3.10.25 we know that ML(Θ0) is an intersection of
CK-complete logics. So it suffices to show that ML(Θ0) 6∈ A; in fact, it is easily
seen that F � (C′ ∨ K ′) implies F � C′ or F � K ′ for every CD-m.v.s. F ,
similarly to Proposition 3.10.24. �

Definition 4.9.5 A presheaf F is called monic if all F(u, v) (for u ≥ v) are
injective. An m.v.s. F = (Ω, D,E) is called monic if

E(a, b) ∈ {0, (E(a) ∩E(b))} for all a, b ∈ D; (4.1)

similarly for H.v.s.

Lemma 4.9.6 If an m.v.s. F is monic, then the associated presheaf F (Propo-
sition 4.5.11) is monic.

Proof It is sufficient to show that [v, a] = [v, b] implies [u, a] = [u, b], whenever
v ≤ u ≤ E(a) ∩ E(b). But [v, a] = [v, b] (i.e. v ≤ E(a, b)) only if E(a, b) 6= 0,
and so, E(a, b) = E(a) ∩ E(b), and thus u ≤ E(a, b) by our assumption. �

Lemma 4.9.7 Let F be an inhabited disjoint monic presheaf. Then the m.v.s.
MV (F) is monic.

Proof Assume that a, b ∈ F∗, E(a, b) 6= 0, u = |a| ∩ |b|. Then a|v = b|v for
some v ≤ u, and a|u = b|u (since F is monic). Thus

E(a) ∩ E(b) = u =
⋃

{v ≤ u | (a|v) = (b|v)} = E(a, b).

�

From Lemmas 4.9.6 and 4.9.7 we obtain:

Proposition 4.9.8 The classes of monic m.v.s and monic presheaves generate
the same semantics.

This semantics is denoted by MA.
Note that the semantics MK introduced in Section 3.4 is generated by monic

presheaves over Kripke spaces.
Let us state some simple logical properties of monic m.v.s, which will be

used later on. Recall that CE denotes the formula (x 6= y) ⊃ �(x 6= y), DE
denotes the formula (x = y) ∨ (x 6= y).
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Lemma 4.9.9 CE is valid in every monic m.v.s.

Proof For a valuation ϕ we have:

ϕ(a 6= b) = (E(a) ∩ E(b)) − E(a, b),

so ϕ(a 6= b) is open, being either E(a) ∩E(b) or 0. �

Corollary 4.9.10 DE is valid in every monic H.v.s. (see 1.4 and Lemma
2.2.2).

The converse is not true: an H.v.s. validating DE may be not monic.

Corollary 4.9.11 Λ=c ⊆ CMA(Λ) if Λ is an m.p.l.,
Λ=d ⊆ CMA(Λ) if Λ is an s.p.l.

Proposition 4.9.12 Let Λ be a propositional logic, QΛ its quantified version
(see. Section 2.4). Then CMA(QΛ) = CA(QΛ).

Proof Assume that an m.v.s. F = (Ω, D,E) separates some sentence B ∈
MF from QΛ; let us find a monic m.v.s. with the same property. Consider
F ′ = (Ω, D,E′), where

E′(a, b) =

{
E(a) if a = b,
0 if a 6= b.

It is clear that F and F ′ validate the same propositional formulas, that is
QΛ ⊆ ML(F ′). There exists a valuation ϕ in F such that ϕ(B) 6= 1, and ϕ is
also a valuation in F , since a 6= b implies ϕ(P (b)) ∩ E′(a,b) = 0 ≤ ϕ(P (a)),
and ϕ(P (a)) ≤ E(a) = E′(a). �

Corollary 4.9.13 If the quantified version QΛ of a modal propositional logic
Λ is A-complete, then QΛ=c is a conservative extension of QΛ, i.e. QΛ =
(QΛ=c)◦ (cf. Section 2.9).

We can also define corresponding restrictions of neighbourhood and Kripke
semantics.

Definition 4.9.14 T := A ∩ T E (neighbourhood semantics with constant do-
mains),
MT := MA∩ T E (mono-neighbourhood semantics),
MK := MA∩KE (mono-Kripke semantics).

Note that MT corresponds to monic presheaves over neighbourhood frames.
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Chapter 5

Metaframe semantics

5.1 Preliminary discussion

In this chapter we study some further variations of Kripke semantics. In all
these semantics we keep to the main idea that the truth value of a formula
depends on a possible world and a formula �A is true at some world iff A is
true at every accessible world.

Kripke bundles

Let us first consider S4-frames. Our starting point is Kripke sheaf semantics.
Recall (Section 3.5) that a Kripke sheaf over a propositional S4-frame F is a
system of domains D = (Du | u ∈ F ), together with transition maps ρuv :
Du −→ Dv parametrised by pairs (u, v) ∈ R; ρuv(a) is an ‘inheritor’ of an
individual a ∈ Du in the world v. In Kripke sheaves inheritors of different
individuals can collapse in some accessible world. But can we give more freedom
to individuals allowing them to have several inheritors in the same accessible
world (perhaps, in their own)? Following this idea we come to Kripke bundles
[Shehtman and Skvortsov, 1990], where transition maps ρuv are replaced with
‘inheritance’ (or ‘counterpart’) relations ρuv ⊆ Du×Dv; aρuvb is read as ‘b is an
inheritor (or a counterpart) of a in v’ (or a v-inheritor of a). If the domains Du

are disjoint, we can equivalently use the global inheritance relation ρ ⊆ D+×D+

on the set of all individuals D+ and define ρuv as ρ ∩ (Du ×Dv).

Here we assume that the relation ρ is reflexive and transitive — which is
analogous to the properties of transition maps from Definition 3.6.1.

Models in Kripke bundles are defined in the same way as in Kripke sheaves.
Forcing is defined by induction, but with a special care about the �-case.

The first idea is to extend the definition of forcing from Kripke sheaves to
Kripke bundles as follows. For a Du-sentence A put

(∇) M,u � �A iff for any v ∈ R(u) every v-version of A is true at M, v.

361
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•

• •

•

a

b c

d

Du Dv

Figure 5.1. An example of a Kripke bundle: ρ is the smallest partial ordering
containing the indicated arrows; R = {(u, v)}.

In Kripke sheaves v-versions of Du-sentences are obtained by replacing every
occurrence of every a ∈ Du with a|v, the unique inheritor of a in v. In Kripke
bundles inheritors may be not unique, so we can define a v-version of A as
a result of replacing every occurrence of every individual with some of its v-
inheritor. But this definition gives too much freedom, because then we can
refute some theorems of QK= (and QK).

To see this, consider the formula B := ∀x�(x = x) and the following Kripke
bundle.

•

•

•

a

b1

b2

Du Dv

• • vu

Figure 5.2.
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Then (for any model M)

M,u 6� �(a = a),

because a = a has a false v-version b1 = b2. Hence M,u 6� B.
The same argument applies to the formula without equality

C := ∀x�(P (x) ⊃ P (x)).

It is refuted at M,u for any model M such that M, v � P (b1) and M, v 6� P (b2).
In fact, then P (a) ⊃ P (a) has a false v-version P (b1) ⊃ P (b2).

In these examples undesirable v-versions of Du-sentences are obtained by
replacing different occurrences of the same individual a with its different in-
heritors b1, b2. There is the simplest ‘way out’ — to forbid such a splitting of
individuals within the same Du-sentence. So we adopt the following definition:

(∇∇)
a v-version of a Du-sentence A s a Dv-sentence obtained by replacing
all occurrences of every a ∈ Du in A with some its v-inheritor a′.

In other words, v-versions of A are of the form f ·A for maps f : Const(A) −→
Dv, where Const(A) is the set of all constants from A, such that aρf(a) for any
a ∈ Const(A).

These maps are ‘local analogues’ of the maps ρuv in Kripke sheaves; the
latter are defined on the whole Du.

It seems natural to write the condition (∇) (which is analogue of (. . . )) in
a form similar to Definition 3.6.4.

(∇′)
M,u |= �A(a1, . . . , an) iff

∀v ∈ R(u) ∀b1, . . . , bn

(
n

&
i=1
aiρuvbi ⇒M, v |= A(b1, . . . , bn)

)
.

But such a ‘definition’ is ambiguous. In fact, as we know (Section 2.4) the same
Du-sentence can be presented as A(a1, . . . , an) (= [a1, . . . , an/x1, . . . , xn] A) for
different formulas A(x1, . . . , xn). For example,

(a = a) = [a/x] (x = x) = [a, a/x, y] (x = y).

Now consider the same Kripke bundle model M as above. By applying (∇′)
we obtain

M,u 6� [a, a/x, y]�(x = y),

but
M,u � [a/x]�(x = x).

However the ambiguity of (∇′) disappears after fixing one of the presentations
of a Du-sentence. For example, if we use only maximal generators,1 �(a = a)
is regarded as [a/x]�(x = x), so M,u � (a = a) from this viewpoint. This

1Recall that a maximal generator is obtained by replacing all occurrences of a constant
with the same variable, cf. Section 2.4.
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restricted version of (∇′) exactly corresponds to the combination of (∇) and
(∇∇).

Although the use of maximal generators and the condition (∇∇) seem ad
hoc, later on we shall see that this is sufficient for (and closely related to)
soundness.

There is another natural way to avoid ambiguity in definition (∇′) — in-
stead of evaluating Du-sentences, we can evaluate formulas under variable as-
signments. This approach is well-known in classical logic. In full detail and in
a more general context it will be considered in Section 5.9. Here we only sketch
the main idea.

The truth value of a formula A(x) with a list of parameters x at a world u
is defined under a ‘finite assignment’ (or a Du-transformation) [x 7→ a], where
a is a tuple in Du (cf. 2.4). Then (∇′) changes to

(∇′′)
M,u � �A(x) [x 7→ a] iff
∀v ∈ R(u) ∀b1 . . . bn (∀i aiρuvbi ⇒M, v � A(x) [x 7→ b]).

Now the formulas �(x = x), �(P (x) ⊃ P (x)) become true — in fact, e.g.

M,u � �(x = x) [x 7→ a]

is equivalent to

∀v ∈ R(u) ∀b (aρuvb⇒M, v � x = x [x 7→ b]).

But soundness still remains a problem. Viz., consider the same Kripke bun-
dle on Fig. 5.2. Then according to (∇′′), the QK=-theorem

A := (x = y ⊃ �(x = y))

is refuted. In fact (for any model M)

M,u � x = y [x, y 7→ a, a],

but
M,u 6� �(x = y) [x, y 7→ a, a],

since
M, v 6� �(x = y) [x, y 7→ b1, b2].

A similar example exists in modal logics without equality. Consider the
following QK-theorem:

�P (x, x) ⊃ ∃y �P (x, y),

which is a substitution instance of axiom (Ax13) from 2.6.10. This formula is
refuted in the same Kripke bundle in the model M such that

M,u � P (x, x) [x 7→ a],
M, v � P (x, y) [x, y 7→ bi, bj ] iff i = j.



5.1. PRELIMINARY DISCUSSION 365

In fact,
M,u � �P (x, x) [x 7→ a],

since
M,u � P (x, x) [x 7→ a],
M, v � P (x, x) [x 7→ bi].

But
M,u 6� �P (x, y) [x, y 7→ a, a],

since
M, v 6� P (x, y) [x, y 7→ b1, b2].

These counterexamples, together with the soundness theorem (Proposition
5.2.12), justify the truth definition stated in (∇), (∇∇) or its equivalent (∇′)
using maximal generators.

Functor semantics

C-sets are another generalisation of Kripke sheaves, where we allow for many
transition maps between the same possible worlds. This happens, because a
quasi-ordered set is replaced with an arbitrary category C. More precisely, let C
be a category with the set of objects W . Consider the frame F = (W,R), where
uRv iff there exists a morphism from u to v, i.e. iff the set C(u, v) of morphisms
from u to v is non-empty. F is called the frame representation of C. A C-set is
defined as a functor from C to SET ; it can be regarded as a system of domains
(F,D) together with a family of functions

ρ = (ρα : Du −→ Dv)α∈C(u,v)

respecting composition and identity, cf. Definition 3.6.1. Obviously, Kripke
sheaves over F are nothing but CatF -sets.

In a C-set, the v-inheritors of an individual d ∈ Du are ραd for all α ∈ C(u, v).
Given a model M in a C-set (F,D, ρ), we define forcing, so that

M,u |= �B(d1, . . . , dn) iff
∀v ∈ R(u) ∀α ∈ C(u, v) M, v |= B(ραd1, . . . , ραdn).

Similarly to Kripke sheaves, in C-sets we may not worry about different
presentation of a Du-sentence as B(d1, . . . , dn), because ρα are functions. A v-
inheritor of a Du-sentence is obtained by replacing all individuals a ∈ Du with
their images ραa under the same transition map ρα, α ∈ C(u, v).

Validity

Validity in a Kripke bundle or in a C-set is defined again as the truth in all
models. But there is another problem: the set of valid formulas may be not
substitution closed! To show this, consider the category C with a single object2

2I.e. its frame representation F is a reflexive singleton.
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u and two arrows: id and γ such that γ ◦ γ = γ (and certainly, id ◦ γ =
γ ◦ id = γ; C is just a two-element monoid). Let F be a C-set in Fig. 5.3 with
Du = {a, b}, ργ(a) = ργ(b) = b.

• •
a b

ργ

ργ

Figure 5.3.

Then the formula p ⊃ �p is valid in F (since F � p ⊃ �p) , but P (x) ⊃
�P (x) is not. In fact, consider a model in which u |= P (a), u 6|= P (b); then
u 6|= �P (a), because u 6|= P (ργa).

Exercise 5.1.1 Let us call a formula A intuitionistically valid in a C-set (or in
a Kripke bundle) if AT is valid. Show that the formula p∨¬p is intuitionistically
valid in the same C-set as above, whereas P (x) ∨ ¬P (x) is not intuitionistically
valid.

Exercise 5.1.2 Consider the Kripke bundle G with the single domain Du =
{a, b} such that ρuu = {(a, a), (b, b), (a, b)}, see Fig. 5.4. Show that the formula
P (x) ⊃ �P (x) is not valid and P (x)∨¬P (x) is not intuitionistically valid in G.

So it turns out that the set of all formulas (modal or intuitionistic) that are
valid in a given Kripke bundle or a C-set, is not necessarily a predicate logic. To
obtain a sound semantics, we replace validity with the notion of strong validity
— a formula is said to be strongly valid if all its substitution instances are valid.

At first glance, two new semantics seem independent. But actually the
semantics of C-sets is stronger. Furthermore, their natural combination (the
‘C-bundle semantics’) is strongly equivalent to C-sets. C-bundles are defined
analogously to C-sets, with the following difference — we replace functions ρα :
Du −→ Dv with relations ρα ⊆ Du×Dv parametrised by morphisms α ∈ C(u, v);
the clause (∇′) is modified as follows:

(∇+)
M,u |= �A(a1, . . . , an) iff
∀v ∈ R(u) ∀γ ∈ C(u, v) ∀b1, . . . , bn (∀i aiργbi ⇒M, v |= A(b1, . . . , bn)) ,
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• •
a b

Figure 5.4.

with the same requirement about A. It turns out that for any C-bundle there
exists a C-set with the same valid formulas; therefore every Kripke bundle also
corresponds to some C-set. This is not very surprising, because ‘functionality’
of C-bundles is hidden in the fact that v-versions of A are of the form f · A for
‘local functions’ f , cf. (∇∇).

5.2 Kripke bundles

Now let us turn to precise definitions for the polymodal case.

Definition 5.2.1 An (N -modal) Kripke bundle over an N -modal propositional
frame F = (W,R1, . . . , RN ) is a triple F = (F,D, ρ), in which D = (Du | u ∈ F )
is a system of domains over F and ρ = (ρiuv | uRiv, 1 ≤ i ≤ N) is a family of
relations ρiuv ⊆ Du ×Dv such that for any i, u, v

(♯1) uRiv ⇒ ∀a ∈ Du ∃b ∈ Dv aρiuvb,

i.e. dom(ρiuv) = Du; this means that every individual has inheritors in all
accessible worlds. The frame F is called the base of F, and the domain Du the
fibre at u.

For the 1-modal case we use the notation ρuv rather than ρ1uv.

Definition 5.2.2 An intuitionistic Kripke bundle is a 1-modal Kripke bundle
(F,D, ρ) over an S4-frame F = (W,R) satisfying the following two conditions:

(♯2) every ρuu is reflexive;

(♯3) if uRvRw, then ρuv ◦ ρvw ⊆ ρuw.
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Definition 5.2.3 An intuitionistic Kripke bundle (F,D, ρ) is called a Kripke
quasi-sheaf if every ρuu is the identity function on Du, i.e. if

∀a, b ∈ Du (aρuub⇔ a = b).

Obviously, every Kripke sheaf is a 1-modal Kripke bundle, in which all ρuv are
functions. It is also clear that in the intuitionistic (and in the S4-) case every
Kripke sheaf is a Kripke quasi-sheaf.

The other way round, Lemma 3.6.3 shows that every Kripke bundle, in which
ρiuv are functions satisfying ‘coherence conditions’, gives rise to a Kripke sheaf.
In a sense, Kripke sheaves are exactly Kripke bundles of this kind.

As mentioned in the previous section, a Kripke bundle can be presented in
another equivalent form.

Lemma 5.2.4

(1) Let F = (F,D, ρ) be a Kripke bundle, in which the domains Du are dis-
joint.3 Consider the total domain

D1 :=
⋃

{Du | u ∈W}

with relations
ρi :=

⋃
{ρiuv | uRiv}

for 1 ≤ i ≤ N.

Then we obtain the propositional frame of individuals (also called the total
frame of F):

F1 = (D1, ρ1, . . . , ρN ).

Let π : D1 −→ W be the map such that π(a) = u for a ∈ Du. Then π is a
p-morphism F1 ։ F . Moreover, for N = 1, F is an intuitionistic Kripke
bundle, iff F1 is an S4-frame.

(2) Conversely, a p-morphism of modal frames

π : F1 = (W ′, ρ1, . . . , ρN )։ F = (W,R1, . . . , RN )

gives rise to a system of disjoint domains Du = π−1(u) for u ∈ W and
a family of relations ρiuv = ρi ∩ (Du ×Dv) for uRiv, 1 ≤ i ≤ N , which
forms a modal Kripke bundle.

For the case N = 1, the corresponding Kripke bundle is intuitionistic iff
both F1, F are S4-frames.

Sometimes it is convenient to denote the base F = (W,R1, . . . , RN ) of a
Kripke bundle F by F0 = (D0, R0

1, . . . , R
0
N ) and the frame of individuals F1 by

(D1, R1
1, . . . , R

1
N ).

Thus we come to the following equivalent definition of Kripke bundles:

3As in the case of Kripke sheaves, cf. Section 3.5.
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Definition 5.2.5 A Kripke bundle (modal or intuitionistic) is a p-morphism
between two propositional frames (resp., modal or intuitionistic).

The choice between two equivalent definitions of Kripke bundles is a matter
of convenience.

It is clear that quasi-sheaves correspond to p-morphisms of S4-frames π :
F1 −→ F0 such that F1 ↾ π

−1(u) is a discrete frame, i.e. a quasi-sheaf is a Kripke
bundle with discrete fibres.

Exercise 5.2.6 Show that Kripke sheaves correspond to coverings, i.e. to Kripke
bundles with the unique lift property:

π(a)Rv ⇒ ∃!b (aρb & π(b) = v).

Definition 5.2.7 A valuation ξ in a (modal) Kripke bundle F = (F,D, ρ) is
just a (modal) valuation in its system of domains D = (Du | u ∈ W ), cf.
Definition 3.2.4. The pair M = (F, ξ) is called a Kripke bundle model.

The inductive definition of forcing is more delicate than for Kripke frames
or Kripke sheaves, because (as explained in Section 5.1) in the clause for �
we should explicitly indicate all the individuals occurring in A and use the
presentation of Du-sentences described in Lemma 2.4.4.

Forcing in Kripke bundle models is quire similar to Kripke frames or Kripke
sheaves; the only difference is in the �-clause:

Definition 5.2.8 Let F = (F,D, ρ) be a Kripke bundle, F = (W,R1, . . . , RN ),
M = (F, ξ) a Kripke bundle model. We define the forcing relation M,u � A
between worlds u ∈ F and Du-sentences (with equality) by induction:

• M,u � P 0
k iff u ∈ ξu(P 0

k );

• M,u � Pm
k (a) iff a ∈ ξu(Pm

k ) (for m > 0);

• M,u � a = b iff a equals b;

• M,u 6� ⊥;

• M,u � B ∨ C iff (M,u � B or M,u � C);

• M,u � B ∧ C iff M,u � B&M,u � C;

• M,u � B ⊃ C iff (M,u 6� B or M,u � C);

• M,u � ∃xA iff ∃a ∈ Du M,u � [a/x]A;

• M,u � ∀xA iff ∀a ∈ Du M,u � [a/x]A.

• M,u � �i [a1, . . . , an/x1, . . . , xn]B0 iff
∀v ∈ Ri(u) ∀b1, . . . , bn ∈ Dv (∀j ajρiuvbj ⇒M, v � [b1, . . . , bn/x1, . . . , xn]B0)
where FV (B0) = {x1, . . . , xn} and a1, . . . , an ∈ Du are distinct.
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So in the latter case we present aDu-sentence�iB as�i[a/x]B0 for a formula
B0 and an injective [x 7→ a], recall that B0 is called a maximal generator of B
and it is unique up to renaming of x. This clause can be equivalently presented
in the form discussed in 5.1:

(∇) M,u � �A iff for any v ∈ R(u) every v-version of A is true at M, v.

In particular, for a sentence B we have:

M,u � �iB iff ∀v ∈ Ri(u) M, v � B,

exactly as in standard Kripke semantics.

Definition 5.2.9 A (modal) predicate formula is called true in a Kripke bundle
model if its universal closure ∀̄A is true at every world of this model. A formula
is called valid in a Kripke bundle F if it is true in every model over F.

As above, the sign � denotes the truth in a model and the validity in a
Kripke bundle.

The following is trivial (cf. Lemma 3.2.21(1)):

Lemma 5.2.10 For a Kripke bundle model M and a modal formula A(x1, . . . ,
xn) M � A(x1, . . . , xn) iff ∀u ∈M ∀a1, . . . , an ∈ Du M,u � A(a1, . . . , an).

Recall that A(a1, . . . , an) denotes [a1, . . . , an/x1, . . . , xn]A(x1, . . . , xn), cf.
2.4.

Consider the set of valid formulas

ML
(=)
− (F) := {A ∈MF

(=)
N | F � A}.

This set is closed under MP, Gen and �-introduction, cf. 3.2.28. But it may
be not substitution closed (cf. Exercise 5.1.2), so we introduce the following
notion.

Definition 5.2.11 A formula A ∈ MF
(=)
N is called strongly valid in a Kripke

bundle F (respectively, strongly valid with equality) in F if all its MFN (respec-
tively, MF=

N ) -substitution instances are valid in F; notation: F �+ A (resp.,
F �+= A).

Let
ML(=)(F) := {A ∈MF

(=)
N | F �+(=) A}.

Then we have

Proposition 5.2.12

(1) ML(=)(F) is an m.p.l.(=);

(2) The strong validity of a formula A follows from the validity of all its m-
shifts Am, i.e.

ML(=)(F) = {A ∈MF
(=)
N | ∀m F � Am}.
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Speaking informally, Proposition 5.2.12(2) means that A is strongly valid iff
it is valid with arbitrarily many extra parameters.

The proof is postponed until Section 5.13.
More exactly, this is a particular case of a general soundness theorem for

metaframe semantics, cf. Section 5.12. However, let us sketch a general plan of
the proof.

At the first stage we prove (2). Recall that substitution instances of a formula
A are the strict substitution instances of its m-shifts Am. So it is sufficient to
check the following

Claim. ML
(=)
− (F) is closed under strict substitutions.

The proof is very similar to the substitution closedness of Kripke sheaves (Propo-
sition 3.6.17) in the particular case of strict substitutions.

In the proof of (1), the strong validity of axioms, due to (2), follows from
the validity of their shifts. The latter is proved in a straightforward way. For
propositional axioms it is easier to use proposition 5.3.7 (see below), which in
its turn, follows from (2).

The substitution closedness of ML(=)(F) is obvious. The closedness under

M, Gen, �-introduction follows from the same property of ML
(=)
− (F) (again,due

to (2)). For example, for MP note that (A ⊃ B)n = An ⊃ Bn, so Bn ∈

ML
(=)
− (F) whenever An, (A ⊃ B)n ∈ ML

(=)
− (F).

Thanks to 5.2.12(1), we may call ML(=)(F) the modal logic of F. Also note

that ML(=)(F) is the largest modal logic contained in ML
(=)
− (F) (so to say, the

substitution interior of ML
(=)
− (F)).

Let us point out again that for Kripke sheaves the notions of validity and
strong validity are equivalent, because the set of valid formulas is already sub-
stitution closed. Exercise 5.1.2 shows that this is not always the case in Kripke
bundles.

Exercise 5.2.13 Give an example of a 1-modal Kripke bundle, in which ρuv

are functions, but the set of valid formulas is not substitution-closed.

We also remark that the notion of strong validity a priori depends on the
language. In fact, it might happen that F � SA for any MFN -substitution S,
but not for any MF=

N -substitution. But 5.2.12(2) shows that this is impossible,
so ML=(F) is conservative over ML(F).

Definition 5.2.14 For a class C of Kripke bundles we define

ML(=)(C) :=
⋂

{ML(=)(F) | F ∈ C}.

Definition 5.2.15 Kripke bundle semantics KBN is generated by the class of
all N-modal Kripke bundles. KBN -complete logics are called Kripke bundle
complete.
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Definition 5.2.16 (Cf. Definition 3.2.34) If F is a propositional Kripke frame,

KB(F ) denotes the class of all Kripke bundles based on F . The logic ML(=)

KB(F )) is called the Kripke bundle modal logic (with equality) determined over
F . Similarly we define KB(C) for a class of propositional frames C and the
Kripke bundle modal logic determined over C.

5.3 More on forcing in Kripke bundles

Now let us present an arbitrary Kripke bundle as a collection of propositional
Kripke frames. This presentation is more convenient from the technical view-
point, and it will lead us to a more general notion of a metaframe.

Definition 5.3.1 Let D = (Du | u ∈ W ) be a system of disjoint domains over
a propositional modal frame F = (W,R1, . . . , RN ). For n ≥ 0 we define the nth
level of D as the set Dn :=

⋃
{Dn

u | u ∈ W}.

We also identify D1
u and Du (strictly speaking, they are not equal), so that

our new definition of D1 corresponds to that in Lemma 5.2.4. Also note that
D0 = W , since D0

u = {u}, see Definition 3.2.4.
Note that every valuation ξ = (ξu)u∈W in a system of disjoint domains

is associated with the following function ξ+ sending n-ary predicate letters to
subsets of Dn:

ξ+(Pn
k ) :=

⋃

u∈W

ξu(Pn
k ).

In particular, we have
ξ+(P 0

k ) ⊆W.

Recall that for any function θ such that θ(Pn
k ) ⊆ Dn, there exists a valuation ξ

such that θ = ξ+:
ξu(Pn

k ) := θ(Pn
k ) ∩Dn

u .

To define accessibility relations on the sets Dn, we first recall the notation
from Lemma 5.2.4:

ρi :=
⋃

{ρiuv | uRiv}.

Recall the subordination relation between n-tuples (see Introduction):

a sub b := ∀j, k (aj = ak ⇒ bj = bk).

Definition 5.3.2 Let F = (F,D, ρ) be a modal Kripke bundle over F = (W,R1,
. . . , RN). For n > 0, 1 ≤ i ≤ N , we define the relation on Dn:

aRn
i b iff ∀j ajρibj & a sub b.

So in particular, R1
i = ρi. For n = 0 we put R0

i := Ri.
The frame Fn := (Dn, Rn

1 , . . . , R
n
N ) is called the nth level of F.
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Exercise 5.3.3 Show that if ρi is transitive, then Rn
i is also transitive.

Again in the 1-modal case we write Rn rather than Rn
1 .

Now the inductive clause for �iB from the definition of forcing can be rewrit-
ten in the following form.

Lemma 5.3.4 Under the conditions of Definition 5.2.8, let B be an N -modal
formula with FV (B) ⊆ r(x), |x| = n. Then for any u ∈ F and a ∈ Dn

u

M,u � �iB(a) iff

(∗) ∀v ∈ Ri(u) ∀b ∈ Dn
v (aRn

i b ⇒M, v � B(b))

where as usual, B(a) denotes [a/x]B.

variables

Proof (‘Only if’.) Suppose M,u � �iB(a). As explained after Definition 5.2.8,
this means that every v-version of B(a) is true at M, v (for any v ∈ Ri(u)), and
v-versions are obtained according to (∇∇). To check (*), let us show that for
aRn

i b, B(b) is a v-version of B(a).
In fact, every occurrence of ak in B(a) either replaces an occurrence of xk

in B or replaces an occurrence of xj in B for j 6= k — if aj = ak. In the first
case an occurrence of ak in B(a) corresponds to an occurrence of bk in B(b).
Similarly, in the second case an occurrence of aj = ak in B(a) corresponds to
an occurrence of bj in B(b), and bj = bk, since aRn

i b.
(‘If’.) Suppose (*), and consider a presentation of B(a) as [c/x]B0 with a

distinct c. Then B0 is a maximal generator of B(a) = [a/y]B(y), so by 2.4.5(2),
B0 is obtained by a variable substitution from B, i.e. B0 = [x · σ/y]B for some
σ ∈ Σmn, where |x| = n, |y| = m.

To show that M,u � �i[c/x]B0, consider v ∈ Ri(u) and d ∈ Dn
v such that

∀k ckρidk. Then

[d/x]B0 = [d/x][x · σ/y]B = [d · σ/y]B. (∗∗)

Also (c · σ) sub (d · σ), since cσ(i) = cσ(j) implies σ(i) = σ(j) and thus dσ(i) =
dσ(j) (remember that c is distinct). Therefore (c · σ)Rm

i (d · σ); hence M, v �
[d · σ/y]B by (*), i.e. M, v � [d/x]B0 by (**). Eventually M,u � �i[c/x]B0 by
Definition 5.2.8. �

Since the world u is fully determined by a tuple a ∈ Dn, we can drop u from
the notation of forcing and just write M � A(a) (or M � [a/x]A, to be more
precise). Now (∗) becomes almost the same as in the propositional case:

M � �iB(a) iff ∀b (aRn
i b ⇒ M � B(b)).

Since by definition of Rn
i , a is subordinate to b, the truth value of �iB(a) is

well-defined for any tuple of individuals a = (a1, . . . , an) in the same world;
some of ai’s may coincide.
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So F corresponds to the sequence of propositional frames Fn, in which F0

is the basic propositional frame. A Kripke bundle model M = (F, ξ) is then
associated with the family of propositional Kripke models (Mn)n∈ω, where
Mn = (Fn, ξ

n) and for any k, ξn(P 0
k ) := ξ+(Pn

k ). Fn (respectively, Mn) is
called the n-level of F (respectively, M).

This presentation of Kripke bundles allows us to describe the propositional
fragment ML(=)

π (F) of the predicate logic ML(=)(F).

Lemma 5.3.5 Let M = (F, ξ) be an N -modal Kripke bundle model, and let
Mn = (Fn, ξ

n) be the n-level of M . Then for any N -modal propositional formula
A and for any a ∈ Dn

Mn,a � A iff M � An(a).

Proof Easy, by induction on the length of A. The case A = �iB readily
follows from Lemma 5.3.4. �

Lemma 5.3.6 Let F be an N -modal Kripke bundle, A a propositional N -modal
formula. Then for any n ≥ 0

F � An iff Fn � A.

Proof Lemma 5.3.5 implies that for any model M over F,

Mn � A iff M � An.

In fact, note that by 5.2.10,

M � An iff ∀u ∈M ∀a ∈ Dn
u M,u � An(a)

iff Mn � A by 5.3.5.

Hence

F � An iff ∀ξ (F, ξ) � An iff ∀ξ (Fn, ξ
n) � A.

Finally note that every valuation θ in Fn is ξn for some valuation ξ in F. In
fact, one can put ξ+(Pn

k ) := θ(P k
0 ) for any k and define arbitrary values of ξ+

on other predicate letters. Hence ∀ξ (Fn, ξ
n) � A⇔ Fn � A. �

Proposition 5.3.7 For an N -modal Kripke bundle F and an N -modal propo-
sitional formula A, F �+ A iff ∀nFn � A, i.e.

ML(=)
π (F) =

⋂

n∈ω

ML(Fn).

Proof Follows from Lemma 5.3.6 and Proposition 5.2.12. �
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5.4 Morphisms of Kripke bundles

Definition 5.4.1 Let F = (F,D, ρ), G = (G,D′, ρ′) be Kripke bundles. A pair
f = (f0, f1) is called an equality-morphism (briefly, =-morphism) from F to G
(notation: f : F −→= G) if

(1) f0 : F −→ G is a morphism of propositional frames,

(2) f1 : F1 −→ G1 is a morphism of propositional frames,

(3) f1 is a fibrewise bijection, i.e. every f1u := f1 ↾ Du is a bijection between
Du and D′

f0(u).

f0 is called the world component, f1 the individual component of (f0, f1). An
=-morphism (f0, f1) is called

• a p=-morphism if f0 is surjective (and thus, a p-morphism);

• an isomorphism if f0, f1 are isomorphisms.

It is clear that Definition 3.3.1 for Kripke frames is a particular case of 5.4.1.
From the definition one can easily see that the following diagram commutes
(where π, π′ are the p-morphisms corresponding respectively to F, G).

D1 D′1

W W ′

f1

π π′

f0

Exercise 5.4.2 Show that in Definition 5.4.1 the condition (i) follows from (ii)
and (iii).

Exercise 5.4.3 Show that if (f0, f1) is an =-morphism and f0 is an isomor-
phism, then f1 is also an isomorphism.

Lemma 5.4.4 If f : F −→= F′ is an =-morphism of Kripke bundles, then the
map fn sending a to f · a is a morphism Fn −→ F ′

n.

Proof By definition, the statement holds for n = 0, 1.
Let us show that fn respects subordination. In fact, suppose a subb; then

f1(ai) = f1(aj) implies ai = aj (since f is a fibrewise bijection), and hence
bi = bj (due to a subb), f1(bi) = f1(bj). Thus (f · a)sub(f · b).

The other way round, (f · a) sub (f · b) implies a subb; the reader can show
this in a similar way.

Now the monotonicity of fn (n > 1) follows easily. In fact, if aRn
kb, then for

every i, aiRkbi, and thus f1(ai)R
′
kf1(bi), which implies (f · a)R′n

k (f · b), since
f respects subordination.
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To show the lift property for fn (n > 1), assume (f · a)R′n
k c. Then for

every i, f1(ai)R
′
kci, and thus by the lift property of f1, there exists bi such that

aiRkbi and ci = f1(bi). Put b := (b1, . . . , bn); then a subb. In fact, since f is a
fibrewise bijection, we have

ai = aj iff f1(ai) = f1(aj)

and
bi = bj iff ci = cj .

Since (f · a) sub c, we also have

f1(ai) = f1(aj) ⇒ ci = cj .

Thus ai = aj implies bi = bj. So we obtain aRn
kb and fn(b) = c. �

Definition 5.4.5 Let f = (f0, f1) : F −→= G. For Kripke bundle models
M = (F, ξ), M ′ = (F′, ξ′) we say that f is an =-morphism from M to M ′

(notation: f : M −→= M ′) if

M,u � P (a) ⇐⇒ M ′, f0(u) � P (f1 · a).

for any P ∈ PLn, a ∈ Dn
u , n > 0; or in another notation:4

a ∈ ξ+(P ) iff (f1 · a) ∈ ξ′+(P ),

and also
M,u � P ⇐⇒M ′, f0(u) � P

for any P ∈ PL0.

Then we obtain an analogue of Lemma 3.3.11

Lemma 5.4.6 If (f0, f1) : M −→= M ′ then for any u ∈ M and for any
Du-sentence A

(∗) M,u � A iff M ′, f0(u) � f1 · A,

where f1 ·A is obtained from A by replacing every c ∈ Du with f1(c). Du-

Proof By induction. Let us consider only the �-case, i.e. A = �iB(a), where
a ∈ Dn

u . We also assume that n > 0; the easy case n = 0 is left for the reader.
So suppose M,u 6��iB(a), a ∈ Dn

u , and let us show that

M ′, f0(u) 6��iB(f1 · a).

We have v ∈ Ri(u), b ∈ Dn
v such that M, v 6�B(b) and aRn

i b. By the induction
hypothesis, we obtain M ′, f0(v) 6�B(f1 · b). We also have (f1 · a)Rn

i (f1 · b) by
Lemma 5.4.4, and f0(u)Rif0(v), since f0 is a morphism. Hence M ′, f0(u) 6��i

B(f1 · a).

4Cf. Section 5.3.
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For the converse, suppose M ′, f0(u) 6��iB(f1 · a). Then there exist w and
c ∈ Dn

w such that

(f1 · a)Rn
i c, f0(u)R′

iw, M
′, w 6�B(c).

By Lemma 5.4.4, c = f1 · b for some b ∈ Rn
i (a), and (say, from a1Rib1) it

easily follows that uRiv, where v is the world of b. Hence M, v 6�B(b) by the
induction hypothesis, and thus M,u 6��iB(a). �

Lemma 5.4.7 Let (f0, f1) : F −→= G, and let M ′ be a Kripke bundle model
over G. Then there exists a model M over F such that (f0, f1) : M −→= M ′.

Proof If M ′ = (G, ψ′), one can take

ψ+(P ) := {a | f1 · a ∈ ψ′+(P )}

for P ∈ PLn, n > 0, and

ψ+(P ) := {u | f0(u) ∈ ψ′+(P )}

for P ∈ PL0. �

Hence we obtain an analogue of Proposition 3.3.13.

Proposition 5.4.8 If there exists a p=-morphism f : F։= F′, then ML=
−(F) ⊆

ML=
−(F′) and thus, ML=(F) ⊆ ML=(F′).

Proof Let (f0, f1) : F = (F,D, ρ) ։= F′ = (F ′, D′, ρ′), and assume that
F′ 6� A(x1, . . . , xn). Then for some u′ ∈ F ′, a1, . . . , an ∈ D′

u′ , for some model
M ′ over F′ we have

M ′, u′ 6� A(a′1, . . . , a
′
n).

By the previous lemma, there exists a model M over F such that

(f0, f1) : M ։M ′.

Since f0 and all f1u are surjective, there exist u, a1, . . . , an, such that

u′ = f0(u), a′1 = f1u(a1), . . . , a′n = f1u(an),

and thus by Lemma 5.4.6, we obtain M,u 6� A(a1, . . . , an).
Therefore, F′ 6� A implies F 6� A. �

A particular case of an =-morphism is an inverse image morphism obtained
by the pullback construction as follows.

Lemma 5.4.9 Let F = (F,D, ρ) be an N -modal Kripke bundle, f : G −→ F a
morphism of propositional frames, and put

X := {(u′, a) | u′ ∈ G, a ∈ D1, f(u′) = π(a)},
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where π : F1 ։ F0 corresponds to F. Consider the relations on X defined as
follows.

(u′, a)ρ′i(v
′, b) iff u′R′

iv
′ & aρib,

where ρi and R′
i are the relations respectively in F 1 and G. Let also

π′(u′, a) := u′, ϕ(u′, a) := a.

Then

(1) π′ : (X, ρ′1, . . . , ρ
′
N )։ F ′;

(2) (f, ϕ) : G −→= F, where G corresponds to π′.

Proof In all the cases the monotonicity is obvious.

(v′, b) b

(u′, a) a

v′ f(v′)

u′ f(u′)

ππ′

π′ π

To check the lift property for π′, suppose u′R′
iv

′. Then f(u′)Rif(v′) by mono-
tonicity, and thus there exists b such that aρib and π(b) = f(v′). Hence
(v′, b) ∈ X , π′(v′, b) = b, (u′, a)ρ′i(v

′, b) as required.
It is clear that ϕ is a fibrewise bijection; in fact,

a ∈ Df(u′) iff π(a) = f(u′) iff (u′, a) ∈ X iff (u′, a) ∈ D′
u′ .

Checking the lift property for ϕ is left to the reader. �

For the Kripke bundle G constructed in Lemma 5.4.9 we shall use the nota-
tion f∗F and say that it is obtained by change of the base along f .

A particular case of this construction is a generated subbundle. Explicitly
it is defined as follows.

Definition 5.4.10 Let F ↾ V be a generated subframe of a propositional frame
F, F = (F,D, ρ) a Kripke bundle over F . Then we define

F ↾ V := (F ′, D′, ρ′),

where F ′ = F ↾ V, D′ = D ↾ V , ρ′ is an appropriate restriction of ρ, i.e.
ρ′iuv = ρiuv for (u, v) ∈ Ri ∩ (V × V ). F ↾ V is called a generated subbundle of
F (more precisely, the restriction of F to V ).
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Lemma 5.4.11 Let j : F ↾ V −→ F be the inclusion morphism, ϕ : D′1 −→ D1

the inclusion map. Then (j, ϕ) : F ↾ V −→= F.

Proof An easy exercise. �

Exercise 5.4.12 Show that F ↾ V is isomorphic to j∗F.

In particular, if F ↾ V is a cone F ↑ u, then F ↾ V is also called the cone of
F and denoted by F ↑ u.

Lemma 5.4.13

ML(=)(F) =
⋂

{ML(=)(F ↑ u) | u ∈ F}.

Proof Follows readily from Lemmas 5.4.6 and 5.4.7; an exercise for the reader
(cf. the proof of Lemma 1.3.26). �

Lemma 5.4.14 Let F be a Kripke bundle, F ↾ V its generated subbundle. Then

ML(=)(F) ⊆ ML(=)(F ↾ V ).

Proof Follows for the previous lemma and the observation that every cone in
F ↾ V is a cone in F. �

Finally let us show that G = f∗F gives rise to the pullback (or ‘coamalgam’)
diagram:

ϕ

f

G1

G

F1

F

ππ′

In precise terms, this means the following

Lemma 5.4.15 Let f : G → F be a morphism of propositional frames, F a
Kripke bundle over F, π : F1 ։ F the associated p-morphism, F = f∗F and
(f, ϕ) : G →= F the =-morphism described in 5.4.9. Also let (f, ψ) : H →= F
be an arbitrary =-morphism from a Kripke bundle H over G to F.

Then

(1) there exists a unique map g : G1 → F1 such that the following diagram
(where τ is associated with H) commutes.
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ϕ

f

G1

G

F1

F

ππ′

H1

τ

g
ψ

(2) g is an isomorphism between H1 and G1.

Proof (i) The diagram commutes iff for any x ∈ H, π′(g(x)) = τ(x) and
ϕ(g(x)) = ψ(x), i.e. iff g(x) = (τ(x), ψ(x)); note that (τ(x), ψ(x)) ∈ G1 since
π · ψ = f · τ . So g is well-defined.

(ii) We can consider the category P of Kripke bundle morphisms of the form
(f, ψ) : H → F, where H is an arbitrary Kripke bundle over G. A morphism (in
P) from (f, ψ) : H → F to (f, ψ′) : H′ → F is defined as a map h, for which the
following diagram (where τ ′ : H ′

1 ։ G is associated with H′) commutes.

f
G

F1

F

π

H1

τ

ψ
h

H ′
1

τ ′

ϕ′

The assertion (i) shows that our specific (f, ϕ) is a terminal object of P . But
actually the above argument applies to any (f, ϕ) : G → F from P .

In fact, we only need to find a unique y ∈ G1 such that π′(y) = τ(x) & ϕ(y) =
ψ(x). So it suffices to show that

∃!y ∈ G1(π′(y) = u & ϕ(y) = a)

whenever f(u) = π(a). But this holds since ϕ is a fibrewise bijection between
π′−1[u] and π−1[f(u)].
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Thus all objects in P are terminal, and all morphisms are invertible. So the
map g from (i) is bijective. To complete the proof of (ii), it remains to show the
monotonicity of g; the monotonicity g−1 follows by the same argument. So let
Si be the relations in H1. Then for any y, z ∈ H1

ySiz implies ψ(y) ρi ψ(z), i.e. ϕ(g(y)) ρi ϕ(g(z)),

and similarly
ySiz ⇒ π′(g(y))R′

iπ
′(g(z)).

Thus
ySiz ⇒ g(y)ρ′ig(z)

by definition (see Lemma 5.4.9). �

5.5 Intuitionistic Kripke bundles

Now let us consider the intuitionistic case. First note the following:

Lemma 5.5.1 If F is an intuitionistic Kripke bundle, then all the Fn are S4-
frames.

Proof An exercise. �

Definition 5.5.2 A valuation ξ in an intuitionistic Kripke bundle F is called
intuitionistic if every set ξ+(Pn

k ) =
⋃
{ξu(Pn

k ) | u ∈ W} is stable in Fn, i.e.
if Rn(ξ+(Pn

k )) ⊆ ξ+(Pn
k ). The model (F, ξ) is also called intuitionistic in this

case.

Intuitionistic forcing in intuitionistic Kripke bundle models is defined via
modal forcing similarly to the case of Kripke frames (Definition 3.2.13):

Definition 5.5.3 Let M be an intuitionistic model over an intuitionistic Kripke
bundle F = (F,D, ρ), F = (W,R), u ∈ M , A an intuitionistic Du-sentence.
Then we put

M,u  A := M,u � AT .

Now we obtain an analogue of Lemma 3.2.14:

Lemma 5.5.4 Under the conditions of Definition 5.5.3

(1) M,u  B iff M,u � B (for B atomic);

(2) M,u  B ∧ C iff (M,u  B&M,u  C);

(3) M,u  B ∨ C iff (M,u  B or M,u  C);

(4) M,u  B(a) ⊃ C(a) iff
∀v ∈ R(u) ∀b ∈ Dn

v (aRnb & M, v  B(b) ⇒M, v  C(b));
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(5) M,u  ∃xB iff ∃a ∈ Du M,u  [a/x]B;

(6) M,u  ∀xB(x,a) iff
∀v ∈ R(u) ∀d ∈ Dv ∀b ∈ Dn

v (aRnb ⇒M, v  B(d,b));

(7) M,u  ¬B(a) iff ∀v ∈ R(u) ∀b ∈ Dn
v (aRnb ⇒M, v 1 B(b));

(8) M,u  a 6= b iff a does not equal b.

Here we assume that in all cases we evaluate Du-sentences at u. In (4), (6) and
(7) we also assume that a ∈ Dn

u is a list of individuals, which replaces a list of
variables containing the parameters respectively of B ⊃ C or ∀xB, B.

Proof Let us consider only the case (4); the others are an exercise for the
reader. In the fixed model M we have

u  B(a) ⊃ C(a) iff
u � (B(a) ⊃ C(a))T = �(B(a)T ⊃ C(a)T ) by Definitions 5.5.3, 2.11.1
iff ∀v ∈ R(u)∀b ∈ Dn

v (aRnb ⇒ v � B(b)T ⊃ C(b)T ) by Lemma 5.3.4
iff ∀v ∈ R(u)∀b ∈ Dn

v (aRnb & v  B(b) ⇒
v  C(b)) by Definitions 5.5.3, 5.2.8.

�

As in the modal case, we can drop u from the notation; so e.g. (4), (6) are
written as follows:

(4) M  (B ⊃ C)(a) iff ∀b(aRnb & M  B(b) ⇒M  C(b));

(6) M  ∀xB(x,a) iff ∀d∀b ((db) ∈ Dn+1 & aRnb ⇒M  B(d,b)).

Now we obtain some facts similar to those proved in Section 3.2.

Lemma 5.5.5 Let M be the same as in Lemma 5.5.4. Then for any D1-
sentence A(a)

M  A(a) & aRnb ⇒M  A(b).

Proof By Definition 5.5.3 and Lemma 5.3.4. �

Definition 5.5.6 Let F be an intuitionistic Kripke bundle; M a Kripke bundle
model over F. The pattern of M is the Kripke bundle model M0 over F such
that for any u ∈ F and any atomic Du-sentence A

M0, u � A iff M,u � �A.

It is clear that the model M0 is intuitionistic.

Lemma 5.5.7 Under the conditions of Definition 5.5.6, we have for any u ∈ F,
for any Du-sentence A

M0, u  A iff M,u � AT .
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Proof By induction, similar to Lemma 3.2.16. Let us consider only the case
A = B(a) ⊃ C(a). We have

M0, u  A iff
∀v ∈ R(u)∀b ∈ Dn

v (aRnb & M0, v  B(b) ⇒M0, v  C(b)) (by Lemma 5.5.4)
iff ∀v ∈ R(u)∀b ∈ Dn

v (aRnb & M, v � B(b)T ⇒ M, v � C(b)T )
(by the induction hypothesis)
iff M,u � �(B(a)T ⊃ C(a)T ) (by Lemma 5.3.4 and Definition 5.2.8).

The latter formula is AT by Definition 2.11.1. �

Lemma 5.5.8 Let M be an intuitionistic Kripke bundle model with the acces-
sibility relation R, A(x) an intuitionistic formula with all its parameters in the
list x, |x| = n. Then for any u ∈M

M,u  ∀xA(x) iff ∀v ∈ R(u)∀a ∈ Dn
v M,u  A(a).

Proof The claim is similar to Lemma 3.2.19, but the proof is different; now
it is based on soundness (Proposition 5.2.12).

By Definition 3.2.13, in the given model M we have:

u  ∀xA(x) iff u � (∀xA(x))T .

By Lemma 2.11.7, in QS4 the latter formula is equivalent to �∀xA(x)T , and
thus

u � (∀xA(x))T iff u � �∀xA(x)T (by Proposition 5.2.12)
iff ∀v ∈ R(u)∀a ∈ Dn

v v � A(a)T (by Definition 5.2.8 and Lemma 5.2.10)
iff ∀v ∈ R(u)∀a ∈ Dn

v v  A(a) (by Definition 5.5.3).

�

Exercise 5.5.9 Let M be an intuitionistic Kripke bundle model with the acces-
sibility relation R, u ∈M , A(x,y) an intuitionistic formula with FV (A) ⊆ xy,
|x| = n, |y| = m. Then for any u ∈M , c ∈ Dm

u

M,u  ∀xA(x, c) iff ∀v ∈ R(u)∀a ∈ Dn
v ∀d ∈ Dm

v (cRmd ⇒M,u  A(a,d)).

Definition 5.5.10 An intuitionistic predicate formula A is called

• true in an intuitionistic Kripke bundle model M (notation: M  A) if ∀̄A
is true at every world of M ;

• valid in an intuitionistic Kripke bundle F (notation: F  A) if it is true
in all intuitionistic Kripke models over F;

• strongly valid in an intuitionistic Kripke bundle F (notation: F + A) if
all its substitution instances are valid in F.
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Lemma 5.5.11 M  A(x1, . . . , xn) iff ∀u ∈ M ∀a1, . . . , an ∈ Du M,u 
A(a1, . . . , an).

Proof Similar to Lemma 3.2.21. �

Proposition 5.5.12 Let F be an S4-based Kripke bundle, A ∈ IF=. Then

(1) F  A iff F � AT ;

(2) the following three assertions are equivalent:

(a) F + A,

(b) ∀m F  Am,

(c) F �+ AT .

Proof
(1) Let A = A(x), |x| = n.

(Only if.) Assume F  A. Let M be a Kripke bundle model over F. By
Lemma 5.5.11, we have to show M,u � AT (a)(= A(a)T ) for any u ∈ F, a ∈ Dn

u .
By Lemma 5.5.7 we have:

M0, u  A(a) iff M,u � A(a)T .

By Lemma 5.5.11, F  A implies M0, u  A(a), and thus we obtain F � AT .
(If.) Assume F � AT . Then for any intuitionistic model M , any u ∈M, a ∈

Dn
u we have M,u � A(a)T (= AT (a)) by Lemma 5.5.11, i.e. M,u  A(a). Hence

F  A, by Lemma 5.5.11.
(2) (a)⇒(b) is obvious.
(b)⇒(c). Assume F  Am, i.e. F � (Am)T . Since (Am)T = (AT )m, we

obtain F �+ AT by Proposition 5.2.12.
(c)⇒(a). Assume F �+ AT , and for an arbitrary IF=-substitution S let

us show F  SA, i.e. F � (SA)T . By Lemma 2.11.5, (SA)T ≡ ST (AT ) is a
QS4=-theorem, and thus it is valid in F, by Proposition 5.2.12. By assumption,
F � ST (AT ); thus we obtain F � (SA)T . Therefore F  A+. �

Proposition 5.5.13 For an intuitionistic Kripke bundle F the set of strongly
valid formulas

IL(=)(F) := {A ∈ IF (=) | F + A}

is a superintuitionistic predicate logic (with or without equality), moreover,

IL(=)(F) = T ML(=)(F).

Proof Similar to Proposition 3.2.31. By Proposition 5.5.12, F + A iff
F �+ AT , which means A ∈ IL(=)(F) iff AT ∈ ML(=)(F). Thus IL(=)(F) =

s(ML(=)(F)). �
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Definition 5.5.14 The set IL(=)(F) is called the superintuitionistic logic of F
(respectively, with or without equality).

Now we easily obtain intuitionistic analogues of some assertions from the
previous section.

Lemma 5.5.15 Let (f0, f1) : M −→= M ′ for intuitionistic Kripke bundle
models M, M ′. Then for any u ∈M and for any intuitionistic Du-sentence B

M,u  B iff M ′, f0(u)  f1 · B,

Proof From Lemma 5.4.6, Definition 5.5.3 and the observation that f1 ·B
T =

(f1 · B)T . �

Proposition 5.5.16 If F and G are intuitionistic Kripke bundles and F։= G,
then IL=

−(F) ⊆ IL=
−(G) and IL=(F) ⊆ IL=(G).

Proof The first statement is an exercise for the reader. For the second,
note that F ։= G implies ML=(F) ⊆ ML=(G) by Proposition 5.4.8; hence
s(ML=(F)) ⊆ s(ML=(G)), i.e. IL=(F) ⊆ IL=(G), by Proposition 5.5.13. �

Lemma 5.5.17 For an intuitionistic Kripke bundle F

IL(=)(F) =
⋂

{IL(=)(F ↑ u) | u ∈ F}.

Proof Follows readily from Lemma 5.4.13, Proposition 5.5.13, and the equality

s

(⋂
i

Li

)
=
⋂
i

s(Li). �

Lemma 5.5.18 Let F be an intuitionistic Kripke bundle, F ↾ V its generated
subbundle. Then

IL(=)(F) ⊆ IL(=)(F ↾ V ).

Proof Similar to Lemma 5.4.14. �

For the intuitionistic case the notion of a Kripke bundle can be slightly
extended.

Definition 5.5.19 An intuitionistic Kripke quasi-bundle is a quasi-p-morphism
π : F1 −→ F0 between S4-frames, cf. Definition 1.4.18.5

A Kripke quasi-bundle can be presented equivalently as a triple F = (F0, D, ρ)
with a system of domains D = (Du | u ∈ W ) and a family of relations
ρ = (ρuv | uRv) satisfying (♯2), (♯3) from Definition 5.2.2 and

(♯′1) uRv ⇒ ∀a ∈ Du ∃v′ ≈R v ∃b ∈ Dv aρuv′b.

5Recall that quasi-p-morphisms are intuitionistic analogues of p-morphisms, cf. Chapter 1.
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However one should be careful about using quasi-bundles. Since an intu-
itionistic quasi-bundle is not necessarily a modal bundle, it is not a surprise
that the semantics of quasi-bundles is not sound for modal logics. But it is not
sound for intuitionistic logic either! To obtain soundness, we have to reduce the
class of quasi-bundles, see Section 5.17 for details.

Exercise 5.5.20 Try to give an inductive definition of intuitionistic forcing in
a Kripke quasi-bundle (intuitionistic valuations are defined similarly to Kripke
bundles). Note that the definition of forcing is not so straightforward.

A familiar truth definition for a formula ∃xA is irrelevant in this case, as the
following counterexample shows.

Example 5.5.21 Consider a quasi-bundle F pictured at Fig. 5.5. b1 ∈ Du1

does not have inheritors in u2, but b1 is its own inheritor in u1 ≈R u2. So F is
still a quasi-bundle.

Du1 Du2

• •

a1 a2

u2

• •

• •
u1

Figure 5.5. R is universal; ρ is universal on {a1, a2}.

Consider an intuitionistic model M = (F, ξ) such that ξ+(P ) = {b}. Putting

M,u  ∃xP (x) ⇔ ∃c ∈ Du M,u  P (c)

we obtain

M,u1  ∃xP (x),

but

M,u2 6 ∃xP (x).

So since u1Ru2, there is no truth-preservation for ∃xP (x).

But as we shall soon see (cf. Lemma 5.14.15), truth-preservation (or ‘mono-
tonicity’) is necessary for soundness.
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So here is an alternative definition:

M,u  ∃xB(x,a) iff ∃v ≈ u ∃d ∈ Dv ∃b ∈ Dn
v (b ≈n a & M, v  B(d,b)). (∗)

Due to the quasi-lift property (1.4.18) of quasi-bundles, (*) can be rewritten
as

M,u  ∃xB(x,a) iff ∃vRu ∃d ∈ Dv ∃b ∈ Dn
v (bRna & M, v  B(d,b)). (∗∗)

Note that this definition for the ∃-case is dual to the clause for the ∀-case in
Lemma 5.5.4(6).

The modified definition provides the desired truth-preservation property, as
we shall see later on.

Lemma 5.5.22 Let M = (F, ξ) be an intuitionistic Kripke bundle model, and
let ξn be a propositional valuation in its nth level Fn, n ≥ 0 such that ξn(pk) =
ξ+(Pn

k ) for any k ≥ 0. Let Mn = (Fn, ξ
n) be the corresponding propositional

Kripke model. Then every Mn is intuitionistic, and for any intuitionistic propo-
sitional formula A and for any a ∈Mn

Mn,a  A iff M  An(a).

Proof Mn is intuitionistic, according to Definition 5.5.2.

Mn,a  A iff Mn,a � A
T (by Definition 1.4.1)

iff M � (AT )n(a) (= (An(a))T ) (by Lemma 5.3.5)
iff M  An(a) (by Definition 5.5.3).

�

Lemma 5.5.23 Let F be an intuitionistic Kripke bundle, A a propositional
intuitionistic formula. Then for any n ≥ 0

F  An iff Fn  A.

Proof F  An iff F � (An)T (= (AT )n) (by Proposition 5.5.12) iff
Fn � A

T (by Lemma 5.3.6) iff Fn  A (by Lemma 1.4.7). �

Proposition 5.5.24 For an intuitionistic Kripke bundle F,

IL(=)
π (F) =

⋂

n∈ω

IL(Fn).

Proof ∀nFn  A iff ∀nFn  A
T (by Lemma 1.4.7) iff F �+ AT (by Proposi-

tion 5.3.7) iff F + A (by Proposition 5.5.12). �

Let us also make some remarks on Kripke quasi-sheaves.

Lemma 5.5.25 Let F be a quasi-sheaf over an (intuitionistic) frame F . As-
sume that u ≈R v in F , i.e. u, v are in the same cluster. Then ρuv is a bijection
between Du and Dv with the converse ρvu.
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Proof First, note that aρuvb implies bρvua. In fact, by Definition 5.2.1, there
exists a′ such that bρvua

′. Then by transitivity, aρuua
′, and thus a = a′, since F

is a quasi-sheaf. Obviously, the same argument shows that bρvua implies aρuvb,
and thus ρvu = ρ−1

uv . It remains to show that both ρuv, ρvu are functions, and
again we can check this only for ρuv. So assume a0ρuva1, a0ρuva2; then a1ρvua0,
and thus by transitivity, a1ρvva2, which implies a1 = a2, by Definition 5.2.3. �

So, similarly to the case of Kripke sheaves (Section 3.5), we can factorise a
quasi-sheaf F and obtain a quasi-sheaf over the partially ordered frame F∼:

Lemma 5.5.26 Let F = (F,D, ρ) be the same as in Lemma 5.5.25, with F =
(W,R) and consider the corresponding frame of individuals F 1 = (D1, R1); let
π : F 1 ։ F be the associated p-morphism. Let F∼ = (D∼, R∼), (F 1)∼ =
((D1)∼, (R1)∼) be their skeletons (Definition 1.3.40). Then

(1) The map π∼ : a∼ 7→ π(a)∼ is a p-morphism (and thus defines a Kripke
bundle F∼).

(2) F∼ is a Kripke quasi-sheaf.

(3) There exists a p=-morphism F։ F∼.

Proof (i) π is well-defined. In fact, a ≈R1 b only if π(a) ≈R π(b), due to the
monotonicity of π.

Next, a∼(R1)∼b∼ iff aR1b (by Definition 1.3.40), only if π(a)Rπ(b) (since π
is p-morphism), iff π(a)∼R∼π(b)∼ (by Definition 1.3.40).

To check the lift property for π∼, suppose π∼R∼v∼, i.e. π(a)Rv, by Defini-
tion 1.3.40. Since π is a p-morphism, there exists b such that aR1b and π(a) = v,
and thus a∼(R1)∼b∼, v∼ = π(b)∼ = π∼(b∼).

(ii) Suppose π∼(a∼) = π∼(b∼), i.e. π(a) ≈R1 π(b) and also (a∼)(R1)∼(b∼),
i.e. aR1b. To obtain a∼ = b∼, we have to show that bR1a.

By the lift property, there exists a′ such that bR1a′ and π(a′) = π(a). But
then aR1a′ by transitivity, and since F is a Kripke quasi-sheaf, it follows that
a′ = a. Hence bR1a.

(iii) Let us show that (f0, f1) : F −→= F∼, where f0(u) := u∼, f1(a) := a∼.
In fact, these maps are propositional p-morphisms, by Lemma 1.3.41, so it

remains to show that (f0, f1) is a fibrewise bijection, i.e. that f1 restricted to
Du is a bijection.

To show the injectivity, suppose π(a) = π(b) = u, but a 6= b. Then a∼ 6= b∼,
since in Kripke quasi-sheaves different individuals in the same fibre are not
related.

For the surjectivity, note that an arbitrary element of (π∼)−1(u∼) is of the
form b∼, with u∼ = π∼(b∼) = π(b)∼. Let us find a ∈ Du such that a∼ = b∼.

Let v := π(b); then u ≈R v, and by Lemma ρvu is a bijection between Du

and Dv, whose converse is ρuv. Now take a := ρvu; it follows that a ≈R1 b, and
a ∈ Du. �

Definition 5.5.27 F∼ is called the skeleton of F.
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So we obtain an analogue of Lemma 3.7.18:

Lemma 5.5.28 IL(=)(F) = IL(=)(F∼) for a Kripke quasi-sheaf F.

Proof The inclusion IL(=)(F) ⊆ IL(=)(F∼) follows from Lemma 5.5.26 and
Proposition 5.5.6. To prove the converse, suppose M = (F, ϕ) is an intuitionistic
model, A is an intuitionistic sentence and M 6 A, and let us show F∼ 6 A.

Let f : F։ F∼ (Lemma 5.5.26), and let us define a valuation ψ in F∼ such
that

ψ+(P ) = {f · a | a ∈ ϕ+(P )}.

for any predicate letter P . Then ψ is an intuitionistic valuation. In fact, suppose
c = f · a ∈ ψ+(P ), c(R∼)nd, and let us show that d ∈ ψ+(P ).

By Lemma 5.4.4, there exists b ∈ Rn(a) such that d = f · b (Fig. 5.6).
Then from aRnb we obtain b ∈ ϕ+(P ). Thus by definition, d ∈ ψ+(P ).

b d = f · b
• •

Rn fn (R∼)n

−→

• •
a c = f · a

Figure 5.6.

So ψ is intuitionistic, and we also have f : (F, ϕ) −→= (F∼, ψ).

In fact, by definition, a ∈ ϕ+(P ) only if f · a ∈ ψ+(P ), and it remains to
show the converse.

Suppose f · a ∈ ψ+(P ), i.e. f · a = f · b for some b ∈ ϕ+(P ). Then a ≈ b
(by the definition of f), and thus a ∈ ϕ+(P ), since ϕ is intuitionistic.

By Lemma 5.4.6 we obtain (for a given sentence A and for any world u):

M,u  A iff (F∼, ψ), u∼  A.

Since M 6 A by our assumption, we conclude that F∼ 6 A. �

Thus in the intuitionistic case it is sufficient to consider Kripke quasi-sheaves
only over posets.

On the other hand, for Kripke bundles analogous reductions are not always
possible, because the domains of equivalent worlds may be of different cardinal-
ity. So we have to consider Kripke bundles over arbitrary quasi-ordered sets.
Lemma 5.5.16 shows that we can use only cones, but this does not simplify
anything, because a quasi-ordered cone may still have several equivalent roots
with non-equivalent domains.
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5.6 Functor semantics

In Chapter 4 we defined validity in a presheaf over a locale and showed that
the presheaf semantics is equivalent to algebraic semantics. Functor semantics
is based on an alternative definition of validity in a presheaf (over an arbitrary
category), which is mainly due to Ghilardi, Makkai and Reyes. In this section
we define this semantics in a more general polymodal setting.

Let us begin with a notion of a precategory. This is actually a coloured
multigraph, or a labelled transition system. Similarly to a category (cf. 3.4.3),
it consists of objects (or points) and morphisms (arrows), but a priori with-
out composition, and without special identity morphisms. Every morphism is
coloured.

Definition 5.6.1 An N -precategory is a tuple C = (X,Y,o, t, cr), where X, Y
are non-empty classes; o, t : Y −→ Y and cr : Y −→ {1, . . . , N} are functions.
X is called the class of objects (notation: Ob C), and Y is the class of morphisms
(notation: Mor C). o(f), t(f), cr(f) are called respectively the origin, the target,
and the colour of f . An i-morphism is a morphism of colour i. We also use the
following notation:

Mori(C) := cr−1(i) (the class of all i-morphisms),
C(u, v) := {f | o(f) = u, t(f) = v} (the class of all morphisms from u to v),
Ci(u, v) := Mori(C) ∩ C(u, v) (the class of all i-morphisms from u to v).

We shall usually consider small precategories, where X, Y are sets. In this
case the Kripke frame (W,R1, . . . , RN ) is called the frame representation of C
(notation: FR(C)) if W = Ob C and Ri = {(u, v) | Ci(u, v) 6= ∅}.

Note that a 1-precategory is nothing but a multigraph. It is also clear that a
category is a 1-precategory expanded by identity morphisms and composition
of consecutive morphisms (cf. Section 3.6); its frame representation is an S4-
frame.

Every 1-precategory C can be extended to a category C∗; this construction is
similar to reflexive transitive closure of a binary relation. Namely, morphisms
in C∗ are paths (sequences of consecutive morphisms) in C:

u0
α1−→ u1

α2−→ u2 −→ . . . −→ un−1
αn−→ un

(where u0, . . . , un may be not all different), and we also add all identity mor-
phisms 1u (as new).

The composition of morphisms in C∗ is defined as the join of sequences:

(u
α1−→ . . .

αn−→ v) ◦ (v
β1
−→ . . .

βn
−→ w) := u

α1−→ . . .
βn
−→ w

and of course we define
1u ◦ ϕ := ϕ ◦ 1v := ϕ

for any ϕ ∈ C∗(u, v).
If a (small) category C has a single object, then Mor C∗ is the free monoid

generated by the set Mor C.
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Definition 5.6.2 Let C be a (small) N -precategory with the set of objects W .
A C-preset is a triple F = (C, D, ρ), in which D = (Du | u ∈ W ) is a system of
domains on W and ρ = (ρα | α ∈ Mor C) is a family of functions indexed by
morphisms of C, such that ρα : Du −→ Dv for α ∈ C(u, v).

The objects of C are called possible worlds of F, and the elements of Du are
called individuals at u. If d ∈ Du, α ∈ C(u, v), the image ρα(d) is called the
α-inheritor of the individual d in the world v.

Note that an individual d ∈ Du can have different α-inheritors in the same
world v for different morphisms α.

Definition 5.6.3 Let C be a category based on a precategory C0, i.e. C =
(C0, ◦, 1). A C0-preset F is called a C-set (more precisely, an intuitionistic C-set)
if it preserves composition and identity morphisms:

(iv) ρα◦β = ρα ◦ ρβ;

(v) ρ1u
= idDu

;

for any α, β ∈Mor C, u ∈ Ob C.

Let also give an alternative definition of C-presets.

Definition 5.6.4 A prefunctor F : C ❀ C′ from an N -precategory C to an N -
precategory C′ is a map sending objects of C to objects of C′ and morphisms of C
to morphisms of C′6 and preserving colours, origins and targets: if f ∈ Ci(u, v),
then F(f) ∈ C′

i(F(u),F(v)).
We also extend this definition to the case when C is an N -precategory and

C′ is a 1-precategory: if f ∈ Ci(u, v), then F(f) ∈ C′(F(u),F(v)).

So we see that a C-preset (C, D, ρ) is nothing but a prefunctor F : C ❀ SET
such that F(u) = Du, F(α) = ρα. Conversely, every prefunctor F : C ❀ SET
such that every F(u) is non-empty, can be considered as a preset.

On the other hand, a preset F = (C, D, ρ) is also associated with the precat-
egory of individuals C1(F) such that

Ob C1(F) := D1 :=
⋃

u∈ObC

Du,

C1(F)i(a, b) := {(a, b, α) | b = ρα(a), α ∈MoriC}.

We also obtain an etale prefunctor E : C1(F) ❀ C such that E(a) = u
whenever a ∈ Du, and E(a, b, α) = α.

Proposition 5.6.5

(1) Let F : C ❀ SET be a C-preset, and let E : C1(F) ❀ C be the corresponding
etale prefunctor. Then E has the following properties

6We may assume that Ob C ∩Mor C = ∅; otherwise, C can be replaced with an isomorphic
category having this property.



392 CHAPTER 5. METAFRAME SEMANTICS

•

•

•

•

a

a′

b = ρα(a)

b′ = ρα(a′)

(a, b, α)

(a′, b′, α)

Du Dv

• •
u v

α

Figure 5.7. Etale prefunctor.

(i) ∀u ∈ Ob C ∃a ∈ Ob C1(F) E(a) = u (surjectivity on objects);

(ii) ∀a ∈ Ob C1(F) ∀α ∈ Mor C (E(a) = o(α) ⇒ ∃!f (F(f) = α & o(f) = a))
(the unique lift property).

(2) Let G : C′
❀ C be a prefunctor which is surjective on objects and has the

unique lift property. Then C′ is isomorphic to C1(F) for some C-preset F.

Proof (1) (i) F is surjective on objects since every set F(u) is non-empty.
(ii) Suppose α ∈ C(u, v) and a ∈ Du. Then E(f) = α & o(f) = a holds iff

f = (a, b, α), where b = ρα(a).
(2) For an object u put Du := F(u) := G−1[u].
For a morphism α ∈ C(u, v), put

F(α) := ρα := {(a, b) | ∃f (o(f) = a & t(f) = b & G(f) = α)}.

The precategories C′ and C1(F) are isomorphic. In fact, they have the same
objects, and there is a bijection between C1(F)(a, b) and C′(a, b) sending (a, b, α)
to the the unique lift of α beginning at a, i.e. to f such that G(f) = α, o(f) = a.

�

If C is category, F : C ❀ SET is a C-set, then we can also make C1(F) a
category by putting

(a, b, α) ◦ (b, c, β) := (a, c, α ◦ β); 1a := (a, a, 1u) for a ∈ Du.

Lemma 5.6.6 If F is a C-set, then E : C1(F) ❀ F is a functor.

Proof In fact, E((a, b, α) ◦ (b, c, β)) = α ◦ β = E(a, b, α) ◦ E(b, c, β), and
E(1a) = 1E(a). �
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Definition 5.6.7 For a propositional N -frame F = (W,R1, . . . , RN ) we define
the associated N -precategory C = Cat0F as follows:

Ob C := W,

Ci(u, v) :=

{
{(i, u, v)} if uRiv,

∅ otherwise.

From definitions it is clear that every Kripke sheaf based on a frame F is a
Cat0F -preset; if F is an S4-frame, we obtain a CatF -preset (where CatF is the
category defined in Section 3.5.3).

Remark 5.6.8 Note that if F is not an S4-frame, it may happen that a Cat0F -
preset is not a Kripke sheaf, because it may not satisfy the coherence conditions
(1)∗, (2)∗ from Lemma 3.6.3.

Definition 5.6.9 (cf. Definitions 5.2.7, 5.2.8). A (modal) valuation in a C-
preset F is a valuation in the system of domains D = (F(u) | u ∈ Ob C). A
model over F is a pair (F, ξ), where ξ is a valuation in F.

The forcing relation M,u � A between a world u ∈ W and a Du-sentence
(with equality) A is defined by induction:

• M,u � P 0
k iff u ∈ ξu(P 0

k );

• M,u � Pm
k (a) iff a ∈ ξu(Pm

k ) (for m > 0);

• M,u � a = b iff a equals b;

• M,u 6� ⊥;

• M,u � B ∨ C iff (M,u � B or M,u � C);

• M,u � B ∧ C iff M,u � B&M,u � C;

• M,u � B ⊃ C iff (M,u 6� B or M,u � C);

• M,u � �iB(a) iff ∀v ∈ Ri(u) ∀α ∈ Ci(u, v) M, v � B(ρα · a);

• M,u � ∃xA iff ∃a ∈ Du M,u � [a/x]A;

• M,u � ∀xA iff ∀a ∈ Du M,u � [a/x]A.

Here as usual in the �-case B(a) means [a/x]B, and we assume that FV (B) =
x.

Note that the truth condition for �i[a/x]B obviously extends to the case when
FV (B) ⊆ x.

The following definition is similar to the case of Kripke bundles.

Definition 5.6.10 A (modal) predicate formula A is called
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• true in a C-preset model M if its universal closure ∀̄A is true at every
world of M ;

• valid in a C-preset F if A is true in every model over F;

• strongly valid in a C-preset F if all substitution instances of A are valid
in F.

We use the same signs as above: � for truth and validity, �+ for strong
validity.

The following is a trivial consequence of the definitions:

Lemma 5.6.11 For a C-preset model M and a modal formula A(x)

M � A(x) iff ∀u ∈M ∀a ∈ Dn
u M,u � A(a).

For a C-preset F let

ML
(=)
− (F) := {A ∈MF

(=)
N | F � A},

ML(=)(F) := {A ∈MF
(=)
N | F �+ A}.

The proof of the following soundness result is postponed until Section 5.13
(Proposition 5.13.2).

Proposition 5.6.12 For a C-preset F:

(1) ML(=)(F) is a modal predicate logic;

(2) ML(=)(F) = {A ∈MF
(=)
N | ∀m F � Am}.

Definition 5.6.13 For N -modal predicate logics we introduce the functor se-
mantics FSN generated by presets over N -precategories.

Similarly to Kripke bundles, we introduce levels for C-presets.

Definition 5.6.14 Let F = (C, D, ρ) be a C-preset over an N -precategory C.
Let us define relations Rn

i on Dn for n > 0, 1 ≤ i ≤ N :

aRn
i b iff ∃γ ∈MoriC ργ · a = b.

Also let R0
i := Ri, Fn := (Dn, Rn

1 , . . . , R
n
N ).

The nth level of F is the frame Fn := (Dn, Rn
1 , . . . , R

n
N ). We again abbreviate

Rn
1 to Rn in the 1-modal case.

From the definition of forcing 5.6.9 we readily obtain

Lemma 5.6.15 Let C be an N -precategory, M = (F, ξ) a model over a C-preset
F = (C, D, ρ). Let B be an N -modal formula with FV (B) ⊆ x, |x| = n. Then
for any u ∈ F and a ∈ Dn

u

M,u � �iB(a) iff ∀v ∈ Ri(u) ∀b ∈ Dn
v (aRn

i b ⇒M, v � B(b)).
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Lemma 5.6.16 If C is a category and F is a C-set, then every Fn is an intu-
itionistic propositional frame.

Proof An exercise. �

Definition 5.6.17 A valuation ξ in a C-set F is called intuitionistic if every
set ξ+(Pn

k ) =
⋃
{ξu(Pn

k ) | u ∈ W} is stable in Fn, i.e. if Rn(ξ+(Pn
k )) ⊆ ξ+(Pn

k ).
The model (F, ξ) is also called intuitionistic.

Definition 5.6.18 Let M be an intuitionistic model over a C-set F = (C, D, ρ),
u ∈M , A an intuitionistic Du-sentence. Then we put

M,u  A := M,u � AT .

Lemma 5.6.19 Under the conditions of Definition 5.6.18

(1) M,u  B iff M,u � B (for B atomic);

(2) M,u  B ∧ C iff (M,u  B&M,u  C);

(3) M,u  B ∨ C iff (M,u  B or M,u  C);

(4) M,u  B(a) ⊃ C(a) iff
∀v ∈ R(u)∀µ ∈ C(u, v) (M, v  B(ρµ · a) ⇒M, v  C(ρµ · a);

(5) M,u  ∀xB(x,a) iff
∀v ∈ R(u)∀µ ∈ C(u, v)∀c ∈ Dv M, v � B(c, ρµ · a);

(6) M,u  ∃xB iff ∃a ∈ Du M,u  [a/x]B;

(7) M,u  ¬B(a) iff ∀v ∈ R(u) ∀µ ∈ C(u, v)M, v 1 B(ρµ · a);

(8) M,u  a 6= b iff a does not equal b.

Proof Similar to 5.5.4, with obvious changes. �

Lemma 5.6.20 Let M be the same as in Lemma 5.6.19. Then for any D1-
sentence A(a)

M  A(a) & aRnb ⇒M  A(b).

Definition 5.6.21 Let F be a C-set, M a model over F. The pattern of M is
the model M0 over F such that for any u ∈ F and any atomic Du-sentence A

M0, u � A iff M,u � �A.

The model M0 is intuitionistic, and similarly to Lemma 5.5.7, we obtain

Lemma 5.6.22 For any u ∈ F, for any Du-sentence A

M0, u  A iff M,u � AT .
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Lemma 5.6.23 Let M be an intuitionistic model over a C-set with the accessi-
bility relation R, A(x) an intuitionistic formula, |x| = n. Then for any u ∈M

M,u  ∀xA(x) iff ∀v ∈ R(u)∀a ∈ Dn
v M,u  A(a).

Proof Similar to Lemma 5.5.8 using soundness (5.6.12). �

Definition 5.6.24 A formula A ∈ IF (=) is called

• true in an intuitionistic C-set model M (notation: M  A) if ∀̄A is true
at every world of M ;

• valid in a C-set F (notation: F  A) if it is true in all intuitionistic models
over F;

• strongly valid in a C-set F (notation: F + A) if all its IF (=)-substitution
instances are valid in F.

Lemma 5.6.25 For an intuitionistic C-set model M and an intuitionistic for-
mula A

M  A(x) iff ∀u ∈M ∀a ∈ Dn
u M,u  A(a).

Proposition 5.6.26 Let F be a C-set, A ∈ IF=. Then

(1) F  A iff F � AT .

(2) The following three assertions are equivalent:

(a) F + A;

(b) ∀m F  Am;

(c) F �+ AT .

Proof Cf. Proposition 5.5.12. �

Proposition 5.6.27 For a C-set F the set

IL(=)(F) := {A ∈ IF (=) | F + A}

is a superintuitionistic predicate logic (with or without equality), and

IL(=)(F) =T ML(=)(F).

Definition 5.6.28 The set IL(=)(F) is called the superintuitionistic logic of F.
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5.7 Morphisms of presets

Now let us define truth-preserving morphisms of presets.

Definition 5.7.1 (Cf. Proposition 5.6.5.) A prefunctor Φ : D ❀ E has the lift
property if

∀a ∈ ObD∀µ ∈MorE (Φ(a) = o(µ) ⇒ ∃f ∈MorD Φ(f) = µ).

The reader can see that this is a generalisation of the lift property for proposi-
tional frame morphisms.

Definition 5.7.2 Let F be a C-preset, F′ a C′-preset. A pair γ = (Φ,Ψ) is
called an =-morphism from F to F′ (notation: γ : F −→= F′) if

(1) Φ : C ❀ C′ is a prefunctor with the lift property;

(2) Ψ = (Ψu | u ∈ ObC) is a family of bijections

Ψu : F(u) −→ F′(Φ(u));

(3) Ψ respects morphisms, i.e. for any µ ∈ C(u, v) the following diagram com-
mutes:

Ψv

Ψu

F(v)

F(u)

F′(Φ(µ))F(µ)

F′(Φ(u))

F′(Φ(v))

γ is called a p=-morphism if it also has the property

(4) Φ is surjective on objects.

The above conditions (2), (3) mean that Ψ is a functor morphism (‘natural
transformation’) from F to F′ · Φ.

Definition 5.7.3 For γ = (Φ,Ψ) : F −→= F′, n ≥ 0, we define the map
γn : Fn −→ F ′

n as follows:

γ0(u) := Φ(u), γn(a) := Ψu · a

whenever a ∈ F(u)n, n > 0.

Lemma 5.7.4 γn : Fn −→= F ′
n.
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a a′

u u′

v′v

µ

Rn R′n

γn

Φ

λ = Φ(µ)

b = F(µ) · a b′ = F′(λ) · a′

Figure 5.8.

Proof We consider only the case n > 0, and assume N = 1 to simplify
notation. To prove the monotonicity, suppose aRnb, i.e.

∃µ ∈ C(u, v)∀i bi = F(µ)(ai).

Then by 5.7.2(3),

Ψv(bi) = Ψv(F(µ)(ai)) = F′(Φ(µ))(Ψu(ai)).

Thus

Ψv · b = F′(Φ(µ)) · (Ψu · a),

and so by definition, γn(a)(R′)nγn(b).

To check the lift property, suppose a ∈ Fn, a′ = Ψu · a, a′R′nb′, a′ ∈
F′(u′), b′ ∈ F′(v′). Then

∃λ ∈ C′(u′, v′) b′ = F′(λ) · a′.

Since Φ has the lift property, there exist v ∈ Ob C and µ ∈ C(u, v) such that
λ = Φ(µ). Then put

b := F(µ) · a.

By definition, aRnb, and we also claim that b′ = γn(b) = Ψv · b (Fig. 5.8).
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In fact, let b′′ = Ψv · b. By 5.7.1, the following diagram commutes:

Ψv

Ψu

F (µ)

b′i

a′iai

bi

F ′(λ)

Thus b′′ = F′(λ) · a′ = b′. �

Definition 5.7.57 Let γ : F −→= G be an =-morphism of presets. γ is
called an =-morphism from a model M = (F, ξ) to M ′ = (F′, ξ′) (notation:
f : M −→= M ′) if

M,u � P (a) ⇐⇒M ′, γ0(u) � P (γn(a))

for any P ∈ PLn, a ∈ F(u)n, n > 0; and also

M,u � P ⇐⇒ M ′, γ0(u) � P

for any P ∈ PL0.

Lemma 5.7.6 If γ : M −→= M ′ for preset models M = (F, ξ), M ′ = (F′, ξ′),
then for any u ∈M and for any F(u)-sentence A

M,u � A iff M ′, γ0(u) � γ1 · A.

If the models are intuitionistic, then for any intuitionistic F(u)-sentence A

M,u  A iff M ′, γ0(u)  γ1 ·A.

Proof By an obvious modification of the proofs of 5.4.6, 5.5.15 based on
Lemma 5.7.4; an exercise for the reader. �

Lemma 5.7.78 Let γ : F −→= G, and let M ′ be a model over G. Then there
exists a model M over F such that γ : M −→= M ′.

Proof The same as for Lemma 5.4.7. �

Proposition 5.7.8 If there exists a p=-morphism F։= F′, then ML=
−(F) ⊆

ML=
−(F′) and thus, ML=(F) ⊆ ML=(F′). Similarly, for the intuitionistic case:

IL=
−(F) ⊆ IL=

−(F′) and IL=(F) ⊆ IL=(F′).

Proof Cf. Propositions 5.4.8, 5.5.16. �

7Cf. Definition 5.4.5.
8Cf. 5.4.7.
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Let us now construct inverse image morphisms.

Lemma 5.7.99 Let F be a C-preset, E : C′
❀ C the corresponding etale pre-

functor, G : D ❀ C an arbitrary prefunctor with the lift property. Consider a
precategory D′ with the class of objects

{(u, a) | u ∈ ObD, a ∈ ObC′, G(u) = E(a)}

and with

D′((u, a), (v, b)) := {(µ, f) | µ ∈ D(u, v), f ∈ C′(a, b), G(µ) = E(f)}.

Then

(1) There exists an etale prefunctor E′ : D′
❀ D such that E′(u, a) = u,

E′(µ, f) = µ.

(2) There exists a prefunctor with the lift property. G′ : D′
❀ C′ such that

G′(u, a) = a, G′(µ, f) = f .

(3) The following diagram commutes:

G′

G

E

C′

E′

D′

CD

(4) If F′ is a D-preset corresponding to E′, then there exists
(G,Ψ) : F′ −→= F such that Ψu(u, a) = a.

(5) If C, D are categories, F is a C-set and G is a functor, then D′ becomes
a category with the composition

(µ, f) ◦ (ν, g) := (µ ◦ ν, f ◦ g)

and F′ becomes a D-set.

Proposition 5.7.10 Every =-morphism of presets (Φ,Ψ) : F′ −→= F is the
composition of the inverse image morphism Θ : Φ∗F −→= F and a prefunctor
isomorphism (over the same precategory) Ξ : F′ −→ Φ∗F.

Definition 5.7.11 Let C, D be N -precategories. D is called a full subprecate-
gory of C (notation: D ⊆0 C) if

9Cf. Lemma 5.4.9.
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(1) ObD ⊆ ObC,

(2) ∀u, v ∈ ObD ∀i ≤ N Ci(u, v) = Di(u, v).

If C, D are categories and D ⊆0 C, then D is called a full subcategory of C
(notation: D ⊆ C) if

(3) for any consecutive morphisms f, g in D

f ◦ g (in D) = f ◦ g (in C).

Definition 5.7.12 A full sub(pre)category D of a (pre)category C is called a
conic sub(pre)category (notation: D ⊑(0) C) if

∀u ∈ ObD ∀v (C∗(u, v) 6= ∅ ⇒ v ∈ ObD).

Here is a typical example.

Definition 5.7.13 For a (pre)category C and u ∈ ObC the cone generated by u
(notation: C↑u) is defined as the full sub(pre)category with the class of objects
{v | C∗(u, v) 6= ∅}.

Thus every object of C↑u is accessible from u via a path of morphisms.

Definition 5.7.14 Let F be a C-preset, D ⊆0 C. The restriction of F to D
(notation: F ↾ D) is the D-preset taking the same values as F on objects and
morphisms of D.

For u ∈ ObC we define the cone of F generated by u: F↑u := F ↾ (C↑u).

Note that if F is a C-set and D ⊆ C, then obviously, F ↾ D is a D-set.

Lemma 5.7.15 Let F be a C-preset, D ⊆0 C. Let J : D ❀ C be the inclusion
prefunctor (sending every object and every morphism of D to itself). Also let
Ψ = (idF(u) | u ∈ ObD). Then

(J,Ψ) : F ↾ D −→= F.

Proof Obviously, J has the lift property and Ψ respects morphisms. �

Lemma 5.7.16 (1) For a C-preset F

ML(=)(F) =
⋂

{ML(=)(F ↑ u) | u ∈ F}.

(2) For a C-set F

IL(=)(F) =
⋂

{IL(=)(F ↑ u) | u ∈ F}.

Proof Along the same lines as Lemmas 5.4.13, 5.5.17. �

Lemma 5.7.17 (1) If F is a C-preset, D ⊑0 C, then

ML(=)(F) ⊆ ML(=)(F ↾ D).

(2) If F is a C-set, D ⊑ C, then

IL(=)(F) ⊆ IL(=)(F ↾ D).

Proof Easy, from 5.7.16. �
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5.8 Bundles over precategories

Let us now combine two generalisations of Kripke sheaves: Kripke bundles and
presets.

Definition 5.8.1 A modal C-bundle over an N -precategory C is a triple F =
(C, D, ρ), in which

• D = (Du | u ∈ W ) is a system of domains;

• ρ = (ρα | α ∈ MorC) is a family of relations parametrised by morphisms
of C;

• ρα ⊆ Du ×Dv, dom ρα = Du for α ∈ C(u, v).

An intuitionistic C-bundle over a category C is a modal C-bundle satisfying
two extra conditions:

(1) ρ1u
is reflexive (on Du) for u ∈ W ,

(2) ρα ◦ ρβ ⊆ ρα◦β,

cf. the corresponding conditions for intuitionistic Kripke bundles in Definition
5.2.2.

The notion of a C-bundle generalises both Kripke bundles and C-sets. In
fact, C-sets are just C-bundles with functions ρα, and Kripke bundles based on
a frame F are exactly Cat0F -bundles (where Cat0F is the precategory from
Definition 5.6.7).

But it turns out that the semantics of C-bundles is strongly equivalent (in
the terminology of Section 2.16) to the semantics of C-sets, as we show below.
Hence it follows that the semantics of Kripke bundles KB is included in the
functor semantics FS. But actually, FS is stronger than KB, as we shall see
later on (Section 5.10).

To define forcing in C-bundles, we first extend Definition 5.3.2 to this case:

Definition 5.8.2 For a C-bundle F = (C, D, ρ) put

aRn
i b iff a sub b & ∃f ∈MoriC ∀j ajρfbj

for a, b ∈ Dn, n > 0.
Also put R0

i := Ri, the corresponding relation in FR(C).

Definition 5.8.3 A (modal) valuation in a C-bundle F = (C, D, ρ) is a valua-
tion in the system of domains D. A model over F is a pair (F, ξ), where ξ is a
valuation in F.

Now let us give a preliminary definition of forcing.
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Definition 5.8.4 (cf. Definitions 5.2.7, 5.2.8, 5.6.9). The forcing relation
M,u � A between a world u ∈ W and a Du-sentence (with equality) A is
defined by induction:

• M,u � P 0
k iff u ∈ ξu(P 0

k );

• M,u � Pm
k (a) iff a ∈ ξu(Pm

k ) (for m > 0);

• M,u � a = b iff a equals b;

• M,u 6� ⊥;

• M,u � B ∨ C iff (M,u � B or M,u � C);

• M,u � B ∧ C iff M,u � B&M,u � C;

• M,u � B ⊃ C iff (M,u 6� B or M,u � C);

• M,u � �iB(a) iff ∀v ∈ Ri(u) ∀b ∈ Dn
v (aRn

i b ⇒M, v � B(b))
(for |a| = n);

• M,u � ∃xA iff ∃a ∈ Du M,u � [a/x]A;

• M,u � ∀xA iff ∀a ∈ Du M,u � [a/x]A.

Again in the �-case B(a) means [a/x]B, and we assume that FV (B) = x.

But this definition should be justified. In fact, as we know, the presentation
of the same formula in a form B(a) is not unique. So we should prove that
forcing does not really depend on this presentation. To show this, we find a
precategory corresponding to the same ‘metaframe’ relations Rn

i .

Proposition 5.8.5 Let F = (C, D, ρ) be a C-bundle over an N -precategory C.
Then there exists an N -precategory C′ and a C′-preset F′ such that

• FR(C) = FR(C′);

• Du = F′(u) for any u ∈ Ob C;

• Rn
i = R′n

i for all n ∈ ω, 1 ≤ i ≤ N (where Rn
i and R′n

i are the nth level
accessibility relations in F and F′ respectively).

Moreover, if F is an intuitionistic C-bundle over a category C (in particular
a Kripke bundle over an S4-frame, then C′ is also a category and F′ is a C′-set.

Proof Put

C′
i(u, v) := {f is a function Du −→ Dv | ∃γ ∈ Ci(u, v) f ⊆ ργ},

and let ρ′f := f in F′. So we replace every relation ργ ⊆ Du ×Dv with the set
of all functions from Du to Dv included in this relation.
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Let us show that R′n
i = Rn

i . In fact, suppose aR′n
i b; then a subb, and there

exists f ∈ C′
i(u, v) such that b = ρ′f · a = f · a, i.e. for all j, bj = f(aj). Since

f ∈ C′
i(u, v), there exists γ ∈ Ci(u, v) such that f ⊆ ργ ; thus ajργbj , which

implies aRn
i b.

The other way round, suppose aRn
i b. Then the set g = {(a1, b1), . . . , (an, bn)}

is a function (since a sub b), and g ⊆ ργ for some γ ∈ Ci(u, v). This g can be pro-
longed to a total function f : Du −→ Dv such that f ⊆ ργ , since domργ = Du

by Definition 5.8.1. Hence b = f · a = ρ′f · a, which implies aR′n
i b.

If C is category, then C′ also becomes a category after we define ◦ as the
composition of functions and 1Du

as the identity function idDu
. In fact, if f ⊆ ρα

and g ⊆ ρβ , then f ◦ g ⊆ ρα ◦ ρβ ⊆ ρα◦β (by Definition 5.8.1); idDu
⊆ ρ1u

, since
ρ1u

is reflexive by 5.8.1. �

Remark 5.8.6 The crucial point of this construction is ‘local functionality’ in
the definition of forcing for a Kripke bundle. This corresponds to the choice of
distinct individuals a1, . . . , an in the inductive clause for �, or to the conjunct
a subb in the definition of Rn

i .

Remark 5.8.7 Note that the argument fails for intuitionistic Kripke quasi-
bundles, because the totality of ρuv is not guaranteed in this case.

Therefore a model M = (F, ξ) corresponds to the model M ′ = (F′, ξ), and
we can define M,u � A as M ′, u � A. Then we obtain the properties described
in Definition 5.8.4, and we can further define validity in F and the logic

ML(=)(F) := ML(=)(F′)

in the modal case and

IL(=)(F) := IL(=)(F′)

in the intuitionistic case.
Hence we obtain the semantics of C-bundles, which is obviously strongly

equivalent to the functor semantics, and the following

Corollary 5.8.8 KBN � FSN , KBint � FSint.

Proof In fact, for a Kripke bundle F with the base F there exists a Cat0F -
preset F′ such that ML(=)(F) = ML(=)(F′). �

5.9 Metaframes

The definition of forcing in Kripke bundles and C-sets via forcing in propositional
frames Fn motivates a further generalisation of Kripke semantics. So far the
relations Rn

i were derived from other relations or functions. Now let us consider
arbitrary metaframes; they are defined as sequences of propositional frames of
tuples, without special requirements for accessibility relations.
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Definition 5.9.1 Let F0 = (W,R1, . . . , RN ) be a propositional Kripke frame,
D a system of disjoint (nonempty) domains over W .

Let Fn = (Dn, Rn
1 , . . . , R

n
N ), n > 0, be propositional Kripke frames such

that Dn =
⋃

u∈W

Dn
u . Then the pair F = ((Fn)n∈ω, D) is called an N -metaframe

based on F0. As usual, W is called the set of possible worlds and D1 the set of
individuals of F. Fn is called the n-level of F.

For a ∈ Dn
u we denote the domain Du by D(a).

We shall often identify a metaframe F with the sequence (Fn)n∈ω, i.e. con-
sider it as a graded propositional frame. Note that the worlds of Fn are n-tuples
of individuals, and the original worlds from W are ‘0-tuples’. Thus we may de-
fine

D0
u := {u}, D0 := W, R0

i := Ri.

We say that an n-tuple b is an i-inheritor (counterpart) of an n-tuple a if aRn
i b.

As usual, i(= 1) is not indicated in the notation if N = 1.

By default we assume that an arbitrary metaframe and all its components
are denoted as in 5.9.1.

Definition 5.9.2 A (modal) valuation in an N -metaframe F is a valuation in
its system of domains. A (modal) metaframe model over F is a pair M = (F, ξ),
where ξ is a (modal) valuation in F.

So a valuation in F is a graded propositional valuation; n-ary predicate letters
are evaluated in F as propositional letters in Fn.

Our goal is now to define forcing in metaframe models. This definition is
not a straightforward generalisation of the corresponding definitions in functor
and Kripke bundle semantics. The reason is that in arbitrary metaframes it is
impossible to define forcing for Du-sentences in the natural way — this will be
shown later on.

Remember that every Du-sentence is obtained by replacing parameters with
Du-individuals in a formula A(x), or by applying a Du-transformation [x 7→ a]
to A(x), cf. Definition 2.4.1.

This transformation itself (not only its result A(a) ‘forgetting’ the original
A(x) and [x 7→ a]) is essential in our definition. Moreover, we define forcing
for a formula A(x) with respect to an ‘ordered assignment’ (x,a) (arranging a
transformation in a certain order).

In the classical case (and in all our earlier Kripke-type semantics) the two
versions of the truth definition (with D-sentences or variable assignments) are
equivalent. The original Tarski’s definition is given in terms of assignments.

So we begin with

Definition 5.9.3 An ordered assignment (at a world u) in a metaframe F =
((Fn)n∈ω, D) is a pair (x,a), where x is a distinct list of variables, a ∈ Dn

u . If
the list x is empty, then by definition, a is just the world u.
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We define forcing in a model M as a relation M, (x,a) � A between ordered
assignments and formulas. It can also be regarded as a relation between tuples
a ∈ Dn and pairs (A,x), so we use the alternative notation M, a � A [x]. This
is read as ‘a forces a pair (A,x)’, or ‘a

formal expression A[x]’.10 It is convenient to
give such a definition for the case when FV (A) ⊆ r(x).
Let us make some remarks about notation. Remember that according to the

Introduction, for a tuple a = (a1, . . . , an) and σ : Im −→ In, we denote

a · σ = (aσ(1), . . . , aσ(m))

and
a− ai = âi = a · δn

i = (a1, . . . , ai−1, ai+1, . . . , an).

The same notation applies to lists of variables; thus in Definition 5.9.4, x · σ
means (xσ(1), . . . , xσ(m)) and x − xi means x · δn

i for a list of variables x =
(x1, . . . , xn), σ : Im −→ In.

However the case m = 0 is special; then σ = ∅n is the empty map, and we
define

x · ∅n as the empty list,
a · ∅n as the world of a (i.e. a · ∅n = u⇔ a ∈ Dn

u).

Note that every atomic formula Pm
k (y) with r(y) ⊆ r(x), |x| = n, has the form

Pm
k (xσ(1), . . . , xσ(m)), or Pm

k (x · σ), for some σ ∈ Σmn.

Definition 5.9.4 For a metaframe model M and a modal formula (with equal-
ity) A we define forcing M, a � A [x] under an ordered assignment (x,a) (such
that FV (A) ⊆ r(x))11 by induction:

(1) M, a 6� ⊥ [x];

(2) M, a � Pm
j (x · σ) [x] iff (a · σ) ∈ ξ+(Pm

j ) (for m > 0);

(3) M, a � P 0
j [x] iff u ∈ ξ+(P 0

j ) (for a ∈ Dn
u);

(4) M, a � (xi = xj) [x] iff ai = aj;

(5) M, a � B ⊃ C [x] iff (M, a 6� B[x] or M, a � C [x]);

(6) M, a � B ∨ C [x] iff (M, a � B [x] or M, a � C [x]);

(7) M, a � B ∧ C [x] iff (M, a � B [x] & M, a � C [x]);

(8) M, a � �iB [x] iff ∀b (aRn
i b ⇒M,b � B [x]);

(9) if y 6∈ x, a ∈ Dn
u , then

M, a � ∃yB [x] iff ∃c ∈ Du M, (ac) � B [xy],
M, a � ∀yB [x] iff ∀c ∈ Du M, (ac) � B [xy];

10The notation A[x] should not be mixed up with A(x) denoting a formula with parameters
in x.

11If x is empty, a is a possible world u, this is written as M, u � A [ ], or just M, u � A.
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(10) M, a � ∃xiB [x] iff M, a − ai � ∃xiB [x − xi];
M, a � ∀xiB [x] iff M, a − ai � ∀xiB [x − xi].

So by Definition 5.9.4, we obtain:

• M, a � ¬B [x] iff M, a 6�B [x],

• M, a � ✸iB [x] iff ∃v ∈ W ∃b ∈ Dn
v (aRn

i b & M,b � B [x]).

Also note that if D is a system of domains over W , m,n > 0, then every
map σ ∈ Σmn gives rise to the map πσ : Dn −→ Dm sending a to a · σ, and it
is clear that πσ maps every Dn

u to Dm
u exactly as in the Introduction.

For the empty map ∅n ∈ Σ0n we can define the map π∅n
: Dn −→ D0 = W

sending every tuple to its world; sometimes we use a simpler notation and write
π∅ rather than π∅n

.
In a metaframe the maps πσ are called jections. They have the properties

mentioned in Lemma 0.0.1:

πσ · πτ = πτ ·σ for σ ∈ Σkm, τ ∈ Σmn;

if σ ∈ Υn, then πσ is a permutation of Dn and πσ−1 = (πσ)−1.

Lemma 5.9.5 Let F = ((Fn)n∈ω, D) be an N -metaframe, σ ∈ Σmn. Then
πσ[Dn] = {a ∈ Dm | σ sub a}.12

Proof Follows from Lemma 0.0.2 applied to every Du. �

Lemma 5.9.6 Let F be a metaframe, in which not all domains are one-element.
Then for σ ∈ Σmn, σ is injective iff πσ : Dn −→ Dm is surjective.

Proof Follows from Lemma 0.0.3. �

We also use notation from the Introduction:

πn
i := πδn

i
, πn

− := πσn
−
, πn

+ := πσn
+
,

recall that

πn
−(a1, . . . , an) = (a1, . . . , an, an) for n > 0,
πn

i (a) = a − ai for a ∈ Dn, n > 0, πn
+(a) = a − an+1 for a ∈ Dn+1, n ≥ 0.

Remembering that σ0
+ = ∅1 ∈ Σ01, we also have π0

+(a1) = u for a1 ∈ Du.
We shall use the same notation πσ for lists of variables; in particular, π∅(x1 . . . xn)

is the empty list.
Note that in all the clauses except (8), (10), Definition 5.9.4 is essentially the

same as in earlier Kripke-type semantics. For example, consider Kripke bundles.
Our new definition (5.9.4) corresponds to the old one (5.2.8) as follows.

12Here similarly to 5.3.2, σ suba denotes the property ∀i, j (σ(i) = σ(j) ⇒ ai = aj).
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M, a � A[x] (in the new sense) is equivalent to M,u � [a/x]A (in the old
sense), where u is the world of a. So 5.9.4(2)

M, a � Pm
k (x · σ) [x] ⇔ a · σ ∈ ξ+(Pm

k )

becomes

M,u � [a/x]Pm
k (x · σ)(= Pm

k (a · σ)) ⇔ a · σ ∈ ξ+(Pm
k )

exactly as in 5.2.8.
For evaluating a formula A we use assignments (x,a) with r(x) ⊇ FV (A).

The requirement r(x) = FV (A) is insufficient, e.g. in clause (5), because it may
be that FV (B ⊃ C) 6= FV (B), FV (C).

We have to be careful about the quantifier clauses. In fact, if r(x) ⊃
FV (∃yB), then either y 6∈ r(x)13 or y ∈ r(x). In the first case we obtain
the clause (9), which is clear. But if y ∈ r(x), the clause (9) is inapplicable,
because (xy, ac) is not a correct assignment — y is repeated twice. So before
adding y to x, we should eliminate it from x and its value from a. This leads
us to clause (10).

Sometimes it is convenient to join (9) and (10) in a single clause. To do this,
let us introduce some more notation.

For a (distinct) list of variables x and y ∈ V ar we put

x − y :=

{
x − xi if y = xi,

x if y 6∈ x, .

and

x||y := (x − y)y.

These lists can be obtained by corresponding transformations, viz. put

εx−y :=

{
δn
i if y = xi,

idn if y 6∈ x,

εx||y := (εx−y)+ :=

{
(δn

i )+ if y = xi,

idn+1 if y 6∈ x,

provided |x| = n;14 then

x · εx−y = x − y, (xy) · εx||y = x||y.

The associated jections are denoted as follows:

πx−y := πεx−y
, πx||y := πε

x||y
.

13This is always the case if r(x) = FV (∃yB).
14+ means the simple extension, see the Introduction.
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So we can combine (9), (10) from Definition 5.9.4 in a single clause:

M, a � ∃yB [x] iff ∃c ∈ Du M,πx||y(ac) � B [x||y], (9 + 10)

and similarly for ∀. In fact, if y 6∈ x, then πx||y(ac) = ac and x||y = xy. And if
y = xi, then

πx||y(ac) = (ac) · (δn
i )+ = (a − ai)c, x||y = (x − xi)xi.

The clause (8) generalises a version of the truth definition for �B(a) in Kripke
bundles given in 5.3.4. A similar version

for functor semantics was considered in 5.6.15.
In fact, in the case of Kripke bundles

(8) M, a � �B [x] ⇔ ∀b(aRnb ⇒M,b � B [x])

corresponds to

(8.1) M,u � [a/x]�B ⇔ ∀v ∈ R(u)∀b ∈ Dn
v (aRnb ⇒ M, v � [b/x]B),

i.e. to (*) in 5.3.4.
Let us also recall another reading of the �-clause in Kripke-type semantics

considered so far:

(8.2) M,u � �C iff for any v ∈ R(u), for any v-version C′ of C

in v, M, v � C′,

where C is a Du-sentence.
(8.1) transforms to (8.2) if we define v-versions of a Du-sentence [a/x]B as

Dv-sentences [b/x]B for b ∈ Rn(a) ∩Dn
v (i.e. for b that are v-inheritors of a).

In a Kripke sheaf a ∈ Dn
u has a unique v-inheritor ρuv·a. In functor semantics

inheritors also result from map actions: b = ρµ · a, for µ ∈ C(u, v). In Kripke
bundles we define the relation Rn in a special way.

In metaframes we can also call Rn the ‘inheritance relation’ between n-tuples
and read (8) as

(8′) M, a � �B [x] iff for any inheritor b of a, M,b � B [x].

But now we cannot always define inheritance relations between Du-sentences
and transform (8) to (8.2) or (8.1). This happens,

because a Du-sentence can be presented as [a/x]A in different ways, as men-
tioned in 2.4. Different presentations may lead to different sets of inheritors for
the same Du-sentence. The following example shows that this is crucial.

Example 5.9.7 Consider a Du-sentence C := P (a, a). Then

C = [aa/xy]B1 = [a/x]B2,

where B1 := P (x, y), B2 := P (x, x).



410 CHAPTER 5. METAFRAME SEMANTICS

Put
X1 := R2(aa) = {b ∈ D2 | (aa)R2b},
X2 := {(dd) ∈ D2 | aR1d},
B1 := {[b/xy]B1 | b ∈ X1} = {P (b) | b ∈ X1},
B2 := {[d/x]B1 | aR1d} = {P (b) | b ∈ X2}.

Since X1 consists of all inheritors of aa, we may call the members of B1 ‘in-
heritors of [aa/xy]B1’. Similarly, the members of B2 are ‘inheritors of [a/x]B2’.
But it may happen that X1 6= X2,15 so B1 6= B2, and thus we cannot properly
define inheritors of C. In this case (8) cannot be rewritten as (8.1). In fact, in
a metaframe model M = (F, ξ)

M,aa � �P (x, y) [xy] ⇔ X1 ⊆ ξ+(P ),
M, a � �P (x, x) [x] ⇔ X2 ⊆ ξ+(P ).

So there exists a model, in which

M,aa � �P (x, y) [xy] 6⇔ M,a � �P (x, x) [x]

— just put

ξ+(P ) :=

{
X2 if X1 6⊆ X2,
X1 if X2 6⊆ X1.

So we see that in arbitrary metaframes there is no reasonable way to define
the relation M,u � A for Du-sentences A. That is why we define metaframe

forcing in the form M, a � A[x].
Now let us define the truth in a metaframe model.

Definition 5.9.8 A modal formula A is called true in a metaframe model M =
(F, ξ) (notation: M � A) if M, a � A [x] for any ordered assignment (x,a) in F
such that FV (A) ⊆ r(x).

Definition 5.9.9 A modal formula A is called valid in a metaframe F (nota-
tion: F � A) if A is true in all models over F.

Let
ML

(=)
− (F) := {A ∈MF

(=)
N | F � A}.

Definition 5.9.10 A formula A ∈MF
(=)
N is called strongly valid (respectively,

strongly valid with equality) in a metaframe F if all its MFN - (respectively,
MF=

N -) substitution instances are valid in F (notation: F �+ A or respectively,
F �+= A). Let

ML(F) := {A ∈MFN | F �+ A}.

ML=(F) := {A ∈MF=
N | F �+= A}.

Definition 5.9.11 Let F = (C, D, ρ) be a preset over an N -precategory C. Then
its associated metaframe is Mf(F) := ((Fn), D), where Fn is the n-level of F
(Definition 5.6.14). In the same way we define Mf(F) for a Kripke bundle F.

15The reader can easily construct such an example.



5.9. METAFRAMES 411

So a Kripke bundle or a C-preset model M = (F, ξ) corresponds to a
metaframe model Mf(M) := (Mf(F), ξ), and the two definitions of forcing
5.9.4, 5.6.9 are obviously the same:

Lemma 5.9.12 Let F be a preset over an N -precategory (or a Kripke bun-

dle), M a model over F. Then for any formula A ∈ MF
(=)
N for any ordered

assignment (x,a) in Mf(F) with FV (A) ⊆ r(x)

(1) M � [a/x]A iff Mf(M),a � A [x].

(2) M � A iff Mf(M) � A.

Proof (1) By straightforward induction on the length of A, according to 5.9.4,
5.6.9.

(2) follows from (1), 5.6.9, 5.2.10. �

Proposition 5.9.13 For a C-preset or a Kripke bundle F:

ML
(=)
− (F) = ML

(=)
− (Mf(F)),

ML(=)(F) = ML(=)(Mf(F)).

Proof Follows readily from 5.9.12. �

Remark 5.9.14 One can also define a metaframe Mf(Φ) for any Kripke quasi-
bundle Φ (cf. 5.5.19) such that

Φ � A⇔ Mf(Φ) � A

for any modal formula A. The counterexample 5.5.19(a) shows that the set
ML(Mf(Φ)) is not always a modal predicate logic.

Definition 5.9.15 A metaframe F is called modally sound (respectively modally

sound with equality), in brief, m(=)-sound, if ML(=)(F) is an m.p.l.(=).

Our goal in the next sections (5.10–5.12) will be to describe the class of m-
sound metaframes; as we shall see, m=-soundness is equivalent to m-soundness
(Theorem 5.12.13).

But first, let us point out some peculiarities of forcing in arbitrary metaframes.
This notion is still too broad, because M, a � A [x] may depend on the ordering
of x and a and also on the variables xi that do not occur in A.

Example 5.9.16 Let F = (W,R) be a reflexive singleton {u}. Consider a
metaframe F over F such that Du = {c1, c2},

R1 := {(ci, cj) | i ≤ j}, R2 := {(a,a) | a ∈ D2
u} ∪ {(c1c2, c2c2), (c2c1, c2c2)}.

So R2 is the same as the corresponding relation in the Kripke bundle in Fig.
5.9, but without the pair (c1c2, c2c2).
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c2
•

c1

•

Figure 5.9.

We do not specify the frames Fn for n > 2; for example, Rn can be universal
on Dn

u . Consider a metaframe model M = (F, ξ) such that

ξ+(P ) := {c2c2}, ξ
+(Q) := {c2} for certain P ∈ PL2, Q ∈ PL1.

Let A := ✸P (x1, x2), then in M we have

c2c1 � A [x2x1] (since (c2c1)R2(c2c2)),

but
c1c2 � A [x1x1] (since (c1c2) 6R2(c2c2)).

So M, a � A [x] depends on the ordering of x and a.
Now put B := ✸Q(x), then (in M)

c1 � B [x] (since a1R
1c2),

c1c1 � B[xy] (since (c1c1)R2(c2c1)),

but
c1c2 6� B[xy] (since R2(c1c2) = {c1c2} and c1c2 6� Q(x) [xy]).

So M, a � B [x] depends on the variables in x that do not occur in B.

Remark 5.9.17 The above counterexample may cause doubts about the clause
(10) in Definition 5.9.4. In fact, as M, a � A [x] may depend on the values of xi

that do not occur in A, it seems improper to make M, a � ∃xiB [x] equivalent
to M, a − ai � ∃xiB [x− xi].

Instead we can define an alternative forcing relation �∗ by the same clauses
(1)–(9) and the following modification of (10).

(10*) M, a �∗ ∃xiB [x] iff ∃b ∈ Dn (b · δn
i = a · δn

i & M,b �∗ B [x])

iff ∃c ∈ D(a) M, [c/ai]a �
∗ B [x],

where [c/ai]a is obtained by replacing ai with c at position i;16 and similarly

M, a �∗ ∀xiB[x] iff ∀b ∈ Dn (b · δi
n = a · δi

n ⇒M,b �∗ B [x])

iff ∀c ∈ D(a) M, [c/ai]a �
∗ B [x].

In arbitrary metaframes the relations � and �∗ may not be equivalent:

16So b · δn
i = a · δn

i iff b = [c/ai]a for some c ∈ D(a).
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Exercise 5.9.18 Consider a metaframe model M from Example 5.9.16 and
formula C = ¬Q(x1) ∧A, where A = ♦P (x1, x2). Show that

M, c1c2 � ∃x1C [x1x2] and M, c1c2 6�∗ ∃x1C [x1x2].

Hint: recall that M, c1c1 � A [x2x1] and M, c1c2 6� A [x1x2].

On the other hand, later on we will show (see the end of Section 5.12) that
� and �∗ are equivalent in logically sound metaframes.

5.10 Permutability and weak functoriality

Now let us describe a class of metaframes without pecularities mentioned at the
end of Section 5.9. This class will be used in the further description of m-sound
metaframes.

First we give the following

Definition 5.10.1 An N -metaframe F is called permutable if πσ is monotonic
for every permutation σ:

∀σ ∈ Υn ∀i ∈ IN ∀a,b (aRn
i b ⇒ πσ(a)Rn

i πσ(b)),

Note that for n = 0, 1 this condition holds trivially, since in these cases
Υn = {idn}.

Also note that to show permutability, it is sufficient to check monotonicity
of jections corresponding to (simple) transpositions σn

k , where 2 ≤ k ≤ n, which
are generators of the symmetric group.

Since for any permutation σ, πσ−1 = (πσ)−1, we obtain the following equiv-
alent condition:

Lemma 5.10.2 A metaframe F is permutable iff for any permutation σ ∈
Υn, πσ is an automorphism of the n-level Fn.

Proof (Only if.) πσ is a bijection for any σ ∈ Υn by Lemma 0.0.1. (πσa)Rn

(πσb) ⇒ aRnb follows from 5.10.1 by applying πσ−1 = (πσ)−1. �

Exercise 5.10.3 Show that in a 1-modal permutable metaframe, where not all
domains are one-element, the relation R2 cannot be a linear ordering.

Definition 5.10.4 A metaframe F is called weakly functorial (w-functorial) if
for any injection σ ∈ Υmn (where m ≤ n), πσ is a p-morphism Fn ։ Fm.

From 5.9.6 we already know that πσ is surjective for σ ∈ Υmn.
To show w-functoriality, it suffices to check that πσ is a (p-)morphism, when-

ever σ is a simple transposition σn
i ∈ Υn or a simple embedding σn

+ ∈ Σn,n+1,
because every injection is a composition of functions of this kind.17

Remembering that πn
+a = a− an+1 for n 6= 0, and π0

+a is the world of a (for
a ∈ D1), we obtain:

17See Introduction.
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Lemma 5.10.5 A metaframe F = ((Fn)n∈ω, D) is w-functorial iff F is per-
mutable and for any n > 0, i ∈ IN , the following conditions hold:

(1) ∀n > 1 ∀a,b ∈ Dn (aRn
i b ⇒ (a−an)Rn−1

i (b− bn)) (the monotonicity for
πn−1

+ );

(2) ∀n > 0 ∀a,b ∈ Dn ∀c ∈ D1 (aRn
i b & (ac) ∈ Dn ⇒ ∃d (ac)Rn+1

i (bd))
(the lift property for πn

+);

(3) ∀a ∈ Du ∀b ∈ Dv (aR1
i b⇒ uRiv) (the monotonicity for π0

+);

(4) ∀u, v (uRiv ⇒ ∀a ∈ Du∃b ∈ Dv aR
1
i b) (the lift property for π0

+).

Lemma 5.10.6 Let F be a metaframe.

(1) F is permutable iff for any model M over F, for any ordered assignment
(x,a), for any formula A with FV (A) ⊆ x and for any permutation σ ∈
Υn, where n = |x|,

M, a � A [x] ⇔M, a · σ � A [x · σ]. (∗)

(2) F is w-functorial iff (*) holds for any model M over F, for any ordered
assignment (x,a), for any injection σ ∈ Υmn, where |x| = n ≥ m ≥ 0,
and for any formula A with FV (A) ⊆ r(x · σ).

Note that if σ is injective and (x,a) is an ordered assignment, then the list
x · σ is distinct, so (x · σ, a · σ) is also an ordered assignment.

Proof The case n = 0 (when a,x are empty and A is a sentence) is trivial.
(I) ‘Only if’ is proved by induction on A, and the proofs of (1) and (2)

can be made in parallel. So we assume that F is respectively permutable or
transformable and check the equivalence (*). The model M is fixed, so we drop
it from the notation. Let y := x · σ; then r(y) ⊆ r(x).

• Let A be atomic; then since FV (A) ⊆ r(y), it follows that

A = P k
j (y · τ) = P k

j (x · (τ · σ))

for some j, k ≥ 0, τ ∈ Σkm (not necessarily injective). Hence by definition,

a � A [x] iff iff a · (τ · σ) ∈ ξ+(P k
j ).

On the other hand,

(a · σ) � A [y] iff (a · σ) · τ ∈ ξ+(P k
j ),

and since (a · σ) · τ = a · (τ · σ), (*) follows.

• The cases when A = ⊥, B ∧ C, B ∨C, B ⊃ C, are trivial.
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• Let A = �iB. Then a � A [x] iff

(3) ∀b ∈ Rn
i (a) b � B [x]

which by induction hypothesis, is equivalent to

(4) ∀b ∈ Rn
i (a) πσ(b) � B [πσ(x)].

On the other hand, πσ(a) � A [πσ(x)] iff

(5) ∀b′ ∈ Rn
i (πσ(a)) b′ � B [πσ(x)].

But Rn
i (πσ(a)) = πσ[Rn

i (a)], since πσ is a p-morphism. So (4) is equivalent to
(5).

• Let A = ∃yB.

Put τ := εx−y, ρ := εx·σ−y. Then εx‖y = τ+, ε(x·σ)‖y = ρ+.
So according to our definitions and notation (see condition (9+10) in Section

5.9), for any appropriate assignment (x,a) we obtain18

(6) a � ∃yB [x] iff ∃c ∈ Du (ac) · τ+ � B [(xy) · τ+],

and

(7) a · σ � ∃yB [x · σ] iff ∃c ∈ Du ((a · σ)c) · ρ+ � B [((x · σ)y) · ρ+].

In view of (6), (7), to apply the induction hypothesis, it suffices to find an
injective λ′ such that

(8) ((xy) · τ+) · λ′ = ((x · σ)y) · ρ+;

(9) ((ac) · τ+) · λ′ = ((a · σ)c) · ρ+;

i.e.

(10) (xy) · (τ+ · λ′) = (xy) · (σ+ · ρ+);

(11) (ac) · (τ+ · λ′) = (ac) · (σ+ · ρ+).

Note that x · σ − y is a distinct list of variables from x − y. So by Lemma
0.0.8, x · σ − y = (x − y) · λ for some injection λ.

Claim τ · λ = σ · ρ.
For the proof note that

x · τ = x − y, (x · σ) · ρ = x · σ − y,

and thus

x · (τ · λ) = (x · τ) · λ = (x − y) · λ = x · σ − y = (x · σ) · ρ = x · (σ · ρ).

18Remember that (xy) · τ+ = x‖y, ((x · σ)y) · ρ+ = (x · σ)‖y.
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Since x is distinct, the claim now follows by Lemma 0.0.5.

Hence by Lemma 0.0.7, τ+ · λ+ = σ+ · ρ+, so (10), (11) hold for λ′ := λ+.

(II) Now let us prove the ‘if’ part in both assertions, (1) and (2). We assume
(*) and check the p-morphism properties of πσ (respectively, for σ ∈ Υmn or
σ ∈ Υn).

To check the monotonicity, we also assume aRn
i b, and show that πσ(a)Rm

i

πσ(b). Let A = ✸iP (πσ(x)), where x = (x1, . . . , xn) is distinct. Consider the
model M = (F, ξ) such that ξ+(P ) = {πσ(b)}. Then by Definition 5.9.4

M,b � P (πσ(x)) [x],

and so
M, a � A [x].

Hence by (*),
M,πσ(a) � A [πσ(x)],

which means by Definition 5.9.4, πσ(a)Rm
i b′ for some b′ ∈ ξ+(P ). By the choice

of ξ, b′ = πσ(b). Therefore πσ(a)Rm
i πσ(b).

Note that the same argument is valid in the particular case m = 0; then we
have σ = ∅n, A = ✸iP for P ∈ PL0, ξ+(P ) = {π∅(b)}.

To check the lift property, we assume πσ(a)Rm
i b′ and find b ∈ Rn

i (a) such
that πσ(b) = b′.

Consider the same formula A = ✸iP (πσ(x)), and the model M = (F, ξ) such
that ξ+(P ) = {b′}. Then

M,b′ � P (πσx) [πσx],

and thus
M,πσ(a) � A [πσ(x)].

Hence by (*),
M, a � A [x],

i.e. by 5.9.4,
M,b � P (πσ(x)) [x]

for some b ∈ Rn
i (a). But then πσ(b) ∈ ξ+(P ), according to 5.9.4, thus πσ(b) =

b′, by the choice of ξ. �

Lemma 5.10.6(1) shows that in permutable metaframes forcing M, a � A[x]
is invariant under simultaneous permutations of x and a. So we can also de-
fine forcing under unordered assignments. Such an assignment (at a world u) is
nothing but a Du-substitution (Section 2.2), i.e. a function [a/x] sending every
xi to ai. An ordered assignment (x,a) corresponds to the unordered assign-
ment [a/x] = {(x1, a1), . . . , (xn, an)}, where n = |x|. So in a model M over a
permutable metaframe we can define

M, [a/x] � A := M, a � A [x].
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This definition is sound; in fact, [a/x] = [b/y] iff (y,b) is obtained from (x,a)
by some permutation, i.e. iff y = x ·σ, b = a ·σ for some σ ∈ Υn. So by Lemma
5.10.6(1),

M, a � A [x] iff M,b � A [y].

Furthermore, in w-functorial metaframes the truth value of a formula A
depends only on individuals assigned to parameters of A (or only on a possible
world if A is a sentence). Viz., suppose r(y) ⊇ FV (A) = r(x). Then x = y · σ
for some injection σ. So by Lemma 5.10.6(2),

M, a � A [y] iff M, a · σ � A[x].

Thus forcing M, a � A [y] reduces to M,b � A [x] for an appropriate b. In
particular:

Lemma 5.10.7 If r(x) = FV (A), z is a distinct list of other variables and c
is a tuple of individuals (from the world of a) of the same length, then

M, a � A [x] iff M, ac � A [xz].

Since in w-functorial metaframes we may use only the forcing relation M, a �
A [x] for r(x) = FV (A), in Definition 5.9.4 we need only the clause (9) for
A = ∀yB or ∃yB, because clearly y 6∈ FV (A) = r(x).

Exercise 5.10.8 Show that in a permutable metaframe for any model M

M, a � ∃xiB [x] iff ∃c ∈ D(a) M, [c/ai]a � B [x],

where the tuple [c/ai]a is obtained from a by replacing ai with c; cf. Remark
5.9.17.

Hint: (x − xi)xi = x · σ and (a − ai)c = ([c/ai]a) · σ for σ ∈ Υn.

So by induction on |A|, one can easily show that

M, a � A[x] ⇔M, a �∗ A[x]

for a model M over a permutable metaframe for any A ∈ MF=, where �∗

denotes the modified forcing from Remark 5.9.17.

To show that forcing in w-functorial metaframes is congruence independent,
we begin with an auxiliary lemma.

Lemma 5.10.9 Let M be model over an arbitrary metaframe, A a modal for-
mula, (x,a) an assignment in M such that FV (A) ⊆ r(x). Also let y′ 6∈
V (A), y 6∈ BV (A), x′ = [y′/y] x, and A′ = A[y 7→ y′]. Then

M, a � A [x] iff M, a � A′ [x′].
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Proof This statement is quite obvious — it means that the truth value of a
formula does not depend on the name of a certain free variable. Formally we
argue by induction on the complexity of A. Let us consider three cases.

(1) If A = P (x · σ), then A′ = P (x′ · σ). So

M, a � A [x] iff πσa ∈ ξ+(P ) iff M, a � A′ [x′].

(2) Let A = ∃zB. Then z 6= y, y′ by the assumption of our lemma, so
A′ = ∃zB′, (x‖z)′ = x′‖z, πx′‖z = πx‖z. Then by the modified clause (9+10)
of Definition 5.9.4 and the induction hypothesis,

M, a � A [x] ⇔ ∃c ∈ D(a) M,πx′‖z(ac) � B [x‖z]
⇔ ∃c ∈ D(a) M,πx′‖z(ac) � B′ [x′‖z] ⇔M, a � ∃zB′(= A′) [x′].

(3) Let A = �iB, a ∈ Dn. By Definition 5.9.4 and the induction hypothesis,

M, a � A[x] ⇔ ∀b ∈ Rn
i (a) M,b � B [x]

⇔ ∀b ∈ Rn
i (a) M,b � B′ [x′] ⇔M, a � �iB

′ (= A′) [x′].

All other cases are rather trivial. �

Lemma 5.10.10 Let M be model over a w-functorial metaframe, and let A, A1

be congruent modal formulas. Then for any assignment [a/x] with FV (A) ⊆
r(x)

(∗∗) M, [a/x] � A⇔M, [a/x] � A1,

and thus
M � A⇔M � A1.

Proof We apply Proposition 2.3.14. Consider the equivalence relation between
formulas:

A ∼ B := for any assignment [a/x] such that FV (A), FV (B) ⊆ r(x),
M, [a/x] � A⇔M, ]a/x] � B.

It suffices to check that ∼ satisfies the conditions (1)–(4) from 2.3.17.

(1) M, [a/x] � QyA ⇔ M, [a/x] � Qz(A[y 7→ z]) provided y 6∈ BV (A), z 6∈
V (A), Q ∈ {∀, ∃} and FV (QyA) ⊆ r(x).

(Obviously, FV (Qz(A[y 7→ z])) = FV (QyA).)
Consider e.g. the case Q = ∃. We may assume r(x) = FV (QyA), since the

metaframe is w-functorial. Then y, z 6∈ r(x), so we have

M, [a/x] � ∃yA⇔ ∃c ∈ D(a) M, [ac/xy] � A
⇔ ∃c ∈ D(a) M, [ac/xz] � A[y 7→ z] (by Lemma 5.10.9 )
⇔M, [a/x] � ∃z(A[y 7→ z]).
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(2) Assuming A ∼ B let us prove QyA ∼ QyB (for Q = ∃). We again
assume r(x) = FV (A), so y 6∈ r(x), and thus we obtain

M, [a/x] � ∃yA⇔ ∃c ∈ D(a) M, [ac/xy] � A⇔ (since A ∼ B)
∃c ∈ D(a) M, [ac/xy] � B ⇔M, [a/x] � ∃yB.

(3) This property holds trivially, by the definition of forcing.
(4) Assuming A ∼ B let us show �iA ∼ �iB:

M, [a/x] � �iA⇔ ∀b ∈ Rn
i (a) M, [b/x] � A

⇔ ∀b ∈ Rn
i (a) M, [b/x] � B ⇔M, [a/x] � �iB.

�

Hence we readily obtain

Lemma 5.10.11 Let F be a w-functorial metaframe. Then for any congruent
modal formulas A,A1

F � A⇔ F � A1.

Remark 5.10.12 We cannot extend Lemma 5.10.10 to arbitrary (not w-functorial)
metaframes. For example, suppose r(xz) = FV (B), z 6∈ BV (B) and y, y′ are
distinct variables that do not occur in B. Then the formulas ∃y(B[z 7→ y]) and
∃y′(B[z 7→ y′]) are congruent. However by 5.9.4 and 5.10.10

M, ab � ∃y(B[z 7→ y]) [xy] ⇔ ∃c ∈ D(a) M, ac � B[z 7→ y] [xy] ⇔

(∗1) ∃c ∈ D(a) M, ac � B [xz],

while

M, ab � ∃y′(B[z 7→ y′]) [xy] ⇔ ∃c ∈ D(a) M, abc � B[z 7→ y′] [xyy′] ⇔

(∗2) ∃c ∈ D(a) M, abc � B [xyz].

Now, e.g. if B = ✸P (x, z), then (∗1) means

∃c ∃d ∃e ((ac)Rn+1(de) & de ∈ ξ+(P )),

and (∗2) means

∃c ∃d ∃e ∃e′ ((abc)Rn+1(de′e) & de ∈ ξ+(P )).

If a metaframe is permutable, but not w-functorial, these conditions may be not
equivalent, cf. Example 5.9.16.

On the other hand, we do not know if w-functoriality is necessary for Lemma
5.10.10. One can try to construct counterexamples explicitly, as in the proof of
Lemma 5.10.6.
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5.11 Modal metaframes

Definition 5.11.1 An (N)-modal metaframe is a w-functorial metaframe sat-
isfying

(mm2) ∀i ∈ IN ∀a, b1, b2 ((a, a)R2
i (b1, b2) ⇒ b1 = b2).

An equivalent form of (mm2) is R2
i (∆) ⊆ ∆, where

∆ := {(a, a) | a ∈ D1}.

For the next lemma recall that

a subb ⇔ ∀j, k (aj = ak ⇒ bj = bk),
πn
−a = aan for a ∈ Dn.

Lemma 5.11.2 For an N -modal metaframe for any n > 0, i ∈ IN we have

(mmn) ∀a∀b (aRn
i b ⇒ a subb);

(mm+
n ) ∀a∀b (aRn

i b ⇒ (πn
−a)Rn+1

i (πn
−b)).

Proof In fact, (mmn) follows from (mm2), since (aj , ak) = a · λn
jk (see the

Introduction). So for a w-functorial metaframe aRn
i b implies (aj , ak)R2

i (bj, bk),
and we can apply (mm2) to (aj , ak) and (bj, bk).

To check (mm+
n ), note that πn

+ : Fn+1 ։ Fn in a w-functorial metaframe.
Thus by the lift property,

aRn
i b implies ∃c (aan)Rn+1

i (bc),

and by (mmn+1), it follows that c = bn. Hence

πn
−a = (aan)Rn+1

i (bbn) = πn
−b.

�

The next lemma will be mainly used later on, in the intuitionistic case (section
5.14).

Lemma 5.11.3 If an N -metaframe satisfies (mmm), i ∈ IN and σ ∈ Σmn,
then πσ [Dn] is Rm

i -stable.

Proof If πσ(a)Rm
i b, then πσ(a) subb, and the latter yields σ subb, i.e. b ∈

πσ[Dn], by 5.9.5. �

Exercise 5.11.4 Show that for a certain i, (mmm) is equivalent to Rm
i -stability

of all sets πσ[Dn] for σ ∈ Σmn, n > 0.
Hint: a ∈ Dm can be presented as πσc for some tuple c with different

components, where σ ∈ Σmn, n = |c|.
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Definition 5.11.5 A metaframe F is called functorial if every its jection πσ :
Dn → Dm is a morphism Fn −→ Fm.

Lemma 5.11.6 A metaframe is modal iff it is functorial.

Proof (Only if.) Assume that a metaframe F is modal. Recall that every
function σ ∈ Σmn is a composition of simple injections and simple projections.19

Since F is w-functorial, it is sufficient to show that every jection πn
−(= πσn

−
) is

a p-morphism. Its monotonicity is already stated by (mmn). To check the lift
property, assume πn

−(a) = (aan)Rn+1
i (bc). Then (aan) sub (bc) by (mmn+1),

and hence bn = c. Thus bc = bbn = πn
−(b). We also have aRn

i b by Lemma
5.10.5(1), since F is w-functorial.

(If.) We assume that F is functorial and check (mm2). In fact, suppose
(a, a) = π1

−(a)R2
i (b1, b2). Since π1

− is a p-morphism, (b1, b2) = π1
−(b) for some b,

i.e. b1 = b2 = b. �

The next lemma shows that forcing in functorial metaframes ‘respects vari-
able substitutions’.

Lemma 5.11.7 Let M = (F, ξ) be a model over a functorial metaframe. Then,
for any modal formula A

(♯) for any σ ∈ Σmn, for any distinct lists of variables x = (x1, . . . , xn), y =
(y1, . . . , ym) such that FV (A) ⊆ r(y), and for any a ∈ Dn:

M, [a/x] � [x · σ/y]A⇔M, [a · σ/y] � A.

Recall that [x ·σ/y]A is defined up to congruence. But this does not matter
in functorial metaframes, by 5.10.10.

Proof By Lemma 5.10.10, the claim (♯) does not change if we replace A (in
both sides) with any B ⊜ A. So we may replace A with its clean version A◦

such that BV (A◦) ∩ r(xy) = ∅ (and FV (A◦) = FV (A) ⊆ r(y)); then we have
[x · σ/y]A ⊜ A◦[y 7→ x · σ].

To simplify notation, we now assume A◦ = A and proceed by induction on
A.

• Let A = P k
j (y·τ), τ ∈ Σkm. Then [x·σ/y]A = P k

j ((x·σ)·τ) = P k
j (x·(σ·τ)).

So by Definition 5.9.4, we have:

M, [a/x] � [x ·σ/y]A ⇔ a ·(σ ·τ) = ((a ·σ) ·τ) ∈ ξ(P k
j ) ⇔M, [a ·σ/y] � A.

• Let A = (yj = yk), then [x · σ/y]A = (xσ(j) = xσ(k)). So we have

M, [a/x] � [x · σ/y]A⇔ aσ(j) = aσ(k) ⇔M, [a · σ/y] � (yj = yk).

19See Introduction.
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• Let A = ∃zB, then z 6∈ r(xy) by the choice of A, and so

[x · σ/y]A = ∃z [x · σ/y]B = ∃z [(xz) · σ+/yz]B.

Hence

M, [a/x] � [x · σ/y]A⇔ ∃c M, [ac/xz] � [(xz) · σ+/yz]B ⇔
∃c M, [(ac) · σ+/yz] � B (by the induction hypothesis) ⇔
∃c M, [(a · σ)c/yz] � B ⇔M, [a · σ/y] � A.

• Let A = �iB. By Definition 5.9.4

M, [a/x] � [πσ(x)/y]A⇔ ∀b ∈ Rn
i (a) M, [b/x] � [πσ(x)/y]B

⇔ ∀b ∈ Rn
i (a) M, [πσ(b)/y] � B (by the induction hypothesis)

⇔ ∀b′ ∈ πσ[Rn
i (a)] M, [b′/y] � B. (1)

On the other hand, M, [πσ(a)/y] � A is equivalent to

∀b′ ∈ Rm
i (πσ(a)) M, [b′/y] � B. (2)

Now, since πσ is a p-morphism, we have Rm
i (πσ(a)) = πσ [Rn

i (a)]. Thus
(1) ⇔ (2).

• All other cases are obvious.

�

Hence it follows that variable substitutions preserve validity.

Lemma 5.11.8 Let F be a functorial metaframe, A a modal formula such that
F � A. Then for any variable substitution [y/x], F � [y/x]A.

Proof Since [y/x]A does not depend on the variables beyond FV (A), we may
assume that r(x) = FV (A); then r(y) = FV ([y/x]A). Let z be a distinct list
such that r(z) = r(y); then y = z ·σ for some transformation σ. By Definitions
5.9.8, 5.9.9 and Lemma 5.10.7, F � [y/x]A iff for any model M over F, for any
assignment [a/z] in F

M, [a/z] � [y/x]A.

By 5.11.7, the latter is equivalent to

M, [a · σ/x] � A,

which follows from F � A. Therefore, [y/x]A is valid in F. �

The next lemma can be considered as a converse to 5.11.7 in a stronger form.

Lemma 5.11.9 Let F be a metaframe such that for any model M over F, for
any quantifier-free formula A
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(♯) for any σ ∈ Σmn, for any distinct lists x of length n and y of length m
such that FV (A) ⊆ r(y), for any a ∈ Fn

M, a � ([x · σ/y]A) [x] ⇔M, a · σ � A [y].

Then F is functorial.

Proof Given an arbitrary σ ∈ Σmn, let us check the p-morphism properties
for πσ.

(1) aRn
i b ⇒ (πσa)Rm

i (πσb).

In fact, assume aRn
i b. Consider the formula A := ✸iP (y), P ∈ PLm

and the model M = (F, ξ) such that ξ+(P ) = {πσb}. Then [πσx/y]A =
✸iP (πσx),

M,b � P (πσx) [x],

and so
M, a � [πσx/y]A [x].

Hence by assumption (♯) we have M,πσa � A [y], and thus

M,b′ � P (y) [y]

for some b′ ∈ Rm
i (πσa). Hence b′ ∈ ξ+(P ), i.e. b′ = πσb, by the choice

of ξ, so we obtain (πσa)Rm
i (πσb).

(2) (πσa)Rm
i b′ ⇒ ∃b ∈ Rn

i (a) πσb = b′.
Assume (πσa)Rm

i b′. Consider the same formula A = ✸iP (y) and the
model M = (F, θ) such that θ+(P ) = {b′}. Then

M,b′ � P (y) [y],

and so
M,πσa � A [y].

Thus by assumption (♯),

M, a � [πσx/y]A (= ✸iP (πσx)) [x],

i.e. aRn
i b for some b such that

M,b � P (πσx) [x].

Hence πσb ∈ θ+(P ), i.e. πσb = b′.

Obviously, if m = 0, σ = ∅n, then we can use the formula A = ✸ip (with
p ∈ PL0) both in (1) and (2). �

Remark 5.11.10 Note that in the above proof we use the condition (♯) only
for formulas of the form ✸iP (y) or ✸ip.
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Hence we obtain

Proposition 5.11.11 For a metaframe F the following properties are equiva-
lent:

(1) F is functorial;

(2) 5.11.9 (♯) holds for any formula A;

(3) 5.11.9 (♯) holds for any quantifier-free A.

Actually (♯) in (2) should be formulated as the equivalence

M, a  ([x · σ/y]A) [x] ⇔M, a · σ  A [y]

for any congruent version of [x · σ/y]A.
Note that variable substitutions are defined up to congruence, while in

non-functorial metaframes forcing may be sensitive to congruence. But for a
quantifier-free A, the formula [x · σ/y]A is unique, so there is no ambiguity in
(3).

Proposition 5.11.12 Let M be a model over a functorial metaframe, u ∈M ,
and let A, A∗ be modal formulas, [a/x], [a∗/x∗] assignments giving rise to equal
Du-sentences: [a/x]A = [a∗/x∗]A∗. Then

(♯♯) M, a � A [x] ⇔M, a∗ � A [x∗].

Proof Recall that (Lemma 2.4.2) a Du-sentence [a/x]A can be presented
in the form [b/y]B, where b is a list of distinct individuals (from Du) and
r(y) = FV (B); this presentation is unique up to the choice of a distinct list y.
So let us show that

(1) M, [a/x] � A iff M, [b/y] � B

and
(1∗) M, [a∗/x∗] � A iff M, [b/y] � B.

Since both these assertions are similar, it is sufficient to check (1). Let x′ be a
sublist of x such that FV (A) = r(x′), a′ the corresponding sublist of a (i.e. if
x′ = x · τ for an injection τ , then a′ = a · τ). Thus

(2) M, [a/x] � A iff M, [a′/x′] � A

by Lemma 5.10.6, since F is w-functorial. Here b is a list of distinct individuals
from a′, and B is obtained from A′ by identifying those variables xj in x′, which
correspond to equal individuals aj in a′ (cf. the proof of Lemma 2.4.2). Thus
if m = |x′| = |a′| and n = |y| = |b| is the number of distinct individuals in a′,
then for some function σ ∈ Σmn, we have a′ = b · σ, B = [y · σ/x′]A, Now by
5.11.7(♯),

(3) M, [b/y] � B (= [y · σ/x′]A) ⇔M, [b · σ/x′] � A.

Since b · σ = a′, (1) follows from (2) and (3). �
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Again we have the converse to the above proposition in the following stronger
form.

Corollary 5.11.13 Let F be a metaframe such that for any model M over F,
for any u ∈ M , quantifier-free formulas A, A∗ and assignments [a/x], [a∗/x∗]
in F such that [a/x]A = [a∗/x∗]A∗.

(♯♯) M, a � A [x] ⇔M, a∗ � A∗ [x∗].

Then F is functorial.

Proof Note that (♯♯) implies 5.11.9 (♯) for a quantifier-free A, since [a/x]([x ·
σ/y]A) = [a · σ/y]A by 2.4.2(4). So we can apply Lemma 5.11.9.20 �

Therefore modal (i.e. functorial) metaframes are exactly those in which forc-
ing can be defined for Du-sentences, cf. Section 5.9.

5.12 Modal soundness

In this section we show that modal metaframes are exactly m(=)-sound metaframes.
Recall that by Definition 5.9.8, for a metaframe model M = (F, ξ), M � A

if M, a � A [x] for any ordered assignment (x,a) in F with FV (A) ⊆ r(x). For
a w-functorial metaframe we can fix the list x as the following simple lemma
shows.

Lemma 5.12.1 Let M = (F, ξ) be a model over a w-functorial N -metaframe
F, A an N -modal formula. Then the following conditions are equivalent.

(1) M � A;

(2) M, a � A [x] for any ordered assignment (x,a) in F such that FV (A) =
r(x);

(3) there exists a list of distinct variables y containing FV (A) such that
M,b � A [y] for any ordered assignment (y,b) in F.

Proof Obviously, (1) implies (2), and (2) implies (3).
The other way round, assuming (2), let us show (1), i.e. M, [b/y] � A

for any assignment [b/y] with r(y) ⊇ FV (A). By 0.0.7, we have x = y · σ
for some injection σ, hence by Lemma 5.10.6, M, [b/y] � A is equivalent to
M, [b · σ/x] � A, which holds by our assumption.

Finally, assuming (3), let us check (2). In fact, again we have x = πσ(y)
for an injection σ, and a = πσ(b) for some b, due to the surjectivity of πσ (see
Lemma 5.9.6); thus 5.10.6 can be applied. �

Recall that ML
(=)
− (F) denotes the set of all formulas valid in F (Definition

5.9.9).

20This equality holds for a quantifier-free A; for an arbitrary A it should be replaced by
congruence.
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Lemma 5.12.2 For any metaframe F:

(1) ML
(=)
− (F) is closed under necessitation and generalisation.

(2) If F is w-functorial, then ML
(=)
− (F) is closed under modus ponens.

(3) If F is w-functorial, then for any B ∈MF=
N

F � B ⇔ F � ∀yB ⇔ F � ∀B.

(4) If F is functorial, then ML
(=)
− (F) is closed under strict substitutions.

Proof
(1) Rather trivial. Note that by definition (cf. (8) and (9+10) in Section 5.9)

M, a � �iB[x] ⇔ ∀b ∈ Rn
i (a) M,b � B [x];

and

M, a � ∀yB [x] ⇔ ∀c ∈ Du M,πx||y(ac) � B [x||y].

(if a ∈ Dn
u).

(2) If M, [a/x] � B ⊃ C and M, [a/x] � B, for any assignment (x,a) with a
fixed x containing FV (B ⊃ C) ⊇ FV (C), then we have M, [a/x] � C. Hence
M � C by Lemma 5.12.1.

(3) Obviously, it suffices to check the first equivalence. (⇒) follows readily
from (1).
(⇐) Suppose F � ∀yB and consider a model M over F. Let r(x) = FV (∀yB),
then for any assignment (x,a) we have M, a � ∀yB [x]. Since y 6∈ x, this means
that M, ac � B [xy] for any assignment (xy, ac). Hence M � B by Lemma
5.12.1.

(4) Suppose F � A. Consider a strict substitution S = [C/P (y)], where P is
an m-ary predicate letter, y = (y1, . . . , ym) is a distinct list containing FV (C),
and let us show that F � SA.

Recall that a substitution instance [C/P (y)]A is defined up to congruence
and can be obtained from a clean version A◦ of A by replacing every subformula
of the form P (y′) with [y′/y]C (y′ may be not distinct). By Lemma 5.10.10,
for any model M over F we have

M � A iff M � A◦,

and thus

F � A iff F � A◦.

So we may assume that A is clean (i.e. A = A◦).
For a model M = (F, ξ) and a list of distinct variables x such that r(x) =

FV (A) ⊇ FV ([C/P (y)]A), we have to show that M � SA, i.e. that

(4.1) M, [a/x] � [C/P (y)]A for any assignment [a/x].
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Since A is clean, BV (A) ∩ r(x) = ∅.
Consider the model N = (F, η) such that

η+(P ) = {b | M, [b/y] � C},
η+(Q) = ξ+(Q) for any other predicate letter Q.

We claim that

(4.2) N, [a/x] � A iff M, [a/x] � SA.

By our assumption, F � A, thus N, [a/x] � A, and so (4.2) implies (4.1). To
show (4.2), let us prove

(4.3) N, [a/z] � B iff M, [a/z] � SB

for any subformula B of A and for any assignment [a/z] with r(z) ⊇ FV (B),
r(z) ∩BV (B) = ∅.

The proof is by induction on the complexity of B.
If B = P (z · σ) for some map σ, then by Definition 5.9.4 and the choice of

N ,
N, [a/z] � B iff (a · σ) ∈ η+(P ) iff M, [a · σ/y] � C.

By Lemma 5.11.7 in a functorial metaframe we have

M, [a · σ/y] � C iff M, [a/z] � [z · σ/y]C (= SB),

and thus B satisfies (4.3).
If B = B1 ∧B2 and (4.3) holds for B1, B2, we obtain it for B:

N, [a/z] � B iff N, [a/z] � B1 & N, [a/z] � B2 iff
M, [a/z] � SB1 & M, [a/z] � SB2 iff M, [a/z] � SB1 ∧ SB2 (= SB).

The cases B = B1 ⊃ B2, B = B1 ∨ B2 are similar to the above, and the
cases B = ⊥, B = Q(z · σ) (Q 6= P ) are trivial.

If B = �iB1, and (4.3) holds for B1, then for an n-tuple a we have:

N, [a/z] � B iff ∀b ∈ Rn
i (a) N, [b/z] � B1

iff ∀b ∈ Rn
i (a) M, [b/z] � SB1 iff M, [a/z] � �i(SB1) (= SB),

i.e. (4.3) holds for B.
If B = ∃vB1, then by our assumption, v 6∈ r(z). Also r(zv) ∩BV (B1) = ∅,

since B is clean. So by Definition 5.9.4 and the induction hypothesis we have

N, [a/z] � B iff ∃c (ac ∈ Dn+1 & N, [ac/zv] � B1)
iff ∃c (ac ∈ Dn+1 & M, [ac/zv] � SB1) iff M, [a/z] � ∃v(SB1) (= SB).21

So (4.3) holds for B.
The case B = ∀vB1 is left to the reader. �

21Note that in our case S∃vB1 = ∃vSB1.
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Lemma 5.12.2 (3), (4) yields the following convenient description of the set

of strongly valued formulas ML(=)(F) for a functorial metaframe F.

Proposition 5.12.3 Let F be a functorial N -metaframe. Then

ML(=)(F) = {A ∈MF
(=)
N | F � An for any n ∈ ω}

= {A ∈MF
(=)
N | F � An for any n ∈ ω}.

Proof Recall that An = ∀An, so the second equality follows from 5.12.2(3).
Since An is a substitution instance of A, we have

{A ∈MF
(=)
N | ∀n F � An} ⊇ ML(=)(F).

The other way round, suppose ∀n F � An. By Lemma 2.5.35, every substi-
tution instance SA of A is congruent to a formula of the form [y/x]S1A

n, where
S1 is a strict substitution. By 5.12.2(4) and 5.11.8, the latter formula is valid
in F. Thus SA is valid, by 5.10.11. �

Corollary 5.12.4 If F is a functorial metaframe, then ML=(F) is conservative
over ML(F).

Remark 5.12.5 For an arbitrary N -metaframe F, we can only state that
ML=(F)◦ ⊆ ML(F). In fact, if all MF=

N -instances of a formula A ∈ MFN

are valid in F, then all its MFN -instances are also valid, but not the other way
round. So we cannot claim that ML(F) ⊆ ML=(F).

The next two lemmas are full analogues of 5.3.5 and 5.3.6, so we leave their
proofs to the reader.

Lemma 5.12.6 Let F be an arbitrary N -metaframe, M = (F, ξ) a model over
F, and let ξn be a propositional valuation in its n-th level Fn, n ≥ 0 such
that ξn(pk) = ξ+(Pn

k ) for any k ≥ 0. Let Mn = (Fn, ξ
n) be the corresponding

propositional Kripke model. Then for any N -modal propositional formula A, for
any a ∈ Fn and for any assignment (x,a)

Mn,a � A iff M, a � An [x].

Lemma 5.12.7 Let F be a w-functorial N -metaframe, A an N -modal proposi-
tional formula. Then

F � An iff Fn � A.

Remark 5.12.8 The w-functoriality of F is essential in Lemma 5.12.2, which
is used in the proof of 5.12.7.

By 5.12.3 and 5.12.7 we obtain:

Proposition 5.12.9 For a modal metaframe F

ML(=)
π (F) =

⋂

n∈ω

ML(Fn).
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Corollary 5.12.10 All theorems of KN are strongly valid in every N -modal
metaframe F.

Proof Obvious, since they are valid in all propositional frames Fn. �

Exercise 5.12.11 Show that Proposition 5.12.9 (and Corollary 5.12.10) holds
for any N -metaframe F (not necessarily functorial). Hint: for a substitution
instance A′ of a propositional formula A and for an assignment (s,a) (where
FV (A′) ⊆ r(x) and a ∈ Dn) the truth of M, a � A′ [x] can be checked in the
propositional frame Fn.

However the claim of the above exercise is not so important, because as we will
show in Theorem 5.12.13, only modal (i.e. functorial) N -metaframes validate

QK
(=)
N . Therefore only modal metaframes are interesting from the logical point

of view.

Lemma 5.12.12 If a metaframe F is functorial, then the set ML(=)(F) is
closed under necessitation, generalisation, modus ponens, and arbitrary sub-
stitutions.

Proof For a functorial F, ML(=)(F) is substitution closed, by Lemma 2.5.29.

(Note that ML(=)(F) is the largest substitution closed subset, the ‘substitution

interior’ of ML
(=)
− (F).)

By Lemma 5.12.2 and Proposition 5.12.3, it follows that ML(=)(F) is closed
under necessitation and generalisation (for a functorial F) as well as under modus
ponens (for an arbitrary metaframe F).

For example, consider generalisation. Suppose A ∈ ML(=)(F). Then An ∈

ML
(=)
− (F) for any n, and hence (∀xA)n = ∀xAn ∈ ML

(=)
− (F) by 5.12.2. Hence

∀xA ∈ ML(=)(F) by 5.12.3. �

Theorem 5.12.13 (Soundness theorem) Let F be an N -metaframe. Then
the following properties are equivalent:

(1) F is modal;

(2) ML(F) is a predicate N -modal logic without equality;

(3) ML=(F) is a predicate N -modal logic with equality;

(4) QKN ⊆ ML(F);

(5) QK=
N ⊆ ML=(F).

Proof (1) ⇒ (3), (1) ⇒ (2). For a modal metaframe F, let us check the strong
validity of the predicate axioms and the axioms of equality, i.e. the validity of
their n-shifts (for n ≥ 0). We fix a model M = (F, ξ) and do not indicate it in
the notation of forcing.
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• A1 := ∀yP (x, y) ⊃ P (x, z), for y, z 6∈ r(x), y 6= z.

Suppose [ab/xz] � ∀yP (x, y), ab ∈ Dn+1
u ; then by 5.9.4, for any c ∈ Du,

[abc/xzy] � P (x, y), which is equivalent to ∀c ∈ Du ac ∈ ξ+(P ). Hence
ab ∈ ξ+(P ), and thus [ab/xz] � P (x, z). Therefore [ab/xz] � A1.

• A2 := P (x, z) ⊃ ∃yP (x, y), where y, z 6∈ r(x), y 6= z.

Similarly to the previous case, assume [ab/xz] � P (x, z), i.e. ab ∈ ξ+(P ).
Then for some c ∈ Du (viz. for c = b), [abc/xzy] � P (x, y), and thus
[ab/xz] � ∃yP (x, y). So [ab/xz] � A2.

• A3 := ∀y(Q(x) ⊃ P (x, y)) ⊃ (Q(x) ⊃ ∀yP (x, y)), where y 6∈ r(x).

Assume
[a/x] � ∀y(Q(x) ⊃ P (x, y)),

a ∈ Dn
u . Then for any b ∈ Du, we have

[ab/xy] � Q(x) ⊃ P (x, y).

If also [a/x] � Q(x), i.e. a ∈ ξ+(Q), then for any b ∈ Du, [ab/xy] � Q(x).
Hence [ab/xy] � P (x, y) for any b, and thus we obtain

[a/x] � ∀y P (x, y).

Therefore M � A3.

• A4 := ∀y(P (x, y) ⊃ Q(x)) ⊃ (∃yP (x, y) ⊃ Q(x)), y 6∈ x.

Assume
[a/x] � ∀y(P (x, y) ⊃ Q(x))

and
[a/x] � ∃yP (x, y).

Then
[ab/xy] � P (x, y)

for some b ∈ Du, and also

[ab/xy] � P (x, y) ⊃ Q(x).

Thus [ab/xy] � Q(x), i.e. a ∈ ξ+(Q), which implies [a/x] � Q(x). There-
fore M � A4.

• A5 := (x = x).

[a/x] � x = x holds trivially, since a = a.

• A6 := (y = z ⊃ (P (x, y) ⊃ P (x, z)), y, z 6∈ r(x).

We may assume that y, z are distinct, since otherwise M � A6 is trivial.

If [abc/xyz] � y = z, and [abc/xyz] � P (x, y), then by Definition 5.9.4,
b = c and ab ∈ ξ+(P ), which implies [abc/xyz] � P (x, z) by the same
definition. Therefore M � A6.
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The implications (2) ⇒ (4), (3) ⇒ (5) are obvious. (5) ⇒ (4) follows by
Remark 5.12.5.

(4) ⇒ (1). We assume QKN ⊆ ML(F) and show that F is functorial.
(I) F is permutable, i.e.

aRn
i b ⇒ πσ(a)Rn

i πσ(b) for any σ ∈ Υn, n > 0.

Suppose aRn
i b, a ∈ Dn

u . Consider the QKN -theorem

B1 := ∃x(P (πσ(x)) ∧ ✸iQ(πσ(x))) ⊃ ∃x(P (x) ∧ ✸iQ(x)), |x| = n,

and a model M = (F, ξ) such that ξ+(P ) = {πσ(a)}, ξ+(Q) = {πσ(b)}. Then
M,b � Q(πσ(x)) [x] and M, a � (P (πσ(x))) ∧ ✸iQ(πσ(x)) [x].

Hence
M,u � ∃x(P (πσ(x)) ∧ ✸iQ(πσ(x))).

Since M,u � B1, we have

M,u � ∃x(P (x) ∧ ✸iQ(x)),

i.e.
M, c � (P (x) ∧ ✸iQ(x)) [x]

for some c ∈ Dn
u . Thus c ∈ ξ+(P ), i.e. c = πσ(a) and cRn

i d for some d ∈ ξ+(Q),
i.e. for d = πσ(b). Therefore πσ(a)Rn

i πσ(b).
(II) F is w-functorial.
We apply Lemma 5.10.6.

(IIa) aR1
i b⇒ uRiv, whenever a ∈ Du, b ∈ Dv.

In fact, assume aR1
i b. Consider the QKN -theorem

B2 := ∃y✸ip ⊃ ✸ip,

where p ∈ PL0, and a model M = (F, ξ) such that ξ+(p) = {v}. Then
(by Definition 5.9.4) M, b � p [y], (since π∅(b) = v), and so

M,a � ✸ip [y],

since aR1
i b. Thus

M,u � ∃y✸ip.

Since M,u � B2, we have M,u � ✸ip, which implies uRiv.

(IIb) (ac)Rn+1
i (bd) ⇒ aRn

i b for n > 0.

Suppose (ac)Rn+1
i (bd). Consider the QKN -theorem

B3 := ∃y✸iP (x) ⊃ ✸iP (x),

where |x| = n, y 6∈ r(x), and a model M = (F, ξ) such that ξ+(P ) = {b}.
Then

M,bd � P (x) [xy].
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Since (ac)Rn+1
i (bd), we have

M, ac � ✸iP (x) [xy],

and so
M, a � ∃y✸iP

n(x) [x].

Now from M, a � B3 [x], we obtain M, a � ✸iP (x) [x], and thus aRn
i b by

the choice of M .

(IIc) ac ∈ Dn+1 & aRn
i b ⇒ ∃d (ac)Rn+1

i (bd) for n > 0.

In fact, assume ac ∈ Dn+1
u , aRn

i b, and consider the QKN -theorem

B4 := ✸iP (x) ⊃ ∀y✸iP (x),

where |x| = n, y 6∈ x, and a model M = (F, ξ) such that ξ+(P ) = {b}.
Then M,b � P (x) [x], and so

M, a � ✸iP (x) [x].

Since M, a � B4 [x], we also have

M, a � ∀y✸iP (x) [x],

i.e.M, ae � ✸iP (x) [xy] for any e ∈ Du. In particular,M, ac � ✸iP (x) [xy].
So there exists g = (g1, . . . , gn+1) ∈ Dn+1 such that

(ac)Rn+1
i g & M,g � P (x) [xy].

Hence (g1, . . . , gn) = b, i.e. (ac)Rn+1
i (bgn+1), and so we can take d =

gn+1.

(IId) uRiv ⇒ ∀a ∈ Du ∃b ∈ Dv aR
1
i b.

Consider the QKN -theorem

B5 := ✸ip ⊃ ∀y✸ip,

for p ∈ PL0 and a model M = (F, ξ) such that ξ+(p) = {v}. Then we
obviously have M, v � p, and M,u � ✸ip. Since M,u � B5, it follows that
M,u � ∀y✸ip. Thus

∀a ∈ Du M,a � ✸ip [y],

which yields M, b � p [y] for some b ∈ R1
i (a). By definition, the latter

means that π∅(b) ∈ ξ+(p), i.e. π∅(b) = v, or b ∈ Dv.

(III) (a, a)R2
i (b1, b2) ⇒ b1 = b2, for a ∈ Du, b1, b2 ∈ Dv.

This property (mm2) easily follows from the validity of the QK=
N -theorem

x = y ⊃ �i(x = y). In fact, obviously, aa � x = y [xy]. Thus aa � x =
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y ⊃ �i(x = y) [xy] implies aa � �i(x = y) [xy], which is equivalent to
(III).

So we have proved (5) ⇒ (1).

To check (III) for the case without equality (i.e. for the proof of (4)⇒(1))
we need a longer argument.

Let (a, a)R2
i (b1, b2), a ∈ Du. Consider the QKN -theorem

B6 := ∃x(P (x) ∧�iQ(x, x)) ⊃ ∃x1∃x2(P (x1) ∧ P (x2) ∧�iQ(x1, x2)).

Take a model M = (F, ξ) such that

ξ+(P ) = {a}, ξ+(Q) = {(b, b) | b ∈ D1}.

Then M,a � �iQ(x, x) [x], since M, b � Q(x, x) [x] for any b. We also have
M,a � P (x) [x]; hence M,u � ∃x(P (x)∧�iQ(x, x)). Thus from M,u � B6

we obtain:

M,u � ∃x1∃x2(P (x2) ∧ P (x1) ∧�iQ(x1, x2)),

i.e.
M,a1a2 � P (x1) ∧ P (x2) ∧�iQ(x1, x2) [x1x2]

for some a1, a2 ∈ Du. Then M,a1a2 � P (x1)∧P (x2) [x1x2], which implies
a1 = a2 = a, since ξ+(P ) = {a}. Now we have

M,aa � �iQ(x1, x2) [x1x2]

and so
M, b1b2 � Q(x1, x2) [x1x2],

since (a, a)R2
i (b1, b2). Thus (b1, b2) ∈ ξ+(Q), i.e. b1 = b2.

Therefore F is modal. �

Theorem 5.12.13 means that modal metaframes are exactly m-sound (and
also m=-sound) metaframes. This allows us to introduce the metaframe seman-
tics M=

N and MN for modal predicate logics (with or without equality) gen-
erated by the class of N -modal (or functorial) metaframes. This is the largest
sound modal Kripke-type semantics generated by metaframes. Therefore we ob-
tain a precise criterion of logical soundness in metaframes. In the next section
this criterion will be applied to Kripke bundles and C-sets.

Now let us make some remarks on terminology. According to general def-
initions, a metaframe validating a modal logic L (predicate or propositional),
should be called an ‘L-metaframe’. If L is a propositional logic, ‘L-metaframes’
are those, for which every Fn is a propositional L-frame (Proposition 5.12.9);
such metaframes are not necessarily modal. But if L is a predicate logic, then F
is an L-metaframe iff L ⊆ ML(=)(F); so every L-metaframe is modal (Theorem
5.12.13).
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In particular, for a propositional logic Λ, QΛ-metaframes are just modal Λ-
metaframes. So e.g. F is an S4-metaframe iff every Fn is reflexive and transitive.
An S4-metaframe is also called propositionally intuitionistic. On the other hand,
a QS4-metaframe, is a 1-modal S4-metaframe.

Finally let us explain why the modified forcing �∗ described in 5.9.17 does
not really change the notion of logical soundness. To see this we consider an
arbitrary modification �′ of forcing satisfying the clauses (1)–(9) from Definition
5.9.4. Then we define the notions of truth, validity and strong validity for �′

in the natural way. Let ML′(=)(F) be the corresponding set of strongly valid
formulas in a metaframe F. If this set is an m.p.l. (=), we say that F is modally
sound for �′ (respectively, without or with equality). This notion is described
as follows.

Proposition 5.12.14 Consider a modified forcing relation �′ satisfying 5.9.4(1)–
(9).

(1) If QKN ⊆ ML′(F), then F is a modal metaframe;

(2) If �′ is equivalent to � in modal metaframes, i.e.

M, a �′ A [x] ⇔M, a � A [x]

for any model M over a modal metaframe, for any assignment (x,a) in
M and formula A with FV (A) ⊆ r(x), then for any metaframe F the
following conditions are equivalent:

(i) F is modally sound for �′ (with or without equality);

(ii) F is modally sound;

(iii) F is modal.

Moreover, ML′(=)(F) = ML(=)(F) for modal (i.e. modally sound) F.

Proof

(1) We can repeat the part (4) ⇒ (1) from the proof of 5.12.13. The argument
does not use the clause (1◦), because it does not involve forcing M, a �
∃yB[x] with y ∈ r(x).22

(2) Obvious.

�

Thus a ‘reasonable’ modification of 5.9.4(10) does not affect logical sound-
ness. This applies to the forcing �∗ from 5.9.17, because it is equivalent to � in
modal metaframes. In fact, by 5.9.4 we have

M, a � ∃xiB[x] ⇔M, a − ai � ∃xiB [x − xi]
⇔ ∃c ∈ D(a) M, (a − ai)c � B [(x − xi)xi)].

22One can easily rewrite the proof using only clean formulas and forcing M,a � A [x] with
r(x) = FV (A).
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Now let |x| = n, and let σ ∈ Υn be a permutation

(
1 . . . i− 1 i . . . n− 1 n
1 . . . i− 1 i+ 1 n i

)
;

then ((x − xi)xi) · σ = x. By 5.10.6 we can further write

M, a � ∃xiB [x] ⇔ ∃c ∈ D(a) M, ((a − ai)c) · σ � B [x].

But ((a− ai)c) ·σ = (a1, . . . , ai−1, c, ai+1, . . . , an), so the existence of c is equiv-
alent to the existence of b ∈ Dn such that b− bi = a − ai and

M,b � B [x].

Thus � satisfies the inductive clause (10*) from 5.9.17 for ∃ (and similarly for
∀). Hence the equivalence of M, a � A [x] and M, a �∗ A [x] easily follows by
induction on |A|.

5.13 Representation theorem for modal
metaframes

Recall that a preset F = (C, D, ρ) over an N -precategory C gives rise to the
metaframe Mf(F) = (Fn)n∈ω with the relations

aRn
i b ⇔ ∃γ ∈MoriC ργ · a = b,

cf. Definition 5.6.14. By 5.9.13, ML(=)(Mf(F)) = ML(=)(F).
We also know that every Kripke bundle F = (F,D, ρ) is associated with a

metaframe Mf(F) = (Fn)n∈ω (cf. Definition 5.3.2) as well as with a preset F′

(over some precategory), cf. 5.8.5. By Proposition 5.8.5 these constructions are
coherent, i.e. Mf(F) = Mf(F′). Recall (Definition 5.3.2) that the relations in
Mf(F) are

aRn
i b iff ∀j ajρibj & a sub b.

By 5.9.13, ML(=)(F) = ML(=)(Mf(F)); hence ML(=)(F) = ML(=)(F′).

Lemma 5.13.1

(1) If F is a preset over an N -precategory C (or an N -modal Kripke bundle),
then Mf(F) is an N -modal metaframe.

(2) If F is a C-set over a category C (or an intuitionistic Kripke bundle), then
Mf(F) is a QS4-metaframe.

Proof
(1) By the above remark, it is sufficient to consider only presets. To show the
w-functoriality, consider σ ∈ Υmn, and show that πσ : Fn ։ Fm. To check the
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monotonicity, suppose aRn
i b, u = π∅(a), v = π∅(b). Then ργ · a = b for some

γ ∈ Ci(u, v).
Now note that

(3) ργ · (a · σ) = (ργ · a) · σ.

In fact,

(ργ · (a · σ))j = ργ((a · σ)j) = ργ(aσ(j)) = (ργ · a)σ(j) = ((ργ · a) · σ)j .

So by (3) we have:

ργ · (a · σ) = (ργ · a) · σ = b · σ.

Thus (a · σ)Rn
i (b · σ).

Next, let us check the lift property for πσ. If (a · σ)Rn
i b′, u = π∅(a), v =

π∅(b′), then ργ · (a · σ) = b′ for some γ ∈ Ci(u, v). By (1) it follows that
(ργ · a) · σ = b′, i.e. b′ = πσb, where b = ργ · a, and thus aRn

i b.
Therefore πσ : Fn ։ Fm.
To check the property 5.11.1 (mm2), suppose (a, a)R2

i (b1, b2), a ∈ Du,
b1, b2 ∈ Dv. Then for some γ ∈ Ci(u, v)

ργ · (a, a) = (b1, b2),

i.e. b1 = ργ(a) = b2. Thus (mm2) holds.
(2) If F is a C-set, then every Fn is an S4-frame by 5.6.16. The same

holds for intuitionistic Kripke bundles by 5.5.1 or by the observation that if F
is an intuitionistic Kripke bundle, then the corresponding C-preset F′ is a C-set
(Proposition 5.8.5), and Mf(F) = Mf(F′). �

Therefore by Proposition 5.9.13, Theorem 5.12.13, Proposition 5.12.3, and
Corollary 5.12.4 we obtain

Proposition 5.13.2 Let F be a preset over an N -precategory C (or an N -
modal Kripke bundle). Then

(1) ML(=)(F) = ML(=)(Mf(F)) is an N-m.p.l.(=);

(2) ML(=)(F) = {A ∈MF
(=)
N | ∀m F � Am} = {A ∈MF

(=)
N | ∀m F � Am};

(3) ML=(F) is conservative over ML(F).

(4) if F is C-set or an intuitionistic Kripke bundle, then ML(=)(F) ⊇ QS4(=).

Let us now show that all countable modal metaframes can be represented
by C-sets.

Definition 5.13.3 We say that D = (Du : u ∈ W ) is a system of countable
domains if every Du is countable.23 In this case we also say that a metaframe
with a system of domains D has countable domains.

23Recall that according to our terminology, a countable set may be finite.
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Theorem 5.13.4 (Representation theorem)

(1) Let F be an N -modal metaframe with countable domains. Then F =
Mf(F′) for some preset F′ over an N -precategory C. Moreover, if F is
a QS4-metaframe, then C is a category and F′ is a C-set.

(2) There exists a modal (QS4-) metaframe F, for which (1) does not hold,
and all but one domains are countable.

Proof
(1) Let F = ((Fn)n∈ω, D). Consider the N -precategory C with Ob C = W and

(1.1) Ci(u, v) = {f : Du → Dv | ∀n > 0 ∀a ∈ Dn
u aRn

i (f · a)}.

Note that if F is a QS4-metaframe (N = 1), then C is a concrete category,
i.e. the composition of morphisms is the composition of functions and identity
morphisms are identity functions. Recall that Rn are reflexive and transitive in
this case; thus f ◦ g ∈ C(u,w) whenever f ∈ C(u, v), g ∈ C(v, w), uRvRw, and
also idDu

∈ C(u, u) for u ∈ W .
Consider the C-set F′ = (F,D, ρ), in which ρf = f for f ∈ Ci(u, v) and

F = FR(C).
Let us ensure that F = Mf(F′) according to Definition 5.6.14, i.e.

(1.2) aRn
i b ⇔ ∃f ∈ Ci(u, v) f · a = b

for a ∈ Dn
u , b ∈ Dn

v , (recall that ρf = f).
In fact, if f · a = b, f ∈ Ci(u, v), then aRn

i b by (1.1).
The other way round, suppose aRn

i b. Let a1, . . . , an, an+1 . . . be an enumer-
ation of Du starting at our a = (a1, . . . , an). Using Lemma 5.10.5 (2), by induc-
tion we construct a sequence b1, . . . , bn, bn+1 . . . in Dv such that b = (b1, . . . , bn)
and (a1, . . . , ak)Rk

i (b1, . . . , bk) for all k ≥ n. Then the function f sending each
ak to bk belongs to Ci(u, v). In fact, (a1, . . . , ak)Rk

i (b1, . . . , bk) for k ≥ n, by
our construction, and this is also true for k < n, by monotonicity of πσ, where
σ : Ik −→ In is the inclusion map. Thus (1.2) holds.

Finally note that (1.2) implies F (= FR(C)) = F0:

uRiv ⇔ Ci(u, v) 6= ∅.

In fact, suppose uRiv, a ∈ Du. By 5.10.5(4), aR1
i b for some b ∈ Dv, thus by

(1.2), f(a) = b for some f ∈ Ci(u, v) and so Ci(u, v) 6= ∅.
The other way round, if f ∈ Ci(u, v), then aR1

i f(a) and f(a) ∈ Dv. Hence
uRiv by 5.10.5(3).

(2) Consider a QS4-metaframe F = ((Fn)n∈ω , D), such that

• F0 = (W,R) is a 2-element chain:
W = {u0, u1}, R = W ×W − {(u1, u0)};

• |Du0 | > |Du1 | = ℵ0;
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• aRnb ⇔ a subb & b sub a ⇔ ∀i,j(ai = aj ⇔ bi = bj) for a ∈ Dn
uj
, b ∈

Dn
uk
, j ≤ k.

To check that F is a modal metaframe, we apply 5.10.2, 5.10.5.

First, for a permutation σ ∈ Υn, πσ is an automorphism of Fn. In fact,
aRnb iff ∀i, j (ai = aj ⇔ bi = bj) iff ∀i, j (aσ(i) = aσ(j) ⇔ bσ(i) = bσ(j)) iff
(a · σ)Rn(b · σ).

A similar argument shows that πσ is monotonic for any σ ∈ Υmn.

Second, πn
+ has the lift property. In fact, suppose aRn−1b, i.e. a subb and

b sub a. Let u, v be the worlds of a, b, respectively. Then for any c ∈ Du there
is d ∈ Dv such that (ac)Rn(bd): if c = ai for some i, take d = bi; otherwise
take d 6= bi for any i (since Dv is infinite, such an individual d always exists).

The case n = 1 described in 5.10.5(4) is trivial. By definition, the property
(mm2) also holds: (a, a)R2(b1, b2) ⇒ b1 = b2.

All the Fn are S4-frames, since the relation sub is reflexive and transitive.

Now suppose F corresponds to a C-set F′ = (F,D, ρ). Let µ ∈ C(u0, u1);
then ρµ is a function from Du0 to Du1 . But |Du0 | > |Du1 |, so there exist
a1, a2 ∈ Du0 , b ∈ Du1 such that a1 6= a2 and ρµ(a1) = ρµ(a2) = b. Then
(a1, a2)R2(b, b) in Mf(F′), but not in F.

One can easily construct similar examples for any N > 1. �

Therefore modal metaframes with countable domains are nothing but C-sets.
However we do not know if the semantics of modal metaframes is stronger than
functor semantics (either in the case of C-presets or C-sets). For the intuitionistic
case (discussed below) this question is also open.

5.14 Intuitionistic forcing and monotonicity

5.14.1 Intuiutionistic forcing

Now let us consider the intuitionistic case. We shall begin with a simple obser-
vation that QS4-metaframes generate a sound semantics for superintuitionistic
logics via Gödel–Tarski translation (Proposition 5.14.7). But this semantics is
probably not maximal in the intuitionistic case, so our goal will be to identify
a larger class of ‘intuitionistic sound metaframes’.

Let us first give a definition of intuitionistic forcing in S4-metaframes.

Definition 5.14.1 A valuation ξ in an S4-metaframe F is called intuitionistic
if it is intuitionistic in every Fn, i.e. for any predicate letter Pn

j , n ≥ 0

Rn(ξ+(Pn
j )) ⊆ ξ+(Pn

j ).

The pair (F, ξ) is called an intuitionistic metaframe model.

Henceforth until Section 5.19, we shall consider mainly S4-metaframes.
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Definition 5.14.2 An intuitionistic model M = (F, ξ) gives rise to the forcing
relation M, a  A [x] (where a ∈ Dn, |x| = n, A ∈ IF=, FV (A) ⊆ r(x))
defined by induction:

(I) M, a 6⊥ [x];

(II) M, a  Pn
k (x · σ) [x] iff (a · σ) ∈ ξ+(Pn

k );

(III) M, a  (xj = xk) [x] iff aj = ak;

(IV) M, a  (B ∧ C) [x] iff M, a  B [x] and M, a  C [x];

(V) M, a  (B ∨ C) [x] iff M, a  B [x] or M, a  C [x];

(VI) M, a  (B ⊃ C) [x] iff ∀b ∈ Rn(a) (M,b  B [x] ⇒ M,b  C [x]);

(VII) M, a  ∀yB [x] iff ∀b ∈ Rn(a) ∀c ∈ D(b) M,πx||y(bc)  B [x||y];

M, a  ∃yB [x] iff ∃b ∈ (Rn)−1(a) ∃c ∈ D(b) M,πx||y(bc)  B [x||y].

This definition of forcing is motivated by Gödel–Tarski translation. E.g. the
intuitionistic forcing for ∀yB resembles the modal forcing for �∀yB. In more
detail the connection between modal and intuitionistic forcing will be discussed
later on. However note that for the ∃-case the intuitionistic and the modal
definition differ, unlike Kripke frame or Kripke sheaf semantics. This situation
was already discussed for quasi-bundles in section 5.5.

Definition 5.14.3 Let F be an S4-metaframe. An intuitionistic formula A is
called

• true in an intuitionistic model M over F (notation: M  A) if M, a  A[x]
for any assignment (x,a) with r(x) ⊇ FV (A);

• valid in F (notation: F  A) if it is true in all intuitionistic models over
F;

• strongly valid (respectively, strongly valid with equality) in F if all its IF -
(respectively, IF=)-substitution instances are valid in F. Strong validity
is denoted by + (respectively, +=).

Similarly to the modal case, we use the notation

IL
(=)
− (F) := {A ∈ IF (=) | F  A},

IL(=)(F) := {A ∈ IF (=) | F +(=) A}.

Note that IL=(F) is the largest substitution closed subset of IL
(=)
− (F).

As we have pointed out for Kripke bundles, it may be the case that F  SA
for any IF -substitution S, but not for any IF=-substitution; so IL=(F) may be
not conservative over IL(F), cf. Remark 5.12.5 for the modal case. Similarly to
the modal case we have

IL=(F) ∩ IF ⊆ IL(F).
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Definition 5.14.4 A metaframe F is called intuitionistic(=) sound (i(=)-sound,

for short) if IL(=)(F) is an s.p.l.(=).

As we shall see in Section 5.16, i=-soundness implies i-soundness.
Now let us show that all QS4-metaframes are i=-sound. This happens be-

cause intuitionistic forcing for QS4-metaframes corresponds to modal forcing
via Gödel–Tarski translation.

Definition 5.14.5 Let F be a QS4-metaframe; M = (F, ξ) a metaframe model.
The pattern of M is the model M0 = (F, ξ0) such that

ξ+0 (Pn
j ) = {a ∈ Dn | Rn(a) ⊆ ξ+(Pn

j )}

for any j, n ≥ 0.

It is clear that M0 is an intuitionistic model and M0 = M if M itself is
intuitionistic.

Lemma 5.14.6 Let M be the same as in Definition 5.14.5. Then for any
A ∈ IF= and any assignment (x,a) with FV (A) ⊆ x

M0,a  A [x] ⇔M, a  AT [x].

Proof By induction, cf. Lemmas 3.2.16, 5.5.7.
If A = P (πσx), σ ∈ Σmn, |x| = n, then

M0,a  A [x] ⇔ πσa ∈ ξ+0 (P ) ⇔ Rm(πσa) ⊆ ξ+(P ),
M, a  �A [x] ⇔ ∀b ∈ Rn(a) πσ(b) ∈ ξ+(P ) ⇔ πσ(Rn(a)) ⊆ ξ+(P ).

But Rm(πσa) = πσ(Rn(a)) for a morphism πσ : Fn −→ Fm (see the remark
after Definition 1.3.30), so the statement is true in this case.

For the induction step let us only check the quantifier cases.
Suppose A = ∀yB and the statement holds for B. Then

M0,a  A⇔ ∀b ∈ Rn(a) ∀c ∈ D(b) M0, πx‖y(bc)  B [x‖y] ⇔
∀b ∈ Rn(a) ∀c ∈ D(b) M,πx‖y(bc) � BT [x‖y] ⇔M, a � �∀yBT (= AT ) [x].

The argument for the ∃-case is slightly longer as the intuitionistic and the
modal definitions differ in this case.

Suppose A = ∃yB and the statement holds for B. We have

M0,a  A⇔ ∃b ∈ (Rn)−1(a) ∃c ∈ D(b) M0, πx‖y(bc)  B [x‖y] ⇔
∃b ∈ (Rn)−1(a) ∃c ∈ D(b) M,πx‖y(bc) � BT [x‖y] ⇔
∃b ∈ (Rn)−1(a) M,b � ∃yBT (= AT ) [x].

The latter holds if M, a � AT — just take b = a. The other way round,
suppose M,b � AT [x]. As we know, QS4(=) ⊢ AT ≡ �AT (Lemma 2.11.2),
so M � AT ≡ �AT by soundness (5.12.13), and thus M,b � �AT [x], which
implies M, a � AT .
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The case A = ∃xiB is reduced to the above:

M0,a  A⇔M0,a− ai  ∃xiB [x − xi] ⇔M, a − ai � ∃xiB
T [x − xi]

⇔M, a � ∃xiB
T (= AT ) [x].

All other cases are left to the reader. �

Proposition 5.14.7 Let F be an QS4-metaframe, A ∈ IF=. Then

(1) F  A iff F � AT .

(2) The following three assertions are equivalent:

(a) F + A;

(b) ∀m F  Am;

(c) F �+ AT .

(3) IL(=)(F) = TML(=)(F) and therefore IL(=)(F) is an s.p.l.(=).

Proof Similar to 5.5.12, 5.5.13.
(1) (Only if.) Assume F  A. For a metaframe model M over F let us

show M � AT , i.e. M, a � AT [x] for any appropriate assignment (x,a). By
Lemma 5.14.6, the latter is equivalent to M0,a  A [x], which follows from our
assumption.

(If.) Assume F � AT . Let M be an intuitionistic metaframe model over F,
and let us show M  A, i.e. M, a  A [x] for any appropriate assignment (x,a).
Since M0 = M , by Lemma 5.14.6, M, a  A [x] iff M, a � AT [x], and the latter
follows from F � AT .

(2) The proof is completely analogous to 5.5.12. Use 5.12.3 for (b)⇒(c) and
soundness (5.12.13) for (c)⇒(a).

(3) follows readily from the equivalence (a)⇔(c) in (2). �

Proposition 5.14.7 shows that QS4-metaframes are i(=)-sound. As we shall
see later on, the class of i-sound metaframes is larger, but the question, whether
i-sound metaframes generate a stronger semantics, is open. The same happens
to i=-soundness.

Corollary 5.14.8 If F is a C-set (or an intuitionistic Kripke bundle), then

IL(=)(F) is an s.p.l.(=); moreover, IL(=)(F) =T ML(=)(F).

Exercise 5.14.9 Using 5.14.6, check the following properties of intuitionistic
forcing in QS4-metaframes analogous to the properties of modal forcing (cf.
Lemma 5.10.6(2), Lemma 5.10.10, Lemma 5.11.7, Proposition 5.11.12).

Let F be a QS4-metaframe, M an intuitionistic model over F. Then

(1) for any ordered assignment (x,a), for any σ ∈ Υmn, where |x| = n ≥ m
and for any formula A ∈ IF= with FV (A) ⊆ r(x · σ)

M, a  A [x] ⇔M, a · σ  A [x · σ];
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(2) for any congruent intuitionistic formulas A, B and any ordered assignment
(x,a) with FV (A) ⊆ r(x)

M, a  A [x] ⇔M, a  B [x];

(3) for any σ ∈ Σmn, for any distinct lists of variables x = (x1, . . . , xn),
y = (y1, . . . , ym), for any intuitionistic formula A with FV (A) ⊆ r(y), for
any a ∈ Dn

M, a  ([x · σ/y]A) [x] ⇔M, a · σ  A [y];

(4) if A, A∗ are intuitionistic formulas, [a/x], [a∗/x∗] assignments giving rise
to equal Du-sentences: [a/x]A = [a∗/x∗]A∗, then

M, a  A [x] ⇔M, a∗  A [x∗].

As we shall see later on, all the claims in 5.14.9 extend to arbitrary i=-sound
metaframes.

Now let us consider arbitrary S4-metaframes. Let us first note that the quan-
tifier clauses in Definition 5.14.2 are analogues of the combined clause (9+10)
for modal forcing from Section 5.9. Now if we consider two options in the
intuitionistic case, we obtain

(VII.1) if y 6∈ x, then
M, a  ∀yB [x] iff ∀b ∈ Rn(a)∀c ∈ D(b) M,bc  B [xy],
M, a  ∃yB[x] iff ∃b ∈ (Rn)−1(a)∃c ∈ D(b) M,bc  B [xy];

(VII.2) for 1 ≤ i ≤ n
M, a  ∀xiB [x] iff ∀b ∈ Rn(a) ∀c ∈ D(b) M, (b−bi)c  B [(x−xi)xi]
iff ∀d ∈ πn

i (Rn(a)) ∀c ∈ D(d) M,dc  B [(x − xi)xi].
M, a  ∃xiB [x] iff ∃b ∈ (Rn)−1(a) ∃c ∈ D(b)M,dc  B [(x − xi)xi].

Note that (VII.1) corresponds to the clause (9) from Definition 5.9.4. Let
us show that in QS4-frames (VII.2) corresponds to the clause 5.9.4(10), i.e.
M, a  ∀xiB [x] iff M, âi  ∀xiB[x̂i],
M, a  ∃xiB [x] iff M, âi  ∃xiB [x̂i].

In fact, by (VII.1)

M, a − ai  ∀xiB [x − xi iff ∀d ∈ Rn−1(a − ai) ∀c ∈ D(d) M,dc  B [(x − xi)xi]
iff ∀d ∈ Rn(πn

i a) ∀c ∈ D(d) M,dc  B [(x − xi)xi].

Now in QS4-metaframes πn
i is a morphism, so the latter is equivalent to

(VII.2). But in arbitrary S4-metaframes (VII.2) may not be true, because it
may happen that πn

i (Rn(a)) 6= Rn(πn
i (a)), cf. Section 5.9.24 The reader can

construct a counterexample as an exercise, cf. 5.9.16, 5.9.18.

24Or note that
M, a  ∀xiB [x] ⇔ M,a − ai  ∀xiB [x− xi]

may not imply
M,a  �∀xiB [x] ⇔ M,a − ai  �∀xiB [x− xi].
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Later on we shall see that (VII.2) and its analogue for the ∃-case hold in all
i(=)-sound metaframes.

Remark 5.14.10 These comments motivate an alternative definition of forcing
(⋆) for the quantifier case instead of (VII):

This can be rewritten as follows:
There also exists an altrnative version (∗) resembling 5.9.17:
All these definitions are equivalent in i(=)-sound metaframes.

Now we obtain an analogue to Lemma 5.12.2 (1), (2) and Corollary 5.12.12.

Proposition 5.14.11 Let F be an S4-metaframe. Then

(1) IL
(=)
− (F) is closed under generalisation and modus ponens;

(2) IL(=)(F) is closed under formula substitutions;

(3) the following conditions are equivalent:

(a) IL(=)(F) is an s.p.l. (=);

(b) QH(=) ⊆ IL(=)(F);

(c) QH(=) ⊆ IL
(=)
− (F).

Proof (1) (I) Let us first consider generalisation. Let M be an intuitionistic
model over F, B ∈ IF (=). Assuming M  B, let us prove M  ∀yB, i.e.
M, a  ∀yB [x] for any assignment (x,a) with r(x) ⊇ FV (∀yB). Suppose
|x| = n.

If y 6∈ x, then

M, a  ∀yB [x] iff ∀b ∈ Rn(a)∀c ∈ D(b) M,πx‖y(bc)  B [x‖y].

But M,πx‖y(bc)  B [x‖y] holds, since M  B.
(II) Now let us consider modus ponens.
Let M be an intuitionistic model M over F. Assuming M  B, B ⊃ C, let

us check that M  C.
Let x ⊆ FV (C), y = FV (B) − x. By our assumption, for any assignment

(xy,ab),
M, ab  B [xy]; M, ab  (B ⊃ C)[xy].

Since every relation Rn is reflexive, we readily obtain (for any assignment
(xy,ab))

(3.1) M, ab  C [xy].

Now let us show that

(3.2) M, a  C [x].
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In fact, (3.1) implies

(3.3) M, a  ∀yC [x],

as one can easily check. By (c), we also have

(3.4) M, a  (∀yC ⊃ C)[x],

since ∀yC ⊃ C is an intuitionistic theorem. Now (3.2) follows from (3.3), (3.4),
and the reflexivity of Rn.

(2) Note that the composition of substitutions is a substitution, cf. the ar-
gument in the modal case in 5.12.12.

(3) The implications (a) ⇒ (b), (b) ⇒ (c) are obvious.

(c) ⇒ (b) is also obvious, IL(=)(F) is substitution closed.
So assuming (c), let us check (a). Due to (2), it remains to consider modus

ponens and generalisation.

First note that IL
(=)
− (F) is closed under congruence. In fact, suppose A ∈

IL=
−(F) and A ⊜ B. Then (A ≡ B) ∈ QH(=) by 2.6.9, and hence (A ⊃

B) ∈ QH(=) (by (Ax3), MP and substitution). So by the assumption (c),

(A ⊃ B) ∈ IL
(=)
− (F).

Since by (1) IL
(=)
− (F) is closed under MP, it follows that B ∈ IL

(=)
− (F).

Now the closedness of IL(=)(F) under modus ponens follows easily.
In fact, suppose

A, A ⊃ B ∈ IL(=)(F).

Then S, SA, S(A ⊃ B) ∈ IL
(=)
− (F) for any formula substitution. By Lemma

2.5.13, S(A ⊃ B) ⊜ (SA ⊃ SB). Since IL
(=)
− (F) is congruence closed and

MP-closed (by (1)), this implies SB ∈ IL
(=)
− (F). Eventually B ∈ IL=(F).

Finally, let us consider generalisation. We suppose A ∈ IL(=)(F) and show

that ∀xA ∈ IL(=)(F). This does not follow directly from (1), because a substi-
tution instance of ∀xA is not always of the form ∀xA′ for a substutition instance
A′ of A (cf. Lemma 2.5.13), and so we need a little detour.

So for a substitution S, let us prove that F  S∀xA.
Let y be a new variable, y 6∈ V (∀xA) ∪ FV (S); then by 2.3.28(13)

∀xA ⊜ ∀y[y/x]A.

Hence by 2.5.12 and 2.5.13(3),

S∀xA ⊜ S∀y[y/x]A ⊜ ∀yS[y/x]A.

As we already know, the validity in F is closed under congruence and gen-
eralisation. So it is sufficient to show that F  S[y/x]A.

By Lemma 2.5.14 (for complex substitutions) we can rename the bound
variables of S; so

(♯1) S[y/x]A ⊜ S1[y/x]A,
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with x 6∈ BV (S1). Now we introduce yet another new variable x′. Then we
obviously have

(♯2) S1[y/x]A ⊜ [x/x′][x′/x]S1[y/x]A.

By 2.5.17, there exists a formula substitution S0 such that x 6∈ FV (S0) and

(♯3) [x′/x]S1[y/x]A ⊜ S0[y/x]A.

But then by 2.5.15 we obtain

(♯4) S0[y/x]A ⊜ [y/x]S0A

Eventually from (♯1)–(♯4) and 2.3.27 it follows that

(♯5) S[y/x]A ⊜ [x/x′][y/x]S0A.

It remains to notice that validity in F respects variable substitutions. In fact,
if F  B, then F  ∀xB by (1).

By 2.6.15(xxv), ∀xB ⊃ [y/x]B is an intutionistic theorem, so it is valid in F
by our assumption (c). By (1), we can apply modus ponens, thus F  [y/x]B.

Therefore, since A ∈ IL(=)(F), we obtain F  [x/x′][y/x]S0A; thus F 

S[y/x]A by (♯5), since IL
(=)
− (F) is closed under congruence. �

Remark 5.14.12 The above proof cannot be simplified by concluding F 
S0[y/x]A directly from A ∈ IL(=)(F), before we know that [y/x]A ∈ IL(=)(F).
Since S0 does not always commute with [y/x] for x ∈ FV (S0), we had to replace
x with x′ and S0 with S1.

Corollary 5.14.13 i=−-soundness implies i-soundness.

Proof QH= ⊆ IL=(F) implies QH = (QH=)◦ ⊆ (IL=(F))◦ ⊆ IL(F), which
implies i-soundness by 5.14.11(3). �

5.14.2 Monotonic metaframes

Now let us consider an important property of intuitionistic sound metaframes.

Definition 5.14.14 An S4-metaframe F is called monotonic(=) if it satisfies
the condition

(im) M, a  A [x] & aRnb ⇒M,b  A [x]

for any A ∈ IF (=), for any intuitionistic model M = (F, ξ), a distinct list x of
length n containing FV (A) and any a,b ∈ Dn.

We already mentioned this property in Section 5.5 when quasi-bundles were
discussed. The next lemma proves that monotonicity is really necessary.
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Lemma 5.14.15 If the formula B := p ⊃ (⊤ ⊃ p) is strongly valid in an S4-
metaframe F (in the language with or without equality, respectively), then F is
monotonic(=).

Proof Let us check (im) for an arbitrary formula A. Consider the following
substitution instance B′ := A ⊃ (⊤ ⊃ A) of B.

Assume aRnb and M, a  A [x]. Then M, a  ⊤ ⊃ A [x] since M, a  B′ [x]
and Rn is reflexive. Obviously, M,b  ⊤(= ⊥ ⊃ ⊥)[x], and thus M,b  A [x].

�

The idea of the previous proof is quite clear; B′ expresses the property (im)
for A — it states that if A is true now, then ⊤ ⊃ A is also true, and thus A will
always be true in the future, by the definition of forcing for implication.

Hence we obtain

Proposition 5.14.16 Let F be an S4-metaframe such that H ⊆ IL(=)(F).
Then F is monotonic(=).

Let us now describe monotonic metaframes in terms of accessibility relations.

Definition 5.14.17 An S4-metaframe F is called semi-functorial (or s-
functorial, for short) if for any σ ∈ Σmn; m,n ≥ 0

(0σ) ∀a,b ∈ Dn(aRnb ⇒ (πσa)Rm(πσb)),

i.e. if every πσ is monotonic.

Lemma 5.14.18 An S4-metaframe F is semi-functorial iff the following holds.

(I1) F is permutable (see Definition 5.10.1), i.e. (0σ) holds for all (simple)
permutations σ.25

(I2.1) ∀n > 0 ∀u, v ∈ W ∀a ∈ Dn
u ∀b ∈ Dn

v (aRnb ⇒ uRv).

(I2.2) ∀n > 0 ∀u, v ∈W ∀a ∈ Dn
u ∀b ∈ Dn

v ∀c ∈ Du ∀d ∈ Dv ((ac)Rn+1(bd) ⇒
aRnb).

(I3) ∀n > 0 ∀a,b ∈ Dn (aRnb ⇒ (aan)Rn+1(bbn)).

(Also note that (I2.1) can be replaced by its particular case with n = 1.)

Proof Every σ ∈ Σmn is a composition of permutations, simple embeddings
and simple projections. So it suffices to check the monotonicity of πσ for σ =
σn

+ (n ≥ 0), σn
− (n > 0) and for all permutations. Now recall that σ0

+ =
φ1, π∅n

(a) = u for a ∈ Dn
u , πσn

−
(a) = aan, πσn

+
(ac) = a. �

Definition 5.14.19 A semi-functorial metaframe is called semi-functorial with
equality (briefly, s=-functorial) if it satisfies the condition (cf. 5.11.1)

25Cf. Definition 5.10.1, Lemma 5.10.5.
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(mm2) ∀a, b1, b2((a, a)R2(b1, b2) ⇒ b1 = b2).

Lemma 5.14.20 In an s-functorial metaframe all properties

(mmn) ∀a,b (aRnb ⇒ a sub b)

are equivalent for n ≥ 2. So (mmn) holds in every s=-functorial metaframe.

Proof (mm2) implies (mmn), since aRnb implies (ai, aj)R2(bi, bj) by (I1),
(I2.2); cf. Lemma 5.11.2.

The other way round, suppose (mmn). Let a = (a, a)R2(b1, b2) = b, and
consider the projection σ ∈ Σn2 such that

σ(i) =

{
1 for i = 1,
2 for i > 1.

Then πσa = an, πσb = b1b
n−1
2 .

By s-functoriality (πσa)Rn(πσb), hence by (mmn), (πσa)sub(πσb), and thus
b1 = b2. �

An inductive argument shows that s=-functoriality implies monotonicity.
The steps of the proof are almost trivial, due to the definition of forcing 5.14.2,
so the only problem is the atomic case.

Recalling that

(F, ξ),a  P (x · σ)[x] ⇔ πσa ∈ ξ+(P )

and ξ+(P ) is Rn-stable, we see that monotonicity exactly corresponds to (0σ).
Now let us give more details.

Lemma 5.14.21 A metaframe is s(=)-functorial iff it is monotonic(=).

Proof (Only if.) By induction on the complexity of A.
If A = Pm

j (πσx), then (im) holds, since a  Pm
j (πσx) [x] iff πσa ∈ ξ+(Pm

j ).
By monotonicity of F, aRnb implies (πσa)Rm(πσb), and since M is intuition-
istic, we obtain πσb ∈ ξ+(Pm

j ), i.e. b  A [x].
If A = (xi = xj), aRnb, we have

a  xi = xj [x] iff ai = aj ,
b  xi = xj [x] iff bi = bj .

By (I4), a sub b, so ai = aj implies bi = bj.
The induction step for ∧,∨ is obvious.
Let A = B ⊃ C. Suppose aRnb and M,b 6 A[x], i.e. M, c  B [x],

M, c 6 C [x] for some c ∈ Rn(b). By transitivity, aRnc and thus M, a 6 A [x].
Let A = ∀yB. Suppose y 6∈ x, aRnb and M,b 6 A [x]. Then by Definition

5.14.2, M, cd 6 B [xy] for some c ∈ Rn(b) and some d ∈ D(c). By transitivity,
aRnc, and thus M, a 6 A [x].
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Now suppose A = ∀xiB, aRnb, M,b 6 A [x]. Then by Definition 5.14.2,

M, b̂i, 6 A [x̂i]. Recall that âi = πσa for σ = δi
n. So since πσ is monotonic,

aRnb implies âiR
nb̂i, and thus M, âi 6 A [x̂i], as we have already proved.

Therefore M, a 6 A [x], by Definition 5.14.2.

Let A = ∃yB, y 6∈ x, and suppose aRnb and M, a  A [x]. Then M, cd 
B [xy] for some c ∈ (Rn)−1(a) and some d ∈ D(c). By transitivity, we have
cRnb, and hence we obtain M,b  A [x].

The case A = ∃xiB is similar to A = ∀xiB and is left to the reader.

(If.) Assuming (im), let us show that F is monotonic(=). Note that (mm)2
readily follows from (im) for A = (x1 = x2).

If aRnb, then M, a  Pm(πσx) [x] in the intuitionistic model M = (F, ξ)
such that ξ+(Pm) = Rm(πσa). Thus by (im), M, a  Pm(πσx) [x], i.e. πσb ∈
ξ+(Pm), and so (πσa)Rm(πσb). �

Now we obtain

Proposition 5.14.22 Every i(=)-sound S4-metaframe is s(=)-functional.

Remark 5.14.23 Monotonicity is an intrinsic property of intuitionistic forcing,
thus Lemma 5.14.8 explains why we confine ourselves to s-functorial metaframes
in our further considerations.

5.15 Intuitionistic soundness

In this section we prove intuitionistic soundness for a certain class of S4-
metaframes. Its description is more complicated than in the modal case. As
explained in the previous section, we certainly need s-functoriality correspond-
ing to monotonicity. We also need the ‘quasi-lift property’, an intuitionistic
analogue of the lift property for jections πσ. But unlike the modal case, this is
yet insufficient, and we need two extra conditions related to interpretation of
quantifiers.

In S4-metaframes we use the notation ≈n for the corresponding equivalence
relation ≈Rn on Dn; it is called n-equivalence.

Definition 5.15.1 An S4-metaframe F is called quasi-functorial (i-functorial,
for short) if all its jections πσ are quasi-morphisms.

So we have

Lemma 5.15.2 A metaframe F = ((Fn)n∈ω, D) is i-functorial iff it is s-functorial
(i.e. all πσ are monotonic) and all πσ have the following quasi-lift property:

(1σ) ∀a ∈ Dn ∀b′ ∈ Dm((πσa)Rmb′ ⇒ ∃b ∈ Dn(aRnb & πσb ≈m b′)).
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b′ ≈m πσb

πσ

Rn

πσa

a

πσ

b

Recall that in the modal case we defined functorial metaframes, where all πσ

are morphisms, and also weakly functorial metaframes, where πσ are morphisms
for injective σ. The intuitionistic analogue of functoriality is quasi-functoriality,
but as we shall see now, there is no need in the intuitionistic analogue of weak
functoriality.

Lemma 5.15.3 Let M be an intuitionistic model over an i-functorial wi-
metaframe F. Then we can replace Rn with ≈n in the truth definition for ∃:

M, a  ∃yB [x] iff ∃b ≈n a ∃c ∈ D(b) M,πx||y(bc)  B [x||y].

Proof In fact, if there exists bc ∈ Dn+1 such that bRna and M,πx||y(bc) 
B [x||y], then, by the quasi-lift property (1σn

+), there exists b′c′ ∈ Dn+1 such
that (bc)Rn+1(b′c′), b′ ≈n a, (recall that πσn

+
(b′c′) = b′). Now by (0δi

n),

πx||y(bc)Rnπx||y(b′c′),

and thus by monotonicity 5.14.14 (im),

M,πx||y(b′c′)  B [x||y].

�

The modified definition of forcing in the ∃-case resembles the familiar def-
inition for intuitionistic Kripke models, but with ≈n replacing ‘=’. So in our
semantics, a ‘witness’ for ∃yB does not always exist in the present world, but
should exist in an equivalent world (cf. section 5.5). This reflects the basic idea
that intuitionistic models26 ‘distinguish’ worlds up to ≈0, individuals up to ≈1,
n-tuples of individuals up to ≈n.

Remark 5.15.4 One can see that in the above proof monotonicity and quasi-
lift property are used explicitly only for injections σn

+ and εx‖y. But we also
use the monotonicity of forcing relying on the monotonicity of πσ for arbitrary
(perhaps, non-injective) σ, cf. Lemma 5.14.21.

Therefore in further definitions we suppose monotonicity of all πσ.
The next lemma shows that in functorial metaframes the intuitionistic truth

definition for the ∃-case is quite analogous to the modal one. This simplifies the
proof of Lemma 5.14.6.

26Due to the monotonicity of forcing, cf. 5.14.14.
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Lemma 5.15.5 Let M be an intuitionistic model over a functorial metaframe.
Then for any B ∈ IF=, y 6∈ x

M, a  ∃yB[x] iff ∃c ∈ D(a) M, ac  B[xy].

Proof The same as in 5.15.3, but now πσn
+

is a morphism, so we can take

b′ = a. Note that forcing is monotonic, because in a functorial metaframe every
πσ is monotonic. �

Remark 5.15.6 In a similar way one can show that the equivalence

M, a  ∃xiB [x] ⇔ ∃c ∈ D(a) M, âic  B [x̂ixi].

holds in functorial metaframes. Then we readily have

M, a  ∃xiB [x] ⇔M, âi  ∃xiB [x̂i].

The same equivalence for ∀ was already proved in 5.14, cf. the condition (VII.2).

Intutionistic metaframes

As we already know, functoriality is equivalent to modal soundness (Lemma
5.11.6 and Theorem 5.12.13). But i-functoriality does not yet imply intuition-
istic soundness as we shall see in section 5.16. Now let us consider two other
soundness conditions specific for the intuitionistic case.

Definition 5.15.7 An intuitionistic metaframe (i-metaframe, for short) is an
i-functorial metaframe satisfying

(2σ) (forward 2-lift property)

∀a ∈ Dn ∀b ∈ Dm+1((πσa)Rm(πm
+ b) ⇒ ∃c ∈ Dn+1(aRn(πn

+c) &
(πσ+c)Rm+1b)).

(3σ) (backward 2-lift property)

∀a ∈ Dn ∀b ∈ Dm+1((πm
+ b)Rm(πσa) ⇒ ∃c ∈ Dn+1((πn

+c)Rna &
bRm+1(πσ+c))).

Recall that σm
+ ∈ Υm,m+1, σ

n
+ ∈ Υn,n+1 are simple embeddings and σ+ ∈

Σm+1,n+1 is the simple extension of σ ∈ Σmn, see the Introduction.
So a metaframe is intuitionistic iff it satisfies (0σ), (1σ), (2σ), (3σ) for any σ.

Definition 5.15.8 A weak intuitionistic (wi-) metaframe is an s-functorial
metaframe satisfying (1σ), (2σ), (3σ), for all injections σ.

Note that in this case (0σ) holds for arbitrary σ.

Definition 5.15.9 An intuitionistic metaframe with equality (an i=-metaframe,
for short) and respectively, a weak intuitionistic metaframe with equality (a
wi=-metaframe) is an s=-functorial i-metaframe (respectively, an s=-functorial
wi-metaframe).
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πm
+ b
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Figure 5.10. Forward 2-lift property
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Figure 5.11. Backward 2-lift property.
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Lemma 5.15.10 i=-metaframes (respectively wi=-metaframes) are exactly i-
metaframes (respectively, wi-metaframes) satisfying (mm2) from 5.11.1.

Our next goal is to show that i=-metaframes are exactly i=-sound metaframes
(Theorem 5.16.13) and at the same time — wi=-metaframes (Theorem
5.16.10(3)).

Remark 5.15.11 Let us give a motivation for 2-lift properties. The starting
point is the following simple observation on tuples (called the ‘lift property’ in
[Skvortsov and Shehtman, 1993]). Let

σ ∈ Σmn, a = (a1, . . . , an) ∈ Dn, b ∈ Dm+1, πσa = πm
+ b,

i.e. b = aσ(1) . . . aσ(m)bm+1; then there exists c ∈ Dn+1 such that a = πn
+c and

πσ+c = b; in fact, put c = abm+1. This shows (2σ), (3σ) for the case when Rk

are the equality relations. See Fig. 5.12 below.

c

a = πn
+c

πσa πm
+ b=

πm
+

πσ+πn
+

πσ

b = πσ+c

Figure 5.12. πσa is a ‘common part’ of b and a; c is their ‘join’.

We can also check these properties for a metaframe Mf(F) associated with
a C-set F = (C,D, ρ) over a category C. In fact, if for a ∈ Dn

u and b ∈ Dm+1
v

we have
πσa = (aσ(1), . . . , aσ(m))R

m(b1, . . . , bm) = πm
+ b,

then there exists a morphism µ ∈ C(u, v) such that πm
+ b = ρµ · (πσa), i.e.

∀i bi = ρµ(aσ(i)). Then consider

c′ := ρµ · a = (ρµ(a1), . . . , ρµ(an)) ∈ Dn
v

and extend it to
c := c′bm+1 ∈ Dn+1

v .

It follows that

aRnc′ = πn
+c, πσ+c = (πσc′)bm+1 = (ρµ · (πσa))bm+1 = b

and thus obviously
(πσ+c)Rm+1b.
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So (2σ) holds; (3σ) is checked in a dual way.
We see that in the first example the condition (2σ) expresses the ‘co-amalgamation

property’ of tuples (Fig. 5.12).

πσ+c = b

πm
+ b

πm
+

πσ+

ρm
µ

c

a

πσa

πσ

c′
ρn

µ

πn
+

Figure 5.13.

The second example corresponds to Fig. 5.14. Here ρn
µ sends a to ρµ · a;

similarly for ρm
µ . Again c is the ‘join’ of c′ and b; it exists, because they have

a ‘common part’ πm
+ b.

Lemma 5.15.12 In i-functorial metaframes (2σ) is equivalent to

∀a ∈ Dn ∀b ∈ Dm+1(πσa ≈m πm
+ b ⇒ ∃c ∈ Dn+1(aRn(πn

+c) & πσ+c ≈m+1 b)).
(2∼σ)

Similarly (3σ) is equivalent to

∀a ∈ Dn ∀b ∈ Dm+1(πm
+ b ≈m πσa ⇒ ∃c ∈ Dn+1((πn

+c)Rna & b ≈m+1 πσ+c).
(3∼σ)

As we can see, these conditions are obtained from (2σ) and (3σ) by changing
Rm, Rm+1 to ≈m, ≈m+1.

Proof (2σ) ⇒ (2∼σ). We assume (2σ) and prove a stronger claim than (2∼σ).
Namely, for a ∈ Dn+1, b ∈ Dm+1 such that (πσa)Rm(πm

+ b) we find c′ ∈ Dn+1

such that
aRnπn

+c′ & πσ+c′ ≈m b.

First we apply (2σ) to a, b and find c shown in Fig. 5.13.
Then using the quasi-lift property (1σ+) we find c′. Finally we note that

aRn(πn
+c)Rn(πn

+c′) by monotonicity (0πn
+).

(2∼σ) ⇒ (2σ). Assume (2∼σ). Given a,b such that (πσa)Rm(πn
+b), by

the quasi-lift property (1σ), we can find a′ ∈ Rn(a) with πσa′ ≈m πm
+ b, see

Fig. 5.15. Then by applying (2∼σ) to a′ and b, we obtain c such that a′ ≈n

πn
+c, b ≈m+1 πσ+c. Hence by transitivity aRnπn

+c. πσ+cRm+1b is obvious.
The proof of (3σ) ⇔ (3∼σ) is dual, so we skip it. �
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Figure 5.15.
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Lemma 5.15.13 In i-functorial metaframes (2σ) is equivalent to

∀a ∈ Dn ∀b ∈ Dm+1(πσa ≈m πm
+ b ⇒ ∃c ∈ Dn+1(aRn(πn

+c) & (πσ+c)Rm+1b))

and dually for (3σ).

Proof Similar to Lemma 5.15.12 (an exercise). �

Now we are going to prove intuitionistic analogues of the results from Sec-
tions 5.11 and 5.12.

The property (1σ) together with s-functoriality means that πσ is a quasi-
p-morphism. In modal logic we have a stronger requirement that πσ is a p-
morphism. In fact, in intuitionistic models, due to monotonicity (im), ≈n-
equivalent worlds are indistinguishable. Thus equality transforms into ≈n in
the intuitionistic case.

The next assertion is an intuitionistic analogue of Lemma 5.10.6.

Lemma 5.15.14 Let F be an s(=)-functorial metaframe. Then F is weakly
functorial iff for any A ∈ IF (=), for any assignment (x,a) of length n, for
any injection σ ∈ Υmn such that FV (A) ⊆ x · σ, for any intuitionistic model
M = (F, ξ)

M, a  A [x] ⇔M, a · σ  A [x · σ]. (∗i)

So (∗i) means that M, a  A[x] does not depend on the choice of a list
x ⊇ FV (A) and possible renumbering of variables.

Proof (⇒) is proved by induction on the complexity of A (cf. Lemma 5.10.6).
The atomic cases are obvious. The cases when the main connective of A is ∨ or
∧, are also easy, and we leave them to the reader.

Let A = B ⊃ C. Suppose M, a 6 A [x], i.e.

M,b  B [x]; M,b 6 C [x]

for some b ∈ Rn(a). Then (a · σ)Rm(b · σ) by s-functoriality, and so

M,b · σ  B [x · σ], M,b · σ 6 C [x · σ]

by the induction hypothesis, thus M, a · σ 6 A [x · σ].
The other way round, suppose M, a · σ 6 A[x · σ], i.e. M,b′  B[x ·

σ], M,b′ 6 C[x · σ]. for some b′ ∈ Rm(a · σ). Then by (1σ), b · σ ≈m b′

for some b ∈ Rn(a). Now by monotonicity,

M,b · σ  B[x · σ]; M,b · σ 6 C[x · σ],

and thus by the induction hypothesis,

M,b  B[x]; M,b 6 C[x].

Hence M, a 6 A[x].
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Now let us consider the case A = ∀yB. Supposing M, a · σ 6 A [x · σ], and
let us prove M, a 6 A [x]. By definition, we have c ∈ Rm(a · σ), d ∈ D(c) such
that

M,π(x·σ)||y(cd) 6 B [(x · σ)||y].

Since (πσa)Rmc = πm
+ (cd), by applying (2σ), we obtain b ∈ Dn, e ∈ D1 such

that

aRnπn
+(be) = b & (b · σ)e = πσ+(be)Rm+1(cd).

Hence by s-functoriality,

π(x·σ)||y((b · σ)e)Rlπ(x·σ)||y(cd),

where l is the length of (x · σ)||y.
Now note that

π(x·σ)||y((x · σ)y) = (x · σ)||y = (x||y) · τ = πx||y(xy) · τ

for some τ , as we saw in the proof of 5.10.6. Hence by a standard argument we
have the same for arbitrary tuples:

π(x·σ)||y((b · σ)e) = πx||y(be) · τ.

Then by monotonicity we obtain

πx||y(be) · τ 6 B[(x · σ)||y],

and since (x · σ)||y = (x||y) · τ , by the induction hypothesis, it follows that

πx||y(be) 6 B [x||y].

But aRnb, thus a 6 ∀yB [x], as required.
The other way round, suppose a 6 A [x]. Then

πx||y(be) 6 B [x||y]

for some b ∈ Rn(a), e ∈ D(b). Hence by the induction hypothesis,

πx||y(be) · τ 6 B [(x||y) · τ ],

where τ is the same as above, i.e. we obtain

π(x·σ)||y((b · σ)e) 6 B [(x · σ)||y].

But (a · σ)Rn(b · σ), by s-functoriality; thus eventually,

a · σ 6 A [x · σ],

by Definition 5.14.2.
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The case A = ∃yB is dual to A = ∀yB. The proof for this case is obtained
by inverting the accessibility relations Rn, changing 6 to  and applying (3σ)
instead of (2σ).

In more detail, suppose M, a · σ  A [x · σ]. By definition, there exists
c ∈ (Rm)−1(a · σ), d ∈ D(c) such that

π(x·σ)||y(cd)  B [(x · σ)||y].

From cRm(πσa), by (3σ), we obtain b ∈ Dn, e ∈ D1 such that

πn
+(be) = bRna & (cd)Rm+1(b · σ)e.

Hence by s-functoriality,

π(x·σ)||y(cd)Rlπ(x·σ)||y((b · σ)e) = πx||y(be) · τ,

where l is the length of (x · σ)||y. Then by monotonicity

πx||y(be) · τ  B [(x · σ)||y],

and since (x · σ)||y = (x||y) · τ by the induction hypothesis, it follows that

πx||y(be)  B [x||y].

Since aRnb, we obtain a 6 ∀yB [x].
To show the converse, suppose a  A [x]. Then

πx||y(be)  B[x||y]

for some b ∈ (Rn)−1(a), e ∈ D(b). Hence by the induction hypothesis,

πx||y(be) · τ  B [(x||y) · τ ].

This is the same as

π(x·σ)||y((b · σ)e)  B [(x · σ)||y].

Since by s-functoriality, (b · σ)Rn(a · σ), it follows that

a · σ  A [x · σ].

(⇐) Assuming the equivalence (∗i) for suitable formulas A, let us prove the
properties (1σ), (2σ), (3σ) for an injection σ ∈ Υmn.

(1σ) Let a ∈ Dn, b′ ∈ Dm, and assume (πσa)Rmb′. Consider the formula

A := P (πσx) ⊃ Q(πσx)

and the intuitionistic model M = (F, ξ) such that

ξ+(P ) := Rm(b′), ξ+(Q) := {c ∈ Dm | ¬(cRmb′)}

(recall that F is an S4-frame). Then b′ ∈ ξ+(P )−ξ+(Q), thusM,πσa 6
A [πσx]. Therefore by (∗i), M, a 6 A [x], i.e. there exists b ∈ Rm(a)
such that M,b  P (πσx) [x] and M,b 6 Q(πσx) [x]. Thus πσb ∈
(ξ+(P ) − ξ+(Q)) = ≈m (b′), i.e. b′ ≈m πσb.



458 CHAPTER 5. METAFRAME SEMANTICS

(2σ) Let a ∈ Dn, c = (πm
+ c)d ∈ Dm+1, and assume that (πσa)Rm(πm

+ c).
Consider the formula A := ∀yP (πσx, y) with x = (x1, . . . , xn), y 6∈ x,
and the intuitionistic model M = (F, ξ) such that

ξ+(P ) = {c′ ∈ Dm+1 | ¬(c′Rm+1c)}.

Since c 6∈ ξ+(P ), we have

M, c 6 P (πσx, y) [(πσx)y],

and so M,πσa 6 A[πσx], since (πσa)Rm(πm
+ c). Thus by (∗i), M, a 6

A [x], i.e. there exists b = (πn
+b)d ∈ Dn+1 such that

aRn(πn
+b) & M,b 6 P (πσx, y) [xy].

But (πσx)y = πσ+(xy), thus πσ+(b) 6∈ ξ+(P ), so by definition of M ,
πσ+(b)Rm+1c, as required.

(3σ) The proof is quite similar to the previous case. Now let a ∈ Dn, c =
(πm

+ c)d ∈ Dm+1, (πm
+ c)Rm(πσa).

Consider the formula A := ∃yP (πσx, y), where x = (x1, . . . , xn), y 6∈ x,
and the intituionistic model M = (F, ξ) such that ξ+(P ) = Rm+1(c).
Since c ∈ ξ+(P ), we have M, c  P (πσx, y) [πσx, y], and so M,πσa 
A [πσx], since (πm

+ c)Rm(πσa). Thus by (∗i) M, a  A [x], i.e. there ex-
ists b = (πn

+b)d ∈ Dn+1 such that (πn
+b)Rna andM,b  P (πσx, y) [xy],

which is equivalent to

M,b � P (πσ+(xy)) [xy],

i.e. πσ+b ∈ ξ+(P ), and hence cRm+1(πσ+b).

�

As in the modal case, Lemma 5.15.14 allows us to arbitrarily change a list
x ⊇ FV (A) in M, a  A [x]; e.g. we can take x = FV (A). So in the truth
conditions for quantifiers we may always assume y 6∈ x, and thus we have

a  ∀yB [x] iff ∀b ∈ Rn(a) ∀c ∈ D(b) bc  B [xy];
a  ∃yB [x] iff ∃bRna ∃c ∈ D(b) bc  B [xy].

(or equivalently, bRna may be replaced with b ≈n a in the clause for ∃, cf.
Lemma 5.15.3).

Now let us prove an intuitionistic analogue of Lemma 5.10.9.

Lemma 5.15.15 Let M = (F, ξ) be an intuitionistic model over an S4-
metaframe, A ∈ IF (=), FV (A) ⊆ r(x). Also let y 6∈ BV (A), y′ 6∈ V (A),
x′ := [y′/y] x, y′ 6∈ r(x), and A′ := A[y 7→ y′]. Then

M, a  A [x] iff M, a  A′[x′].
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Proof Since F is a wi(=)-metaframe, due to the previous remarks, we prove
the equivalence only for x = FV (A). We argue by induction and consider only
the atomic and the quantifier cases; other cases can be easily checked by the
reader.

Let A = P (x · σ). Then A′ = P ((x · σ)′) = P (x′ · σ), so

a  A [x] iff (a · σ) ∈ ξ+(P ) iff a  A′ [x′].

Let A = ∀zB and suppose the assertion holds for B. Then z 6= y, y′ by the
assumption of the lemma, and z 6∈ x, by our additional assumption; so z 6∈ x′.
Thus

a  A [x] iff ∀b ∈ Rn(a)∀c ∈ D(b) bc  B [xz];

a  A′ [x′] iff ∀b ∈ Rn(a)∀c ∈ D(b) bc  B′ [x′z].

Since (xz)′ = x′z, the right parts of these equivalences, are also equivalent by
the induction hypothesis. So the assertion holds for A.

If A = ∃zB, the argument is similar:

a  A [x] iff ∃b ≈n a∃c ∈ D(b) bc  B [xz];

a  A′ [x′] iff ∃b ≈n a∃c ∈ D(b) bc  B′ [x′z],

and again the right parts of these equivalences are equivalent. �

Let us prove an intuitionistic analogue of 5.10.10.

Lemma 5.15.16 Let F be a wi(=)-metaframe, M an intuitionistic model over
F Then:

(c) M, a  A [x] ⇔M, a  A1 [x]

for any congruent formulas A, A1 and any appropriate assignment (x,a).

Proof (Cf. Lemma 5.10.10.) We assume x = FV (A), |x| = n.
It is sufficient to consider the case when A1 is obtained from A by replacing

its subformula QyB with Qy′B′, where Q is a quantifier, y′ 6∈ V (A), y 6∈
BV (B), B′ = B[y 7→ y′]. Now the proof is by induction.

(1) If A = ∀yB, then A1 = ∀y′B′. By our assumption, x = FV (A), so y 6∈ x,
and thus

a � ∀yB [x] ⇔ ∀b ∈ Rn(a)∀d ∈ D(b) ad  B [xy] ⇔
∀b ∈ Rn(a)∀d ∈ D(b) ad  B′ [xy′] (by Lemma 5.15.15 )
⇔ a  ∀y′B′ [x].

(2) If A = ∃yB, the proof is almost the same. We have A1 = ∃y′B′. Suppose
y′, y 6∈ x, and thus

a � ∃yB [x] ⇔ ∃b ≈n a∃d ∈ D(b) ad  B [xy] ⇔
∃b ≈n a∃d ∈ D(b) ad  B′ [xy′] (by Lemma 5.15.15 )
⇔ a  ∃y′B′ [x].
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(1), (2) prove the base of the induction. The step is rather routine, so we
only consider the case A = ∀zC, A1 = ∀zC1. We have x = FV (A), z 6∈ x, and
thus

a  A [x] ⇔ ∀b ∈ Rn(a)∀d ∈ D(b) ad  C [xz] ⇔
∀b ∈ Rn(a)∀d ∈ D(b) ad  B1 [xz] (by induction hypothesis )
⇔ a  ∀zB1 (= A1) [x].

The remaining cases are left to the reader. �

Let us prove the intuitionistic analogue of 5.11.7.

Lemma 5.15.17 Let F be an s(=)-functorial metaframe. Then F is an i-metaframe
iff

(#) for any σ ∈ Σmn, distinct lists of variables x = (x1, . . . , xn), y =
(y1, . . . , ym), and formula A ∈ IF (=) with FV (A) ⊆ r(y), for any model
M over F, a ∈ Dn:

M, a  [(x · σ)/y]A [x] ⇔M, a · σ  A [y].

Similarly to 5.11.7, this equivalence is stated for all congruent versions of
[x · σ/y]A.

Proof (‘Only if’.) Recall that [(x · σ)/y]A is defined up to congruence and
can be obtained from a clean version A◦ of A such that BV (A◦) ∩ r(xy) = ∅
(and FV (A◦) = FV (A) ⊆ y) by replacing [y 7→ x · σ]. By Lemma 5.15.16 we
may assume that A◦ = A. Now we argue similarly to 5.11.7 by induction.

(1) If A is yi = yj or P k
j (y · τ), τ ∈ Σkm or A is, the proof is the same as in

5.11.7.
(2) Suppose A = B ⊃ C. If a 6 [(x · σ)/y]A [x], i.e. for some b ∈ Rn(a)

b  [(x · σ)/y]B [x]

and
b 6 [(x · σ)/y]C [x],

then by the induction hypothesis

b · σ  B [y] and b · σ 6 C [y].

Since aRnb implies (a · σ)Rm(b · σ) by (0σ), we have a · σ 6 (B ⊃ C) [y].
The other way round, if

a · σ 6 (B ⊃ C) [y],

then for some c ∈ Rm(a · σ)

c  B [y] and c 6 C [y].
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Now by (1σ), there exists b ∈ Rn(a) such that b ·σ≈mc. Then by monotonicity

b · σ  B[y] and b · σ 6 C[y].

So by the induction hypothesis,

b  [(x · σ)/y]B [x] and b 6 [(x · σ)/y]C [x].

Since aRnb, this implies
a 6 [(x · σ)/y]A [x].

(3) Let A = ∀zB, then z 6∈ r(xy) by the choice of A so

[(x · σ)/y]A = ∀z[(xz) · σ+/yz]B.

If
a 6 [(x · σ)/y]A [x],

then there exists b ∈ Rn(a), d ∈ D(b) such that

bd 6 [(xz) · σ+/yz]B [xz].

So by the induction hypothesis

(b · σ)d = (bd) · σ+ 6 B[yz].

Since (a · σ)Rm(b · σ), it follows that

a · σ 6 A[y].

The other way round, suppose a·σ 6 A[y]. Then for some c′ ∈ Rm(a·σ), d ∈
D(c′)

c′d 6� B[yz].

So for c := c′d we have (πσa)Rmc′ = πm
+ c. Hence by (2σ) there exists b ∈ Dn+1

such that
aRn(πn

+b) and (πσ+b)Rm+1c.

Put b′ := πn
+b, then

b = b′bn+1, πσ+b = (πσb′)bn+1.

Since
(πσ+b)Rm+1c 6 B[yz],

by monotonicity we have
πσ+b 6 B[yz].

Then by the induction hypothesis,

b 6 [(xz) · σ+/yz]B [xz].
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But b = b′bn+1, while aRnb′. Hence by the definition of forcing

a 6 ∀z[(xz) · σ+/yz]B [x]

as required.
(4) The case A = ∃zB is dual to the previous one. The proof makes use of

(3σ), cf. the ∃-case in the proof of 5.15.14.
(5) The cases of ∧, ∨ are almost trivial.
(‘If’.) (Cf. the proof of 5.15.14.) For σ ∈ Σmn let us check the properties

(1σ), (2σ), (3σ).

(1σ) Let a ∈ Dn, b′ ∈ Dm, (πσa)Rmb′. Consider A := P (y) ⊃ Q(y), |y| =
m and the intuitionistic model M = (F, ξ) such that

ξ+(P ) = Rm(b′), ξ+(Q) = Rm(b′)− ≈m (b′).

Then b′ ∈ ξ+(P ) − ξ+(Q), thus M,πσa 6 A [y]. Therefore by (#),

M, a 6 [πσx/y]A(= P (πσx) ⊃ Q(πσx)) [x],

i.e. there exists b ∈ Rm(a) such that M,b  P (πσx) [x] and M,b 6
Q(πσx) [x]. Thus πσb ∈ (ξ+(P )− ξ+(Q)) = ≈m (b′), i.e. b′ ≈m πσb.

(2σ) Let a ∈ Dn, c = (πm
+ c)d ∈ Dm+1, and assume that (πσa)Rm(πm

+ c).
Consider the formula A := ∀zP (y, z) with |y| = m, z 6∈ r(yx), and the
intuitionistic model M = (F, ξ) such that

ξ+(P ) = {c′ ∈ Dm+1 | ¬(c′Rm+1c)}.

Since c 6∈ ξ+(P ), we have

M, c 6 P (y, z) [yz],

and so M,πσa 6 A[y], since (πσa)Rm(πm
+ c). Thus by (#), M, a 6

∀zP (πσx, z) [x],27 i.e. there exists b = (πn
+b)d ∈ Dn+1 such that

aRn(πn
+b) & M,b 6 P (πσx, z) [xz].

But (πσx)z = πσ+(xz), thus πσ+(b) 6∈ ξ+(P ), so by definition of M ,
πσ+(b)Rm+1c, as required.

(3σ) The proof is similar to (2σ). We assume a ∈ Dn, c = (πm
+ c)d ∈

Dm+1, (πm
+ c)Rm(πσa) and consider the formula A := ∃zP (y, z), where

|y| = m, z 6∈ r(yx), and the intituionistic model M = (F, ξ) such that
ξ+(P ) = Rm+1(c). Checking the details is left to the reader.

�

27It is essential that here we use ∀zP (πσx, z), a congruent version of [(x · σ)/y]A with a
new variable z (not xi ∈ r(x) − r(πσx)).
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Note that unlike the modal case (Lemma 5.11.9, Proposition 5.11.11), we cannot
consider only quantifier free formulas A in the proof of ‘if’ in the above lemma,
because (2σ), (3σ) are related to quantifiers.

Now we obtain an intuitionistic analogue of 5.11.12:

Proposition 5.15.18 Let M be a model over a wi(=)-metaframe, u ∈ M ,
A, A∗ ∈ IF (=), and let [a/x], [a∗/x∗] be assignments in M giving rise to equal
Du-sentences: [a/x]A = [a∗/x∗]A∗. Then

(♯♯) M, a  A [x] ⇔M, a∗  A [x∗].

Proof Similar to 5.11.12, but now we apply 5.15.14, 5.15.17 instead of 5.10.6,
5.11.7. �

Proposition 5.15.18 allows us to define forcing for Du-sentences [a/x]A in
i-metaframes in the same manner as we did in Kripke sheaves, Kripke bundles
and modal metaframes. In the modal case this definition is successful, due to
the property

(mmn) ∀a∀b (aRnb ⇒ a subb),

cf. Lemma 5.11.2, Proposition 5.11.12. This property also holds in i=-metaframes
(5.14.20), but not always in i-metaframes (cf. Example 2* in 5.16). But i-
metaframes still enjoy the property (##), perhaps thanks to the following
weaker version of (mmn).

Exercise 5.15.19 Show that

(mm∼
n ) ∀a∀b (aRnb ⇒ ∃b′≈n b a subb′)

holds in i-functorial metaframes. Hint: choose σ such that a sub σ & σ sub a
and apply (1σ) to c such that a = πσc.

Now we can prove intuitionistic analogues of results from Section 5.12.
The following lemma is an analogue of 5.12.1.

Lemma 5.15.20 Let M = (F, ξ) be a model over an w(=)-metaframe F, and
let A ∈ IF (=). Then the following conditions are equivalent.

(1) M  A;

(2) M, a  A [x] for any ordered assignment (x,a) in F such that FV (A) =
r(x);

(3) there exists a list of distinct variables r(y) ⊇ FV (A) such that
(♮) M,b  A[y] for any ordered assignment (y,b) in F.

Thus (♮) does not depend on the choice of y.

Proof Along the same lines as 5.12.1, but now we apply 5.15.14 instead of
5.10.6. �
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The next lemma is an analogue of 5.12.2.

Lemma 5.15.21 Let F be an i(=)-metaframe. Then

(1) IL
(=)
− (F) is closed under modus ponens;

(2) for any B ∈ IF (=)

F  B ⇔ F  ∀yB ⇔ F � ∀B;

(3) IL
(=)
− (F) is closed under generalisation;

(4) IL
(=)
− (F) is closed under strict substitutions.

Note that (1) for B ∈ IF holds in every wi-metaframe F.

Proof

(1) Similar to the proof of 5.12.2(2), but now we use Lemma 5.15.14 (and the
reflexivity of Rn 5.15.20).

(2) Cf. the proof of Lemma 5.12.2(3); again we use 5.15.14 and the reflexivity
of Rn.

(3) Follows from (2).

(4) The argument is essentially the same as in the proof of 5.12.2(4). Assuming
that S = [C/P (y)] is a strict substitution (FV (C) ⊆ y) and F  A, we
show that F  SA, i.e. M, a  SA [x] for any intuitionistic model M and
any assignment (x,a) with r(x) = FV (A) ⊇ FV (SA).

By Lemma 5.15.16, we may assume that A is clean, BV (A) ∩ r(x) = ∅.

Consider the model N = (F, η) such that

η+(P ) = {b |M,b  C [y]},
η+(Q) = ξ+(Q) for any other predicate letter Q.

This model is intuitionistic, by monotonicity of F. Now it suffices to prove
by induction that

(♯) N, a  B [z] iff M, a  SB [z]

for any subformula B of A and for any assignment (z,a) with r(z) ⊇
FV (B), r(z) ∩BV (B) = ∅.

If B = P (z · σ) for a map σ, then SB = [z · σ/y]C. By Definition 5.14.2,
the choice of N , and Lemma 5.15.17 we have

N, a  B [z] iff (a ·σ) ∈ η+(P ) iff M, a · σ  C [y] iff M, a  [z · σ/y]C [z],

and thus (♯) holds.
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If B = B1 ⊃ B2 and (♯) holds for B1, B2, we obtain it for B:

N, a  B [z] iff ∀b ∈ Rn(a) (N,b  B1 [z] ⇒ N,b  B2 [z]) iff
∀b ∈ Rn(a) (M,b  SB1 [z] ⇒M,b  SB2 [z]) iff
M, a  SB1 ⊃ SB2 (= SB) [z]

(where n = |a|).

Suppose B = ∀vB1 and (♯) holds for B1. By our assumption, v 6∈ r(z), so
we have

N, a  B [z] iff ∀b ∈ Rn(a) ∀c ∈ D(b) N,bc  B1 [zv]
iff ∀b ∈ Rn(a) ∀c ∈ D(b) M,bc  SB1 [zv]
iff M, a  ∀v(SB1) (= SB) [z].

Thus (♯) holds for B.

The cases B = B1 ∧ B2, B1 ∨ B2, ∃vB1 are left to the reader, and the
case B = ⊥ is trivial.

�

Now similarly to 5.12.3 we obtain the following

Proposition 5.15.22 Let F be an i(=)-metaframe. Then

IL(=)(F) = {A ∈ IF (=) | F  An for any n ∈ ω},

= {A ∈ IF (=) | F  An for any n ∈ ω}.

Therefore IL=(F) is conservative over IL(F).

We also obtain the following analogues of 5.12.9, 5.12.10.

Proposition 5.15.23 For an i(=)-metaframe F

IL(=)
π (F) =

⋂

n∈ω

IL(Fn).

Corollary 5.15.24 All theorems of H are strongly valid in every i-metaframe.

Proof H ⊆ IL(Fn) if Fn is an S4-frame. �

Remark 5.15.25 Note that we cannot extend Lemma 5.15.21 and Proposition
5.15.22 to wi-metaframes, but Proposition 5.15.23 still holds (cf. Exercise 5.12.11
for the modal case). However in the next section we will show that only i(=)-
metaframes can validate predicate all QH-axioms (and theorems).

Theorem 5.15.26 (Soundness theorem) For any i(=)-metaframe F, IL(=)(F)
is an s.p.l.(=).
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Proof Soundness of the inference rules is proved by the same argument as in
5.12.12. Now similarly to 5.12.13, we prove the strong validity of the predicate
axioms (and the axioms of equality — for i=-metaframes); all these formulas
can be supposed clean. So consider an intuitionistic model M = (F, ξ).

• A1 := ∀yP (x, y) ⊃ P (x, z), for y, z 6∈ x, y 6= z, |x| = n.

It is sufficient to show that

ab  ∀yP (x, y) [xz] ⇒ ab  P (x, y) [xz].

So assume ab  ∀yP (x, y) [xz]; then by 5.15.14 a  ∀yP (x, y) [x]. Hence
(by the reflexivity of Rn) for any c ∈ D(a), ac  P (x, y) [xy], which
is equivalent to ac ∈ ξ+(P ), and thus to ac  P (x, z) [xz]. Therefore
ab  P (x, z) [xz].

• A2 := P (x, z) ⊃ ∃yP (x, y), where y, z 6∈ x, y 6= z, |x| = n.

Assume ab  P (x, z) [xz], i.e. ab ∈ ξ+(P ), which is equivalent to ab 
P (x, y) [xy]. Since a ≈n a, by the definition of forcing it follows that
a  ∃yP (x, y) [x]; hence ab  ∃yP (x, y) [xz] by 5.15.14.

• A3 := ∀y(Q(x) ⊃ P (x, y)) ⊃ (Q(x) ⊃ ∀yP (x, y)), where y 6∈ x, |x| = n.

Assuming

(3.1) a  ∀y(Q(x) ⊃ P (x, y)) [x],

let us show

(3.2) a  (Q(x) ⊃ ∀yP (x, y)) [x].

In fact, (3.1) means

(3.3) ∀b ∈ Rn(a) ∀c ∈ D(b) bc  (Q(x) ⊃ P (x, y)) [xy],

and we have to show for any b ∈ Rn(a)

(3.4) b  Q(x) [x] ⇒ b  ∀yP (x, y) [x].

So we assume

(3.5) b  Q(x) [x]

and prove that

(3.6) b  ∀yP (x, y) [x],

which means

(3.7) ∀d ∈ Rn(b) ∀c ∈ D(d) dc  P (x, y) [xy].
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Let bRnd; by monotonicity, (3.5) implies

(3.8) d  Q(x) [x];

then d ∈ ξ+(Q), and thus

(3.9) ∀c ∈ D(d) dc  Q(x) [xy].

On the other hand, Rn is transitive, so d ∈ Rn(a), and (3.3) implies

(3.10) ∀c ∈ D(d) dc  (Q(x) ⊃ P (x, y)) [xy].

Eventually from (3.9) and (3.10) we obtain

∀c ∈ D(d) dc  P (x, y) [xy],

which yields (3.6).

Therefore (3.4) holds.

• A4 := ∀y(P (x, y) ⊃ Q(x)) ⊃ (∃yP (x, y) ⊃ Q(x)), for y 6∈ x, |x| = n.

Assuming

(4.1) a  ∀y(P (x, y) ⊃ Q(x)) [x]

let us show

(4.2) a  (∃yP (x, y) ⊃ Q(x)) [x].

Consider an arbitrary b ∈ Rn(a) such that

(4.3) b  ∃yP (x, y) [x].

We have to show that

(4.4) b  Q(x) [x].

By (4.3) we have for some b′ ≈n b, c ∈ D(b′),

(4.5) b′c  P (x, y) [xy].

Now aRnb′, so by (4.1)

(4.6) b′c  (P (x, y) ⊃ Q(x)) [xy].

From (4.5), (4.6) we obtain

(4.7) b′c  Q(x) [xy],

which implies

(4.8) b′  Q(x) [x],

and the latter implies (4.4) by monotonicity, since b′ ≈n b.
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• A5 := (x = x). The proof is trivial.

• A6 := (y = z ⊃• P (x, y) ⊃ P (x, z)), y, z 6∈ x, y, z are distinct, |x| = n.

In fact, assume

(6.1) abc  y = z [xyz]

and

(6.2) (abc)Rn+2d.

From (6.1) we readily obtain b = c, and (6.2) implies (abc) subd by 5.14.20
(I4). Hence dn+1 = dn+2. Now we have to check that

(6.3) d  P (x, y) [xyz] ⇒ d  P (x, z) [xyz].

So suppose

(6.3) d  P (x, y) [xyz].

By 5.15.18, this implies

(6.4) (d1, . . . , dn+1)  P (x, z) [xz].

Since dn+1 = dn+2, (6.4) is the same as

(6.5) (d1, . . . , dn, dn+2)  P (x, z) [xz].

which (again by 5.15.18) implies

d  P (x, z) [xyz].

Thus (6.3) holds.

�

Recall that QS4-metaframe is i=-functorial. So we can conclude that IL(=)(F)
is a superintuitionistic predicate logic for any QS4-metaframe F. Thus sound-
ness theorem 5.15.26 implies Proposition 5.14.7.

5.16 Maximality theorem

In this section we prove necessary conditions for intuitionistic soundness. To
this end, we present Definitions 5.15.7, 5.15.8, 5.15.9 in a more convenient form.
But first let us recall basic properties of i-metaframes and introduce some their
versions.

(0σ) ∀a,b ∈ Dn(aRnb ⇒ (πσa)Rm(πσb)),
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(1σ) ∀a ∈ Dn ∀b′ ∈ Dm((πσa)Rmb′ ⇒ ∃b ∈ Dn(aRnb & πσb ≈m b′)).

(2σ) (forward 2-lift property)

∀a ∈ Dn ∀b ∈ Dm+1((πσa)Rm(πm
+ b) ⇒ ∃c ∈ Dn+1(aRn(πn

+c) &
(πσ+c)Rm+1b));

(3σ) (backward 2-lift property)

∀a ∈ Dn ∀b ∈ Dm+1((πm
+ b)Rm(πσa) ⇒ ∃c ∈ Dn+1((πn

+c)Rna &
bRm+1(πσ+c)));

(mm2) ∀a, b1, b2 ((a, a)R2(b1, b2) ⇒ b1 = b2).

Recall that i-metaframes are the S4-metaframes satisfying (0σ), (1σ), (2σ), (3σ)
for all σ; wi-metaframes satisfy the same conditions for all injective σ; (w)i=-
metaframes also satisfy (mm2). The correlation between different kinds of
metaframes is shown in the diagram below.

i-functorial metaframes

wi-metaframes

wi=-metaframes

s-functorial metaframes

s=-functorial metaframes

i-metaframes

i=-metaframes

By Lemma 5.14.14 the condition ∀σ (0σ) (i.e. s-functorality) is equivalent
to the conjunction of the following properties:

(I1) (0σ) holds for all permutations σ;

(I2.1) ∀n > 0 ∀u, v ∈ W ∀a ∈ Dn
u ∀b ∈ Dn

v (aRnb ⇒ uRv);

(I2.2) ∀n > 0 ∀u, v ∈ W ∀a ∈ Dn
u ∀b ∈ Dn

v ∀c ∈ Du ∀d ∈ Dv ((ac)Rn+1(bd) ⇒
aRnb),

(I3) ∀n > 0 ∀a,b ∈ Dn (aRnb ⇒ (aan)Rn+1(bbn)).

We also need the following conditions:

(I2.3) ∀n > 0 ∀u, v (uRv ⇒ ∀a ∈ Dn
u ∃t ≈0 v ∃b ∈ Dn

t aRnb)’

(I2.4) ∀n, a,b (πn
+(a)Rnb ⇒ ∃c ∈ Dn+1 (aRn+1c & (πn

+c) ≈n b));

(I4.1) for any a, b ∈ D1

π∅(a)R0π∅(b) ⇒ ∃c1, c2 (π∅(c1) = π∅(c2) & aR1c1 & c2R
1b);
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(I4.2) for any n > 0, a,b ∈ Dn+1

(πn
+a)Rn(πn

+b) ⇒ ∃c ∈ Dn ∃d, e ∈ D(c) (aRn+1(cd) & (ce)Rn+1b);

(I5.1) (aan)Rn+1b & bn 6= bn+1 ⇒ ∃c ∈ Rn(a) ((ccn) ≈n+1 b);

(I5.2) for any a ∈ Dn, b ∈ Dn+2, n > 0

(aan)Rn+1(πn+1
+ b) & bn 6= bn+1 ⇒ ∃c ∈ Dn ∃d ∈ D(c)

(aRnc & (ccnd)Rn+2b);

(I5.3) for any a ∈ Dn, b ∈ Dn+2, n > 0

(πn+1
+ b)Rn+1(aan) & bn 6= bn+1 ⇒
∃c ∈ Dn ∃d ∈ D(c) (cRna & bRn+2(ccnd));

and also the following:28

(I5) for any a ∈ Dn, b ∈ Dn+2, n > 0

(aan)Rn+1b̂1 & bn+1 6= bn+2 ⇒ ∃c ∈ Dn+1 b ≈n+2 ccn+1;

(I5′) for any a ∈ D1, b ∈ Dn+1, n > 0
(a, a)R2(bn, bn+1) & bn 6= bn+1 ⇒ ∃c ∈ Dn b ≈n+1 ccn.

Later on we will show (Lemma 5.16.9) that each of (I5), (I5′) is equivalent
to (I5.1) & (I5.2) & (I5.3).

Lemma 5.16.1 In i-functorial metaframes (I4.1), (I4.2) are respectively equiv-
alent to

(I4.1∼) for any a, b ∈ D1

π∅(a) ≈0 π∅(b) ⇒ ∃c1, c2 (π∅(c1) = π∅(c2) & aR1c1 & c2R
1b),

(I4.2∼) for any n > 0, a,b ∈ Dn+1

πn
+a ≈n πn

+b ⇒ ∃c ∈ Dn ∃d, e ∈ D(c) (aRn+1(cd) & (ce)Rn+1b).

Proof Note that (I4.1) is (2∅1). In fact ∅1 = σ0
+ (and π∅1(a) = π0

+(a) is the
world of a ∈ D1), so (2∅1) is

∀a, b ∈ D1 (π∅(a)R0π∅(b) ⇒ ∃c ∈ D2(aR1π1
+c & π

∅
+
1

(c)R1b)).

Now if c = c1c2, then π1
+(c) = c1, π∅

+
1

(c) = c2. By the same reason, (I4.1∼)

is (2∼∅1) from 5.15.12. So by 5.15.12, (I4.1) ⇔ (I4.1∼).
Analogously, (I4.2) is (2σn

+) and (I4.2∼) is (2∼σn
+), so (I4.1) ⇔ (I4.2∼). �

28Recall that ĉ1 is obtained by eliminating c1 from c.
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The next lemma is similar to 5.11.3 and 5.11.6.

Lemma 5.16.2 Let F be an s-functorial metaframe, and let σ ∈ (Σmn −Υmn),
m ≥ 2. Then F is s=-functorial (i.e. satisfies (mm2)) iff πσ[Dn] is Rm-stable.

Recall that πσ is surjective iff σ is injective.

Proof (Only if.) Assume that πσ[Dn] is Rm-stable, but F does not satisfy
(mm2). Suppose (aa)R2(b1b2), b1 6= b2, and i, j ∈ Im, i 6= j, σ(i) = σ(j).

Now let29 a := am; then a = an · σ ∈ πσ[Dn]. Next, let c := bi−1
1 b2b

m−i
1 .

Then ci 6= cj , so ¬(σ sub c), and thus c 6∈ πσ[Dn], by Lemma 5.9.5.
On the other hand, consider τ ∈ Σn2 such that τ(i) = 2, τ(j) = 1 for j 6= i.

Then a = πτ (aa), c = πτ (b1b2), and thus aRmc by s-functoriality. Therefore
c ∈ (Rm(πσ[Dn]) − πσ[Dn]), which contradicts our assumption.

(If.) If F is s=-functorial, it satisfies (mmm) (Lemma 5.11.2). Then by
Lemma 5.11.3, πσ[Dn] is Rm-stable. �

Let us now reformulate the condition (1σ). Note that for an s-functorial
metaframe F, (1σ) means that πσ is a quasi-p-morphism from (Dn, Rn) onto
(Dm, Rm).

Lemma 5.16.3 Every s-functorial metaframe satisfies (1σ) for any permuta-
tion σ.

Proof s-functoriality implies permutability (cf. Definition 5.10.1), so by 5.10.2,
for any σ ∈ Υn, πσ is an automorphism of Fn, and thus a (p-)morphism. �

Lemma 5.16.4 Let F be an s-functorial metaframe

(1) If F satisfies (1σn
+) for any simple embedding σn

+, then it satisfies (1σ) for
any injection σ.

(2) If F satisfies (1σn
+) and (1σn

−) for every n, then it satisfies (1σ) for any
σ.

Proof Follows from 5.16.3 and the observation that the composition of quasi-
morphisms is a quasi-morphism. �

Lemma 5.16.5 Let F be an s-functorial metaframe. Then

(1) F satisfies (1σ) for any injection σ iff it satisfies (I2.3) and (I2.4);

(2) F satisfies (1σ) for any σ iff it satisfies (I2.3), (I2.4), and (I5.1);

(3) If F is s=-functorial, then

(a) F satisfies (I5.1);

(b) (1σ) holds for any σ iff it holds for any injection σ (iff F satisfies
(I2.3) and (I2.4), by (1)).

29For the notation am, see the Introduction.
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(I2.3) can also be replaced with its particular case corresponding to n = 1,
cf. Lemma 5.14.18.

Note that in (I2.3) the worlds of a and b are ≈0-equivalent, but not neces-
sarily equal.

Proof

(1) (I2.3) is the quasi-lift property (1∅n) and (I2.4) is the quasi-lift property
(1σn

+) for n > 0. Since ∅1 is σ0
+, we can apply Lemma 5.16.4(1).

(2) Similarly, we can apply 5.16.4(2). Now (I5.1) is (2σn
−), up to the conjunct

bn 6= bn+1 in the premise. But bn = bn+1 obviously implies the conclusion
of (I5.1) — just put c = b; thus (I5.1) ⇔ (1σn

−).

(3) (a) By (mmn+1), (aan+1)Rn+1b implies bn = bn+1, so the premise of
(I5.1) is false.
(b) Obviously follows from (2) and (3)(a).

�

Now let us turn to properties (2σ), (3σ). It is clear that (3σ) is dual to (2σ),
so it can be analysed in a similar way.

Lemma 5.16.6 Let F be an s-functorial S4-metaframe. Then

(2σ) & (2τ) ⇒ (2(σ · τ))

and
(3σ) & (3τ) ⇒ (3(σ · τ)).

Proof We prove only the first implication; the second one is an easy exercise
for the reader.

So assume (2σ) & (2τ). Let σ ∈ Σmn, τ ∈ Σkm; then σ · τ ∈ Σkn. Let
a ∈ Dn, c = c′ck+1 ∈ Dk+1, and assume that

(πσ·τa) = ((πσa) · τ)Rk(πk
+c) = c′.

Then by (2τ), there exists d = d′dm+1 ∈ Dm+1 such that

(πσa)Rm(πm
+ d) = d′, (d · τ+)Rk+1c.

Now by (2σ), there exists b = b′bn+1 ∈ Dn+1 such that aRn(πn
+b) = b′ and

(πσ+b) = (b′ · σ)bn+1R
m+1d. Thus

π(σ·τ)+b = b · (σ · τ)+ = ((b′ · σ) · τ)bn+1 = ((πσ+b) · τ+)Rk+1(d · τ+)

by s-functoriality. So by the transitivity ofRk+1, it follows that (π(σ◦τ)+b)Rk+1c.
�
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Lemma 5.16.7 Let F be an s-functorial S4-metaframe. Then (2σ), (3σ) hold
for any permutation σ ∈ Υn.

Proof Let us check (3σ). Let

a ∈ Dn, c = c′cn+1 ∈ Dn+1, πn
+c = c′Rn(a · σ).

Put b = (c′ · σ−1)cn+1. Then by s-functoriality,

πn
+b = (c′ · σ−1)Rn((a · σ) · σ−1) = a.

We also have:

πσ+b = ((c′ · σ−1) · σ)cn+1 = c′cn+1 = c,

and thus cRn+1(πσ+b) by the reflexivity of Rn+1. �

So to prove (2σ), (3σ) for all injective σ (respectively, for all σ), it suffices to
check them only for simple embeddings σn

+ (respectively for all σn
+, σ

n
−). This

is the same as with (1σ) in Lemma 5.16.7.

Lemma 5.16.8 Let F be an s-functorial S4-metaframe. Then

(1) (2σ) & (3σ) holds for any σ iff (I4.1) & (I4.2).

(2) (2σ) & (3σ) holds for any σ iff (I4.1) & (I4.2) & (I5.2) & (I5.3).

(3) If F is s=-functorial, then

(a) F satisfies (I5.2) & (I5.3).

(b) (2σ) & (3σ) holds for any σ iff it holds for any injection σ (i.e. iff F
satisfies (I4.2) & (I4.2), by (2)).

Note that aRnb iff (aan)Rn+1(bbn) by s-functoriality; so we can respectively
change (I5.2); similarly with (I5.3).

Proof (1) As we noticed in the proof of 5.16.1, (2∅1) is equivalent to (I4.1),
and (2σn

+) is equivalent to (I4.2).
(3σ) is obtained from (2σ) by replacing every Rk with its converse and

permuting a with c. But this replacement does not change (I4.1), (I4.2); so
(3σn

+) is equivalent to (2σn
+).

(2) (2σn
−) is

∀a ∈ Dn ∀b ∈ Dn+2 ((aan)Rn+1(πn+1
+ b) ⇒

∃g ∈ Dn+1 (aRn(πn
+g) & (π(σn

−)+g)Rn+2b)).

If g = cd, c ∈ Dn, d ∈ D(c), then

c = πn
+g, π(σn

−)+g = (c · σn
−)d = ccnd,
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so (2σn
−) is equivalent to

∀a ∈ Dn ∀b ∈ Dn+2 ((aan)Rn+1(πn+1
+ b) ⇒

∃c ∈ Dn ∃d ∈ D(c) (aRnc & (ccnd)Rn+2b)).

Note that this implication holds if bn = bn+1. In fact, put

c := b1 . . . bn = πn
+π

n+1
+ b, d := bn+2;

then (aan)Rn+1(πn+1
+ b) implies aRnc by s-functoriality, and ccnd = cbn+1d =

bRn+2b by reflexivity. Therefore (2σn
−) is equivalent to (I5.2).

Thus an equivalent of (3σn
−) is obtained from (I5.2) by replacing Rn+1, Rn+2

with their converses, which is an equivalent of (I5.3).
(3)(b) By 5.14.20 s-functorial metaframes satisfy (mmn+1). Thus (aan)Rn+1

(πn+1
+ b), implies (aan) sub (πn+1

+ b), and hence bn = bn+1. So (I5.2) holds triv-
ially. Similarly we obtain (I5.3). �

Lemma 5.16.9 Let F be an s-functorial metaframe satisfying. Then

(1) (I5.1) & (I5.2) is equivalent to each of (I5), (I5′).

(2) If F also satisfies (I2.4), then each of these conditions implies (I5.3) and
thus

(I5) ⇔ (I5′) ⇔ (I5.1) & (I5.2) & (I5.3).

Proof Let us first show that (I5) is equivalent to (I5′).

• (I5) for n = 1 ⇒ (I5′) for n = 1.

Assume (I5) for n = 1:

∀a ∈ D1 ∀d ∈ D3 ((a, a)R2(d2, d3) & d2 6= d3 ⇒ ∃e ∈ D2 d ≈3 ee2). (⋆)

To check (I5′), suppose (a, a)R2(b1, b2), b1 6= b2. Let us find c ∈ D1 such
that (b1, b2) ≈2 (c, c). Put d := b1b2b1. By (⋆) there exists e ∈ D2 such
that d ≈3 ee2 = e1e2e2. If σ ∈ Υ23 is such that σ(1) = 2, σ(2) = 3, then
b1b2b1 ·σ = b1b2, ee2 ·σ = e2e2; so by s-functoriality it follows that b1b2 ≈2 e2e2,
and we can put c = e2.

• Suppose (I5), (I5′) hold for n, and let us prove (I5′) for n+ 1.

So we assume b ∈ Dn+2, a ∈ D1, (a, a)R2(bn+1, bn+2), bn+1 6= bn+2, and

find c ∈ Dn+1 such that b ≈n+2 ccn+1. By (I5′) for n, for b̂1 = b2 . . . bn+2

there exists c′ ∈ Dn+1 such that b̂1 ≈n+1 c′c′n. Then we apply (I5) to
a := c′, b and obtain c ∈ Dn+1 such that b ≈n+2 ccn+1.

• (I5′) for n+ 1 ⇒ (I5) for n.

In fact, assume (I5′) for n+ 1. Suppose

a ∈ Dn, b ∈ Dn+2, (aan)Rn+1b̂1, bn+1 6= bn+2.

Then (an, an)Rn+1(bn+1, bn+2) by s-functoriality, hence by (I5′), ∃c ∈
Dn+1 b ≈n+2 ccn+1.
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• (I5.1) & (I5.2) ⇒ (I5).

In fact, assume (I5.1), (I5.2). Suppose

a ∈ Dn, b ∈ Dn+2, bn+1 6= bn+2,

(aan)Rn+1b̂1. Now we can apply (I5.2) to a and b̂1b1 = b2 . . . bn+1bn+2b1
(this is possible, since bn+1 6= bn+2). So there exist e ∈ Dn, d ∈ D(e)

such that (eend)Rn+2(b̂1b1). Hence by s-functoriality (deen)Rn+2b, and
thus by (I5.1) there exists c ∈ Dn+1 such that b ≈n+2 ccn+1.

• (I5′) ⇒ (I5.1).

In fact, assume (I5′). Suppose a ∈ Dn, (aan)Rn+1b, bn 6= bn+1. Then
by s-functoriality, (an, an)R2(bn, bn+1). Hence by (I5′), there exists c ∈
Dn such that b ≈n+1 ccn. Hence (aan)Rn+1(ccn) by transitivity, and
eventually aRnc, by s-functoriality. Therefore (I5.1) holds.

• (I5′) ⇒ (I5.2).

In fact, assume (I5′). Suppose

a ∈ Dn, b ∈ Dn+2, (aan)Rn+1(b1 . . . bn+1) = πn+1
+ b;

then
aRn(b1 . . . bn), (an, an)R2(bn, bn+1)

by s-functoriality. Now by (I5′) applied to d := bn+2b1 . . . bn+1 ∈ Dn+2,
there exists e = c0c1 . . . cn ∈ Dn+1 such that

d ≈n+2 een+1 = c0c1 . . . cncn.

Then by s-functoriality,

c1 . . . cncnc0 ≈n+2 b, b1 . . . bn ≈n c1 . . . cn,

and so aRn(c1 . . . cn). Therefore for c := c1 . . . cn, we have aRnc and
(ccnc0)Rn+2b as required.

• Finally let us show that together with (I2.4), (I5′) implies (I5.3).

Assume (I5′). Let a ∈ Dn, b ∈ Dn+2, and (πn+1
+ b)Rn+1(aan). Then by

(I2.4) there exists c ∈ Dn+2 such that

bRn+2c and aan ≈n+1 c1 . . . cn+1.

Now (an, an)R2(cn, cn+1) by s-functoriality, so by (I5′) (applied to an, c1
. . . cn+1) we obtain d ∈ Dn+1, such that c1 . . . cn+1 ≈n+2 ddn+1. Thus

bRn+2c ≈n+2 d2 . . . dn+1dnd1

again by s-functorality. By s-functoriality we also have

d2 . . . dn+1 ≈n c1 . . . cn ≈n a,

so (d2 . . . dn+1)Rna, which proves the conclusion of (I5.3) (where d2 . . . dn+1

stands for c, d1 stands for d).
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�

Note that again (I5), (I5′) become obvious if bn 6= bn+1 is replaced with
bn = bn+1 — take c = b.

Therefore we obtain the following equivalent form of Definitions 5.15.7,
5.15.8, 5.15.9.

Proposition 5.16.10 Let F be an S4-metaframe. Then

(1) F is a wi-metaframe iff F is an s-functorial metaframe satisfying (I2.3) &
(I2.4) & (I4.1) & (I4.2);

(2) F is an i-metaframe iff F is a wi-metaframe satisfying (I5) (or equivalently,
(I5 ′));

(3) F is a wi=-metaframe iff F is an i=-metaframe iff F is a wi-metaframe
satisfying (mm2).

Proof (1) If a metaframe is s-functorial, then by 5.16.5, the quasi-lift property
for injections is equivalent to (I2.3) & (I2.4), and by 5.16.8, the 2-lift properties
for injections are (together) equivalent to (I4.1) & (I4.2).

(2) By 5.16.5, in s-functorial metaframes the quasi-lift property for all maps
is equivalent to (I2.3) & (I2.4) & (I5.1). By 5.16.8, the 2-lift properties for all
maps are equivalent to (I4.1) & (I4.2) & (I5.2) & (I5.3).

So if F is quasi-functorial, it is weakly functorial and satisfies (I5.1) & (I5.2).
By 5.16.9, the latter implies (I5).

The other way round, if F is weakly functorial and satisfies (I5), then by
5.16.9, it satisfies (I5.1), (I5.2), (I5.3). Also by (1), it satisfies (I2.3) & (I2.4) &
(I4.1) & (I4.2), which yields the quasi-lift and the 2-lift properties.

(3) By 5.16.5, for monotonic= metaframes the quasi-lift property for all
injections implies it for all maps. By 5.16.8, the same happens to the 2-lift
properties. �

Proposition 5.16.11 Let F be an S4-metaframe such that QH ⊆ IL(=)(F).
Then F is an i(=)-metaframe.

Proof By Proposition 5.14.16, F is monotonic(=). So by Proposition 5.16.10
it is sufficient to check the properties (I2.3), (I2.4), (I4.1), (I4.2), (I5):

(I2.4) aRnb ⇒ ∀d ∈ D(a) ∃c ∈ Dn+1 ((ad)Rn+1c & (πn
+c) ≈n b);

(I2.3) uRv ⇒ ∀d ∈ Du ∃t ≈0 v ∃c ∈ Dt dR
1c.

The proofs in both cases are quite similar. Suppose aRnb, n > 0 d ∈ D(a)
(or uRv, d ∈ Du). Consider the QH-theorem

A1 := ∃yp ⊃ p

for p ∈ PL0 and its substitution instance.

A := ∃y(P (x) ⊃ Q(x)) ⊃• P (x) ⊃ Q(x),
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where |x| = n, y 6∈ x. Let M := (F, ξ) be an intuitionistic model such that

ξ+(P ) = Rn(b), ξ+(Q) = Dn − (Rn)−1(b).

Thus

ξ+(P ) − ξ+(Q) =≈n (b),

in particular b ∈ ξ+(P ) − ξ+(Q), hence M, a 6 P (x) ⊃ Q(x) [x], so from the
assumption M  A we obtain

M, a 6 ∃y(P (x) ⊃ Q(x)) [x],

and thus

M, ad 6 (P (x) ⊃ Q(x)) [xy].

So there exists c such that

(ad)Rn+1c & c  P (x) [xy] & c 6 Q(x) [xy].

Since x = (xy) · σn
+, by definition of forcing it follows that

πn
+c ∈ (ξ+(P ) − ξ+(Q)) = ≈n (b),

which proves (I2.4). The changes for (I2.3) are now obvious: n = 0 and

ξ+(P ) = R(v), ξ+(Q) = W −R−1(v).

(I4.1) π∅(a)R0π∅(c) ⇒ ∃b1, b2 (π∅(b1) = π∅(b2) & aR1b1 & b2R
1c),

(I4.2) (πn
+a)Rn(πn

+c) ⇒ ∃b ∈ Dn ∃d, e ∈ D(b) (aRn+1(bd) & (be)Rn+1c).

For these properties the proofs are also similar, so we check only (I4.2). Sup-
pose (πn

+a)Rn(πn
+c) and consider the intuitionistic model M := (F, ξ) such that

ξ+(P ) = Dn+1 − (Rn+1)−1(c). By the assumption, the QH-theorem (the sub-
stitution instance of the same A1)

B := ∃y∀zP (x, z) ⊃ ∀zP (x, z),

where |x| = n, y, z 6∈ x, y 6= z, is true in M .
But M, c 6 P (x, z) [xz], and so since (πn

+a)Rn(πn
+c), we have M,πn

+a 6
∀zP (xz) [x]. Now M  B implies M,πn

+a 6 ∃y∀zP (x, z)[x]; hence M, a 6
∀zP (x, z) [xy]. So there exists bde ∈ Dn+2 such that aRn+1(bd) and M,bde 6
P (x, z) [xyz]. The latter is equivalent to be 6∈ ξ+(P ), i.e. to (be)Rn+1c, by the
definition of ξ. Thus (I4.2) holds.

(I5) (aan)Rn+1ĉ1 & cn 6= cn+1 ⇒ ∃b ∈ Dn+1 c ≈n+2 bbn+1.

Recall that by Proposition 5.16.10, this property is essential only for the case
without equality.
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Suppose (aan)Rn+1ĉ1. Take a distinct list x of length n, y, z 6∈ x, y 6= z
and consider the following formulas:

B1 := ∀y(P1(y,x, z) ⊃ P2(y,x, z)),
B2 := Q1(x, z) ⊃ Q2(x),
B := B1 ∧ B2, A := [xn/z]B ⊃ ∃zB.

Obviously, A is a QH-theorem (a substitution instance of the axiom A2 :=
P (xn) ⊃ ∃zP (z)). Consider the intuitionistic model M := (F, ξ) such that

ξ+(P1) = Rn+2(c),
ξ+(P2) = Dn+2 − (Rn+2)−1(c),
ξ+(Q1) = Dn+1 − (Rn+1)−1(aan),
ξ+(Q2) = Dn − (Rn)−1(a).

Then obviously

(0) ξ+(P1) − ξ+(P2) = ≈n+2 (c).

Now we claim that

(0.1) M, a 6 ∃zB [x].

In fact, suppose the contrary. Then there exists de ∈ Dn+1 such that

(1) dRna and de  B [xz].

Hence

(2) de  (Q1(x, z) ⊃ Q2(x)) [xz].

By the choice of M , dRna implies d 6∈ ξ+(Q2) and thus

(3) de 6 Q2(x) [xz].

Now from (2), (3) we obtain

(4) de 6 Q1(x, z) [xz],

which according to the choice of M , is equivalent to

(5) (de)Rn+1(aan).

By (1) we also have

(6) (de)  ∀y(P1(y,x, z) ⊃ P2(y,x, z)) [xz].

By our initial assumption, (aan)Rn+1ĉ1, hence (de)Rn+1ĉ, by (5). Now by (6)
we obtain

(7) ĉ1c1  (P1(y,x, z) ⊃ P2(y,x, z)) [xy],



5.16. MAXIMALITY THEOREM 479

On the other hand, by (0)

c = c1ĉ1 ∈ ξ+(P1) − ξ+(P2),

so

ĉ1c1  P1(y,x, z) [xzy]

and

ĉ1c1 6 P2(y,x, z) [xzy].

This contradicts (7) and the reflexivity of Rn+2.
So we have proved that a 6 ∃zB [x]. But M  A, therefore

(8) a 6 [xn/z]B [x].

However note that

(9) M  [xn/z]B2 [x].

In fact, if (in M) d 6 Q2(x) [x], then by definition, dRna, which implies
(ddn)Rn(aan) by s-functoriality. But the latter means (ddn) 6∈ ξ+(Q1), i.e.
d 6 Q1(x, xn) [x]. Eventually from (8) and (9) it follows that

a 6 [xn/z]B1 [x].

So there exists e ∈ Dn+1 such that

e  P1(y,x, xn) [xy] and e 6 P2(y,x, xn) [xy],

which is equivalent to

(en+1een) ∈ (ξ+(P1) − ξ+(P2)) = ≈n+2 (c)

by (0). Then b := en+1e fits for the conclusion of (I5). �

Remark 5.16.12 So we see that F is an i(=)-metaframe if IL(=)(F) contains
A0 := (p ⊃ .⊤ ⊃ p) (cf. the proof of 5.14.12) and A1, A2 from the proof above.

Theorem 5.16.13 (Maximality theorem) Let F be an S4-metaframe. Then
the following conditions are equivalent:

(1) IL(=)(F) is an s.p.l (=);

(2) QH ⊆ IL(=)(F);

(3) F is an i(=)-metaframe.

Proof In fact, (2) ⇒ (3) by Proposition 5.16.11; (3) ⇒ (1) by Theorem 5.15.26.
(1) ⇒ (2) is trivial. �
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Therefore we can introduce the intuitionistic semantics of metaframes MF
(=)
int

generated by i(=)-metaframes.
Theorem 5.16.13 shows that (using the terminology from Section 2.12) this is

the greatest sound semantics of S4-metaframes for superintuitionistic logics, be-
cause it is generated by all S4-metaframes strongly validating QH(=)-theorems.
Therefore the list of properties of i(=)-metaframes, yields a precise criterion of
intuitionistic soundness for metaframes. In the next section we will apply this
criterion to describe intuitionistic soundness in Kripke-quasi-bundles.

Note that the classes of weak i-metaframes, i-metaframes and i=-metaframes
are actually different. Let us consider two simple examples.

Example 5.16.14 Let F1 = ((Fn)n∈ω, D), be an S4-metaframe such that

• D0 = {u0, u1}, (D0, R0) is a two-element chain;

• Du0 = {d0}, Du1 = {d1, d2};

• (Dn, Rn) is a tree of height 2 with the root dn
0 , i.e. the tuple dn

0 sees all
n-tuples from Du1 (which are incomparable).

•

•

u0

u1

•

• •

d0

d1 d2

On one hand, by Proposition 5.16.10, F1 is a wi-metaframe: the s-functoriality,
(I2.3), (I2.4), (I6.1), (I6.2) hold obviously. For example, for (I6.2): if n >
0, (a1, . . . , an, an+1) ∈ (Du)n+1, (c1, . . . , cn, cn+1) ∈ (Dv)n+1, (a1, . . . , an)
Rn(c1, . . . , cn), then we can put (b1, . . . , bn, d, e) := (d0, . . . , d0, d0, cn+1) if u =
u0, and (b1, . . . , bn, d, e) := (a1, . . . , an, an+1, cn+1) if (a1, . . . , an) = (c1, . . . , cn).

On the other hand, F1 is not an i-metaframe, since (I5) fails for n = 1. In
fact, (d0, d0)R2(d1, d2), but there does not exist b′ = (b0, b1, b1) ≈3 (d1, d1, d2).

Example 5.16.15 Let F2 be the metaframe with the same D as F1 and with
the universal R′0, R′n = Rn ∪ (Rn)−1, see the following figure:

Again, F2 is a wi-metaframe, and even an i-metaframe: (I5) holds since
(d0, d0, d0) ≈3 (d1, d2, d2), etc. On the other hand, F2 is not an i=-metaframe
— (mm2) fails, since (d0, d0)R′2(d1, d2), but d1 6= d2.
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•

•

u0

u1

•

• •

d0

d1 d2

Therefore, the class of i-metaframes (which are sound for the intuitionistic
logic without equality) is larger than the class of i=-metaframes. Recall that in
the modal case there is no difference between logics with or without equality in
this respect; sound metaframes are same (see Theorem 5.12.13). Recall also that
IL(F) = IL=(F) ∩ IF is the fragment without equality for any i=-metaframe F
(by Proposition 5.15.22).

Let us also show that the class of i=-metaframes is larger than the class of
QS4-metaframes (which are sound for the modal case).

Example 5.16.16 Consider an S4-metaframe F such that

W = {u0, u1}, u0 ≈ u1, Du0 = {d0}, Du1 = {d1, d2},
aRnb iff a = (b1, . . . , bn) ∨ ∃i ≤ 1(a = (di, . . . , di) & b = (d1−i, . . . , d1−i))

Obviously, Rn =≈n. On the one hand, F is not a modal metaframe, because
(I2.3) fails; in fact, (a1, a2) ∈ D2

u1
, a1R

1a0, and ¬∃b ∈ Du0 (a1a2)R2(a0, b).
On the other hand, F is an i=-metaframe. E.g. the condition (I2.3) holds:

one can take (b′1, . . . , b
′
n, b

′
0) = (a1, . . . , an) since Rn =≈n. And (I6) also

holds, because the (n + 1)-tuple (a0, . . . , a0, a0) ∈ Dn+1
u0

has an ≈n+1-copy
(a1, . . . , a1, a1) ∈ Dn+1

u1
, and we can stick together (n+ 1)-tuples in Du1 .

Note that we can consider MFm as a semantics for superintuitionistic logics
(with or without equality) and MF=

int also as a semantics for superintuitionistic
logics without equality. We still do not know if all these semantics are equal to
MF=

m.

5.17 Kripke quasi-bundles

Recall that according to Definition 5.5.19, a Kripke quasi-bundle is a quasi-p-
morphism between S4-frames, i.e. a monotonic surjective map with the quasi-lift
property.

Every Kripke quasi-bundle π : F1 −→ F0, where Fi = (Wi, Ri), is associated
with a system of domains Du := {π−1(u) | u ∈ F0} and a family of inheritance
relations ρuv := R1∩(Du×Dv). It also corresponds to a metaframe constructed



482 CHAPTER 5. METAFRAME SEMANTICS

as in the case of Kripke bundles, cf. Definition 5.3.2; the n-levels are Fn =
(Dn, Rn), with

aRnb iff ∀j ajR1bj & a sub b.

So Ri = Ri for i = 0, 1.

Proposition 5.17.1 Let F = (F, (Dn)) be a metaframe corresponding to an
intuitionistic Kripke quasi-bundle. Then F is an i-metaframe iff F is an i=-
metaframe iff the following conditions hold:

(1) aR1b⇒ ∃v ∃c, d ∈ Dv (aR1c & dR1b);

(2) if n > 0, and (ad) ∈ Dn+1, all ai and d are distinct; b ∈ Dn (bi are
not necessarily distinct), and ∀s asR

1bs, then there exists c ∈ Dn+1 such
that dR1cn+1 & ∀s ≤ n (bs ≈1 cs) & ∀s, t ≤ n (bs = bt ⇔ cs = ct);

(3) if n > 0, a, c ∈ Dn+1, all ai are distinct, all ci are distinct and ∀s asR
1cs,

then there exists (bde) ∈ Dn+2 such that d, b1, . . . , bn are distinct (but
perhaps e = d or e = bi) such that

∀s (asR
1bs & bsR

1cs & an+1R
1d & eR1cn+1).

These conditions allow us to ‘move’ individuals from one world to another.

Proof First, F is an S4-metaframe: all Rn are reflexive and transitive, since
the relations R1, R0, sub are reflexive and transitive.

Now let us check the properties of i=-metaframes stated in Proposition
5.16.10.

The monotonicity is almost obvious. In fact, ∀i aiR
1bi implies ∀i aσ(i)R

1bσ(i);
and a subb implies (πσa) sub (πσb).

(I2.4) is the quasi-lift property, which follows from the definition of a Kripke
quasi-bundle.

(I6.1) is the same as (1).
(I2.3) follows from (2). In fact, b = (b1, . . . , bn) ≈n c = (c1, . . . , cn)

iff ∀s ≤ n (bs ≈1 cs) & b sub c & c subb; we also have (ad)Rn+1c, since
(a1, . . . , an)Rn(c1, . . . , cn) and dR1cn+1. The requirement in (2) that d, a1, . . . , an

are distinct, is overcome due to the ‘local functionality’.
It remains to check (I6.2) or its equivalent version 5.16.8 (I6.2∼). So let

a, c ∈ Dn+1, πn
+a ≈n πn

+c. Then a sub c and c sub a. The cases when an+1 ∈
{a1, . . . , an}, cn+1 ∈ {c1, . . . , cn} are obvious. Thus we may assume that all
aj and all bj are distinct. Now (3) yields us a tuple (bde) ∈ Dn+2 such that
aRn+1(bd), (be)Rn+1c.

Also note that the conditions (1), (2), (3) are necessary: they definitely hold
if F is an i-metaframe. In fact, they respectively follow from (I6.1), (I2.3), (I6.2).

�

Therefore, the logic IL(=)(F) of a Kripke quasi-bundle F is superintuitionistic
iff the conditions (1), (2), (3) hold. We call such quasi-bundles intuitionistic (or,
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briefly, i-quasi-bundles); they generate a sound semantics for superintuitionistic
logics. Every intuitionistic Kripke bundle is clearly an i-quasi-bundle.

Note that a metaframe associated with a Kripke quasi-bundle is not necessar-
ily modal. For instance, the i=-metaframe F from Example 5.16.16, which is not
modal, corresponds to the Kripke quasi-bundle (W,D, ρ̄),W = {u0, u1}, u0 ≈
u1, Du0 = {d0}, Du1 = {d1, d2}ρui,ui

= iddui
(i = 0, 1), ρui,u1−i

= {(di, d1−i)}.
This explains why the construction of the C-set corresponding to a Kripke bun-
dle described in the proof of Proposition 7.8.11, fails for Kripke quasi-bundles.

5.18 Some constructions on metaframes

Definition 5.18.1 Let F = (F, (Dn)) be an N -metaframe based on F = (W,R1,
. . . , RN ) and let V ⊆ W . Then the submetaframe F|V is the restriction of F
to V , i.e. it has a system of domains is D|V := (Du | u ∈ V ) with relations
Rn

i |V := Rn
i ↾ (D|V )n; in particular, R0|V = R0 ↾ V .

A submetaframe F|V is called generated if V ⊆ W is Ri-stable for every
i = 1, . . . , N .

Lemma 5.18.2

(1) If F|V is a generated submetaframe of F and all the maps π∅n
in F are

monotonic (in particular, if F is a modal or a wi-metaframe), then each
of its n-level (F |V )n is a generated subframe of Fn.

(2) Every submetaframe of an N -modal metaframe is an N -modal metaframe

(3) Every generated submetaframe of an i- (resp., i=-, wi-) metaframe is also
an i- (resp., i=-, wi-) metaframe.

Definition 5.18.3 A cone F↑u of a metaframe F (for u ∈ F 0) is its restriction
to the subset (cone) R∗(u) in the base F 0.

Recall that R∗ is the reflexive transitive closure of
N⋃

i=1

Ri.

Definition 5.18.4 A metaframe model M = (F, ξ) over F (N -modal or intu-
itionistic) gives rise to the model M |V := (F|V, ξ|V ) (the restriction of M to V )
such that (ξ|V )+(Pn

j ) = ξ+(Pn
j ) ∩ (D|V )n.

Lemma 5.18.5 Let F be an N -modal metaframe satisfying (I2.1), or a wi-
metaframe, let M = (F, ξ) be a model (N -modal or intuitionistic, respectively),
F|V a generated submetaframe, and let M |V be the corresponding submodel of
M . Then

(1) M, a  (�)A [x] iff M |V, a  (�)A [x]
for any appropriate assignment (a,x) (modal or intuitionistic, respec-
tively).
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(2) M  (�)A⇒M |V  (�)A.

Proof By induction on the length of A. Note that in the intuitionistic case
it is essential that in a wi-metaframe an inductive clause for ∃ can be rewritten
with ≈ instead of R, see Section 5.11. Thus we cannot state (1) for an arbitrary
metaframe. �

Note that every valuation (N -modal or intuitionistic) in F|V is also a valu-
ation in F and it coincides with its restriction to F|V . Hence we obtain

Proposition 5.18.6

(1) ML
(=)
− (F) ⊆ ML

(=)
− (F|V ) and ML(=)(F) ⊆ ML(=)(F|V ) for a generated

submetaframe of an N -modal metaframe F.

(2) IL
(=)
− (F) ⊆ IL

(=)
− (F|V ) and IL(=)(F) ⊆ IL(=)(F|V ) for a generated sub-

metaframe of an i- (wi-, i=-) metaframe F.

Proposition 5.18.7

(1) ML
(=)
− (F) =

⋂
u∈W

ML
(=)
− (F↑u) and ML(=)(F) =

⋂
u∈W

ML(=)(F↑u) for an

N -modal metaframe F.

(2) IL
(=)
− (F) =

⋂
u∈W

IL
(=)
− (F↑u) and IL(=)(F)

⋂
u∈W

IL(=)(F↑u) for an i- (wi-,

i=-) metaframe F.

Proof If M = (F, ξ) 6� A then M, a 6� A [x] for some (a,x), and thus M↑u, a 6�
A [x], for u = π∅(a). �

Definition 5.18.8 Let (Fi)j∈J be a family of metaframes of the same type (N -
modal or intuitionistic), Fj = ((Fjn), Dj), Fjn = (Dn

j , R
n
j1, . . . , R

n
jN ). Their

disjoint sum (union)
⊔

j∈J

Fj is defined as the metaframe F = ((Fn), D) such that

• F0 =
⊔

j∈J

Fj0;

• D(u,j) = (Dj)u × {j};

• Fn = (Dn, Rn
1 , . . . , R

n
N ), where Dn =

⋃
w∈F0

Dn
w, and for a,b ∈ Dn

j

((a1, j), . . . , (an, j))R
n
k ((b1, j), . . . , (bn, j)) iff aRn

jkb.

Lemma 5.18.9 Let F =
⊔

j∈J

Fj. Then

(1) Fn
∼=
⊔

j∈J

Fjn;

(2) F is an N -modal metaframe, or respectively an i- (wi-, i=-) metaframe iff
all Fj are.
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Proof

(1) The map
⊔

j∈J

Fjn −→ Fn sending (a, j) (for a ∈ Dn
j ) to ((a1, j), . . . , (an, j)),

is an isomorphism.

(2) An exercise.

�

Lemma 5.18.10

(1) ML
(=)
− (

⊔
j

Fj) =
⋂
j

ML
(=)
− (Fj) for N -modal metaframes.

(2) IL
(=)
− (

⊔
j

Fj) =
⋂
j

IL(=)(Fj) for i- (wi-, i=)-metaframes.

(3) Similarly for IL, ML.

Proof On one hand, each Fj is isomorphic to a generated submetaframe of⊔
j

Fj . On the other hand, every cone in
⊔
j

Fj is isomorphic to a cone in the

corresponding Fj . �

Therefore the semantics MF (=)
m , MF

(=)
int satisfy the collection property

(CP) (see Section 2.16).

5.19 On semantics of intuitionistic sound metaframes

Note that all definitions related to i(=)-soundness can be readily extended to
arbitrary (not necessarily S4-) 1-metaframes. Namely, a valuation ξ in a 1-
metaframe is called intuitionistic if Rn(ξ+(Pn

j )) ⊆ ξ+(Pn
j ) for any predicate

letter Pn
j , n ≥ 0, cf. 5.14.1. Now the definitions of forcing, validity, and strong

validity are rewritten in a straightforward way (cf. Definitions 5.14.2, 5.14.3).

The notations IL
(=)
− , IL(=) are also used in this case. Finally a metaframe

F is called i(=)-sound if IL(=)(F) is an s.p.l., cf. Definition 5.14.4.
To conclude our description of intuitionistic sound metaframes, we now prove

the following statement.

Proposition 5.19.1 For every i(=)-sound 1-metaframe F there exists an S4-
metaframe F′ such that

IL(=)(F′) = IL(=)(F).

Hence F′ is also i(=)-sound, so it is an i(=)-metaframe, by 5.16.13.

Therefore we can conclude that the semantics MF
(=)
int of arbitrary i(=)-

metaframes actually equals the semantics of all i(=)-sound metaframes.
To prove Proposition 5.19.1, we need two auxiliary notions.
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Definition 5.19.2 A propositional frame F = (W,R) is called weakly reflexive
(or w-reflexive, for short) if the transitive closure of R is reflexive (cf. [Došen,
1993]). A 1-metaframe F is called w-reflexive if all its levels Fn are w-reflexive.

Definition 5.19.3 A propositional frame F = (W,R) is called co-serial if
∀u∃v vRu. A 1-metaframe F is co-serial if all Fn are co-serial.

Obviously, every reflexive propositional frame (and 1-metaframe) is w-reflexive
and co-serial.

Lemma 5.19.4 Let F be a 1-metaframe. Consider the formulas B1 := ∃z⊤
and B2 := (⊤ ⊃ p) ⊃ p.

(1) If B1 ∈ IL(F), then F is co-serial.

(2) If F is co-serial and B2 ∈ IL(F), then F is w-reflexive.

Proof

(1) Suppose B1 ∈ IL(F), a ∈ Dn. Let x = (x1, . . . , xn), z 6∈ x. Consider an
arbitrary intuitionistic model M = (F, ξ). Then M, a  B1[x], so there
exists b ∈ (Rn)−1(a) satisfying the condition: ∃c ∈ D(b) M,bc  ⊤[xz].
This implies co-seriality.

(2) Suppose F is co-serial, B2 ∈ IL(F). Given a ∈ Dn, choose b ∈ (Rn)−1(a),
by co-seriality. Consider the substitution instance

B′
2 := (⊤ ⊃ Pn(x)) ⊃ Pn(x)

of B2, and an intuitionistic model M = (F, ξ) such that ξ+(Pn) = ((Rn)∗◦
Rn)(a). Then

M, a  (⊤ ⊃ Pn(x))[x].

In fact, if c ∈ Rn(a) and M, c  ⊤, then c ∈ ξ+(Pn), and so M, c 
Pn(x) [x]. Thus M, a  Pn(x), since M,b  B′

2 [x] and bRna. Thus
a ∈ ξ(Pn) [x], so a((Rn)∗ ◦Rn)a. Hence the w-reflexivity of F follows.

�

Definition 5.19.5 A 1-metaframe F is monotonic(=) if it satisfies

(im) M, a  A [x] & aRnb ⇒ M,b  A [x]

for all for A ∈ IF (=), x ⊇ FV (A) and a,b ∈ Dn, cf. 5.14.14.

Proposition 5.19.6 Let F be a co-serial-metaframe, B := p ⊃ (⊤ ⊃ p). If

B ∈ IL(=)(F), then F is monotonic(=).
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Proof 30 Let us check (im) for a formula A ∈ IF (=). Consider a substitution
instance B′ := A ⊃ (⊤ ⊃ A) of B.

Assume aRnb and M, a  A [x]. Due to co-seriality, there exists cRna.
Since M, c  B′ [x], it follows that M, a  (⊤ ⊃ A) [x]. Now M,b  ⊤ [x]
implies M,b  A [x]. �

Corollary 5.19.7 If for a 1-metaframe F, QH ⊆ IL(=)(F) and even, if {p ≡

(⊤ ⊃ p), ∃z⊤} ⊆ IL(=)(F), then F is w-reflexive, co-serial, and monotonic(=).

Proof Note that (p ≡ (⊤ ⊃ p)) ∈ IL(=)(F) iff p ⊃ (⊤ ⊃ p), (⊤ ⊃ p) ⊃ p ∈

IL(=)(F). Then apply 5.19.4, 5.19.6. �

Definition 5.19.8 For a w-reflexive metaframe F = ((Dn, Rn)n∈ω, D) we de-
fine its transitive closure, the S4-metaframe F∗ = ((Dn, Rn∗)n∈ω, D), where
Rn∗ = Rn+ is the transitive closure of Rn.

Lemma 5.19.9 Let F be a w-reflexive monotonic(=)-metaframe. Then

IL(=)(F) = IL(=)(F∗).

Proof It is clear that ξ is an intuitionistic valuation in F iff ξ is an intuitionistic
valuation in F∗, since ξ+(Pn) is Rn-stable iff it is Rn∗-stable.

So it is sufficient to show that for every model M = (F, ξ) and the corre-
sponding model M∗ = (F∗, ξ), for every ordered assignment (x,a) such that
x ⊇ FV (A), the following holds:

M, a  A [x] ⇔M∗,a  A [x].

We proceed by induction and consider only three non-trivial cases.

(1) A = B ⊃ C. If M, a 6 A [x], then there exists b ∈ Rn(a) such that
M,b  B [x] and M,b 6 C [x]. Then M∗,b  B [x] and M∗,b 6 C [x]
by the induction hypothesis, and obviously b ∈ Rn∗(a). So M∗,a 6 A [x].

The other way round, let M∗,a 6 A [x]. Then there exists b ∈ Rn∗(a)
such that M∗,b  B [x] and M∗,b 6 C [x]. So M,b  B [x] and
M,b 6 C [x]. Take d ∈ Dn such that aRn∗dRnb. Then M,d 6 A [x]
and by monotonicity M, a 6 A [x] as well.

(2) A = ∃yB [x]. If M, a  A [x], then there exist b ∈ (Rn)−1(a) and
c ∈ D(b) such that M,πx‖y(bc)  B [x‖y]. So M∗, πx‖y(bc)  B [x‖y]
and M∗,a  A [x], since aRn∗b.

The other way round, let M∗,a  A [x]. Then there exist b,d ∈ Dn and
c ∈ D(b) such that31 bRndRn∗a and M∗, πx‖y(bc)  B [x‖y]. Hence
M,πx‖y(bc)  B [x‖y], so M,d  A [x], and thus M, a  A [x] by
monotonicity.

30Cf. Lemma 5.14.15.
31Note that R∗ ◦ R = R ◦ R∗ is the transitive closure of R.
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(3) The case A = ∀yB [x] is similar.

�

Lemma 5.19.9 and Corollary 5.19.7 obviously imply Proposition 5.19.1; namely
we put F′ = F∗.

The previous consideration in this section allows us to extend Lemma 5.14.11(3)
to arbitrary 1-metaframes:

Proposition 5.19.10 Let F be a 1-metaframe. Then the following conditions
are equivalent:

(1) F is i(=)-sound;

(2) QH ⊆ IL(=)(F);

(3) F is w-reflexive and monotonic(=), and F∗ is an i(=)-metaframe.

Moreover, these conditions are equivalent to

(4) the following formulas are in IL(=)(F):

p ≡ (⊤ ⊃ p), ∃z⊤, A1 := ∃yp ⊃ p, A2 := P (x) ⊃ ∃zP (z).

Here A1 and A2 are the formulas used in the proof of Proposition 5.16.11.
Note that all formulas in (4) are QH-theorems, so (2) readily implies (4).

Proof (3)⇒(1). By Lemma 5.19.9 and Theorem 5.15.26 (soundness).
(2)⇒(3). By Corollary 5.19.7, Lemma 5.19.9, and 5.16.11.
(4)⇒(3). Assume (4). Then F is w-reflexive and monotonic(=) by 5.19.7,

so by 5.19.9 IL(=)(F) = IL(=)(F∗). So formulas from (4) are in IL(=)(F∗),
and therefore F∗ is an i(=)-metaframe, cf. the proof of Proposition 5.16.11 and
Lemma 5.14.15, or cf. Remark 5.16.12. �

By the way, basing on Proposition 5.19.10 (1) ⇔ (3), we can give an explicit
description of the class of all i(=)-sound metaframes. Viz., to check that F∗ is
an i(=)-metaframe, we can rewrite all conditions from the definition of an i(=)-
metaframe (cf. Section 5.15 and 5.16) with Rn∗ replacing Rn. In particular, the
condition (0σ) becomes

aRn∗b ⇒ (πσa)Rm∗(πσb),

or equivalently
aRnb ⇒ (πσa)Rm∗(πσb).

Here is a description of monotonicity(=) for arbitrary metaframes, which we
state without a proof.

Lemma 5.19.11
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(1) A 1-metaframe F is monotonic iff it satisfies

(i) aRnb ⇒ (πσa)Rm∗(πσb) for any σ ∈ Σmn;

(ii) aRnbRnc ⇒ ∃c′(aRnc′ & cRn∗c & c′Rn∗c);

(iii) aRnbRnc ⇒ ∀e ∈ D(c) ∃d ∃g ∈ D(c) (aRnd & (dg)R∗(n+1)(ce));

(iv) cRnbRna ⇒ ∀e ∈ D(c) ∃d ∃g ∈ D(d) (dRna & (ce)R∗(n+1)(dg)).

(2) F is monotonic= iff it is monotonic and satisfies (mm2).

Here the condition (i) corresponds to (0σ) in F∗ and expresses the mono-
tonicity for atomic formulas P (πσx), cf. the proof of 5.14.11. The condition (ii)
means that all levels Fn are weakly transitive.32

Actually the conditions (b), (c), (d) express the monotonicity for the im-
plication and the quantifiers ∀, ∃ respectively, i.e. for formulas P (x) ⊃ Q(x),
∀yP (x, y), ∃yP (x, y).

The interested reader can try to restore the missing details. We point out
that the description of i(=)-soundness in 5.19.11 is more complicated than the
notion of an i(=)-metaframe, but the semantics is the same.

5.20 Simplicial frames

Introduction

In the last section of this chapter we briefly describe the next step in generalising
Kripke-type semantics.

Recall that in the usual Kripke semantics for predicate logics we have a
system of nested domains D = (Du | u ∈ F ), and every individual from Du

is considered as its own inheritor in the domains Dv of all worlds v accessible
from u. In Kripke sheaves, Kripke bundles and functor semantics accessibility
relations (or functions) between individuals are introduced; they describe inher-
itors of individuals in accessible worlds. Accessibility relations between n-tuples
of individuals (for n > 1) can be derived from these accessibility relations on
individuals.

At the next step, in metaframes, accessibility relations Rn (or Rn
i , in the

polymodal case) between n-tuples of individuals for different n ≥ 1 may be
arbitrary, and only the requirement of soundness puts some constraints on these
relations. But n-tuples a = (a1, . . . , an) are obtained from individuals existing
in the same world. So all n-tuples are taken from the set Dn =

⋃
{Dn

u | u ∈ F}.
Now let us consider more general kind of frames, in which n-tuples are

‘abstract’; so the sets Dn for n ≥ 1 are a priori independent, and unlike the case
of metaframes, Dn is not constructed from the set of ‘actual’ individuals D1 =

32A propositional frame F = (W, R) is called weakly transitive if

∀u, v, w ∈ W (uRvRw ⇒ ∃t (uRt & wR∗t & tR∗w)).
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⋃
{Du | u ∈ F}. But then for any σ ∈ Σmn = (In)Im , we should introduce a map

πσ : Dn −→ Dm transforming ‘abstract’ tuples. Their metaframe analogues are
‘jections’ πσ transforming ‘actual’ tuples: πσ(a1, . . . , an) = (aσ(1), . . . , aσ(m)).
But in the ‘abstract’ case πσ are chosen arbitrarily. The definitions of valuations,
forcing, validity, and strong validity can be given quite similarly to metaframe
semantics.33 And again the predicate logic ML(=)(F) or IL(=)(F) for such a
frame F is the set of formulas strongly valid in F. Next, we can find constraints
corresponding to logical soundness or to other natural properties of forcing, as
we did in Chapter 5 for metaframes.

An ‘abstract’ n-tuple a ∈ Dn corresponds to the ‘real’ n-tuple (πλn
1

(a), . . . ,
πλn

n
(a)), where λn

i ∈ Σ1n, λ
n
i (1) = i, see the Introduction. πλn

i
(a) can be

regarded as the ith ‘component’ of a. But this correspondence in general is
not bijective — different tuples may have the same ‘components’; moreover, for
a permutation σ ∈ Υn, ‘n-tuples’ a and πσ(a) may have different (and even
disjoint!) sets of ‘components’. Nevertheless, this correspondence is useful; as
we shall see in Volume 2, this helps associate logically sound simplicial frames
with metaframes.

As in metaframes, we can identify D0 with the ‘underlying propositional
frame’ F = (W,R1, . . . , RN ). And we can introduce the individual domains
of a world u ∈ W as Du := {a ∈ D1 | π∅1(a) = u}. More generally, put
Dn

u := π−1
∅n

(u) for n ≥ 1, where ∅n ∈ Σ0n is the empty function. Then Dn =⋃
{Dn

u | u ∈ F} is a partition. But in general, an ‘abstract’ n-tuple a and its
‘components’ πσin

(a) for 1 ≤ i ≤ n may be in domains of different worlds from
F .

Forcing in simplicial frames

Now let us turn to precise definitions. We begin with the case without equality.

Definition 5.20.1 A (formal) simplicial N -frame based on a propositional

Kripke frame F = (W,R1, . . . , RN ) is a tuple F = (F,
−→
D,

−→
R, π), where

−→
D =

(Dn | n ∈ ω) is a sequence of (non-empty) sets,
−→
R = (Rn

i | n ∈ ω, 1 ≤ i ≤ N)
is a family of relations Rn

i ⊆ Dn×Dn; so we have propositional N -modal frames:
Fn := (Dn, R1

n, . . . , R
N
n ). As usual, we assume that F0 := (W,R1, . . . , RN ) is

the original frame F . And finally, π = (πσ | σ ∈
⋃

m,n

Σmn) is a family of

mappings (‘abstract jections’) πσ : Dn −→ Dm for σ ∈ Σmn.

So Dn (for n ≥ 1) are sets of ‘abstract’ n-tuples (in particular, D1 is the
set of ‘individuals’), Rn

i are accessibility relations between n-tuples, and πσ are
mappings (‘jections’) transforming ‘abstract’ tuples.

Put Dn
u := π−1

∅n
(u) for n > 0, u ∈ W , where ∅n is the empty function from

Σ0n; it may be called the n-tuple domain of the world u. In particular, for n = 1
we sometimes write Du rather than D1

u and call this set the individual domain
of the world u. Obviously {Dn

u | u ∈W} is a partition of Dn.

33Up to some details about the equality, which are briefly discussed later on.
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The ith component of an abstract n-tuple a ∈ Dn, n > 0 is [a]i := πσin
(a) ∈

D1, where σin ∈ Υ1n, σin(1) = i (i.e. (a1, . . . , an) · σin = ai). In general, we
do not assume that a and its components ‘live’ in the same world, i.e. that
π∅n

(a) = π∅1([a]i). We do not even assume that [a]1 = a for a ∈ D1 — an
‘individual’ may be non-equal to its own ‘component’; they can even ‘live’ in
different worlds. But as we shall see later on, in natural semantics (for modal or
superintuitionistic logics) we may consider only frames, in which πidn

(a) = a for
any n; such frames are called π-identical. In these frames we also have [a]1 = a
for a ∈ D1, and π∅(u) = u for u ∈W , i.e. D0

u = π−1
∅

(u) = {u}.
As usual, for the monomodal (and the intuitionistic) case we denote acces-

sibility relations on n-tuples by Rn, without the subscript i = 1.
The notations Rn+ (respectively, Rn∗ ) for the transitive (respectively, re-

flexive transitive) closure of
⋃
i

Rn
i are usual, cf. Chapter 1. We also consider

the corresponding equivalence relations ≈n :=≈R∗n on Dn.
Obviously, everyN -metaframe gives rise to a simplicialN -frame, withDn, Rn

i ,
πσ described in Section 5.9.

Definition 5.20.2 A valuation in a simplicial N -frame F is a function ξ send-
ing every n-ary predicate letter Pn

j to a subset ξ+(Pn
j ) ⊆ Dn; in particular,

ξ+(P 0
j ) ⊆W (cf. Definition 5.9.2).

A valuation ξ in a simplicial 1-frame (or more briefly, a simplicial frame)
is intuitionistic if every ξ+(Pn

j ) is an Rn-stable subset of Dn:

aRnb & a ∈ ξ+(Pn
j ) ⇒ b ∈ ξ+(Pn

j ),

cf. Definition 5.14.1. A simplicial model is a pair M = (F, ξ).

Definition 5.20.3 An assignment of length n in a simplicial frame F is a pair
(x,a), where a ∈ Dn, and x is a distinct list of variables of length n.

Now we can define forcing for modal formulas without equality, cf. Definition
5.9.4.

Definition 5.20.4 A simplicial N -model M = (F, ξ) gives rise to the forcing
relation M, a � A [x], where A ∈MFN , (x,a) is an assignment in F, FV (A) ⊆
r(x). The definition is by induction, modifying 5.9.4 in a natural way. We
assume that (x,a) is of length n.

(At1) M, a 6� ⊥ [x];

(At2) M, a � Pm
j (x · σ) [x] iff πσa ∈ ξ+(Pm

j ) (for σ ∈ Σmn)

(⊃) M, a � (B ⊃ C) [x] iff M, a 6� B [x] or M, a � C [x];

and similarly for the other Boolean connectives;

(�) M, a � �iB [x] iff ∀b ∈ Rn
i (a) M,b � B [x];
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(Q1) M, a � ∃yB [x] iff ∃c ∈ Dn+1(πσn
+
c = a & M, c � B [xy]),

M, a � ∀yB[x] iff ∀c ∈ Dn+1(πσn
+
c = a ⇒M, c � B[xy])

(for y 6∈ x);

(Q2) M, a � ∃xiB [x] iff M,πδh
i
a � ∃xiB [x − xi],

M, a � ∀xiB[x] iff M,πδn
i
a � ∃xiB[x − xi],

where x − xi = x · δn
i .

Hence we obtain the truth conditions for ¬ and ✸i similar to those in Section
5.9.

One can see that in a simplicial frame corresponding to a metaframe the
clauses (At2), (�), (Q1), (Q2) become equivalent to (2), (8), (9), (10) from
Definition 5.9.4. In fact, for (Q1) note that in a metaframe πσn

+
c = a iff c = ad

for some d ∈ D(a).
Let us also note that in ‘π-identical’ simplicial frames (where πidn

a = a
for any a ∈ Dn) both cases of the inductive clause for the quantifier can be
presented in the following uniform way (cf. (9+10) in Section 5.9):

M, a � ∃yB [x] iff ∃c ∈ Dm+1(πσm
+
c = πεx−y

a & M, c � B [x‖y])

(where m = |x − y|). In fact, if y = xi, this clause is equivalent to (Q2), since
εx−y = δn

i and x‖y = (x − xi)xi; and if y 6∈ x, then it is equivalent to (Q1),
since πεx−y

a = πidn
a = a and x‖y = xy.

Remark 5.20.5 Again we can propose a reasonable alternative definition of
forcing �∗ differing in the clause (Q2):

M, a �∗ ∃xiB [x] iff ∃c ∈ Dn(πδn
i
c = πδn

i
a & M, c � B[x]),

and similarly for ∀xiB.
But this definition actually leads to the same natural semantics of modal sim-

plicial frames as Definition 5.20.4; thus both versions are equivalent. However
we do not know if these definitions give equal (or equivalent) maximal logically
sound semantics.

Similarly we can define forcing for the intuitionistic case.

Definition 5.20.6 An (intuitionistic) simplicial model M = (F, ξ) gives rise to
forcing for intuitionistic formulas A and assignments (x,a) with r(x) ⊇ FV (A)
defined by the following inductive clauses (cf. Definition 5.14.2):

• M, a 6 ⊥ [x];

• M, a  Pm
j (πσx) [x] iff πσa ∈ ξ+(Pm

j );

• M, a  (B ∧C) [x] iff M, a  B [x] and M, a  C [x];

• M, a  (B ∨C) [x] iff M, a  B or M, a  C [x];
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• M, a  (B ⊃ C) [x] iff ∀b ∈ Dn(aRnb & M,b  B [x] ⇒M,b  C [x]);

• M, a  ∀yB [x] iff ∀c ∈ Dn+1(aRnπσn
+

(c) ⇒M, c  B [xy]) (for y 6∈ x);

• M, a  ∃yB [x] iff ∃c ∈ Dn+1(πσn
+

(c)Rna & M, c  B [xy]);

• M, a  QxiB [x] iff M,πδn
i
a � QxiB [x − xi]

for a quantifier Q.

Again we have uniform presentations of quantifier clauses in π-identical sim-
plicial frames.

Sound and natural simplicial frames

Definition 5.20.7 An N -modal formula A is true in a simplicial model (nota-
tion: M � A) if M, a � A [x] for any assignment (x,a) such that FV (A) ⊆ r(x).
The definition for the intuitionistic case is similar.

Definition 5.20.8 An N -modal formula A is valid in a simplicial frame F
(notation F � A) if it is true in all models over F. The definition for the
intuitionistic case is similar.

ML−(F) denotes the set of all N -modal formulas (without equality) valid
in F; the notation IL−(F) is similar.

Definition 5.20.9 A formula is strongly valid in F if all its substitution in-
stances (without equality) are valid.

The set of all formulas strongly valid in F is denoted by ML(F) in the modal
case and by IL(F) in the intuitionistic case.

A simplicial frame F is logically sound if ML(F) or IL(F) is a modal or a
superintuitionistic logic respectively; we call such a frame m-sound or i-sound
respectively. Logically sound simplicial frames generate ‘maximal semantics’.
But unlike the case of metaframes, we do not know an explicit description of
these semantics, and we may conjecture that they are rather complicated (cf.
Section 5.16, 5.19 for intuitionistic sound metaframes). Therefore in Volume
2 we shall describe more convenient classes of simplicial frames, where forcing
satisfies natural properties of ‘logical invariance’ similar to those we had for
metaframes in Sections 5.10, 5.11, 5.15. These classes generate ‘almost maximal’
semantics (and maybe even maximal, but this is yet unknown).

Definition 5.20.10 A simplicial frame F is called modally transformable (or
m-transformable) if the following condition34

M, a � A [x] ⇔M,πσa � A [πσx] (trfm)

holds for any injection σ ∈ Υmn(n ≥ m), for any model M = (F, ξ), and for
any assignment (x,a) such that FV (A) ⊆ r(πσx).

34Cf. 5.10.6(∗).
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The definition of i(=)-transformable frames for the intuitionistic case is sim-
ilar — they satisfy the condition35

M, a  A [x] ⇔M,πσa � A [πσx]. (trfi)

for intuitionistic models M and formulas A.
Recall that the case n = 0 (when A is a sentence and σ = id0 = Λ0) is

trivial.
Loosely speaking, in transformable frames forcing M, a � ()A[x] does not

depend on the choice of a list of variables x containing FV (A). More pre-
cisely, M, a � A [x] with r(x) ⊃ FV (A) can be reduced to M, a � A[x] with
r(x′) = FV (A), where x′ = πσx, σ is an injection. Moreover, the choice of x′

is inessential, since for any enumerations x,x′ of FV (A), there exists a permu-
tation σ such that x′ = πσx. This observation allows us to use only the first
case in the inductive clause for quantifiers, cf. Section 5.6.

Lemma 5.20.11 Let F be an m-transformable simplicial frame, M = (F, ξ) a
simplicial model. Then for any congruent formulas A,A′ and for any x,a such
that FV (A) = FV (A′) ⊆ r(x):

M, a � A [x] ⇔M, a � A [x], (∗)

and similarly for the intuitionistic case.

Definition 5.20.12 A simplicial frame F is called modally s-transformable (or
ms-transformable) if for any σ ∈ Σmn, for any distinct lists x of length n,m
respectively, for any modal formula A such that FV (A) ⊆ r(y), for any model
M over F, and for any a ∈ Dn:

M, a � ([πσx/y]A) [x] ⇔M,πσa � A [y]. (trfms)

Similarly for the intuitionistic case, we define is-transformable simplicial frames
with the following condition:

M, a  ([πσx/y]A) [x] ⇔M,πσa  A [y]. (trfis)

This condition expresses the invariance of forcing under variable substitutions
(cf. Lemma 5.11.7 for metaframes).

Recall that variable substitutions are defined up to congruence, and the
congruent versions of A are all the results of applying the identity substitution
[/] to A (cf. Section 2.3).

So in ms-transformable simplicial frames forcing is congruence invariant:

M, a � A [x] ⇔M, a  A1 [x] (∗)

for any congruent formulas A, A1 (apply (trfsm) with y = x, σ = idn), and
similarly in the intuitionistic case. On the other hand, we can show that forc-
ing is congruence invariant in every transformable simplicial frame as well (cf.

35Cf. 5.15.14(∗i).
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Lemmas 5.10.11 and 5.15.16 for metaframes in the modal and the intuitionistic
cases respectively).

Anyway, if the condition (*) holds, then the choice of any congruent version
of [πσx/y]A in (trfsm) does not matter.

Definition 5.20.13 A simplicial frame F is called m-natural (respectively, i-
natural) if it is logically sound and transformable (respectively, s-transformable).

The classes of all m-natural and i-natural simplicial frames generate the
‘natural’ semantics of simplicial frames SFm and SFint.

In Volume 2 we will also describe other classes of simplicial frames (called
‘modal’ and ‘intuitionistic’) generating the same semantics SFm and SFint; this
description generalises the work done in Sections 5.11 and 5.15 above.

Theorems 5.12.13, 5.16.13, along with 5.10.6, 5.11.7, 5.15.14, 5.15.17, show
that for every logically sound metaframe the corresponding simplicial frame is
natural; thus MFm � SFm and MFint � SFint.

On the other hand, we do not know if every logically sound simplicial frame
is natural and even if the semantics of natural simplicial frames equals the
‘maximal’ semantics of all logically sound simplicial frames. It is also unknown
if the semantics of simplicial frames (natural or ‘maximal;’) are stronger than
the semantics of metaframes.

Equality in simplicial frames

To conclude this preliminary exposition, we briefly discuss problems with inter-
pretation of equality in simplicial frames.

Recall that in metaframes the clause for equality has the following form:36

a � xj = xk [x] iff aj = ak, (=)

where a ∈ Dn
u , |x| = n. This definition admits several reasonable generalisations

for simplicial frames; in metaframes all these versions are equivalent.
First, for the formula x1 = x2, x = (x1, x2), and a ∈ D2, we can put

a � x1 = x2 [x] iff πσ12 (a) = πσ22(a),

where σj2(1) = j (so (a1, a2) · σj2 = aj in metaframes).
Second, we can define

a � x1 = x2 [x] iff a = πσ1 (b) for some b ∈ D1,

where σ1 ∈ Σ21 is the ‘diagonal’ map; σ1(j) = 1 for j ∈ I2 (so πσ1 (b) = (b, b) in
metaframes). These two definitions are clearly equivalent for ‘real’ tuples, but
they differ for ‘abstract’ tuples. For example, in general we cannot assert that
πσj2 (πσ1 (b)) = b for b ∈ D1 or that πσ1(πσ12 (a)) = a if πσ12 (a) = πσ22(a).

36We do not mention a model M as equality does not depend on the valuation.
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There exist other more ‘exotic’ versions of forcing, e.g.

a � x1 = x2 [x] iff πσ12 (a) = πσ22 (a) & a = πσ1(πσ12 (a)).

All these interpretations are equivalent to (=) (with n = 2, i = 1, j = 2) in
metaframes, although they are non-equivalent in simplicial frames.

To express these definitions (i.e. generalisations of (=) to simplicial frames)
for arbitrary n and i, j ∈ In we use projections πσin

‘extracting’ components
of an n-tuple (πσin

(a1, . . . , an) = ai) and ‘pairing jections’ πλn
jk

, where λn
k ∈

Σ2n, λ
n
jk(1) = j, λn

jk(2) = k, i.e. πλn
jk

(a1, . . . , an) = ajak.
Thus we obtain the following interpretations of equality in simplicial frames

a �+ xj = xk [x] iff πσjn
(a) = πσkn

(a), (=+)

the ‘componentwise’ or the upper interpretation,

a �− xj = xk [x] iff ∃b ∈ D1 πλn
jk

(a) = πσ1(b) (=−)

the ‘diagonal’ or the lower interpretation, and also the ‘combined’ interpretation

a �± xi = xj [x] iff πσjn
(a) = πσkn

(a) & πλn
jk

(a) = πσ1 (πσin
(a)). (=±)

We suppose that the upper interpretation is the most straightforward gener-
alisation of the condition (=) in metaframes. However, some logical properties
of the lower interpretation �− seem better.

In Volume 2 we will consider a general approach to interpretation of equal-
ity in simplicial frames covering all these versions — various interpretations of
equality a � xi = xj [x] depend on triples of the form (πσin

(a), πσjn
(a), πλn

jk
(a)).

But such a general approach seems too complicated, so we simplify it by
using ‘pairs’ πλn

jk
(a) ∈ D2. Thus, for example, the upper interpretation has a

simplified version:
a �+1 xj = xk [x] iff πλn

jk
∈ I+,

where I+ = {b ∈ D2 | πσ12 (b) = πσ22 (b)}.
Although this condition is not equivalent to (=+) in arbitrary simplicial

frames, for ‘natural’ simplicial frames this reduction works quite well.
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Chapter 6

Kripke completeness for
varying domains

Completeness proofs in this chapter are based on various canonical model con-
structions. They originate from canonical models in modal propositional logic
and Henkin’s completeness proof in classical predicate logic. The main idea
is that worlds in canonical models are consistent (or even syntactically com-
plete) theories, and individuals are identified with individual constants of these
theories.

6.1 Canonical models for modal logics

Recall (Definition 2.7.7) that for a first-order modal theory Γ, DΓ denotes the
set of individual constants occurring in Γ, L(=)(Γ) is the set of all DΓ-sentences
in the language of Γ.

Definition 6.1.1 A (first-order) modal theory Γ is called L-consistent if

6⊢L ¬
k∧

i=1

Ai for any A1, . . . , Ak ∈ Γ, or equivalently, if Γ 6⊢L ⊥. A modal theory

is called L-complete if it is maximal (by inclusion) among L-consistent theories
in the same language.

Lemma 6.1.2 Let Γ be a modal theory.

(1) If Γ is L-consistent and Γ ⊢L ¬A, then Γ 6⊢LA.

(2) If Γ is L-complete, A ∈ L(=)(Γ), then

Γ ⊢L A iff A ∈ Γ;

in particular, L ⊆ Γ (where L denotes the set of all sentences in L).

499
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(3) If Γ is L-complete, then for any A ∈ L(=)(Γ)

¬A ∈ Γ iff A 6∈ Γ.

(4) Every L-consistent Γ satisfying the equivalence (3), is L-complete.

Proof
(1) If Γ ⊢L ¬A and Γ ⊢L A, then Γ ⊢L ⊥, by MP.

(2) ‘If’ is obvious. To show ‘only if’, suppose A 6∈ Γ. Then Γ ⊂ Γ ∪ {A},
hence Γ ∪ {A} ⊢L ⊥, and thus Γ ⊢L A ⊃ ⊥(= ¬A) by 2.8.1. Hence Γ 6⊢LA by
(1).

(3) ‘Only if’ readily follows from (1) and (2). To show ‘if’, suppose the
contrary — that both A, ¬A are not in Γ. Then as in the proof of (2), we
obtain Γ ⊢L ¬A and similarly, Γ ⊢L ¬¬A, which implies the L-inconsistency of
Γ.

(4) Suppose the equivalence in (3) holds for any A ∈ L(=)(Γ), but Γ is L-
incomplete. Then Γ ⊂ Γ′ for some Γ′ in the same language, so there exists
A ∈ (Γ′ − Γ). By (3), we have ¬A ∈ Γ ⊆ Γ′, thus Γ′ is L-inconsistent. �

Similarly to the propositional case, we have the following

Lemma 6.1.3 Let Γ be an L-complete theory. Then for any A,B ∈ L(=)(Γ):

(i) (A ∧B) ∈ Γ iff (A ∈ Γ and B ∈ Γ);

(ii) (A ∨B) ∈ Γ iff (A ∈ Γ or B ∈ Γ);

(iii) (A ⊃ B) ∈ Γ iff (A 6∈ Γ or B ∈ Γ).

Proof
(i) (If.) A ∧ B ⊃ A is an instance of a tautology, so if (A ∧ B) ∈ Γ, we have
Γ ⊢L A by MP. Hence A ∈ Γ by 6.1.2 (2). Similarly B ∈ Γ.

(Only if.) If A,B ∈ Γ, we apply the instance of a tautologyA ⊃ (B ⊃ A∧B),
MP and 6.1.2 (2).

(ii) (If.) Similarly to (i), use A ⊃ A ∨B or B ⊃ A ∨B.
(Only if.) Suppose A,B 6∈ Γ. Then ¬A,¬B ∈ Γ by 6.1.2(3). Since ¬A ⊃

(¬B ⊃ ¬(A∨B)) is an instance of a tautology, we obtain ¬A,¬B ⊢L ¬(A∨B),
hence ¬(A ∨B) ∈ Γ, and thus (A ∨B) 6∈ Γ by 6.1.2 (3).

(iii) (Only if.) Supposing (A ⊃ B), A ∈ Γ, we obtain B ∈ Γ by MP and 6.1.2
(2).

(If.) If A 6∈ Γ, then ¬A ∈ Γ by 6.1.2 (3). Since ¬A ⊃ (A ⊃ B) is an instance
of a tautology, by MP and 6.1.2 (2), it follows that (A ⊃ B) ∈ Γ.

If B ∈ Γ, we use B ⊃ (A ⊃ B) in the same way. �

Recall that L denotes the set of all sentences in a logic L,
�∗Γ := {�αA | A ∈ Γ, α ∈ I∞N } (if N is fixed).

Lemma 6.1.4 Let L, L1 be N -m.p.l.(=), Γ an L-complete theory. Then
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(1) Γ is L1-complete iff L1 ⊆ Γ.

(2) Suppose L1 = L+ Θ for a set of sentences Θ. Then Γ an L1-complete iff
�∗Sub(Θ) ⊆ Γ.

Proof
(1) ‘Only if’ follows from Lemma 6.1.2 (2).

To show ‘if’, assume L1 ⊆ Γ. By Lemma 6.1.2 (3), (4), it suffices to check
that Γ is L1-consistent. Suppose the contrary; then for a finite X ⊆ Γ, ⊢L1

A = ¬(
∧
X). Put A := ¬(

∧
X). Then by Definition 2.7.1, A has a generator

A1 ∈ L1. Hence ∀A1 ∈ L1 ⊆ Γ. But then Γ ⊢L ∀A1, whence Γ ⊢L A1, and
therefore Γ ⊢L A implying the L-inconsistency of Γ.

(2) By (1), Γ is L1-complete iff L1 ⊆ Γ. Since �∗Sub(Θ) ⊆ L1, the ‘only if’
part of (2) follows readily.

For the converse, we assume �∗Sub(Θ) ⊆ Γ and show that L1 ⊆ Γ. In
fact, by the deduction theorem 2.8.3, every A ∈ L1 ⊆ L + Θ is L-provable in
�∗Sub(Θ), hence Γ ⊢L A, therefore A ∈ Γ, by 6.1.2. �

Lemma 6.1.5 (Lindenbaum lemma) Every L-consistent theory can be ex-
tended to an L-complete theory in the same language.

Proof Similar to the propositional case. If L(=)(Γ) is countable, we consider
its enumeration A0, A1, . . . and construct a sequence of L-consistent theories
Γ = Γ0 ⊆ Γ1, . . . such that Γn+1 = Γn ∪ {An} or Γn+1 = Γn ∪ {¬An}. This is
possible, since one of Γn ∪ {An}, Γn ∪ {¬An} is L-consistent (otherwise Γn ⊢L

¬An,¬¬An by Lemma 2.8.1, and thus Γn is L-inconsistent). Eventually the
union Γω :=

⋃
n

Γn is L-consistent and L-complete by 6.1.2(4).

If the language is uncountable, we apply transfinite induction, but actually
we do not need this case in the sequel. �

Definition 6.1.6 An L-complete theory Γ is called L-Henkin if for any DΓ-
sentence ∃xA(x) there exists a constant c ∈ DΓ such that

(∃xA(x) ⊃ A(c)) ∈ Γ.

We say that Γ is (L, S)-Henkin if Γ is L-Henkin with DΓ = S.

Due to Lemma 6.1.3 (iii), every L-Henkin theory Γ has the following existence
property:

(EP) if ∃xA(x) ∈ Γ, then for some c ∈ DΓ, A(c) ∈ Γ.

Moreover, we have

Lemma 6.1.7 Every L-Henkin theory Γ satisfies the condition

(EP′) ∃xA(x) ∈ Γ iff for some c ∈ DΓ, A(c) ∈ Γ.
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Proof Since L ⊢ A(y) ⊃ ∃xA(x) for a new variable y (Lemma 2.6.15(ii)),
we have ⊢L A(c) ⊃ ∃xA(x), and so (A(c) ⊃ ∃xA(x)) ∈ Γ. Thus Lemma 6.1.3
implies the converse of (EP), therefore (EP′) holds. �

Exercise 6.1.8 Show that every L-complete theory with the existence property
is L-Henkin.

Lemma 6.1.9 Let Γ be an L-consistent theory, DΓ ⊂ S, |S| = |S −DΓ| = ℵ0.
Then there exists an (L, S)-Henkin theory Γ′ ⊇ Γ.

Proof The set of all S-sentences is countable, so let us enumerate all S-
sentences of the form ∃xA(x) : ∃x1A1(x1), ∃x2A2(x2), . . . Choose distinct con-
stants ck from (S−DΓ) such that ck does not occur in ∃xiAi(xi) for i ≤ k, and
put

Γω := Γ ∪ {∃xkAk(xk) ⊃ Ak(ck) | k ∈ ω}.

Let us show that Γω is L-consistent. Suppose the contrary. Then for some k

Γ ⊢L ¬
∧

i≤k

(∃xkAk(xk) ⊃ Ak(ck)).

Take the minimal k with this property. Let

B :=
∧

i<k

(∃xiAi(xi) ⊃ Ai(ci)).

Then

Γ, B, ∃yAk(y) ⊃ Ak(c) ⊢L ⊥

(where y = xk, c = ck). Hence by Lemma 2.8.1,

Γ, B ⊢L ¬(∃yAk(y) ⊃ Ak(c)).

Then from the propositional tautology ¬(p ⊃ q) ⊃ p ∧ ¬q we obtain

(1) Γ, B ⊢L ∃yAk(y);

(2) Γ, B ⊢L ¬Ak(c).

Since c does not occur in Γ ∪ {B}, by Lemma 2.7.12, it follows that

(3) Γ, B ⊢L ∀y¬Ak(y),

and thus by 2.6.15(xiii),

(4) Γ, B ⊢L ¬∃yAk(y).

From (1) and (4) it follows that Γ ⊢L ¬B, contrary to the choice of k.
Therefore Γω is L-consistent, and by Lemma 6.1.5, we can extend it to Γ′.

�
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Lemma 6.1.10 Let A be a modal sentence, |S| = ℵ0.
Then L ⊢ A iff (A ∈ Γ for any (L, S)-Henkin theory Γ).

Proof ‘Only if’ follows from Lemma 6.1.3. To prove ‘if’, suppose L 6⊢ A.

Then {¬A} is an L-consistent subset of MF
(=)
N (∅), and so by Lemma 6.1.9,

there exists an (L, S)-Henkin theory Γ ⊇ {¬A}. �

For S ⊆ S′ and Γ′ ⊆MF
(=)
N (S′), let Γ′|S := Γ∩MF

(=)
N (S) (the restriction of

Γ′ to the domain S). Obviously, Γ′|S is consistent (complete) if Γ′ is consistent
(respectively, complete), but for a Henkin (L, S′)-theory Γ′, Γ′|S may be not a
Henkin (L, S)-theory.

Henceforth we fix a denumerable set S∗, the ‘universal set of constants’. We
call a set S ⊂ S∗ small if (S∗ − S) is infinite.

Definition 6.1.11 An L-place is a Henkin L-theory with a small set of con-
stants.

The set of all L-places is denoted by V PL.

Lemma 6.1.12 Let u be a world in a Kripke model M over an N -modal pred-
icate Kripke frame F = (F,D) and assume that M � L. Then the set of
Du-sentences that are true at u

Γu := {A ∈MF
(=)
N (Du) | M,u � A}

is a Henkin L-theory.

Proof This is an easy consequence from the definitions. Let us only give an

argument for L-consistency. If ⊢L ¬
k∧

i=1

Ai, then B :=
k∧

i=1

Ai can be presented

as [c/x]B0 for B0 ∈ L, c ∈ D∞
u , and then ∀xB0 ∈ L. Hence by assumption

M,u � ∀xB0, which implies M,u � [c/x]B0 = ¬
k∧

i=1

Ai by Lemma 3.2.19. Thus

one of the Ai must be false at M,u. �

Definition 6.1.13 Let M be a Kripke model for a modal logic L, in which every
individual domain is a small subset of S∗. The map from (the worlds of) M to
V PL sending u to Γu is called canonical and denoted by νM,L (or by νM , or by
ν if there is no confusion).

Lemma 6.1.12 extends to Kripke sheaves, Kripke bundles, or other kinds of
models for L. Moreover, V PL is the set of all ‘places’ Γu of all possible Kripke
models (and of metaframe models) for L with small domains. To show this,
we shall now construct a certain predicate Kripke frame (the canonical frame),
whose worlds are L-places and in which every ‘world’ Γ has the individual do-
main DΓ, while Γ is the set of all DΓ-sentences true at this world. Since all the
domains are small, there are infinitely many spare constants at every world.
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For an N -modal theory Γ and i = 1, . . . , N , put

✸iΓ := {✸iA | A ∈ Γ},

�−
i Γ := {B | �iB ∈ Γ}.

Definition 6.1.14 For L-places Γ,Γ′ we define canonical accessibility rela-
tions:

ΓRLi Γ′ := �−
i Γ ⊆ Γ′.

Lemma 6.1.15 ΓRLi Γ′ iff DΓ ⊆ DΓ′ & ✸iΓ
′ ∩ L(Γ) ⊆ Γ.

Proof (Only if.) Assume ΓRLiΓ
′. For any c ∈ DΓ we have

⊢L �(P (c) ⊃ P (c)), so �(P (c) ⊃ P (c)) ∈ Γ by 6.1.2(2), and thus
(P (c) ⊃ P (c)) ∈ �−

i Γ ⊆ Γ′. Therefore c ∈ DΓ′ , which shows DΓ ⊆ DΓ′ .
(If.) Assume DΓ ⊆ DΓ′ , ✸iΓ

′ ∩ L(Γ) ⊆ Γ. Next, assume �iB ∈ Γ. Then
B ∈ Γ′, since otherwise ¬B ∈ Γ′, ✸i¬B ∈ ✸iΓ

′ ∩ L(Γ) ⊆ Γ, and thus Γ is
inconsistent. Therefore �−

i Γ ⊆ Γ′. �

The crucial property of canonical relations is the following

Lemma 6.1.16 For any L-place Γ and for any DΓ-sentence A such that ✸iA ∈
Γ, there exists an L-place Γ′ such that ΓRLiΓ

′ and A ∈ Γ′.

Proof Let us show that the theory Γ0 := �−
i Γ∪{A} is L-consistent if ✸iA ∈ Γ.

Suppose ⊢L

∧
j

Bj ⊃ ¬A for some formulas Bj ∈ �−
i Γ. Then ⊢L �i(

∧
j

Bj) ⊃

�i¬A, hence L ⊢
∧
j

�iBj ⊃ ¬✸iA, Γ ⊢L ¬✸iA, and thus by Lemma 6.1.2 (2),

¬✸iA ∈ Γ. This is a contradiction.
Now by Lemma 6.1.9, we can construct an L-place Γ′ such that Γ0 ⊆ Γ′

(remember that DΓ is small, so there exists a small S such that |S−DΓ| = ℵ0).
By Definition 6.1.14, ΓRLiΓ

′. �

Lemma 6.1.17 For any Γ ∈ V PL and A ∈ L(Γ) we have

(1) ✸iA ∈ Γ iff (A ∈ Γ′ for some Γ′ ∈ RLi(Γ));

(2) �iA ∈ Γ iff (A ∈ Γ′ for each Γ′ ∈ RLi(Γ)).

Proof
(1) ‘Only if’ follows from 6.1.16. The other way round, if ✸iA = ¬�i¬A 6∈ Γ,
then �i¬A ∈ Γ, hence ¬A ∈ Γ′ (i.e. A 6∈ Γ′) for any Γ′ ∈ RLi(Γ).

(2) ‘Only if’ follows from Definition 6.1.14. To show ‘if’, assume �iA 6∈ Γ,
then ¬�iA ∈ Γ, and since ⊢L ¬�iA ⊃ ✸i¬A, this implies ✸i¬A ∈ Γ. Hence by
(1), ¬A ∈ Γ′ for some Γ′ ∈ RLi(Γ). �

Definition 6.1.18 The canonical Kripke frame with varying domains of an
N -modal logic L without equality is V FL := (V PL, RL1, . . . , RLN , DL), where
(DL)Γ := DΓ.
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Definition 6.1.19 For an N -modal logic L with equality we define the canon-
ical Kripke frame with equality as

V F=
L := (V PL, RL1, . . . , RLN , DL,≍L),

where
c (≍L)Γ d := (c = d) ∈ Γ

for c, d ∈ DΓ.

Due to the standard properties of equality 2.6.16(i), (ii), (≍L)Γ is an equiv-
alence relation on DΓ (sometimes we denote it just by ≍Γ). We also have

ΓRLiΓ
′ & (c = d) ∈ Γ ⇒ (c = d) ∈ Γ′,

since L ⊢ (x = y) ⊃ �i(x = y); thus ≍L satisfies the RLi-stability condition
from Definition 3.5.1.

Definition 6.1.20 The canonical model of an m.p.l.(=) L is

VM
(=)
L := (V F

(=)
L , ξL),

where
(ξL)Γ(Pm

k ) := {c ∈ (DΓ)m | Pm
k (c) ∈ Γ}.

Note that VM
(=)
L is well-defined, since Pm

k (c1, . . . , cm), (c1 = d1), . . . , (cm =
dm) ∈ Γ implies Pm

k (d1, . . . , dm) ∈ Γ, thanks to 2.6.16(v).
The main property of canonical models is the following

Theorem 6.1.21 (Canonical model theorem)

VM
(=)
L ,Γ � A iff A ∈ Γ

for any L-place Γ ∈ V PL and A ∈ L(=)(Γ).

Proof By induction on the length of A.
The base readily follows from the definitions.
The inductive step for classical connectives and quantifiers follows from 6.1.3

(i)–(iii) and 6.1.7 (EP′), properties (i)–(iv), (vi) of Henkin theories. The case
A = �iB follows from Lemma 6.1.17 (1). �

Corollary 6.1.22 For any modal formula A, VM
(=)
L � A iff L ⊢ A.

Proof If A is a modal sentence, then by Corollary 6.1.10, A ∈ L implies A ∈ Γ

for any L-place Γ; hence VM
(=)
L ,Γ � A by Theorem 6.1.21.

The other way round, if A 6∈ L, then by 6.1.10, A 6∈ Γ for some Henkin
(L, S)-theory Γ, where S is infinite and small. So Γ is an L-place, and thus

VM
(=)
L ,Γ 6� A by Theorem 6.1.21.

The claim for an arbitrary formula A is reduced to the claim for ∀A, since

VM
(=)
L � A iff VM

(=)
L � ∀A, and A ∈ L iff ∀A ∈ L. �



506 CHAPTER 6. KRIPKE COMPLETENESS FOR VARYING DOMAINS

Definition 6.1.23 An m.p.l.(=) L is called V-canonical if V F
(=)
L � L.

This property is sufficient for completeness:

Corollary 6.1.24 Every V-canonical m.p.l. is strongly Kripke complete. Every
V-canonical m.p.l.= is strongly KFE (or Kripke sheaf) complete.

Proof In fact, let L be a V-canonical m.p.l. (=), Γ0 an L-consistent theory;

by Lemma 6.1.9, there exists an L-place Γ ⊇ Γ0. By 6.1.21, VM
(=)
L ,Γ � Γ, so

Γ0 is satisfied the L-frame V F
(=)
L . �

Now let us consider canonical models for two N -modal logics L1 ⊆ L2. Every
L2-consistent theory is clearly L1-consistent, thus V PL1 ⊆ V PL2 . Moreover, we
obtain

Lemma 6.1.25 Let L1 ⊆ L2 be N -m.p.l.(=). Then

(1) V PL2 = {Γ ∈ V PL1 | VML1,Γ � L2}.

(2) VML2 is a generated submodel of VML1.

(3) If L1 is canonical, then V FL2 � L1.

Proof (1) Let Γ be an L1-place. Then VML1 ,Γ � L2 iff L2 ⊆ Γ (by the
canonical model theorem) iff Γ is L2-complete (by 6.1.4(1)). This is equivalent
to Γ ∈ V PL2 , since Γ ∈ V PL1 already enjoys the Henkin property and has a
small set of constants.

(2) In fact, Γ � L2 implies Γ � �iA for any A ∈ L2; thus ∆ � L2 for any
∆ ∈ RL1i(Γ). So due to (1), V PL2 is stable in V FL1 . VML2 is a submodel of
VML1, since VML1 ,Γ � P (a) iff P (a) ∈ Γ iff VML2,Γ � P (a).

(3) Follows from (2) and the generation lemma 3.3.18. �

Proposition 6.1.26 If L is a V-canonical N -m.p.l.(=), Γ is a set of N -modal
pure equality formulas, then L1 = L+ Γ is also V-canonical.

Proof By Lemma 6.1.25, V FL1 is a generated subframe of V FL, so L ⊆

ML(=)(V FL) ⊆ ML(=)(V FL1). On the other hand, VML1 � Γ by the canonical
model theorem, thus since all formulas in Γ are constant, V FL1 � Γ. Therefore
V FL1 � L1. �

Corollary 6.1.22 shows that VM
(=)
L is an exact model for L. The next

proposition is a further refinement of this fact.

Proposition 6.1.27

(1) Every m.p.l. (=) L has a countable exact Kripke model (respectively, KFE-
model).

(2) Moreover, if L ⊇ L0 for a ∆-elementary canonical m.p.l.(=) L0, such a
model exists over an L0-frame.
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(3) Moreover, every L-consistent theory is satisfiable in some model described
in (2).

Proof We can apply Corollary 3.12.11 to L = L0, M = VM
(=)
L , F = V F

(=)
L

and u0 such that M,u0 � Γ (for a given L-consistent Γ).

Note that F � L0 by 6.1.33. So by 3.12.11 there exists a countable reliable
M0 ⊆ M over an L0-frame such that MT(M0) = MT(M) = L and u0 ∈ M0.
Then M0, u0 � Γ by reliability. �

Obviously, the logics QKN and QK=
N are V -canonical. Let us also show

V -canonicity for some other simple modal predicate logics.

For an N -modal theory Γ, α ∈ I∞N let

�−
α Γ := {B | �αB ∈ Γ},

✸αΓ := {✸αA | A ∈ Γ}.

Also let

RLi1...ik
:= RLi1 ◦ · · · ◦RLik

,

and let RLf be the equality relation IdV PL
, cf. Proposition 1.11.5.

Lemma 6.1.28 Let α ∈ I∞N , ΓRLα∆. Then

(1) �−
α Γ ⊆ ∆,

(2) ✸α∆ ∩ L(Γ) ⊆ Γ.

Proof (1) By induction on the length of α. If α = f, everything is obvious.
If (i) holds for β, α = kβ and ΓRLα∆, then there exists Γ′ such that ΓRLkΓ′,
Γ′RLβ∆. By Definition 6.1.14 and the induction hypothesis we obtain

�−
α Γ = {B | �k�βB ∈ Γ} = {B | �βB ∈ �−

k Γ} ⊆ �−
β Γ′ ⊆ ∆.

(2) Ad absurdum. Suppose A ∈ ∆, ✸αA ∈ (−Γ). Then ¬✸αA ∈ Γ, and thus
�α¬A ∈ Γ. By (1), this implies ¬A ∈ ∆, which makes ∆ inconsistent. �

Theorem 6.1.29 Let Λ be a propositional one-way PTC-logic. Then the logics
QΛ, QΛ= are V-canonical.

Proof Every constant axiom is valid in the canonical frame, since it is true in
the canonical model.

If A = �kp ⊃ �βp ∈ L = QΛ(=), then RLβ ⊆ RLk. In fact, suppose
ΓRLβ∆, �kB ∈ Γ. Since ⊢L �kB ⊃ �βB, we have �βB ∈ Γ. By Lemma
6.1.28, it follows that B ∈ ∆.

By Proposition 1.11.5 and Lemma ??, we obtain V FL � A. �
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Example 6.1.30 The following counterexample shows that Theorem 6.1.29
does not extend to arbitrary PTC-logics, because they may be KE-incomplete.
Consider the logic K5 := K + ✸�p ⊃ �p; its Kripke frames are characterized
by the ‘Euclidian’ condition

(ε) ∀u∀v∀w(uRv ∧ uRw ⊃ vRw).

Then QK5= is KE-incomplete. To see this, first note that

QK5= �KE ✸AU1 ⊃ �AU1.

In fact, consider a Kripke sheaf model M over a Euclidian frame, and suppose
M,u � ✸AU1, i.e. for some v ∈ R(u) M, v � AU1, which means that |Dv| = 1.
Then |Dw| = 1 for any w ∈ R(u). In fact, by (ε) we have vRw & wRv, so
there are transition functions ρvw, ρwv; and by the properties of Kripke sheaves
it follows that they are bijections. So |Dw| = 1.

However QK5= 6⊢ ✸AU1 ⊃ �AU1. To see this, consider a Kripke bundle F
over the base F = (W,R), where

W = {u, v1, v2}, R = W × (W − {u}),

Du = {a}, Dv1 = {b}, Dv2 = {c1, c2}, ρ = D+ × (D+ − {a}).

It is clear that F is Euclidean. Every level Fn = (Dn, Rn) is also Euclidean, be-
cause on n-tuples fromDv1 orDv2 the relationRn is equivalent to d sub c & c subd
(which is an equivalence relation) and anRnd for any d 6= an. Therefore
F � QK5= by 5.3.7 and soundness of Kripke bundle semantics. On the other
hand, F 6� ✸AU1 ⊃ �AU1, since v1 � AU1 and v2 6� AU1. Therefore QK5= 6⊢
✸AU1 ⊃ �AU1 by soundness.

Actually many simple and natural predicate logics are not V -canonical. So
they are either Kripke-incomplete, or the completeness proof requires more
work. One of the options may be to take an appropriate submodel of VML, for
which an analogue of Lemma 6.1.21 still holds.

This leads us to the following definition.

Definition 6.1.31 A relation Ri ⊆ RLi on V PL is called (i-)selective if for
any L-place Γ and for any A ∈ L(Γ) such that ✸iA ∈ Γ, there exists an L-place
Γ′ such that ΓRiΓ

′ and A ∈ Γ′.

So we obtain an analogue of Lemma 6.1.17:

Lemma 6.1.32 For any selective Ri, for any Γ ∈ V PL and A ∈ L(Γ) we have

(1) ✸iA ∈ Γ iff (A ∈ Γ′ for some Γ′ ∈ Ri(Γ));

(2) �iA ∈ Γ iff (A ∈ Γ′ for each Γ′ ∈ Ri(Γ)).

Proof The same as in 6.1.17, but ‘only if’ in (1) now follows from 6.1.31. �
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Lemma 6.1.16 means that the relation RLi is i-selective, and thus it is the
greatest i-selective relation on V PL.

Now similarly to the canonical frame, we can introduce quasi-canonical
Kripke frames (V PL, R1, . . . , RN , DL [, ≍L]) with arbitrary i-selective relations
Ri and the corresponding quasi-canonical models (with the valuation ξL). Then
we obtain the following analogues of Lemma 6.1.21 and Corollary 6.1.22:

Lemma 6.1.33 Let M be a quasi-canonical Kripke model for an m.p.l.(=) L.
Then

(1) for any L-place Γ and A ∈ L(Γ)

M,Γ � A iff A ∈ Γ;

(2) for any formula A
M � A iff L ⊢ A.

Another option is to use subsets of V PL still satisfying Corollary 6.1.10 (and
thus, Corollary 6.1.22). Various modifications will be considered in this chapter
later on.

6.2 Canonical models for superintuitionistic
logics

Now let us turn to the intuitionistic case. We would again like to represent
possible worlds in Kripke (or other) models by sets of formulas. But now we
should take false formulas into account as well, because in intuitionistic logic
the falsity of A is not equivalent to the truth of ¬A. For this purpose we need
double theories introduced in 2.7.13.

Definition 6.2.1 If L is a superintuitionistic logic (with or without equality),
a theory (Γ,∆) is called L-consistent if (Γ,∆) 6⊢⊥, i.e.

6⊢L

∧
Γ1 ⊃

∨
∆1

for any finite Γ1 ⊆ Γ, ∆1 ⊆ ∆.

It is obvious that Γ ∩ ∆ = ∅ whenever (Γ,∆) is L-consistent.

Definition 6.2.2 An L-consistent theory (Γ,∆) is called L-complete if Γ∪∆ =
L(Γ,∆)

So in this case ∆ = L(Γ,∆) − Γ, which is abbreviated as (−Γ). Also note that
for any c ∈ L(Γ,−Γ) we have (P (c) ⊃ P (c)) ∈ Γ, since otherwise (P (c) ⊃
P (c)) ∈ (−Γ), while the theory (∅, {P (c) ⊃ P (c)}) is inconsistent. So it follows
that D−Γ ⊆ DΓ. A similar argument using P (c)∧¬P (c) shows that DΓ ⊆ D−Γ.
So we can write DΓ rather than D(Γ,−Γ).

Moreover, we shall often say that Γ (rather than (Γ,−Γ)) is an L-complete
intuitionistic theory.
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Definition 6.2.3 An L-complete intuitionistic theory Γ is called L∃-complete
if it satisfies the existence property:

(EP) if ∃xA(x) ∈ Γ, then A(c) ∈ Γ for some c ∈ DΓ.

More specifically, an L∃-complete Γ is called (L∃, S)-complete if DΓ = S.

Definition 6.2.4 An L∃-complete (respectively, an (L∃, S)-complete) theory Γ
is called L∃∀-complete (respectively, an (L∃∀, S)-complete) if it satisfies the
following coexistence property:

(Av) if ∀xA(x) ∈ (−Γ) and A(d) ∈ Γ for all d ∈ DΓ, then ∀x(A(x) ∨ C) ∈ Γ
for some formula C ∈ (−Γ).

The intended meaning of this property (after we prove the canonical model
theorem) is the following. If at a world Γ of the canonical model ∀xA(x) is false,
but A(d) is true for every individual d, then obviously ∀xA(x) must be false at
some strictly accessible world. (Av) allows us to find a formula C such that
Γ  ∀x(A(x) ∨ C); so C should be true at all strongly accessible worlds, where
A(d) is refuted for some individual d.

For example, this property holds if C exactly defines the set of all strictly
accessible worlds (and the canonical model theorem holds).

For a logic L containing the formula CD the condition (Av) may be simpli-
fied:

(Ac) if ∀xA(x) ∈ (−Γ) , then A(d) ∈ (−Γ) for some d ∈ DΓ.

In fact, let CD ∈ L. If (Av) holds and ∀xA(x) ∈ (−Γ) , but A(d) ∈ Γ for all
d ∈ DΓ, then ∀x(A(x) ∨ C) ∈ Γ for some C ∈ (−Γ). Since CD ∈ Γ, we obtain
(∀xA(x) ∨ C) ∈ Γ, which leads to a contradiction. Thus (Ac) holds.

Conversely, if (Ac) holds then the premise of (Av) is false, so (Av) holds.
Note that (Ac) is an analogue to the property (∀) of forcing in Kripke models

with constant domains.
Since the Gödel–Tarski translation for ∃ is just ∃, the definition of intu-

itionistic forcing for the ∃-case is the same as classical. This explains, why the
existence property is defined in the same way. On the other hand, the intu-
itionistic ∀ translates as modal �∀, and thus the intuitionistic definition for
the ∀-case consists of the ‘classical’ part dealing with individuals from a cer-
tain world and of the ‘modal’ part dealing with accessibility relations between
worlds. So property (Av) is responsible for the classical part of intuitionistic
universal quantification. In the case of constant domains (∀xB)T is equivalent
to ∀xBT , and thus (Ac) is just the dual of (E).

∃∀-complete theories seem to be a better intuitionistic analogue of Henkin
theories than ∃-complete theories. But the latter can be used for completeness
proofs in the simplest cases (for example, for QH(=)).

Lemma 6.2.5 Every L-complete theory Γ has properties 6.1.3(i), (iii), 6.1.2(2):

• (A ∧B) ∈ Γ iff (A ∈ Γ and B ∈ Γ);
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• (A ∨B) ∈ Γ iff (A ∈ Γ or B ∈ Γ);

• Γ ⊢L A iff A ∈ Γ (for A ∈ L(=)(Γ)).

Every L∃-complete Γ also satisfies 6.1.7(EP′):

• ∃xA(x) ∈ Γ iff (A(c) ∈ Γ for some c ∈ DΓ).

Proof An exercise. �

Now let us prove the crucial property of L∃-complete theories analogous to
Lemma 6.1.9 for Henkin theories.

For intuitionistic theories (Γ,∆), (Γ′,∆′) put

(Γ,∆) � (Γ′,∆′) := Γ ⊆ Γ′ & ∆ ⊆ ∆′.

For a complete theory Θ also let

(Γ,∆) � Θ := Γ ⊆ Θ & ∆ ∩ Θ = ∅,

which means (Γ,∆) � (Θ,−Θ).

Lemma 6.2.6 Let (Γ,∆) be an L-consistent theory, D(Γ,∆) = S ⊂ S′, |S′| =
|S′ − S| = ℵ0. Then there exists an (L∃, S′)-complete (and even an (L∃∀, S′)-
complete) theory Θ such that (Γ,∆) � Θ.

Proof The idea of the proof is quite standard. Namely, we can successively
extend the pair (Γ,∆) by adding S′-sentences either to Γ or to ∆. Moreover,
together with adding ∃xA(x) to Γ, we always add A(c) for some new constant c
from (S′ − S). And together with adding ∀xA(x) to ∆, we add A(c) for a new
c — but only if this is consistent. This construction provides the existence and
the coexistence properties. If we need only an L∃-complete theory Θ � (Γ,∆),
we can use the same procedure, but without mentioning ∀-formulas.

Let IF (=)(S′) = {Bk | k ∈ ω}. Choose distinct constants ck from (S′ −
S) such that ck does not occur in B0, . . . , Bk. Next, define a sequence of L-
consistent theories

(Γ,∆) = (Γ0,∆0) � . . . � (Γk,∆k) � . . .

as follows.
If Bk = ∃xA(x), then

(Γk+1,∆k+1) :=

{
(Γk ∪ {Bk, A(ck)},∆k) if (Γk ∪ {Bk},∆k) is L-consistent,
(Γk,∆k ∪ {Bk}) otherwise

If Bk is not of the form ∃xA(x), then

(Γk+1,∆k+1) :=

{
(Γk ∪ {Bk},∆k) if (Γk ∪ {Bk},∆k) is L-consistent,
(Γk,∆k ∪ {Bk}) otherwise.



512 CHAPTER 6. KRIPKE COMPLETENESS FOR VARYING DOMAINS

Let us show that (Γk+1,∆k+1) is L-consistent if (Γk,∆k) is.
First, if (Γk ∪ {Bk},∆k) and (Γk,∆k ∪ {Bk}) are both inconsistent, then

(Γk,∆k) is also inconsistent. In fact, in this case

Γk ⊢L Bk ⊃
∨

∆′, Bk ∨
∨

∆′′

for some finite ∆′,∆′′ ⊆ ∆k, and thus

Γk ⊢L Bk ⊃
∨

∆, Bk ∨
∨

∆,

where ∆ = ∆′ ∪ ∆′′. Now since p ⊃ q, p ∨ q ⊢H q, we obtain Γk ⊢L

∨
∆, i.e.

(Γk,∆k) is inconsistent.
Second, if Bk = ∃xA(x) and (Γk∪{∃xA(x), A(ck)},∆k) is inconsistent, then

Γk ⊢L A(ck) ⊃
∨

∆

for some finite ∆ ⊆ ∆k; therefore by 2.7.12

Γk ⊢L ∀x(A(x) ⊃
∨

∆),

since ck does not occur in Γk ∪ ∆k, which implies

Γk ⊢L ∃xA(x) ⊃
∨

∆

by 2.6.10 and MP, and thus (Γk ∪ {Bk},∆k) is inconsistent.
Next, put Θ :=

⋃
k∈ω

Γk. By construction, the theory (Θ,−Θ) is L-consistent

and has the existence property.
To obtain an L∃∀-complete theory, we should slightly refine the above con-

struction. Viz., if Bk = ∀xA(x), we put

(Γk+1,∆k+1) :=





(Γk ∪ {Bk},∆k) if this theory is L-consistent,
(Γk,∆k ∪ {Bk, A(ck)}) if this theory is L-consistent and

(Γk ∪ {Bk},∆k) is L-inconsistent,
(Γk,∆k ∪ {Bk}) otherwise.

In other words, we add Bk either to Γk or to ∆k keeping consistency, and also
add A(ck) to ∆k whenever this is possible.

The consistency of (Γk,∆k) again implies the consistency of (Γk+1,∆k+1),
since either (Γk ∪ {Bk},∆k) or (Γk,∆k ∪ {Bk}) is consistent, as we have seen
above.

Finally, let us check (Av) for Θ. Suppose Bk = ∀xA(x) 6∈ Θ and A(c) ∈ Θ
for all c ∈ DΘ. Then Bk ∈ ∆k+1, and A(ck) 6∈ ∆k+1, so by construction,
(Γk,∆k ∪ {Bk, A(ck)} is L-inconsistent, and thus,

Γk ⊢L

∨
∆ ∨A(ck)
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for some finite ∆ ⊆ ∆k. Hence by 2.7.12

Γk ⊢L ∀x(
∨

∆ ∨A(x)).

Since Θ is L∃-complete, it satisfies 6.1.3(v), so it follows that ∀x(C ∨A(x)) ∈ Θ,
where C =

∨
∆ ∈ (−Θ). �

Lemma 6.2.7 Let A be an intuitionistic sentence, |S| = ℵ0. Then:

L ⊢ A iff (A ∈ Γ for any (L, S)-place Γ)
iff (A ∈ Γ for any (L∀, S)-place Γ).

Proof Cf. Lemma 6.1.10 for the modal case. �

Let Γ|S := Γ∩ IF
(=)
S for S ⊆ S′ and Γ ⊆ IF

(=)
S′ . We also fix a denumerable

universal set of constants S∗ and consider small subsets of S∗ as in Section 7.1.

Definition 6.2.8 An L-place (respectively, an L∀-place) is an L∃-complete (re-
spectively, an L∃∀-complete) theory with a small set of constants.

V PL and UPL denote the sets of all L-places and L∀-places respectively.

Obviously, UPL ⊆ V PL. We also have an analogue of Lemma 6.1.12:

Lemma 6.2.9 Let u be a world in an intuitionistic Kripke model M over a
frame F = (F,D) and assume that M � L. Then

Γu := {A ∈ IF (=)(Du) |M,u  A}

is an L∃-complete theory.

Proof Almost obvious. As for L-consistency, note that if Ai ∈ Γu for i =

1, . . . , k and L ⊢
k∧

i=1

Ai ⊃
m∨

j=1

Bj, then the latter implication is true in M , and

so M,u  Bj for some j. Thus (Γu,−Γu) is L-consistent. �

Note that Γu is not necessarily L∃∀-complete.
Similarly to the modal case we define canonical maps:

Definition 6.2.10 Let M be a Kripke model for a superintuitionistic logic L,
in which every individual domain is a small subset of S∗. The map from (the
worlds of) M to V PL sending u to Γu is called canonical and denoted by νM,L

(or by νM , or by ν).

Lemma 6.2.9 also extends to Kripke sheaves, bundles and to metaframe
models in modal metaframes.1 The intuitionistic canonical model theorem (see
below) shows that V PL is the set of all L-places Γu in Kripke models for L with
small domains.

Now let us define some accessibility relations on V PL and UPL.

1For intuitionistic metaframes the situation may be different.
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Definition 6.2.11 For Γ,Γ′ ∈ V PL, we say that

• Γ′ is conservative over Γ (notation: Γ . Γ′) if Γ = Γ′|DΓ;

• Γ′ is proper over Γ (notation: Γ < Γ′) if Γ ⊂ Γ′|DΓ.

Let ≤ be the reflexive closure of <, i.e.

Γ ≤ Γ′ iff Γ < Γ′ or Γ = Γ′.

The inclusion relation ⊆ on V PL (i.e. the set {(Γ,Γ′) ∈ V P 2
L | Γ ⊆ Γ′}) is also

denoted by RL.

It is clear that Γ ⊆ Γ′ iff Γ < Γ′ ∨ Γ . Γ′.

Definition 6.2.12 Let W ⊆ V PL. A partial ordering R ⊆ RL is called selective
on W if for any Γ ∈ V PL the following two conditions hold:

(⊃) if (A1 ⊃ A2) ∈ (−Γ), then A1 ∈ Γ′ and A2 6∈ Γ′ for some Γ′ ∈ R(Γ) ∩W ;

(∀) if ∀xA(x) ∈ (−Γ), then A(c′) 6∈ Γ′ for some Γ′ ∈ R(Γ) ∩ W and some
c′ ∈ DΓ′ .

These conditions can be rewritten in an equivalent form:

(⊃′) (A1 ⊃ A2) ∈ Γ iff for any Γ′ ∈ R(Γ) ∩W (A1 ∈ Γ′ ⇒ A2 ∈ Γ′);

(∀′) ∀xA(x) ∈ Γ iff A(c′) ∈ Γ′ for any Γ′ ∈ R(Γ) ∩W, c′ ∈ DΓ′ .

Lemma 6.2.13

(1) The relation RL is selective on V PL and UPL.

(2) The relation ≤ is selective on UPL.

Proof (1) (⊃) If (A1 ⊃ A2) 6∈ Γ, then Γ 6⊢L (A1 ⊃ A2) (Lemma 6.2.5), i.e.
the theory (Γ∪{A1}, {A2}) is L-consistent. So by Lemma 6.2.6, there exists an
L∀-place Γ′ � (Γ ∪ {A1}, {A2}). Thus Γ ⊆ Γ′, A1 ∈ Γ, A2 6∈ Γ′.

(∀) Suppose ∀xA(x) 6∈ Γ, then Γ 6⊢L ∀xA(x). Take c ∈ (S∗ − DΓ); then
the theory (Γ, {A(c)}) is L-consistent (otherwise Γ ⊢L A(c), which implies
Γ ⊢L ∀xA(x)). Hence by Lemma 6.2.6, there exists Γ′ ∈ UPL such that
Γ′ � (Γ, {A(c)}), i.e. Γ′ ⊇ Γ and A(c) 6∈ Γ′.

(2) (⊃) Suppose (A1 ⊃ A2) ∈ (−Γ) and consider two cases.
(a) If A1 6∈ Γ, then by (1) we obtain Γ′ ⊇ Γ such that A1 ∈ Γ′, A2 6∈ Γ′. So

A1 ∈ ((Γ′|DΓ) − Γ), and thus Γ < Γ′.
(b) If A1 ∈ Γ, then to show (IV), we can take Γ′ = Γ, since A2 ⊢L (A1 ⊃ A2),

and thus (A1 ⊃ A2) 6∈ Γ implies A2 6∈ Γ.
(∀) Suppose ∀xA(x) ∈ (−Γ) and consider two cases.
(a) If A(c) 6∈ Γ some c ∈ DΓ, there is nothing to prove: one can take Γ′ = Γ.
(b) If A(c) ∈ Γ for all c ∈ DΓ, we can apply 6.2.4 (Av). So there exists a

formula C ∈ (−Γ) such that ∀x(A(x) ∨ C) ∈ Γ. Now as in the proof of (1), we



6.2. CANONICAL MODELS FOR SUPERINTUITIONISTIC LOGICS 515

obtain Γ′ ⊇ Γ and e ∈ (DΓ′ −DΓ) such that A(e) 6∈ Γ′. Since ∀x(A(x) ∨ C) ∈
Γ ⊆ Γ′ and ∀x(A(x) ∨ C) ⊢L A(e) ∨ C, we also have (A(e) ∨ C) ∈ Γ′, and thus
C ∈ Γ′ by Lemma 6.2.5 (iii). Hence C ∈ (Γ′|DΓ) − Γ, and eventually Γ < Γ′.

�

Note that the previous argument fails for V PL.

Definition 6.2.14 The canonical frame of a superintuitionistic predicate logic
L is defined as V FL := (V PL, RL, DL), where

ΓRLΓ′ := Γ ⊆ Γ′, (DL)Γ := DΓ

similarly to the modal case (cf. Definition 6.1.18).
The canonical frame with equality of an s.p.l.(=) L is

V F=
L := (V PL, RL, DL,≍L),

where, as in Definition 7.1.10,

c (≍L)Γ d := (c = d) ∈ Γ.

The stability condition for ≍L holds trivially, due to the definition of RL.

Definition 6.2.15 The canonical model of an s.p.l.(=) L is VM
(=)
L :=

(V F
(=)
L , ξL), where

(ξL)Γ(Pm
k ) := {c ∈ (DΓ)m | Pm

k (c) ∈ Γ}.

This valuation is obviously intuitionistic.

Definition 6.2.16 We also introduce two kinds of quasi-canonical frames and
models:

UF
(=)
L := V F

(=)
L |UPL, UM

(=)
L := VM

(=)
L |UPL,

U≤F
(=)
L (respectively, U≤M

(=)
L ) is the same as UF

(=)
L (respectively, UM

(=)
L ),

but with the relation ≤ instead of RL.

Theorem 6.2.17 (Canonical model theorem) Let L be an s.p.l.(=). Then
for any L-place Γ and A ∈ L(Γ),

VM
(=)
L ,Γ  A iff A ∈ Γ;

similarly for both quasi-canonical models UML, U
≤ML and for all their selective

submodels.

Proof By induction on the length of A (cf. Lemma 6.1.21). The inductive
step for ∧,∨, ∃ uses Lemma 6.2.5. In the cases of ⊃ and ∀ use 6.2.12 (⊃), (∀).

�
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Corollary 6.2.18 If M = VM
(=)
L , UM

(=)
L or U≤M

(=)
L , then

M  A iff L ⊢ A

for any A ∈ IF (=).

Now we obtain an analogue of 6.1.25:

Lemma 6.2.19 Let L1 ⊆ L2 be s.p.l.(=). Then

(1) V PL2 = {Γ ∈ V PL1 | VML1,Γ  L2},

(2) VML2 is a generated submodel of VML1.

Proof Almost the same as in the modal case. The proof of (1) uses a slightly
different argument about consistency. Viz., let us show the L2-consistency for
an L1-place Θ ⊇ L2. Suppose the contrary: L2 ⊢

∧
∆ ⊃

∨
∇ for finite ∆ ⊆

Θ, ∇ ⊆ −Θ; then Ξ ⊢QH

∧
∆ ⊃

∨
∇ for a finite Ξ ⊆ L2 ⊆ Θ, and hence

QH ⊢
∧

(∆ ∪ Ξ) ⊃
∨
∇, thus (Θ,−Θ) is L1-inconsistent, which contradicts the

assumption that Θ is an L1-place.
For the proof of (2) note that Γ  L2 implies ∆  L2 for any ∆ ⊇ Γ since

the model is intuitionistic. �

Definition 6.2.20 An s.p.l.(=) L is called V -canonical if L ⊆ IL(=)(V F
(=)
L ).

U -canonicity and U≤-canonicity are defined analogously.

Similarly to 6.1.24, we obtain

Corollary 6.2.21 Every (quasi-) canonical superintuitionistic logic is strongly
Kripke complete (Kripke sheaf complete in the case of a logic with equality).

By definition we readily have

Proposition 6.2.22 The logics QH, QH= are V -canonical.

We also have an analogue of Proposition 6.1.26:

Proposition 6.2.23 If L is a V-canonical s.p.l.=, Γ is a set of pure equality
intuitionistic sentences, then L+ Γ is also V-canonical.

Proof The same as in the modal case, but using Lemma 6.2.19. �

Corollary 6.2.24 The logics with decidable and with stable equality QH=d =
QH= +DE and QH=s = QH= + SE are V -canonical.

Therefore, we obtain the following completeness result.

Theorem 6.2.25

(1) Intuitionistic predicate logic QH is strongly Kripke frame complete.
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(2) The logics with equality QH=,QH=d,QH=s are strongly Kripke sheaf
complete.

Note that (ii) can also be deduced from (i) by applying Theorems 3.8.8,
3.8.4.

Remark 6.2.26 In Section 6.4 we shall show that QH=d is actually Kripke-
complete.

However V -canonicity is rare. In general one may expect that superintu-
itionistic predicate logics with simple axioms are not V -canonical. For example,
classical logic QCL is obviously not V-canonical; in fact, every QCL-place (as
well as every L-place for any L) is not maximal in the corresponding canonical
frame, since it may be extended after adding new constants to the language.
Another trivial observation is that QCL ⊢ CD, but CD is not valid in V FQCL,
since as we have just noted, every QCL-place sees another place with a larger
domain.

Moreover, the same argument shows that V FL is of infinite depth (for any
logic L). Thus every superintuitionistic logic containing a propositional finite
depth formula Pk , k ≥ 1 (see Section 1.1.2) is not V -canonical.

Nevertheless for logics with additional axioms listed in Chapter 2 we can
sometimes prove U≤-canonicity. Let us now consider such examples.

6.3 Intermediate logics of finite depth

Let us begin with some simple, but useful remarks.

Lemma 6.3.1 Let L, L′ be superintuitionistic logics, (Γ,∆) an intuitionistic
theory.

(1) If (Γ,∆) is QH-consistent, L ⊆ Γ, then (Γ,∆) is L-consistent.

(2) If (Γ,∆) is L∃-complete, then it is L′∃-complete iff L′ ⊆ Γ.

(3) If (Γ,∆) is L∃∀-complete, then it is L′∃∀-complete iff L′ ⊆ Γ.

Proof (i) Suppose (Γ,∆) is L-inconsistent, L ⊆ Γ, and let us show that (Γ,∆)
is QH-inconsistent. We have ⊢L

∧
Γ1 ⊃

∨
∆1 for some finite Γ1 ⊆ Γ, ∆1 ⊆ ∆.

So a generator A of this formula is in L; hence ∀A ∈ L ⊆ Γ. Thus Γ ⊢QH A, and
so Γ ⊢QH

∧
Γ1 ⊃

∨
∆1, which implies Γ ⊢QH

∨
∆1, i.e. the QH-inconsistency

of (Γ,∆).
(ii) (If.) Assume that L′ ⊆ Γ and (Γ,∆) is L∃-complete. Then it is QH-

consistent, and thus L′-consistent, by (i). Now L′-completeness and the exis-
tence property readily follow from L∃-completeness.

(Only if.) Suppose L′ 6⊆ Γ, and take A ∈ L′ − Γ. Since QH ⊢ ⊤ ⊃ p, it
follows that ⊢L ⊤ ⊃ A, and thus (Γ,∆) is L′-inconsistent.

(iii) The proof is similar to (ii). �
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Remark 6.3.2 Every QCL-place Γ has all the properties from Lemma 6.1.3
(with L = QCL), so it obviously satisfies the conditions 6.2.12 (⊃), (∀). In both
cases we can take Γ′ = Γ. In fact, (A1 ⊃ A2) 6∈ Γ; implies ¬(A1 ⊃ A2) ∈ Γ,
and thus A1 ∈ Γ, A2 6∈ Γ. Next, if ∀xA(x) 6∈ Γ, then ¬∀xA(x) ∈ Γ, and thus
∃x¬A(x) ∈ Γ, by classical logic (cf. 2.6.17(ii)). Hence by the existence property,
for some c ∈ S we have ¬A(c) ∈ Γ, i.e. A(c) 6∈ Γ.

Now let us consider Kuroda’s axiom. Recall that KF is valid in Kripke
frames F = (W,R,D) with the McKinsey property:

∀u ∈W∃v ∈W (uRv & v is maximal),

and similarly for Kripke sheaves. As noted at the end of the previous section,
there are no maximal worlds in the canonical frame V FL, so V FL does not
have the McKinsey property (for any logic L). However let us show that the

McKinsey property holds in U≤F
(=)
L whenever L contains KF .

Lemma 6.3.3 Let L be an s.p.l.(=) containing KF , (Γ,∅) an L-consistent
theory. Then (Γ,∅) is QCL-consistent.

Proof In fact, suppose ⊢QCL ¬(
∧

Γ1). Then (
∧

Γ1) has a generator A such
that ¬A ∈ QCL. By the Glivenko Theorem 2.12.1, then ¬A ∈ QH + KF ⊆
L, and thus ⊢L ¬(

∧
Γ1). So the QCL-inconsistency of (Γ,∅) implies its L-

inconsistency. �

Lemma 6.3.4 Let L be an s.p.l.(=).

(1) Γ is a QCL-place iff Γ is maximal in U≤FL.

(2) If KF ∈ L, then for any L-place Γ there exists an QCL-place Γ′ ≥ Γ.

Proof

(1) Every QCL-complete theory is maximal among consistent theories in the
same language, so every extension of Γ is conservative. By 6.3.2, Γ is a
QCL∀-place, i.e. Γ ∈ UPL.

(2) If already QCL ⊆ Γ, then according to 6.3.2, Γ is a QCL∀-place, so we
we can take Γ′ = Γ,

The other way round, if an L∀-place Γ is not maximal in U≤FL, then
Γ < ∆ for some ∆ ∈ UPL, so there exists A ∈ ((∆|DΓ) − Γ). Then
A = B(a) for some B(x) ∈ IF (=) and a tuple a from DΓ. By 6.2.17 it
follows that U≤ML((=),Γ 6 A ∨ ¬A, and thus

U≤M
(=)
L ,Γ 6 ∀x(B(x) ∨ ¬B(x)).

Hence ∀x(B(x) ∨ ¬B(x)) 6∈ Γ, and thus QCL ⊆ Γ (again by 6.2.17).

Otherwise there exists B ∈ (QCL − Γ). Obviously, the theory (Γ,∅) is
L-consistent, and thus QCL-consistent by 6.3.3. By Lemma 6.2.6, there
exists a QCL∀-place Γ′ ⊇ Γ. We also have Γ < Γ′ since B ∈ (Γ′−Γ)∩IF .
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The argument for logics with equality is similar. �

So we readily obtain completeness:

Theorem 6.3.5 The logic QH + KF (respectively, QH= + KF ) is strongly
determined by Kripke frames (respectively, Kripke sheaves) satisfying the McK-
insey property.

Now let us prove completeness for intermediate logics QHP+
k introduced

in Section 2.4. Recall that QHP+
k = ∆k−1(QCL), where the logic ∆L is

axiomatised by formulas δA = p ∨ (p ⊃ A) for A ∈ L, p not occurring in A;
QHP+

k -frames are the intuitionistic frames of depth ≤ k.

Lemma 6.3.6 If Γ, Γ′ are L-places, Γ < Γ′ and ∆L ⊆ Γ, then L ⊆ Γ′.

Proof Let B ∈ L(Γ) ∩ (Γ′ − Γ) and suppose L 6⊆ Γ′, A ∈ L − Γ′. Then
B ∨ (B ⊃ A) is a substitution instance of δA, so B ∨ (B ⊃ A) ∈ ∆L.

On the other hand, (B ⊃ A) 6∈ Γ; in fact, otherwise (B ⊃ A) ∈ Γ ⊆ Γ′,
which together with B ∈ Γ′, implies A ∈ Γ′ contradicting the choice of A. Now
since also B 6∈ Γ, we obtain B ∨ (B ⊃ A) 6∈ Γ, by Lemma 6.2.5.

Hence it follows that ∆L 6⊆ Γ, in a contradiction to the assumption. �

Lemma 6.3.7 If QHP+
k ⊆ L, then the frame U≤FL is of depth ≤ k.

Proof Suppose Γ1 < . . .Γk is a chain in U≤FL. We have L ⊆ QHP+
k =

∆k−1(QCL) ⊆ Γ1, which yields QCL = QHP+
1 ⊆ Γk, by applying Lemma

6.3.6 (k − 1) times. Thus Γk is maximal in U≤FL, by Lemma 6.3.4(i). �

Theorem 6.3.8 The logic QHP
+(=)
k for k ≥ 1 is determined by Kripke frames

(respectively, Kripke sheaves) of depth k.

Proof We already know that L = LP+
k is sound for frames of depth k, so it

suffices to show that U≤FL is of depth k. By Lemma 6.3.7, U≤FL is of depth
≤ k. On the other hand, LP+

k 6⊢ Pk−1, hence U≤FL 6 APk−1 by Corollary
6.2.18. Therefore by Proposition 1.4.17 and Lemma 3.2.24 U≤FL is of depth
≥ k. �

Remark 6.3.9 For some logics without equality canonical models allow us to
prove KE-completeness rather than K-completeness. Indeed, let L be a non-
canonical predicate logic without equality, L= = QH=+L its minimal extension
with equality, and suppose the canonical model for L= validates L (unlike the
canonical model for L). Then L= is KE-complete (recall that axioms of QH=

are valid in all Kripke sheaves), as well as L. In fact, if a formula A without
equality is not L-provable, then by conservativity (Proposition 2.9.2), A is not
L=-provable and thus is refuted in the canonical model of L=. Although we do
not know how to apply this idea for a direct construction of a Kripke incomplete
logic L, later on we will show an indirect construction of this kind.
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Definition 6.3.10 Let L be a superintuitionistic logic, Γ an L-place. We say
that E is a characteristic formula for Γ if E ∈ (−Γ) and A ∨ (A ⊃ E) ∈ Γ
for any A ∈ L(=)(Γ). Or equivalently, this means that (A ⊃ E) ∈ Γ for any
A ∈ (−Γ), i.e. E is the weakest DΓ-sentence outside Γ.

If a characteristic formula exists, it is clearly unique up to equivalence in Γ
(the relation (A ≡ B) ∈ Γ).

The next lemma uses the operation ∆ introduced in Section 2.13

Lemma 6.3.11 If Γ is a ∆L-place, which is not an L-place, then there exists
a sentence E ∈ IF (=) (without extra constants), which is characteristic for Γ.

Proof Let E ∈ (L − Γ). Then p ∨ (p ⊃ E) ∈ ∆L for p not occurring in E,
and thus A ∨ (A ⊃ E) ∈ Γ for any A ∈ L(Γ). �

Corollary 6.3.12 If QHP+
n ⊆ L for some n > 0, then for any L-place there

exists a characteristic sentence.

Proof Recall that QHP+
k = ∆(QHP+

k−1) for k > 0 and LP+
0 = QH + ⊥

is inconsistent. For an L-place Γ, take the least k (> 0) such that Γ is an
QHP+

k -theory. Then apply Lemma 6.3.11. �

6.4 Natural models for modal and superintu-

itionistic logics

As we can see, canonical models work well only for some particular predicate
logics. In subtler cases it is convenient to use so-called ‘natural models’ obtained
from canonical models by a sort of ‘selective filtration’, together with canonical
maps (cf. Definition 6.1.13).

Let us begin with some simple remarks on canonical maps.
The following is a trivial reformulation of the canonical model theorem.

Lemma 6.4.1 Let M be a Kripke model for a modal logic L, in which every
individual domain is a small subset of S∗ (cf. Definition 6.1.13). Then for any
world u ∈M , for any A ∈ L(u)

M,u � A iff VML, νM (u) � A,

i.e. canonical maps are reliable.
The same holds in the intuitionistic case, with obvious changes.

Lemma 6.4.2 Let M be the same as in the previous lemma, Ri the accessibility
relations in M . Then for any u, v ∈M

uRiv ⇒ νM (u)RLiνM (v),

i.e. canonical maps are monotonic.
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Proof Almost obvious: if �iA ∈ νM (u), i.e. M,u � �iA, and uRiv, then
M, v � A, i.e. A ∈ νM (v).

In the intuitionistic case, if uRv, then νM (u) ⊆ νM (v), by truth-preservation.
�

However note that in general νM is not a morphism of Kripke frames. The
lift property does not always hold, because it may happen that ΓuRLiΓv for
incomparable u, v ∈ F , but there does not exist w ∈ Ri(u) such that Γw = Γv.

Definition 6.4.3 Let L be a predicate logic (N -modal or superintuitionistic,
without or with equality), F = (W,R1, . . . , RN ) a propositional frame of the
corresponding kind. An L-map based on F is a monotonic map from F to (the

propositional base of) V F
(=)
L , i.e. a map h such that for any u, v ∈ F

uRiv ⇒ h(u)RLih(v).

In the intuitionistic case we say that h is an L∀-map if all h(u) are L∀-places,
i.e. h is actually a map to UFL.

Definition 6.4.4 Let h be an L-map based on a propositional frame F . The
predicate Kripke frame associated with h is F(h) := (F,D), where Du =
(DL)h(u) for u ∈ F .

If L is a logic with equality, the Kripke frame with equality associated with
h is F=(h) := (F,D,≍), where

c ≍u d iff (c = d) ∈ h(u)

for u ∈ F and c, d ∈ Du.
The L-model associated with h is M (=)(h) := (F(=)(h), ξ(h)), where

ξ(h)u(Pm
k ) := {c ∈ Dm

u | Pm
k (c) ∈ h(u)}

for u ∈ F .

All these frames and models are well-defined, since uRiv implies h(u)RLih(v)
(which means h(u) ⊆ h(v) in the intuitionistic case).

Definition 6.4.5 An L-map h : F −→ V FL and the associated L-model M(h)
are called natural if h = νM(h),L, i.e. (h, id) : M(h) −→ VML is reliable: for
any u ∈ F , A ∈ L(u)

M(h) � ()A iff VML, h(u) � ()A (⇔ A ∈ h(u)).

This definition is an analogue to the canonical model theorem for M(h). In
this case we readily obtain M(h) � L.

Remark 6.4.6 Lemma 6.4.1 shows that every predicate Kripke model M with
small domains can be presented as a natural Kripke model M(h) in a unique
way; namely, put

h(u) := Γu = {A ∈MF
(=)
N (Du) |M,u � A}

and similarly in the intuitionistic case.
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Definition 6.4.7 A modal L-map h : F −→ V FL based on F = (W,R1, . . . , RN )
is called selective if it satisfies the condition

(✸) if u ∈ F and ✸iA ∈ h(u), then there exists v ∈ Ri(u) such that A ∈ h(v).

Lemma 6.4.8 An L-map h : F −→ V FL is natural iff it is selective.

Proof The ‘only if’ direction is trivial, since in a natural model M(h) we have

M(h), u � A iff A ∈ h(u) (or VML, h(u) � A, by the canonical model theorem)

for any A ∈ L(u).
To prove ‘if’, we check the above equivalence by induction on the length A

(for any u). Let us consider the case A = �iB; other cases easily follow from
Lemma 6.1.3.

If �iB 6∈ h(u), then h(u) 6��iB, and thus h(u) � ✸i¬B. By (✸), there
exists v ∈ Ri(u) such that ¬B ∈ h(v), which is equivalent to B 6∈ h(v).
Hence M(h), v 6�B by the induction hypothesis. Since v ∈ Ri(u), we obtain
M(h), u 6��iB.

The other way round, if h(u) � �iB and uRiv, then h(u)RLih(v), by mono-
tonicity. So h(v) � B, and thus v � B, by the induction hypothesis. Since v is
arbitrary, this implies u � �iB. �

Note that the condition (✸) is a generalisation of selectivity from Definition
6.1.31 (where F is a subframe of V FL). Moreover, by (✸) and monotonicity it
follows that the image of h is a selective subframe of V FL.

The intuitionistic analogue of 6.4.7 is the following

Definition 6.4.9 An intuitionistic L-map h : F −→ V FL based on F = (W,R)
is called selective if it satisfies the following two conditions (cf. 6.2.12 (⊃), (∀)).

(⊃) if (A1 ⊃ A2) ∈ (−h(u)), then A1 ∈ h(v), A2 6∈ h(v) for some v ∈ R(u);

(∀) if ∀xA(x) ∈ (−h(u)), then A(c) 6∈ h(v) for some v ∈ R(u) and c ∈ Dv.

Lemma 6.4.10 An intuitionistic L-map h : F −→ V FL is natural iff it is
selective.

Proof Similar to Lemma 6.4.8. The ‘only if’ part is trivial. To prove ‘if’, we
show by induction on the length of A ∈ L(u) (for any u) that

M(h), u  A iff A ∈ h(u) (or VML, h(u)  A).

Let us consider only three cases.
Let A = B ⊃ C. If A 6∈ h(u), then by (⊃), there exists v ∈ R(u) such that

B ∈ h(v), C 6∈ h(v). By the induction hypothesis, we obtain v  B, v 6 C.
Hence u 6 B ⊃ C.

The other way round, if u 6 B ⊃ C, then there exists v ∈ R(u) such that
v  B, v 6 C. Thus h(v)  B, h(v) 6 C by the induction hypothesis. Since
h(u)RLh(v), it follows that h(u) 6 B ⊃ C.
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Let A = ∃xB. Then

u  A iff ∃c ∈ Du u  B(c) iff ∃c ∈ Du h(u)  B(c)

by the induction hypothesis. Since h(u)RLh(v), the latter is equivalent to h(u) 
A.

Let A = ∀xB. If A 6∈ h(u), then by (∀), there exist v ∈ R(u), c ∈ Dv such
that B(c) 6∈ h(v). By the induction hypothesis, v 6 B(c). Hence u 6 A.

The other way round, if u 6 ∀xB, then there exist v ∈ R(u), c ∈ Dv such
that v 6 B(c). Thus h(v) 6 B(c) by the induction hypothesis, and therefore
h(u) 6 A, since h(u)RLh(v). �

Sometimes we specify the terminology and say, e.g. that h is an (L,R′)-map
if R′ is a selective relation on V PL such that uRv implies h(u)R′h(v). In the
intuitionistic case we also use the term L∀-map if h is a map to UFL; M(h) is
called a natural L∀-model.

If an L-map h is injective and also

uRiv iff h(u)RLih(v),

then M(h) is clearly a selective submodel of the canonical model.
Also note that the naturalness condition (✸) is a weak analogue of lift prop-

erty.
In the intuitionistic case an L-map h over a p.o. set is called proper if

uR−v ⇒ h(u) 6= h(v);

in particular, if h is L,≤-natural and proper, then

uR−v ⇒ h(u) < h(v).

Obviously this condition does not imply the injectivity for h. Similarly in the
intuitionistic case one can consider proper natural models on a quasi-ordered
F ; in the modal case for extensions of QT proper natural models on reflexive
frames can be used. Informally speaking, in these cases in natural models we
do not have to ‘repeat’ the same L-place in strictly accessible worlds, thanks to
reflexivity.

Lemma 6.4.11 Let L be a modal or superintuitionistic logic, M1 ⊆ VML a
selective submodel, F1 the propositional frame of M1, h : F ։ F1. Then h is a
natural L-map.

Proof By Lemmas 6.4.8, 6.4.10, it is sufficient to show that h is selective.
The monotonicity of h follows from the definitions. In the modal case, to check
(✸), suppose ✸iA ∈ h(u). By selectivity of M1, there exists Γ ∈ M1 such that
h(u)RiLΓ and A ∈ Γ. Then by the lift property for h, there exists v ∈ Ri(u)
such that h(v) = Γ, so A ∈ h(v).

In the intuitionistic case (⊃), (∀) are checked by a similar argument, which
we leave to the reader. �
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Lemma 6.4.12

(1) Let L be an N -modal logic, Γ ∈ V PL. Then there exists a Kripke model
M based on a standard greedy tree F such that νM (f) = Γ and M � L.

(2) If L contains ✸i⊤ for 1 ≤ i ≤ N , then one can take F = FNTω.

(3) If L is 1-modal and L ⊇ QS4, then the claim holds for F = ITω.

Proof By Proposition 3.12.9, there exists a countable reliable M1 ⊆ VML

verifying Γ. Let F1 be the propositional frame of M1. We may assume that Γ
is the root of M1 (otherwise, replace M1 with M1 ↑ Γ).

By Proposition 1.10.18, there exists a p-morphism h from some greedy stan-
dard tree F onto F1 sending f to Γ. By Lemma 6.4.11, h is a natural L-map,
so we can take M = M(h). Thus νM (f) = h(f) = Γ.

In the case (2) all the formulas ✸i⊤ are true in VML, hence they are true
in its selective submodel M1. This means that F1 is serial, thus we can take
F = FNTω, by Proposition 1.10.18.

In the case (3) we use Proposition 1.11.11 to construct a p-morphism h :
ITω −→ F1 sending f to Γ. �

Hence we obtain

Proposition 6.4.13 Let FNTω be the set of all greedy standard subtrees of
FNTω. Then

(1) QKN = ML(KFNTω), QDN = ML(KFNTω),

(2) QK=
N = ML=(KE(FNTω)), QD=

N = ML=(KE(FNTω)).

Now let us modify this proposition for the logics described in Theorem 6.1.29.

Proposition 6.4.14 Let Λ be a propositional one-way PTC-logic. Let GT (Λ)
be the set of all greedy standard Λ-trees. Then

(1) QΛ = ML(KGT (Λ));

(2) QΛ= = ML=(KE(GT (Λ))).

Proof (i) By Theorem 6.1.29, the logic L = QΛ is Kripke complete. By
Proposition 1.11.5, it is also ∆-elementary. So by Proposition 3.12.8, it has
the c.f.p., i.e. L = ML(KV0(Λ)), where V0(Λ) is the class of all countable
Λ-frames. Hence by Lemma 3.3.21, L = ML(KV1(Λ)), where V1(Λ) is the
class of all countable rooted Λ-frames.

Next, by Proposition 1.11.11, every frame from V1(Λ) is a p-morphic image
of a frame from GT (Λ). Therefore ML(KGT (Λ)) ⊆ L, by Corollary 3.3.14.
The converse inclusion is a trivial consequence of the definitions.

Of course, instead of applying 3.3.14, we could apply Lemma 6.4.12.
In the case (ii) the argument is the same, based on the corresponding facts

about frames with equality. �



6.4. NATURAL MODELS 525

For logics with closed equality there is a similar result:

Proposition 6.4.15

(1) QK=
N + CE = ML=(KFNTω), QD=

N + CE = ML=(KFNTω).

(2) Let Λ be a propositional one-way PTC-logic.

Then QΛ= + CE = ML=(KGT (Λ)).

Proof (ii) We modify the argument from the previous proof. Kripke sheaf
completeness follows from Theorem 6.1.29 and Proposition 6.1.26. The logics
are ∆-elementary, since CE corresponds to a first-order property of KFEs.

As in the proof of Lemma 6.4.12, we obtain that every L-consistent theory Γ
is satisfied at the root of a Kripke sheaf model M = M(h) based on a standard
greedy Λ-tree. Let Φ be the Kripke sheaf of M . Since M � CE, it follows that
Φ � CE. Then by Lemma 3.10.8, Φ is isomorphic to a simple Kripke sheaf Φ′

(in fact, to apply this lemma, one should take the corresponding Horn closure).
So Γ is satisfied in a Kripke frame from QGT (Λ). �

Recall (Definition 1.10.10) that the intuitionistic universal tree is ITω :=
(Tω,0), where

α 0 β iff ∃γ (β = αγ).

So in the intuitionistic case we have the following analogue of 6.4.12.

Lemma 6.4.16 Let L be a superintuitionistic logic, R′ a selective relation on
V PL. Then for any L-place Γ there exists a proper natural (L,R′)-model on a
standard (complete) subtree F of ITω such that νM (f) = Γ.

We shall often denote νM (u) by Γu if there is no confusion.
It is clear that for v ∈ β(u) one can choose an L-place Γv non-equal to Γu,

due to the reflexivity.
Therefore there exists a natural (L,R′)-model on ITω: in fact, one can copy

L-places Γu from maximal points u of F at all points from ITω↑u. This natural
model is in general improper. But if for example, R′ = RL, then one can
directly construct a proper natural model on ITω; recall that every L-place Γ
in the canonical model can be properly extended by extending its ‘domain’ DΓ.

Hence we obtain completeness:

Theorem 6.4.17

(1) QH = IL(K(ITω));

(2) QH= = IL(KE(ITω));

(3) QH=d = IL=(K(ITω)).

Now let us prove a somewhat stronger form of completeness (cf. Dragalin
[1988]).
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Theorem 6.4.18 Let F be an effuse countable tree. Then

(1) IL(KF ) = QH; ML(KF ) = QS4;

(2) IL=(KEF ) = QH=; ML=(KF ) = QS4=;

(3) IL=(KF ) = QH=d, ML(KF ) = QS4=c.

Proof (1) In the modal case the argument is similar to Proposition 1.11.21. We
have F↑u։ IT2 ։ ITω for some u. Hence by Proposition 3.3.14, ML(KF↑u) ⊆
QS4. Thus by the generation lemma, ML(KF ) ⊆ ML(KF↑u) ⊆ QS4.

The remaining statements are left to the reader. �

Corollary 6.4.19 QH(=)(d) is determined by the universal n-branching tree
ITn for any n ≥ 2.

If a relation R′ is selective on UPL (for an intermediate logic L), then sim-
ilarly to 6.4.12, for any Γ ∈ UPL one can construct a proper natural (L∀, R′)-
model on a standard greedy subtree F of ITω and a natural (L∀, R′)-model on
ITω (not necessarily proper), such that Γf = Γ. In particular, one can apply
this construction to the selective relation ≤ on UPL. However unlike the case
of V FL, we cannot state the existence of a proper (L∀,≤)-model on the whole
ITω. In particular, we obtain

Lemma 6.4.20 If QHP+
k ⊆ L and ν is a proper (L∀,≤)-model on F , then F

is a frame of depth ≤ k.

Lemma 6.4.21 If QHP+
k ⊆ L then for any Γ ∈ UPL there exist a proper

(L∀,≤)-model ν on a standard (greedy) subtree F of IT k
ω and an (L∀,≤)-model

on IT kω such that ν(f) = Γ.

Thus we obtain the following completeness result for QHP+
k , k > 0.

Proposition 6.4.22

(1) QHP+
k = IL(K(IT k

ω )),

(2) (QHP+=

k = IL=(KE(IT k
ω )).

In Section 6.10 we will axiomatise the superintuitonistic predicate logic of
the frames IT k

n of finite depth k and finite branching n; it is just the logic of all
posets of depth ≤ k and branching ≤ n (obviously, all these posets are finite).

But first we shall give some simple remarks on natural models based on
posets of finite heights. The intuitionistic conditions of naturalness for this case
can be slightly modified.

Lemma 6.4.23 Let M be an intuitionistic (L,R′)-model on a poset F of finite
depth. Then

(1) M is natural iff the following conditions hold (for any u ∈ F ):
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(⊃′) If (A1 ⊃ A2) ∈ (−Γu) and A1 6∈ Γu, then (A1 ⊃ A2) 6∈ Γu for some
v ∈ R•(u);

(∀′) if ∀xA(x) ∈ (−Γu) and A(c) ∈ Γu for all c ∈ DΓu
, then ∀xA(x) 6∈ Γv

for some v ∈ R•(u).

(2) If M is an (L∀, R′)-model, then the condition (⊃′) implies (Av′).

Proof

(⊃′) ⇒ (⊃) If A1 ∈ Γv, A2 6∈ Γv for some v ∈ R•(u) then (A1 ⊃ A2) 6∈ Γv.

(∀′) ⇒ (∀) The proof is similar.

(⊃) ⇒ (⊃′) Obviously, if (A1 ⊃ A2) 6∈ Γu, then A1 ∈ Γv and A2 6∈ Γv for a
maximal v ∈ R(u) such that (A1 ⊃ A2) 6∈ Γv.

(⊃′) & (∀) ⇒ (∀) If ∀xA(x) 6∈ Γu and A(c) ∈ Γu for all c ∈ Su then by (Av), for
an L∃∀-complete Γu, we have ∀x(A(x) ∨C) ∈ Γv for some C 6∈ Γu.
Then (C ⊃ ∀xA(x)) 6∈ Γu (otherwise ∀xA(x) ∈ Γu) and by (⊃)′,
(C ⊃ ∀xA(x)) 6∈ Γv for some v ∈ R•(u); hence ∀xA(x) 6∈ Γv.

�

Let us now prove two general lemmas on natural models.

Definition 6.4.24 A subtree F = (W,R1, . . . , RN ) ⊆ FNTω is said to be small
if

∀u ∈ F ∀i ∈ IN (❁i (u) −Ri(u)) is infinite.

In the transitive (or intuitionistic) case we should take βF (u) instead of Ri(u)
in the above condition.

Thus every world of a small subtree F has infinitely many successors in FNTω

unused in F . Note that every denumerable tree, in which every point is of finite
height, is isomorphic to a small subtree of FNTω (or ITω in intuitionistic case).
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Lemma 6.4.25

(1) Let L be an N -m.p.l. Then every L-map based on a small subtree F
of FNTω can be extended to a natural L-map based on a (small) subtree
F ′ ⊆ FNTω such that F ′ ⊇ F .

(2) The same holds for an s.p.l. L and a small subtree F of ITω.

Proof
(1) By induction we construct an increasing sequence of small trees

F = F0 ⊆ F1 ⊆ . . .

and a sequence h = h0 ⊆ h1 ⊆ . . . of L-maps hn : Fn −→ V F
(=)
L such that

F ′ :=
⋃
n
Fn is small, Fn+1 − Fn ⊂

N⋃
i=1

❁i (Fn) and hn+1 ‘cures the defects’ of

hn:

(∗) for any u ∈ Fn, if ✸iA ∈ hn(u), then ∃v ∈ Ri,n+1(u) A ∈ hn+1(v),

cf. Lemma 6.1.16. Actually we may assume that Fn+1 − Fn consists only of

the v constructed by (*). Thus the joined map h′ :=
⋃
n

hn : F ′ −→ V F
(=)
L is

selective, i.e. natural, by Lemma 6.4.8. More explicitly this is done as follows.
For any N -modal S∗-sentence ✸iA choose the corresponding ‘Skolem function’

f✸iA : ξ+L (✸iA) −→ ξ+L (A)

such that ΓRLiF✸iA(Γ) for any Γ ∈ ξ+L (✸iA). This function exists by the axiom
of choice. Now if hn is constructed and (*) holds for Fn−1, then we extend hn

to hn+1 by putting

hn+1(u(2mN + i− 1)) := f✸iAm
(hn(u))

whenever (Am)m≥0 is the list of all N -modal S∗-sentences, u ∈ Fn − Fn−1 and
hn(u) ∈ dom(f✸iAm

) (i.e. ✸iAm ∈ hn(u)). So it follows that (∗) holds for Fn

— in fact, if ✸iAm ∈ hn(u), the corresponding v is u(2mN + i − 1). It also
follows that Fn+1 is small (if Fn is small). In fact, infinitely many ❁i-successors
of u ∈ Fn − Fn−1 do not appear in Fn+1; they are of the form u(kN + i − 1)
with odd k.

(2) In the intuitionistic and in the modal transitive case the definition is
slightly modified. In the transitive case one should take β(u) instead of ❁i (u).
In the intuitionistic case the condition (*) is replaced with two (where  denotes
forcing in the canonical model):

(∗∗) if hn(u) 6 A ⊃ B, then ∃v ∈ β(u) (hn+1(v)  A & hn+1(v) 6 B),

(∗ ∗ ∗) if hn(u) 6 ∀xA(x), then ∃v ∈ β(u) ∃c ∈ Dhn+1(v) hn+1(v) 6 A(c).
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Similarly to the modal case, we use corresponding Skolem functions fA⊃B,
f∀xA(x).

fA⊃B is defined on the complement of ξ+L (A ⊃ B), and ΓRLfA⊃B(Γ),
fA⊃B(Γ) ∈ ξ+L (A) − ξ+L (B).

Analogously, f∀xA(x) is defined on −ξ+L (∀xA(x)). �

Note that in the intuitionistic case we can construct an L∀-map or L∀≤-map,
or even L∀<-map h′ if the original map h is of the corresponding kind. For L∀<

we should not repeat Γu in future worlds and similarly for any selective relation
(in the intuitionistic or in the reflexive modal case).

Lemma 6.4.25 directly implies Lemma 6.4.12, which is its particular case for
a singleton frame on {f}, with h(f) = Γ. A small tree F ′ from 6.4.25 is clearly
isomorphic to a greedy one (or to the whole FNTω, or to ITω in the intuitionistic
case).

Actually the proof of 6.4.25 is a more explicit version of the proof of 6.4.12.
In fact, the intermediate L-maps hn correspond to steps in calculating Skolem
functions used in a well-known proof of the downward Löwenheim–Skolem the-
orem.

The construction in 6.4.25 extends L-maps by adding new points above
the existing ones. Now we shall describe a construction allowing us to add new
points (theories) below the existing theories. The main idea is to extend theories
in a conservative way, by adding only sentences with extra constants.

Although we will further apply this construction to the linear case, we for-
mulate it for arbitrary trees, see Lemma 6.4.30 below.

Definition 6.4.26 The domain of an L-map h (and of the corresponding L-
model) is D+

h :=
⋃

u∈F

Dh(u).

Definition 6.4.27 Let h : F −→ V F
(=)
L and h′ : F ′ −→ V F

(=)
L be two L-maps.

We say that h′ is conservative over h if for every u ∈ F ∩ F ′:

(1) Dh(u) ⊆ Dh′(u) and Dh′(u) ∩D
+
h ⊆ Dh(u),

(2) h(u) . h′(u) (cf. 6.2.11).

We say that h′ is a conservative extension of h if it is conservative and F ⊆ F ′.

The condition (1) means that additional constants in h′-domains are ‘new’ for
h.

Lemma 6.4.28 If h : F −→ V F
(=)
L and h′ : F ′ −→ V F

(=)
L are two L-maps on

subtrees F , F ′ of FNTω (ITω in the intuitionistic case) and h′ is conservative
over h, then h′ can be prolonged to a conservative extension h′′ : F ∪ F ′ −→

V F
(=)
L of h.

Usually this lemma is applied to the case F ′ ⊂ F .
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Proof Consider the case when F ′ ⊂ F . We construct h′′(v) for v ∈ F − F ′

by induction on its length l(v). To simplify notation, we write Γu, Γ′
u, Γ′′

u for
h(u), h′(u), h′′(u) respectively; similarly Du abbreviates Dh(u), etc.

Assume that Γ′′
u satisfying (i) and (ii) is already constructed (with Γ′′

u = Γ′
u

for u ∈ F ∩ F ′) and consider v ∈ Ri(u) (or v ∈ β(u) in the intuitionistic case).
Let us begin with the intuitionistic case. Put (Γ,∆) := (Γ′′

u∪Γv,−Γv). Then
D(Γ,∆) = D′′

u ∪Dv. Let us show that (Γ,∆) is L-consistent. In fact, suppose

⊢L A′(c, c′′) ∧A(c,d) ⊃ B(c,d),

where

r(c) ⊆ Dv ∩D′′
u = Du (by (i) for Γ′′

u), r(d) ⊆ Dv −Du, r(c
′′) ⊆ D′′

u −Du,
A′ =

∧
k

A′
k, A =

∧
i

Ai, B =
∨
j

Bj , A
′
k ∈ Γ′′

u, Ai ∈ Γv, Bj ∈ −Γv,

so A′ ∈ Γ′′
u, A ∈ Γv, B ∈ −Γv. Put A′′(c) := ∃xA′(c,x), where x is a distinct

list corresponding to c′′. Then ⊢L A′′(c) ∧A(c,d) ⊃ B(c,d), and

A′′(c) ∈ Γ′′
u|Du = Γu ⊆ Γv.

It follows that Γv is L-inconsistent, which is a contradiction.
Now, by Lemma 6.2.6, we extend (Γ,∆) to an L∃-complete Γ′′

v � (Γ,∆);
moreover, we choose D′′

v such that D′′
v ∩D+

h ⊆ Dv ∪D′′
u; then D′′

v ∩D+
h ⊆ Dv,

since D′′
u ∩D+

h = Du ⊆ Dv. Obviously, Γ′′
u ⊆ Γ′′

v and Γ′′
v |Dv = Γv, i.e. Γv . Γ′′

v .
Therefore by repeating this construction for all v ∈ (F − F ′), we obtain a
conservative extension of F .

Now let us consider the modal case. We put

Γ := �−
i Γ′′

u ∪ Γv;

again DΓ = D′′
u ∪Dv. Let us check the L-consistency of Γ. Suppose

⊢L ¬(A′(c, c′′) ∧A(c,d)),

where A′ =
∧
k

A′
k, A =

∧
j

Aj , �iA
′
k ∈ Γ′′

u, Aj ∈ Γv, so �iA
′ ∈ Γ′′

v , A ∈ Γv

(c,d, c′′ are just the same as in the intuitionistic case). Similarly to that case,
put A′′(c) := ∃xA′(c,x). Then ⊢L ¬(A′′ ∧ A) and �iA

′′ ∈ Γ′′
u|Du = Γu. Since

ΓuRLi
Γv (in h), i.e. �−

i Γu ⊆ Γv, we obtain A′′ ∈ Γv. Hence Γv is L-inconsistent,
which is a contradiction.

Now by Lemma 6.1.9 we extend Γ to an L-Henkin theory Γ′′
v with a set of

constants D′′
v such that D′′

v ∩ D+
h ⊆ Dv. Then Γ′′

uRLiΓ
′′
v and Γ′′

v |Dv = Γv; in
fact, A ∈ −Γv implies ¬A ∈ Γv ⊆ Γ′′

v , so A 6∈ Γ′′
v . �

Lemma 6.4.29 Under the conditions of Lemma 6.4.28, let F ∪ F ′ be a small
subtree of FNTω (or ITω). Then h′ can be prolonged to a natural conservative
extension h∗ of h over a (small) subtree F ∗ ⊇ F ∪ F ′.

Proof Apply Lemma 6.4.25 to h′′ constructed in Lemma 6.4.28. �
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Lemma 6.4.30 Let F be a subtree of FNTω (or ITω). Let h be an L-map over
F− := F − {f}. Let Γ be an L-place such that

(1) DΓ ∩D+
h ⊆ Du for all u ∈ F (or equivalently, for all u ∈ Ri(f), i ∈ IN ,

or for all u ∈ β(f) resp.)

(2) in the intuitionistic case: Γ|(DΓ ∩D+
h ) ⊆ Γu for all u ∈ β(f) ∩ F

(hence for all u ∈ F );
in the modal case: �−

i (Γ|(DΓ ∩D+
h )) ⊆ Γu for all u ∈ Ri(f).

Then there exists a conservative extension h′′ of h to F such that h′′(f) = Γ.

Proof Repeat the proof of Lemma 6.4.28 word for word. For constructing
h′′(v) for v ∈ Ri(f) (i.e. for u = f), we use (ii) in the intuitionistic case and (i)
in the modal case. �

Remark 6.4.31 Strictly speaking, Lemma 6.4.28 cannot be applied directly
here. We cannot just prolong h to F by putting Γf = Γ|(DΓ ∩D+

h ), since the
latter does not always have the existence property. But this formal obstacle is
not really essential.

6.5 Refined completeness theorem for QH+KF

Definition 6.5.1 A p.o. set F = (W,R) is called coatomic if it satisfies the
McKinsey property:

∀u ∃v (uRv & R(v) = {v}),

i.e. every world sees a maximal world.

Recall that formula KF is valid in all frames over coatomic p.o. sets.

Definition 6.5.2 A p.o. set F = (W,R) is called tree-like if it is rooted and
R−1 is non-branching.

Definition 6.5.3 Let IT ♯
ω be the set of all ω-paths (i.e maximal chains) in the

universal tree ITω. Let us extend ITω to the tree-like p.o. set ITω = ITω ∪IT ♯
ω,

in which IT ♯
ω is the set of maximal points and

u 0 z ⇔ u ∈ z

for u ∈ ITω, z ∈ IT ♯
ω. A set G ⊆ IT ♯

ω gives rise to the subframe

IT
G

ω := ITω ↾ (ITω ∪G)

of ITω with the set of maximal elements G.
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Obviously, ITω is coatomic and tree-like. IT
G

ω is coatomic iff the paths from
G cover ITω, i.e.

(α) ∀u ∈ ITω ∃z ∈ G u ∈ z.

It is also clear that if IT
G

ω is coatomic, then there exists a denumerable

G′ ⊆ G such that IT
G′

ω is also coatomic – in fact, for each u ∈ ITω choose a
path zu ∈ G containing u and put G′ = {zu | u ∈ ITω}.

Lemma 6.5.4 Let L be a superintuitionistic logic containing KF . Then for
any G ⊆ IT ♯

ω and for any L-place Γ

(1) there exists an L-natural model M on IT
G

ω such that νM (f) = Γ;

(2) similarly, there exists an L≤∀-natural model M on IT
G

ω with νM (f) = Γ.

Proof First, by Lemma 6.4.16 we find an L-natural model M over ITω.
Obviously, we may assume that the set

⋃
u

Du is small, i.e. it is a subset of S∗ (cf.

Section 7.1). Now for every path z = {uk | k ∈ ω} ∈ G we put D′
z :=

⋃
k

Duk
and

consider the L-consistent theory (Γ,∅), where Γ :=
⋃
k

Γuk
. By Lemma 6.3.3,

this theory is QCL-consistent. So by Lemma 6.2.6, there exists a QCL∀-place
Γz ⊇ Γ with DΓz

⊇ D′
z.

The resulting map h : IT
G

ω −→ V FL sending v to Γv, is L-natural, since
the conditions (⊃), (∀) for a QCL-place Γz hold trivially. It is also clear that
Γu ⊆ Γz whenever u ∈ z (and Γu ≤ Γz in the proof of (2)). �

Note that this construction can be applied to an arbitrary selective relation
R on V PL (or UPL); to obtain an (L,R)-natural model, one should only check
that ΓuRΓz holds for u ∈ z ∈ IT ♯

ω in the resulting model.

Proposition 6.5.5 QH + KF = IL(KIT ω) = IL(KIT
G

ω ) for any coatomic

poset IT
G

ω .

One can easily obtain the corresponding completeness results for logics with
equality, in the semantics KE — for QH= +KF , and in K — for QH=d +KF .

6.6 Directed frames

In this section we prove completeness results from [Corsi and Ghilardi, 1989].
We consider the following formulas:

ML := ∀x✸�P (x) ⊃ ✸�∀xP (x),
ML∗ := �∀x✸�P (x) ⊃ ✸�∀xP (x),
F := �∃xP (x) ⊃ ✸∃x�P (x).
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Definition 6.6.1 A propositional Kripke frame F = (W,R) is called directed
if the relation R is reflexive, transitive and such that

∀u, v ∈ W ∃w ∈W (uRw & vRw).

A predicate Kripke frame F = (W,R,D) is called directed if its base (W,R) is
directed.

In this section we use specific propositional frames:

Definition 6.6.2

• ITω is called the subordination frame;

• ITω + 1 (ITω with the added top element ∞) is called the subordination
frame with the greatest element;

• ITω + Cω (ITω with the added greatest countable cluster Cω) is called
the subordination frame with the greatest cluster; the elements of Cω are
denoted by ∞0, ∞1, . . . ;

• the ordinal product ITω · ω is called the multiple subordination frame;
recall that this is the set ω∞ × ω ordered by the relation

(α, n)R(β,m) iff n < m ∨ (n = m & α 0 β).

Definition 6.6.3 Let L be a 1-m.p.l. or s.p.l. A subordination L-map is a
natural L-map h : F −→ V FL, where F is one of the subordination frames from
Definition 6.6.2, with the following properties

(1) the set D+
h :=

⋃
u∈F

Dh(u) is small;

(2) if α, β, γ ∈ ω∞ and α ❁ β, β 60 γ, then (Dh(β) −Dh(α)) ∩Dh(γ) = ∅;

(3) if F = ITω · ω, then h is a subordination map on each copy of ITω:

∀n ∈ ω ∀α, β, γ ∈ ω∞ (α ❁ β & β 60 γ ⇒ (Dh(β,n)−Dh(α,n))∩Dh(γ,n) = ∅).

In this case M(h) is called a subordination L-model.

Lemma 6.6.4 Let L ⊇ QS4 and let Γ be an L-place. Then there exists a
subordination L-map g : ITω −→ V FL such that g(f) = Γ.

Proof By 6.4.12, we can construct a natural L-map h : ITω −→ V FL such
that h(f) = Γ, so now we are going to transform it into a subordination L-map
g.

To satisfy the conditions 6.6.3 (1), (2), we use renaming of constants. For
this purpose we should first trace all constants appearing in D+

h . Viz., for
c ∈ D+

h we say that h introduces c at stage α if α is minimal in the set {β ∈
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ITω | c ∈ Dh(β)}. The same constants can be introduced at different stages, but
they are all incomparable.

Now let S∗ = {en | n ∈ ω} be an enumeration of our universal set of
constants. We choose its small subset S and present it as a two-dimensional
array:

S = {cn,α | n ∈ ω, α ∈ ω∞}.

Next, we define g : ITω −→ V FL as follows.

g(α) := {Aα | A ∈ h(α)},

where Aα is obtained from A by replacing all occurrences of each constant en

with cn,β such that β 0 α and h introduces en at stage β; this β is uniquely
determined by n and α.

Of course we have to ensure that g(α) is really an L-place. First note that A
can be also obtained from Aα by renaming constants. This operation respects
provability, so ⊢L Aα ⇒⊢L A for any Dh(α)-formula A; formally, one should ar-

gue by induction on the derivation of A. Thus 6⊢L ¬
k∧

i=1

(Ai)α implies 6⊢L ¬
k∧

i=1

Ai,

i.e. the L-consistency of h(α) implies the L-consistency of g(α).
The Henkin property is almost obvious. In fact, if ∃xAα(x) = (∃xA(x))α ∈

L(g(α)), then ∃xA(x) ∈ L(h(α)). By the Henkin property for h(α), there is n
such that (∃xA(x) ⊃ A(en)) ∈ h(α). Therefore (∃xAα(x) ⊃ Aα(cn,α)) ∈ g(α).

Now g satisfies the condition 6.6.3 (1), since the new set of constants S is
small. For (2), note that if α ❁ β, then Dh(β) −Dh(α) consists exactly of the
constants introduced at stage β, so all constants in Dg(β) − Dg(α) are of the
form cn,β . Thus if β 60 γ, they cannot appear in g(γ). �

Lemma 6.6.5 Let L ⊇ QS4.2. If h is a subordination map such that h(f) ⊇ L,
then

⋃
α∈ω∞

�−h(α) is L-consistent.

Proof Suppose
⋃

α∈ω∞

�−h(α) is L-inconsistent. Then for some n,
⋃

|α|≤n

�−h(α)

is L-inconsistent. Take the smallest such n; obviously n > 0.
Note that α 0 β implies �−h(α) ⊆ �−h(β).
In fact, by monotonicity of h,

α 0 β ⇒ �−h(α) ⊆ h(β).

Now A ∈ �−h(α) implies �A ∈ h(α), hence ��A ∈ h(α) by S4, so �A ∈
�−h(α) ⊆ h(β), i.e. A ∈ �−h(β).

Hence it follows that
⋃

|α|=n

�−h(α) is L-inconsistent.

Now since every �−h(α) is ∧-closed, by joining conjunctions, we obtain
different sequences α1k1, . . . , αmkm of length n and formulas Ai ∈ �−h(αiki)
such that {Ai | 1 ≤ i ≤ m} is L-inconsistent. (Note that αi are not necessarily
distinct.) Every Ai can be presented as [ci/xi]Bi, where r(ci) ⊆ Dh(αi), xi is a
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distinct list of variables and Bi is a Dh(αi)-sentence. Since h is a subordination
map, the sets r(ci) are disjoint, so we may assume that all xi are disjoint. By
Lemma 2.7.10

⊢L ¬
∧

i

Ai implies ⊢L ∀x¬
∧

i

Bi,

where x = x1 . . .xm.
By 2.6.15(xvi), we obtain

⊢L ¬∃x
∧

i

Bi, and thus ⊢L ¬
∧

i

∃xiBi

by 2.6.15(xxvii), since xi are disjoint. Hence ⊢L �✸¬
∧

i ∃xiBi (�-introduction
is admissible, and (�p ⊃ �✸p) ∈ S4), which implies

⊢L ¬✸�(
∧

i

∃xiBi),

and thus

(∗) ⊢L ¬
∧

i

✸�∃xiBi,

by Lemmas 1.1.2, 1.1.4.
But h(αiki) � �Ai, so h(αiki) � ∃xi�Bi, which implies h(αiki) � �∃xiBi

by 2.6.18 and soundness; thus

h(αi) � ✸�∃xiBi,

and so
h(αi) � �✸�∃xiBi,

by 1.1.2 and soundness. This shows that ✸�∃xiBi ∈ �−h(αi), so eventually
(∗) implies the L-inconsistency of

⋃
|α|=n−1

�−h(α) contrary to the choice of n.

�

Lemma 6.6.6 Let L ⊇ QS4.2. Then for every L-place Γ there is an ω-
subordination model M with νM (f) = Γ.

Proof Let us define h as follows:

• By Lemma 6.6.4, there is a subordination model M0 with νM0(f) = Γ.
Put h(0, α) := νM0(α) for all α ∈ ω∞.

• By Lemmas 6.6.5 and 6.1.9, for every n there is an L-place Γn+1 such that
DΓn+1 ⊇

⋃
α∈ω∞

Dh(n,α) and Γn+1 ⊇
⋃

α∈ω∞

�−h(n, α). By Lemma 6.6.4,

there is a subordination model Mn+1 with νMn+1(f) = Γn+1. Then put
h(n+ 1, α) := νMn+1(α) for all α ∈ ω∞.

�
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From Lemmas 6.6.4, 6.6.6 and 6.1.9 we obtain

Theorem 6.6.7 The logic QS4.2 is determined by the ω-subordination frame.

Definition 6.6.8 An L-consistent theory Γ ⊆ MFS is called a nearly (L, S)-
Henkin theory if Γ ⊢L ∀x A(x), whenever Γ ⊢L A(c) for all c ∈ S.

Lemma 6.6.9 (1) Let L be an 1-m.p.l., S a small set of constants. If Γ is a
nearly (L, S)-Henkin theory and A is an S-sentence such that Γ ∪ {A} is
L-consistent, then Γ ∪ {A} can be extended to an (L, S)-Henkin theory.

(2) Let L ⊇ QK + Ba. If Γ is a nearly (L, S)-Henkin theory then �−Γ is a
nearly (L, S)-Henkin theory.

Proof Standard. �

Lemma 6.6.10 Let L ⊇ QS4 + ML∗ and let Γ ⊆ MFS be L-consistent and
L-�-closed (i.e. A ∈ Γ only if Γ ⊢L �A). Let also S ⊆ S′, |S′| = |S′ −S| = ℵ0.
Then there exists an L-consistent theory Γ′ ⊆ MFS′ such that Γ ⊆ Γ′ and the
following conditions hold:

(1) �✸¬B ∈ Γ′ or �B ∈ Γ′ for any B ∈MFS′ ;

(2) if ∀xB(x) ∈ MFS′ and �✸¬∀x B(x) ∈ Γ′, then �✸¬B(c) ∈ Γ′ for some
c ∈ S′.

Proof Let {Ai | i ∈ ω} be an enumeration of MFS′ . We define the following
sequence of theories:

Γ0 := Γ;

Γn+1 :=





(1) Γn ∪ {�✸¬An,�✸¬B(c)},

where c does not occur in Γn ∪ {An}

if Γn ∪ {�✸¬An} is L-consistent and An = ∀x B(x);

(2) Γn ∪ {�✸¬An} if Γn ∪ {�✸¬An} is L-consistent and

An is not of the form ∀x B(x);

(3) Γn ∪ {�An} otherwise.

Each Γn is clearly L-�-closed. We only need to show by induction that Γn

is L-consistent.
In fact, Γ0 is L-consistent by assumption. For the induction step, suppose

that some Γn is L-consistent, but Γn+1 is not. Then Γn+1 is not obtained by (2).
Suppose Γn+1 is obtained by (1). Then there are sentences B1, . . . , Bm ∈ Γn

such that

L ⊢ B1 ∧ . . . ∧Bm ∧�✸¬∀x B(x) ⊃ ¬�✸¬B(c).

Since c does not occur in Γn or in B(x), it follows that

L ⊢ B1 ∧ . . . ∧Bm ∧�✸¬∀x B(x) ⊃ ∀x¬�✸¬B(x).
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Since L ⊇ QS4 +ML∗, we have

L ⊢ �B1 ∧ . . . ∧�Bm ∧�✸¬∀x B(x) ⊃ ✸�∀x B(x),

hence
L ⊢ �B1 ∧ . . . ∧�Bm ⊃ ✸�∀x B(x).

Since Γn is L-�-closed, we obtain

Γn ⊢L ✸�∀x B(x).

This contradicts the L-consistency of Γn ∪ {�✸¬An}. If Γn+1 is obtained by
(3), then Γn ∪ {�✸¬An} is L-inconsistent, and so Γn ⊢L ¬�✸¬An. If Γn+1 is
L-inconsistent, then Γn ⊢L ¬�An. By Necessitation, Γn ⊢L �✸¬An, and so Γn

is L-inconsistent, contrary to hypothesis. Thus each Γn is L-consistent.
Therefore Γ′ :=

⋃
n∈ω

Γn is L-consistent and L-�-closed by a standard argu-

ment. The conditions (1) and (2) hold by construction, so Γ′ is an (L, S)-Henkin
theory. �

Lemma 6.6.11 Let L ⊇ QS4. If Γ ⊆MFS is an L-consistent theory satisfying
conditions (1) and (2) of Lemma 6.6.10, then the following holds:

(1) �−Γ is a nearly (L, S)-Henkin theory;

(2) If Γ′ ⊇ �−Γ is L-consistent then �−Γ′ ⊆ �−Γ.

(3) If Γ ⊢L A implies A ∈ Γ, then (1) and (2) above imply 6.6.10(1) and
6.6.10(2).

Proof

(1) Suppose �−Γ 0L ∀x A(x). Then ∀x A(x) 6∈ �−Γ, and so �∀x A(x) 6∈ Γ.
By 6.6.10(1), then �✸¬∀x A(x) ∈ Γ, and by 6.6.10(2), �✸¬A(c) ∈ Γ for
some c. Since Γ is L-consistent, Γ 0L �A(c), and so �−Γ 0L A(c).

(2) Suppose A 6∈ �−Γ. By 6.6.10(1) it follows that �✸¬A ∈ Γ, so ✸¬A ∈
�−Γ and ✸¬A ∈ Γ′. Since Γ′ is L-consistent, �A 6∈ Γ′ and so A 6∈ �−Γ′.

(3) We first check 6.6.10(1). If �✸¬A 6∈ Γ, then ✸¬A 6∈ �−Γ, and so �−Γ 0L

✸¬A. Hence�−Γ∪{�A} is consistent. From (2) it follows that �−(�−Γ∪
{�A}) ⊆ �−Γ and so A ∈ �−Γ and �A ∈ Γ.

Now suppose Γ ⊢L �✸¬∀x A(x), but for all c ∈ S, Γ 0L �✸¬A(c). Then
�✸¬A(c) 6∈ Γ, and by 6.6.10(1), �A(c) ∈ Γ for all c. Then A(c) ∈ �−Γ
and �−Γ ⊢L ∀x A(x). It follows that Γ ⊢L �∀x A(x). This contradicts
the L-consistency of Γ.

�

Lemma 6.6.12 Let L ⊇ QS4.2 + ML∗. Then for every L-place Γ there is a
subordination model M with the greatest cluster such that νM (f) = Γ.
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Proof We construct the corresponding h as follows.
Let M0 be a subordination model such that νM0(f) = Γ. Such a model exists

by Lemma 6.6.4. Let h = νM0 on ω∞. By Lemma 6.6.5, Γ′ :=
⋃

α∈ω∞

�−h(α)

is L-consistent. One can easily to see that Γ′ is L-�-closed. Let S′′ ⊇ S′ =⋃
α∈ω∞

Dh(α), |S′′ − S′| = ℵ0. By Lemma 6.6.10 there is an L-consistent set

Γ′′ ⊇ Γ′ of S′′-sentences with properties 6.6.10(1) and 6.6.10(2). Let A1, . . . be
an enumeration of all S′′-sentences B such that �−Γ′′ ∪ {B} is L-consistent.
For any n we define Γ∞n

as a Henkin (L, S′′)-theory extending �−Γ′′ ∪ {An}.
We have �−Γα ⊆ Γβ whenever αRβ for all α, β ∈ ITω + Cω . In fact, for

α ∈ ω∞ and n ∈ ω we have �−Γα = �−�−Γα ⊆ �−Γ′′ ⊆ Γ∞n
. For n,m ∈ ω

we have, by Lemma 6.6.11(2), Γ∞n
⊆ �−Γ′′ ⊆ Γ∞m

. Therefore, αRβ implies
�−Γα ⊆ Γβ .

If ✸A ∈ Γ∞n
, then �−Γ′′ ∪ {✸A} is L-consistent. By Lemma 6.1.16, there

is an L-place Γ∗ such that Γ∞n
RLΓ∗ and A ∈ Γ∗. Since we also have �−Γ∞n

⊆
Γ∗, �−Γ∞n

∪ {A} is L-consistent and A = Am for some m. �

By applying Lemmas 6.6.4, 6.6.12, 6.1.9 we obtain

Theorem 6.6.13 The logic QS4.2 + ML∗ is determined by the subordination
frame with the greatest cluster.

Lemma 6.6.14 Let L ⊇ QS4.2.1 +ML∗. Then for every L-place Γ there is a
subordination model M with the greatest element such that with νM (f) = Γ.

Proof Let h ↾ ω∞, Γ′′ be the same as in the proof of 6.6.12.
Let us show that �−Γ′′ is an (L, S′′)-Henkin theory. Suppose that both A 6∈

�−Γ′′ and ¬A 6∈ �−Γ′′. Then �A 6∈ Γ′′ and �¬A 6∈ Γ′′. By Lemma 6.6.10(1),
�✸¬A ∈ Γ′′ and �✸¬¬A ∈ Γ′′, in contradiction with the L-consistency of Γ′′.
By Lemma 6.6.11(1), �−Γ′′ is a nearly (L, S′′)-Henkin theory, and so it is an
(L, S′′)-Henkin theory as well.

For any α ∈ ω∞ we have �−Γα = �−�−Γα ⊆ �−Γ′′ and DΓα
⊆ S′′.

Let ✸A ∈ �−Γ′′. If A 6∈ �−Γ′′, then ¬A ∈ �−Γ′′ and so �¬A ∈ Γ′′ and
�¬A ∈ �−Γ′′ contradicting the L-consistency of �−Γ′′. �

By applying Lemmas 6.6.4, 6.6.14, 6.1.9 we obtain

Theorem 6.6.15 The logic QS4.2.1+ML∗ is determined by the subordination
frame with the greatest element.

Now let us consider the intuitionistic case. Analogously to Lemma 6.6.4 we
have

Lemma 6.6.16 Let L ⊇ QH and let Γ be an L-place. Then there exists a
subordination map g : F −→ V FL such that g(f) = Γ.

Proof Same as Lemma 6.6.4, using Lemma 6.4.16 instead of Lemma 6.4.12.
We need to check the existence property instead of the Henkin property, but
this is trivial. �
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We also obtain an analogue to Lemma 6.6.6:

Lemma 6.6.17 Let L ⊇ QH + J and let h be a subordination map such that
L ⊇ h(f). Then

⋃
α∈IT ω

h(α) is L-consistent.

Proof The argument is basically the same as in the proof of 6.6.17. By
monotonicity, α 0 β ⇒ h(α) ⊆ h(β). So the L-inconsistency of

⋃
α∈IT ω

h(α)

implies the L-inconsistency of
⋃

|α|≤n

h(α) for some n. Consider the least such n.

As in 6.6.5, we obtain Ai ∈ h(αiki) with different αiki of length n such that
{Aij | 1 ≤ i, j ≤ m} is consistent. Next, we choose maximal generators Bi of
Ai, so for distinct ci and xi Ai = [ci/xi]Bi.

Hence ⊢L ∀xi¬
∧
i

Bi, which implies ⊢L ¬
∧
i

∃xiBi by 6.6.10 (xvi, xxvii), and

next

(∗) ⊢L ¬
∧

i

¬¬∃xiBi,

since QH ⊢ p ⊃ ¬¬p. On the other hand, h(αiki) � ∃xiBi, thus h(αi) 6�
¬∃xiBi, which implies

(∗∗) h(αi) � ¬¬∃xiBi,

since h(αi) � ¬∃xiBi∨¬¬∃xiBi by AJ . Now (∗), (∗∗) imply the L-inconsistency
of

⋃
|α|=n−1

h(α). �

Corollary 6.6.18 Let L ⊇ QH+J and let h be a subordination map such that
L ⊇ h(f). Then

⋃
α∈T

h(α) is L-consistent for any standard subtree T of ITω.

Proof Obvious. �

Lemma 6.6.19 Let L ⊇ QH + J and let Γ be an L-place. Then there exists
an ω-subordination model M such that νM (f) = Γ.

Proof Same as Lemma 6.6.6, replacing modal lemmas with their analogues.
�

From Lemmas 6.6.16, 6.6.19 and 6.2.6 we obtain

Theorem 6.6.20 The logic QH+J is determined by the ω-subordination frame.

Lemma 6.6.21 Let L ⊇ QH + KF + J and let Γ be an L-place. Then there
exists an subordination map with the greatest element h : ITω −→ V FL such
that h(f) = Γ.
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Proof Let g be the subordination map given by Lemma 6.6.16. By Lemmas
6.6.17, 6.2.6 and 6.3.4 there exists a QCL∃-complete L∀-place Γ′ ⊇

⋃
α∈IT ω

g(α).

Let h(α) = g(α) for all α ∈ ITω, h(∞) = Γ′.
Since Γ′ is ≤-maximal and ≤ is selective on UPL, we observe that A ∈ Γ′

and B 6∈ Γ′ whenever (A ⊃ B) 6∈ Γ′ and ∀xA(x) ∈ Γ′ whenever A(c) ∈ Γ′ for all
c ∈ DΓ′ . Therefore h is natural. �

Hence we obtain

Theorem 6.6.22 The logic QH +KF + J is determined by the subordination
frame with the greatest element.

6.7 Logics of linear frames

In this section we prove strong Kripke-completeness for the logic QLC w.r.t.
denumerable linear Kripke frames, or moreover, w.r.t. Kripke frames over the
set of nonnegative rationals Q+.

The first proof of this result found by Corsi [Corsi, 1992] used the ‘method
of finite diagrams’, which is a modification of the original S. Kripke’s method
of semantic tableaux for the linear case, and it was rather laborious and com-
plicated. Another proof using linear natural models was given in [Skvortsov,
2005]. Now we present a new, essentially simplified version of the latter proof
basing on Lemma 6.4.28.

Let Clin be the class of all linearly ordered sets, Cω
lin the class of all denumer-

able sets from Clin.
Recall that every set from Cω

lin is embeddable in Q.

Theorem 6.7.1

(1) QLC = IL(K(Clin)) = IL(K(Cω
lin));

(2) QLC= = IL=(KE(Clin)) = IL=(KE(Cω
lin));

(3) QLC=d = IL=(K(Clin)) = IL(K(Cω
lin)).

Moreover, strong completeness holds in all these cases.

Lemma 6.7.2 2 If F is a countable linearly ordered set, then Q։ F .

Theorem 6.7.3

(1) QLC = IL(K(Q+)) = IL(K(Q));

(2) QLC= + IL=(KE(Q+)) = IL=(KE(Q));

(3) QLC=d = IL=(KE(Q+)) = IL=(KE(Q)).

2[Takano, 1987]



6.7. LOGICS OF LINEAR FRAMES 541

Proof From the previous lemma it follows that Q+ ։ F for any rooted
F ∈ Cω

lin. Then apply Theorem 6.7.1 and Proposition 3.3.14. �

Soundness QLC ⊆ IL(K(Clin)) follows from ??.
Let us prove strong completeness. Let L ⊇ QLC be a superintuitionistic

predicate logic.

Definition 6.7.4 A finite L-chain is an L-map over a finite linearly ordered
set W = {0, 1, . . . , k}, 0 < 1 < . . . < k, i.e. a sequence of L-places M =
(Γ0,Γ1, . . . ,Γk) such that Γi ⊆ Γi+1 for i < n. Recall that D+

M :=
⋃
i

DΓi
=

DΓm
.

Comment We shall construct a natural L-model step-by-step; L-chains will be
finite fragments of this model at different stages of the construction. As usual,
if say, (A ⊃ B) 6∈Γj , then we have to insert a new point above j, i.eȧ new theory
Γ′ extending Γj such that A∈Γ′, B 6∈Γ′. But in general we cannot put this Γ′

above the whole n-chain, because it may happen that (A ⊃ B) ∈ Γj+1. Then
we have to insert a new point between j and (j+1), and after extending the
theory (Γj∪{A}, {B}) to Γ′ by Lemma 6.2.6, we should extend Γj+1 to a new
theory Γ′

j+2 in a conservative way, etc. and thus obtain a conservative extension
(Γ′

i+1 | i > j) of (Γi | i > j), which together with the ‘old’ (Γi | i≤ j) and the
‘new’ Γ′ makes a (k+2)-element L-chain extending the original (k+1)-element
L-chain. To make this, we apply Lemma 6.4.28 (its condition is satisfied due to
the linearity axiom).

Lemma 6.7.5 Let M = (Γ0,Γ1, . . . ,Γk) be a finite L-chain and assume that
for a certain j < k

(1) (A1 ⊃ A2) ∈ Γj+1 − Γj

or

(2) ∀xA(x) ∈ Γj+1 − Γj.

Then there exists a finite L-chain M ′ = (Γ0, . . . ,Γj ,Γ
′
j+1,Γ

′
j+2, . . . ,Γ

′
k+1)

such that DΓ′
j+1

∩ D+
M = DΓj

, M ′|({0, . . . , k + 1} − {j + 1}) is a conservative
extension of M and respectively:

(1′) A1 ∈ Γ′
j+1, A2 6∈ Γ′

j+1 in case (1),

(2′) A(c) 6∈ Γ′
j+1 for some c ∈ DΓ′

j+1
−DΓj

in case (2).

Comment Between Γj and Γj+1 we insert a new theory Γ′
j+1 satisfying the

standard falsity condition for (A ⊃ B) or ∀yA(y). This position is exact, for
it is impossible to put Γ′

j+1 after Γj+1 and it is not necessary to put it before
Γj. Along with putting Γ′

j+1 before Γj+1, we extend the members of the former
subchain Γj+1, . . . ,Γk to Γ′

j+2, . . . ,Γ
′
k+1 (by applying Lemma 6.4.28). Of course,

we may not preserve the conservativity, if we use (say, in Γ′
j+1 −Γj or in Γ′

j+2−
Γj+1, etc.) the constants that are already present in Γj+1,Γj+2, etc. Thus we
should add only new constants.
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Proof Consider the following L-consistent theory (Γ,∆) in the case (1) or (2)
respectively:

(1) (Γ,∆) := (Γj ∪ {A1}, {A2}),

(2) (Γ,∆) := (Γj , {A(c)}), with c 6∈ D+
M .

By Lemma 6.2.6, there exists an L-place Γ′
j+1 such that (Γ,∆) � Γ′

j+1 and

DΓ′
j+1

∩D+
M = DΓj

(i.e. we add only new constants). Then Γj ⊆ Γ′
j+1 and the

condition (1′) or (2′) (respectively) holds.
If j = k, the construction terminates. So consider the case j < k. Put

B0 := (A1 ⊃ A2) or B0 := ∀xA(x) in case (1) or (2) respectively; then B0 ∈
(Γj+1|DΓj

) − Γ′
j+1.

Let us show that Γ′
j+1|DΓj

⊆ Γj+1. In fact, let B ∈ Γ′
j+1|DΓj

. By LC,
(B ⊃ B0) ∨ (B0 ⊃ B) ∈ Γj . Also (B ⊃ B0) 6∈ Γj , since otherwise B ∈ Γ′

j+1

implies B0 ∈ Γ′
j+1. Thus (B0 ⊃ B) ∈ Γj ⊆ Γj+1, and so B ∈ Γj+1, since

B0 ∈ Γj+1.
Now Lemma 6.4.28 yields a conservative extension (Γ′

j+2, . . . ,Γ
′
k+1) of (Γj+1

, . . . ,Γk) such that Γ′
j+1 ⊆ Γ′

j+2. This completes the construction; obviously
M ′|W is a conservative extension of M . �

Proposition 6.7.6 Let Γ be an L-place. Then there exists a natural L-model
M over a subframe (not necessarily generated) F ⊆ Q+ with the root 0 such
that νM (0) = Γ.

Proof Rather straightforward. Consider an enumeration B0, B1, B2, . . . of
the set IF (S∗) of S∗-sentences (where S∗ is the universal set of constants as
usual), in which every sentence occurs infinitely many times. We construct an
exhausting sequence of finite subsets of Q+: {0} = W0 ⊆ W1 ⊆ . . . and a
sequence of finite L-chains hn : Mn −→ V FL over Wn (for n ∈ ω) such that
hn(0) = Γ (for all n) and every restriction Mn+1|Wn is a conservative extensions
of Mn.

The inductive step is as follows. Assume that Mn is already constructed,
with Wn = {u0, . . . , uk}, hn(ui) = Γui

, and Bn has the form (A1 ⊃ A2) or
∀xA(x), so that Bn ∈ (−Γui

) for some i ≤ k. Then we choose the great-
est j ≤ k such that Bn 6∈ Γuj

and construct an L-chain Mn+1 over Wn+1 =
{u0, . . . , uj, v, uj+1, . . . , un}, where uj < v < uj+1, according to Lemma 6.7.5;
so Mn+1|Wn is a conservative extension of Mn.

Now put W :=
⋃
n
Wn; M :=

⋃
n
Mn, with h(u) = hn(u) whenever u ∈ Wn.

Thus h(0) = Γ and every M |Wn is a conservative extension of Mn. By
the construction it is clear that the L-map h is natural. In fact, if (A1 ⊃
A2) ∈ −h(u) for some u ∈ W , then (A1 ⊃ A2) ∈ −hn(u) for some n such that
u ∈ Wn and Bn = (A1 ⊃ A2) (recall that (A1 ⊃ A2) occurs infinitely many
times in our enumeration). Let Wn = {u0, . . . , uk}, u = ui. Then Wn+1 =
{u0, . . . , uj, v, uj+1, . . . , uk} for some j ≥ i, and A1 ∈ hn+1(v), A2 6∈ hn+1(v).
So A1 ∈ h(v), A2 6∈ h(v) (by conservativity) and v > uj ≥ ui = u in W .

The case ∀xA(x) ∈ −h(u) is quite similar. �
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Corollary 6.7.7 QLC is strongly Kripke complete.

Remark 6.7.8 The completeness proof given in [Skvortsov, 2005] follows the
same scheme, but instead of Lemma 6.4.28, it uses the notion of a ‘prechain’
under a finite L-chain M = (Γu1 , . . . ,Γuk

) over W = {u1, . . . , uk}. Such a
prechain has the form ((Γ,∆),Γu1 , . . . ,Γuk

) where (Γ,∆) is an L-consistent
theory. It should satisfy a special condition, when it can be extended it to a
finite L-chain M ′ = (Γ′

u0
,Γ′

u1
, . . . ,Γ′

uk
) such that (Γ,∆) � Γ′

u0
and M ′|W is

a conservative extension of M . But this notion makes sense only for L-chains
M , where Γu1 < . . . < Γuk

(i.e. all extensions Γui
< Γui+1 are proper). So for

constructing a natural L<-model (cf. the proof of Proposition 6.7.6) one has to
take care of properness of all inclusions between L-places. But Lemma 6.4.28
allows us to avoid these complications in the above proof.

Corollary 6.7.9 Let FQ := (Q+, D
Q) be a Kripke frame over Q+, in which

DQ
u := ω × {v ∈ Q+ | v ≤ u}. Then IL(FQ) = QLC.

Note that here |Du −
⋃

v<u
Dv| = ℵ0 for every u ∈ Q+.

Proof Let F′ = (Q+, D
′) be a Kripke frame with denumerable domains.

Then we can construct a p-morphism f = (f0, f1) : FQ ։ F′. Namely, we put
f0 := idQ+

, and for any u ∈ Q+ fix a surjective map f ′
u : ω×{u} −→ D′

u. Then

we define fu : DQ
u −→ D′

u such that fu|ω × {v} = f ′
v for any v ≤ u.

Obviously, (f0, f1), where f1 = (fu | u ∈ Q+), is a p-morphism. �

From Chapter 3 it follows that QLC= is characterised by all KFEs over
FQ = (Q+, D

Q). On the other hand, QLC=d 6= IL=(FQ). Moreover, there
does not exist a single KFE F over Q+ such that IL=(F) = QLC=, or a Kripke

frame F over Q+ such that IL=(F) = QLC=d. In fact, one cannot refute both

formulas ¬∀xy(x = y) and ¬¬∀xy(x = y), which are obviously not in QLC=d,
in the same KFE over Q+ (e.g. since Q+  J).

Now let us consider the modal case. Let us prove the result on strong Kripke
completeness of QS4.3 from [Corsi, 1989]. Our proof follows the same lines as
6.7.1. Finite L-chains are defined as in 6.7.4, i.e. 0 < 1 < · · · < k corresponds
to Γ0RLΓ1RL . . . RLΓk (with perhaps Γj+1RLΓj for some j). Lemma 6.7.5 is
replaced with the following

Lemma 6.7.10 Let M = (Γ0,Γ1, . . . ,Γk) be a finite L-chain such that for a
certain j ≤ k

✸A ∈ Γj − Γj+1.

Then there exists a finite L-chain

M ′ = (Γ0, . . . ,Γj,Γ
′
j+1,Γ

′
j+2, . . . ,Γ

′
k+1)

such that DΓ′
j+1

∩ D+
M = DΓj

, M ′|({0, . . . , k + 1} − {j + 1}) is a conservative
extension of M and

A ∈ Γ′
j+1. (∗)
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Note that in this case ¬(Γj+1RLΓj), since Γj � ✸A, while Γj+1 6�✸A.

Proof There exists an L-place Γ′
j+1 such that �−Γj ∪ {A} ⊆ Γ′

j+1 and

DΓ′
j+1

∩D+
M = DΓj

(we add only new constants); so ΓjRLΓ′
j+1 and A ∈ Γ′

j+1

as required. Now we can apply Lemma 6.4.28 for extending (Γj+1, . . . ,Γk) to
(Γ′

j+2, . . . ,Γ
′
k+1) in a conservative way so that Γ′

j+1RLΓ′
j+2; it is sufficient to

check that
�−(Γ′

j+1|DΓj
) ⊆ Γj+1; (∗∗)

recall that DΓ′
j+1

∩D+
M = DΓj

.

In fact, let �B ∈ Γ′
j+1, B ∈ L(DΓj

). Note that �(�B ⊃ ¬A) ∨ �(�¬A ⊃

B) ∈ Γuj
since QS4.3 ⊆ Γj . Also �(�B ⊃ ¬A) 6∈ Γj , since otherwise (�B ⊃

¬A) ∈ Γ′
j+1 (remember that ΓjRLΓ′

j+1), and so �B ∈ Γ′
j+1 would imply ¬A ∈

Γ′
j+1. Hence �(�¬A ⊃ B) ∈ Γj , so (�¬A ⊃ B) ∈ Γj+1, since ΓjRLΓj+1. Now
B ∈ Γj+1 follows from �¬A ∈ Γj+1. �

Proposition 6.7.11 QS4.3 is strongly Kripke complete.

Proof Repeat the proof of 6.7.7 with the inductive step for Bn = ✸A. Note
that i ≤ j & ✸A ∈ Γj ⇒ ✸A ∈ Γi. So we choose the largest j such that
✸A ∈ Γj and then apply 6.7.10. �

Now we obtain full analogues of the intuitionistic completeness results:

Theorem 6.7.12

(1) QS4.3 = ML(K(Clin)) = ML(K(Cω
lin));

(2) QS4.3= = ML=(KE(Clin)) = ML=(KE(Cω
lin));

(3) QS4.3=d = ML=(K(Clin)) = ML(K(Cω
lin)).

Again strong completeness holds in all these cases.

Corollary 6.7.13

(1) QS4.3 = ML(K(Q+)) = ML(K(Q));

(2) QS4.3=ML=(KE(Q+)) = IL=(KE(Q));

(3) QS4.3=d = ML=(KE(Q+)) = ML=(KE(Q)).

6.8 Properties of ∆-operation

In this section we use completeness to prove syntactic properties of the ∆-
operation introduced in Section 2.13. First let us introduce some notation. For
a poset F , let F− be its restriction to the set of all nonminimal elements (of
course, it may happen that F− = F .) Then by induction we define:

F−0 := F, F(n+1) := (F−n)−.
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If F is an intuitionistic Kripke frame or a KFE (or a Kripke sheaf) over F , let
F− be the restriction F ↾ F−; F−n := F ↾ F−n.

Proposition 6.8.1 For any intuitionistic formula A and k ≥ 0

F  δkA iff F−  A.

Proof We write A as A(x) for r(x) = FV (A).
(If.) Let us consider Kripke frames or KFEs; the case of sheaves is similar.

Suppose
F 6 δk,PA(x) = ∀y(P (y) ∨ (P (y) ⊃ A(x)))

for disjoint x, y. Then there exist a Kripke model M over F, a world w, and
tuples a,b in Dw such that M,w 6 P (a), P (a) ⊃ A(b).

So there is v ∈ R(w) (where R is the accessibility relation in F) such that
M, v  P (a) and M, v 6 A(b). Then w 6= v, so v is not minimal, i.e. v ∈ F−.
Let M− be the restriction M ↾ F−; since it is a generated submodel, we have
M−, v 6 A(b) by 3.3.18. Hence F− 6 A.

(Only if.) Suppose F− 6 A(x). Then by 3.3.18 there is a model M over F
such that M, v 6 A(a) for some v ∈ F− and a tuple a in Dv. Then consider a
model M ′ over F differing from M only on P , i.e. such that for any w, Q 6= P
and a tuple of individuals b of the corresponding length

M ′, w  Q(b) iff M,w  Q(b),

and also such that
M ′, w  P (c) iff w 6= u0

for any c ∈ Dk
w, where u0 is the root of F. Now by induction it easily follows

that
M ′, w  B iff M,w  B

for any world w and Dw-sentence B that does not contain P . Thus

M ′, v 6 A(a); M ′, v  P (c),

and on the other hand, M ′, u0 6 P (c). Hence

M ′, u0 6 P (c) ∨ (P (c) ⊃ A(a)),

and therefore M ′, u0 6 ∀δkA implying F 6 δkA. �

So the validity of δA at some world means that ‘A will be true tomorrow’.
All δkA are KE-indistinguishable from δA; this also follows from their deductive
equivalence:

QH + δkA = QH + δA,

cf. Proposition 2.13.22.

Corollary 6.8.2 Let F be a rooted predicate Kripke frame (or a KFE, or a
Kripke sheaf).
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(1) F  δkA iff ∀v ∈ F− F↑v  A.

(2) ∆L ⊆ IL(=)(F) iff L ⊆ IL(=)(F−).

(3) ∆nL ⊆ IL(=)(F) iff L ⊆ IL(=)(F−n), for n ∈ ω.

Proof (1) By 3.3.21

F−  A iff ∀v ∈ F− F−↑v  A.

It remains to note that F−↑v = F↑v.
(2) Readily follows from 6.8.1, the definition of ∆L and soundness.
(3) Follows from (2) by induction on n, since F−(n+1) = (F−n)−. �

Lemma 6.8.3 Let F = (F,D) be an intuitionistic Kripke frame, in which the
intersection of all individual domains is non-empty, and let a0 ∈

⋂
u∈F

Du. Next,

let M be an intuitionistic Kripke model over F, L an s.p.l. such that M  L.
Consider an intuitionistic Kripke model M ′ = δM obtained by adding a new
root u0 with the domain {a0} below M , such that M ′ ↾ F = M and M ′, v 
p iff v = u0. Then M ′  Sub(δL).

Proof If A = p ∨ (p ⊃ B) ∈ δL (where B ∈ L, and p does not occur in B),
then every strict substitution instance of A has the form C ∨ (C ⊃ B′) for a
sentence C and B′ ∈ Sub(L) ⊆ L. So let us show

M ′, u0  C ∨ (C ⊃ B′).

In fact, otherwise M ′, u0 6 C,C ⊃ B′, and then M ′, v 6 B′ for some v ∈ M .
Since M is a generated submodel, it follows that M, v 6 B′ contradicting M 
L. �

Lemma 6.8.4 For any intuitionistic formula A and an s.p.l. L

∆L ⊢ δA iff L ⊢ A.

Proof Although this lemma is syntactic, we know only a model-theoretic
proof.

(If.) Obvious, by the definition of ∆L.
(Only if.) Again we write A as A(x). Suppose L 6⊢ A(x), or equivalently,

L 6⊢ A× (x). Then by the canonical model theorem and the generation lemma
3.3.12, the there exists a Kripke model M over F with a root v0 such that
M, v0  L andM, v0 6 A(a) for a tuple a in Du0 . Consider the model M ′ = δM
defined in Lemma 6.8.3. By that lemma we have

M ′, u0  Sub(δL).

Since M and M ′ coincide on F, an inductive argument as in the proof of 6.8.1
shows that

M ′, w  B ⇐⇒M,w  B
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for any w ∈M and a Dw-sentence B that does not contain p. Hence M ′, u0 6
A(a), and thus M ′, v0 6 δA(a).

Now put Γ := Sub(δL). By truth-preservation M ′, v0  Γ implies M ′  Γ;
hence by Lemma 3.2.33 applied to Γ and L = QH, we obtain

Sub(δL) 6⊢QH δA(x),

i.e.
∆L 6⊢QH δA(x)

by the deduction theorem. �

Proposition 6.8.5 For any s.p.l. L1, L2

(1) L1 ⊆ L2 iff ∆L1 ⊆ ∆L2;

(2) L1 = L2 iff ∆L1 = ∆L2.

Proof
(i) ‘Only if’ is trivial. For ‘if’ note that A ∈ L1 − L2 implies δA ∈ ∆L1 − ∆L2

by 6.8.4.
(ii) Follows from (i). �

So as in the propositional case, ∆ is monotonic.
Let us now prove an analogue to Lemma 1.16.10.

Lemma 6.8.6 For s.p.l.s L1 and L2 and sentences A1, A2, if A1 ∈ (L1 − L2)
and A2 ∈ (L2 − L1), then (δA1 ∨ δA2) ∈ (∆L1 ∩ ∆L2 − ∆(L1 ∩ L2)).

Proof Since ∆L1 ⊢ δA1 and ∆L2 ⊢ δA2, it follows that

∆L1 ∩ ∆L2 ⊢ δA1 ∨ δA2.

Next, L2 6⊢ A1 implies L2 6⊢ p ⊃ A1 (cf. the proof of Lemma 2.9.4). Similarly
L1 6⊢ p ⊃ A2. So the theories (L2 ∪ {p}, {A1}) and (L1 ∪ {p}, {A2}) are QH-
consistent, and by strong completeness there exist Kripke models M1, M2 with
roots u1, u2 such that M1, u1  (L2∪{p}, {A1}) and M2, u2  (L1∪{p}, {A2}).
Obviously we may assume that there is a common individual a0 in the domains
of the worlds u1, u2.

Then consider the model M ′ := δ(M1⊔M2) described in Lemma 6.8.3. Since
Mi  Li, it follows that M1 ⊔M2  L1 ∩ L2. Hence

M ′, u0  Sub(δ(L1 ∩ L2))

by Lemma 6.8.3. We also have Mi, ui 6 p ⊃ Ai, hence M ′, u0 6 p ⊃ Ai. Since
also M ′, u0 6 p, we obtain M ′, u0 6 δA1 ∨ δA2. Therefore ∆(L1 ∩L2) 6⊢ δA1 ∨
δA2 by Lemma 3.2.33. �

Let us mention the following analogue of Proposition 1.6.11.

Proposition 6.8.7 Let L1 and L2 be superintuitionistic predicate logics.

(1) ∆(L1 + L2) = ∆L1 + ∆L2,

(2) ∆(L1 ∩ L2) = ∆L1 ∩ ∆L2 iff L1 and L2 are comparable by inclusion.



548 CHAPTER 6. KRIPKE COMPLETENESS FOR VARYING DOMAINS

6.9 ∆-operation preserves completeness

Definition 6.9.1 Let F = (W,R) be a non-empty poset, maxF the set of its

maximal points
−→
G := (Gw | w ∈ maxF ) a family of rooted posets. Then

F +
−→
G := F +

⊔
w∈maxF

Gw is a poset obtained by putting disjoint isomorphic

copies of Gw above the corresponding points w ∈ maxF . Speaking precisely, if

F

Gw1 Gwi
Gwn

• •

• wn

wiw1

Figure 6.1. F + ~G.

Gw = (Vw, Rw), then

F +
−→
G = (W,R),

where
W := W− ∪

⊔

w∈maxF

Vw, W
− := W − maxF

(cf. Section 1...),

R := R↾W− ∪ {(u, (v, w)) | u ∈ W−, w ∈ maxF ∩R(u), v ∈ Vw}

∪
⋃

w∈maxF

{(v, w), (v′, w) | vRwv
′}

Obviously
V ′

w := Vw × {w}

for w ∈ maxF , are disjoint R-stable subsets in F +
−→
G , and (F +

−→
G) ↾ V ′

w
∼= Gw.

If vw is the root of Gw, then

W ′ := W− ∪ {(vw, w) | w ∈ maxF}
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is an R
−1

-stable subset of F +
−→
G , (F +

−→
G)↾W ′ ∼= F . It is also clear that

W = W ′ ∪
⋃

w∈maxF

V ′
w

and W ′ ∩ V ′
w = {(vw, w)} for w ∈ maxF .

Definition 6.9.2 Let F = (F,D) be a predicate Kripke frame over a poset F
and for w ∈ maxF let Gw = (Gw , D

′
w) be Kripke frames 3 over rooted posets

Gw (with roots vw) such that Dw = D′
w(vw). Then we define a Kripke frame

F+
−→
G := (F+

−→
G,D), in which D(w) = D(w) for w ∈W− and D(v, w) = D′

w(v)
for v ∈ Gw.

Definition 6.9.3 Similarly for Kripke sheaves F = (F, ρ,D) and Gw = (Gw ,
ρ′w, D

′
w), with roots vw, where w ∈ maxF , and Dw = D′

w(vw), we define a

Kripke sheaf F +
−→
G := (F +

−→
G, ρ,D), in which

ρ(u, (v, w)) = ρ(u,w) ◦ ρ′w(vw, v)

for u ∈ F−, w ∈ R(u) ∩ maxF, v ∈ Gw; in all other cases ρ is inherited from
F or Gw in the natural way.

Definition 6.9.4 We can also define a KFE F′ = F +
−→
G for KFEs F =

(F,D,≍) and Gw = (Gw, D
′
w,≍w), w ∈ maxF such that D(w) = D′

w(vw)
and ≍w= (≍′

w)vw
for w ∈ maxF . The details are left to the reader.

Definition 6.9.5 Let C0 and C be classes of rooted predicate Kripke frames.

Then C0 + C denotes the class of all Kripke frames of the form F +
−→
G, where

F ∈ C0 and
−→
G = (Gw | w ∈ maxF) is a family of frames from C. Similarly we

define a class C0 + C of KFEs or Kripke sheaves for classes C0 and C of rooted
KFEs or Kripke sheaves respectively.

Definition 6.9.6 A tree of finite height is called uniform if all its maximal
points are of the same height.

Recall that IT k
n (for k > 0, n ≤ ω) is the tree of n-sequences of length < k.

Obviously all these trees are uniform.

Lemma 6.9.7 Let F be a uniform tree of height k, F = F +
−→
G . Then F−k

∼=⊔−→
G . Similarly, if F is a predicate frame over F and Gw are predicate frames

over Gw, then

(F +
−→
G)−k

∼=
⊔−→

G.

Proof Obvious. The levels l < k in F and F are the same, and the level k in
F consists of the roots of posets Gw for w ∈ maxF . �

3D′
w denotes the domain function in Gw, so we denote the domain at a world u in Gw by

D′
w(u); D(u) (respectively, D(u)) is the domain at u in F (respectively, in F ).
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Proposition 6.9.8 (1) Let L be an s.p.l., C a class of rooted predicate Kripke
frames, and let F0 be a uniform tree of height k, C0 = K(F0). Then

∆kL ⊆ IL(=)(C0 + C) iff L ⊆ IL(=)(C).

(2) Similarly for KFEs or Kripke sheaves, with C0 = KE(F0).

Note that if k = 0; then F is a singleton and C0 + C is equivalent to C.

Proof (If.) Let
−→
G = (Gw | w ∈ maxF0) be a family of frames from C. Then

by 3.5.24

IL(
⊔−→

G) =
⋂

w∈maxF

IL(Gw) ⊇ IL(C).

By Lemma 6.9.7, for a frame F0 over F0

⊔−→
G ∼= (F0 +

−→
G)−k,

so L ⊆ IL(C) implies L ⊆ IL((F0 +
−→
G)−k), which is equivalent to

∆kL ⊆ IL(F0 +
−→
G)

by 6.8.2. Since
−→
G is arbitrary, this implies

∆kL ⊆ IL(C0 + C).

(Only if.) Assuming ∆kL ⊆ IL(C0 + C), let us show that L ⊆ IL(F) for any
F ∈ C. Given F with a domain V at the root, consider the constant family

−→
G := (F | v ∈ maxF0).

Then there exists a frame F0 over F0 such that copies of F can be stuck to its
maximal points. For example, we can put F0 = F0 ⊙ V , the frame with the
constant domain V .

Then

(F0 +
−→
G)−k

∼=
⊔

v∈max F0

F,

so

IL((F0 +
−→
G)−k) =

⋂

v∈max F0

IL(F) = IL(F).

By our assumption

∆kL ⊆ IL(C0 + C) ⊆ IL(F0 +
−→
G),

hence by 6.8.2, L ⊆ IL((F0 +
−→
G)−k) = IL(F). �
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Proposition 6.9.9 Let L be an intermediate predicate logic (with or without
equality) strongly complete w.r.t. a class C of Kripke frames or KFEs. Then
∆kL is strongly complete w.r.t. C0 + C, where C0 = K(IT k+1

ω ) (or KE(IT k+1
ω )

respectively).

Hence ∆hL is Kripke-complete or Kripke sheaf complete w.r.t. C0 + C.
Note that we cannot state Kripke completeness of ∆hL for a (strongly) Kripke
complete logic L with equality, because in this case C0 is still KE(IT k+1

ω ).

Proof Soundness follows from 6.9.8.
Now for a ∆k(L)∀-place Γ0, let us construct a proper (∆hL, ∀≤)-map (Γu |

u ∈ ITk+1
ω ), beginning with Γf = Γ0.

(∗∗) if hj(u) 6 A ⊃ B, then ∃v ∈ β(u)∩Fj+1 (hj+1(v)  A & hj+1(v) 6 B),

(∗∗∗) if hj(u) 6 ∀xA(x), then ∃v ∈ β(u)∩Fj+1 ∃c ∈ Dhj+1(v) hj+1(v) 6 A(c).

After we reach a point w of level k in IT k+1
ω , we obtain a (k + 1)-element

sequence Γf < . . . < Γw, so ∆hL ⊆ Γf implies L ⊂ Γw by Proposition 6.9.8
Now we can use the strong completeness of L and obtain a natural model with
our Γw at the root of a frame from C. So we obtain a natural model over a
frame from C0 + C. Clearly, this construction gives us a natural model over a
frame from GG

0 . Naturally, for a logic with equality, we construct places Γw for
u ∈ IT k+1

ω in the language with equality and hence we obtain a natural KFE.
There exists one special case. Namely, if for some point u ∈ IT k

ω there do not
exist places > Γu, i.e. Γu is maximal in U ≤ F∆k(L), then by Lemma 7.3.2(i)
Γu is QCL∀-place. In this case the naturalness conditions hold with Γv = Γu

and we can put Γv = Γu for all v ∈ (IT k+1
ω ↑ u).

And again for points w of level k we can apply the strong completeness of
L, because Γw = Γu is an L∀-place since L ⊆ QCL. �

Note that the condition L ⊆ QCL(=) is necessary in proposition 6.8.7.
Namely:

Proposition 6.9.10 Let L be a superintuitionistic predicate logic, L 6⊆ QCL(=),
and h > 0. Then ∆hL 6= IL(=)(C0 + C) for any class C ⊆ KE and any
C0 ⊆ KE(IT h+1

ω ).

Proof Consider a sentence A ∈ L−QCL(=) and suppose ∆hL = IL(=)(C0 +

C). Then L ⊆ IL(=)(C), by Corollary 6.8.6, so A ∈ IL(=)(C) and hence

obviously ¬¬A ∈ IL(=)(C0 +C). On the other hand, ¬¬A 6∈ ∆hL since ∆hL ⊆

∆L ⊆ QCL(=). �

Now let us reformulate the previous completeness result (Proposition 6.8.7)
for the tree T k

n with the uniform finite branching n > 0 instead of T k
ω .
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Proposition 6.9.11 Let L be an intermediate predicate logic strongly complete
w.r.t. a class C of Kripke frames. Let k ≤ 0, n > 0, let L = ∆hL+ Θ for a set
Θ of sentences ∀-perfect in ∆hL. Let C0 = K(IT k+1

n ). Let L′ = ∆kL+Bn[Θ]),
then L′ is strongly complete w.r.t. C + C0.

Recall that ∆hL ⊆ L.

Proof Soundness follows from Lemma 7.8.5.
Now, let Γ be a L′∀ place. Again we construct a L′∀≤-map over IT k+1

n (Γu |∈
IT k+1

n ) in such a way that Γf = Γ0 and L ⊆ Γv for all v ∈ max(IT k+1
n ) and

the naturalness condition (⊃′) for all u ∈ IT k
n with v ∈ β(u) holds. Then for

any v ∈ max(IT k+1
n ) we apply the strong completeness for L and find a natural

L-model on a frame Fv ∈ C with Γv in its root; these models give us a natural
model over F + (Fv | v ∈ max IT k+1

n ), where F ∈ C0.
Let us describe the inductive step. Let Γu for u ∈ IT k

n be already con-
structed. If L = ∆kL + Θ ⊆ Γu, then we put Γv = Γu for all v ∈ (IT k+1

n ↑ u).
And if ∆kL+Θ 6⊆ Γu, then we apply Lemma 7.8.8 to obtain L′∀-places Γv > Γu

for n points v ∈ β(u). Note that a characteristic formula E for Γ exists by
Lemma 7.4.21. In fact, here ∆kL ⊆ Γ and L 6⊆ Γ, so there exists l < k such
that ∆l+1L ⊆ Γ and ∆lL 6⊆ Γ. Finally, if n′ = 0 (in applying of Lemma 7.8.8),
then Γu is a QCL-place, and again we put Γv = Γu for all (v ∈ (IT k+1

n ↑ u);
here we use that L ⊆ QCL, cf. the concluding argument in the proof of 7.10.8.

�

A similar statement holds for KFE. Note that the completeness for LP+
k+1 +

Brn = IL(IT k+1
ω )) and for LP+

k+1 +Brn = IL(IT k+1
n ) are the particular cases

of these statements for L = QLC.

6.10 Trees of bounded branching and depth

As we shall see in Volume 2, the s.p.l. IL(K(Fin)) determined by all finite posets
is not recursively axiomatisable. Still we can explicitly describe ‘approximations’
of this logic of bounded height and width or branching.

Recall (from Chapter 1) that the propositional axiom

Fn :=
n∨

i=0


pi ⊃

∨

j 6=i

pj




characterises posets of width ≤ n. Similarly, the axiom

Brn :=

n∧

i=0


pi ⊃

∨

j 6=i

pj • ⊃
∨

j 6=i

pj


 ⊃

n∨

i=0

pi

or its equivalent version:

Br′n :=
n∧

i=0

(q ⊃ pi • ⊃ q) ∧
∧

i<j

(q ⊃ pi ∨ pj) ⊃ q
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identifies posets of branching ≤ n among posets of finite depth. We also know
that H + Brn is the propositional logic of finite n-ary trees and QH + Br1 =
QH +W1.

In this section we study the propositional axiom Brn in predicate logics.
Now it is not sufficient for axiomatising Kripke frames over finite n-ary trees,
as we shall see in Volume 2. But still it works properly above QHP+

k , i.e. for
posets of bounded height.

So consider classes Bk
n := Bn ∩ P+

k of posets of depth ≤ h and branching
≤ n (for n, k > 0) and also classes Wk

n := Wn ∩ P+
k of posets of depth ≤ k and

width ≤ n. Actually the predicate logics are determined by rooted posets, so we
can deal only with the corresponding classes Bk↑

n and Wk↑
n . Up to isomorphism,

each of these classes contains finitely many finite posets. Therefore by 3.2.21, the
logics IL(K(Bk

n)) and L(K(Wk
n)) are uniformly recursively axiomatisable. Note

that Wk↑
n ⊆ Bk↑

n ⊆ Wk↑
nk−1 . Also note that every finite poset belongs to Wk

n

(hence to Bk
n) for some n, k; thus Fin↑ =

⋃
n,k>0

Wk↑
n =

⋃
n,k>0

Bk↑
n . It follows that

the logic of finite predicate Kripke frames IL(K(Fin)) is in Π0
2. Now we shall

find finite axiomatisations for the logics IL(K(Bk
n)) and thus obtain a simpler

and more natural Π0
2-presentation for IL(K(Fin)).

First we need some lemmas.

Lemma 6.10.1 Let Γ be an L-place, Brn ∈ L, and assume that there exists
a characteristic sentence E for Γ such that the theories (Γ ∪ {E},∆i) are L-
consistent for i = 0, 1, . . . , n. Then (Γ∪ {E},∆i ∪∆j) is L-consistent for some
i 6= j.

Proof Suppose (Γ ∪ {E},∆i ∪ ∆j) is L-inconsistent for any i 6= j.
Then for any pair (i, j) with i 6= j, we have

Γ, E ⊢L

∨
∆1

ij ∨
∨

∆2
ji

for some finite ∆1
ij ⊆ ∆i, ∆2

ji ⊆ ∆j .
Hence by the Deduction theorem,

Γ ⊢L E ⊃ Ci ∨ Cj ,

where
∆0

i :=
⋃

j 6=i

(∆1
ij ∪ ∆2

ij), Ci :=
∨

∆0
i .

On the other hand, ⊢L E ∧ (E ⊃ Ci) ⊃ Ci and (Γ∪{E},∆i) is L-consistent,
so (E ⊃ Ci) 6∈ Γ.

Since ((E ⊃ Ci) ∨ (E ⊃ Ci • ⊃ E)) ∈ Γ (by the property of characteristic
formula, see 6.3.10), it follows that (E ⊃ Ci •⊃ E) ∈ Γ. But

⊢L

n∧

i=0

(E ⊃ Ci • ⊃ E) ∧
∧

i<j

(E ⊃ Ci ∨ Cj) ⊃ E,
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since Br′n ∈ L. Since Γ is an L-place, we obtain E ∈ Γ, which contradicts
Definition 6.3.10. �

Lemma 6.10.2 (Main lemma on n-branching) Let Γ be an L-place, Brn ∈
L, and let E be a characteristic formula for Γ. Assume that DΓ = S ⊂
S′, |S′−S| = |S| = ℵ0. Then there exist L-places Γ1, . . . ,Γm, m ≤ n such that

(a) Γ ∪ {E} ⊆ Γi for i = 1, . . . ,m (so ΓRLΓi);

(b) if (B ⊃ C) ∈ (−Γ) and B 6∈ Γ, then (B ⊃ C) 6∈ Γi for some i.

Proof Let {(B ⊃ C) ∈ (−Γ) | B 6∈ Γ} = {Ak | k ∈ ω}. We define a family of
theories ∆i

k ⊆ L(Γ) for k ∈ ω, i > 0 such that

(0) ∀i, k ∆i
k ⊆ ∆i

k+1,

and for any k there exists nk ≤ n with the following properties

(1) ∆i
k 6= ∅ iff 1 ≤ i ≤ nk,

(2) (Γ ∪ {E},∆i
k) is L-consistent for 1 ≤ i ≤ nk,

(3) (Γ ∪ {E},∆i
k ∪ ∆j

k) is L-inconsistent for any different i, j ≤ nk.

Hence by Lemma 6.10.1, nk ≤ n.
To begin the construction, put ∆i

0 := ∅ for all i > 0 (i.e. n0 = 0).
∆i

k+1 is constructed as follows. Consider Ak = B ⊃ C. There are two cases.
(I) If (Γ ∪ {E},∆i

k ∪ {B ⊃ C}) is L-consistent for some i ≤ nk, then take
the minimal i with this property and put

∆i
k+1 := ∆i

k ∪ {B ⊃ C}, ∆j
k+1 := ∆j

k for all j 6= i (thus nk+1 = nk).

(II) If for any i ≤ nk, (Γ ∪ {E},∆i
k ∪ {B ⊃ C}) is L-inconsistent, then put

∆nk+1
k+1 := {B ⊃ C} and ∆i

k+1 := ∆i
k for all i ≤ nk (thus nk+1 = nk + 1).

The properties (1),(3) hold trivially by definition, the same with (2) in case
(I). To check (2) in case (II), we have to show that (Γ ∪ {E}, {B ⊃ C}) is
L-consistent, i.e. (E ⊃• B ⊃ C) 6∈ Γ.

In fact, B 6∈ Γ and B ∨ (B ⊃ E) ∈ Γ, since E is a characteristic formula,
thus (B ⊃ E) ∈ Γ. So (E ⊃• B ⊃ C) ∈ Γ implies (B ⊃• B ⊃ C) ∈ Γ, which
contradicts (B ⊃ C) 6∈ Γ. Therefore (E ⊃• B ⊃ C) 6∈ Γ.

Next, put m := max{nk | k ∈ ω} (thus m ≤ n) and

∆i :=
⋃

k∈ω

∆i
k

for 1 ≤ i ≤ m. Since the sequence (∆i
k)k∈ω is increasing, (2) implies the L-

consistency of every (Γ∪{E},∆i). So there exist L∀-places Γi ≻ (Γ∪{E},∆i).
Thus condition (a) holds. (b) holds by our construction, since B ⊃ C = Ak

for some k, whenever B 6∈ Γ; so C ∈ ∆i. �
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Lemma 6.10.3 Assume that QHP+
k +Brn ⊆ L. Then for any L-place Γ there

exists a proper natural (L∀,≤)-model N = (Γu | u ∈ F ) based on a greedy
standard subtree of IT k

n such that Γf = Γ and a natural (L∀,≤) -model on IT k
n

(not necessarily proper).

Proof We construct Γu using Lemma 6.10.2, which gives us the condition of
naturalness from 6.4.9. If 0 < m < n, we repeat some theories; if m = 0 then
the construction terminates at this point. Recall that characteristic formulas
used in Lemma 6.10.2 always exist by 6.3.12. The construction terminates at
some height ≤ h, due to Lemma 6.3.7. Finally we repeat the theories from the
maximal points of the resulting subtree at all leaves of IT k

n . �

Proposition 6.10.4 IL(K(Bk
n)) = IL(K(IT k

n )) = QHP+
k +Brn for any n, k >

0, where IT k
n is the n-ary tree of height k.

Proof Readily follows from 6.10.3. �

In particular, for n = 1 we have:

Corollary 6.10.5 QHP+
k + LC is determined by an k-element chain.

Corollary 6.10.6

IL(K(Fin)) =
⋃

n,k

(QHP+
k +Brn) =

⋂

n,k

(QHP+
k +Wn).

Proof In fact, H + Wn ⊢ Brn and H + APk ∧ Brn ⊢ Wm for some m (e.g.
due to Kripke completeness). Thus

⋂

n,k

(QHP+
k +Brn) =

⋂

n,k

(QHP+
k +Wn).

�

On the other hand, the logics QHP+
k + Wn for k ≥ 3, n ≥ 2 are Kripke

incomplete [Skvortsov, 2006]; the proof will be given in Volume 2. Our conjec-
ture (based on some results from Volume 2) is that all the corresponding logics
IL(K(Wh

n )) are not finitely axiomatisable.

6.11 Logics of uniform trees

As we shall see in Volume 2, generalised versions of formulas Brn allow us to
axiomatise the intermediate predicate logic of all finite trees explicitly. Recall
that the logic determined by an arbitrary finite poset is recursively axiomatisable
(Chapter 3), but the proof of this fact provides only an implicit axiomatisation.

In this section we make a step towards the logic of all finite trees clarifying
main ideas of the whole construction; here we describe an explicit axiomatisation
of an s.p.l. determined by an arbitrary ‘uniform’ tree of finite depth.
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Definition 6.11.1 A tree F is called (levelwise) uniform if all its cones F ↑ u
with roots u of the same height are isomorphic.

A levelwise uniform tree F of depth h+ 1 gives rise to an h-sequence t = (ti |
i < h) of non-null cardinals ti; ti is the branching |β(u)| for all points u ∈ F of
height i < h (obviously, the branching at a maximal point is 0).

The other way round, every h-sequence t of cardinals corresponds to a unique
tree Tt of depth (h + 1) and of branching ti at points of height i; this tree is
clearly levelwise uniform. Obviously Tt is finite (respectively, countable) iff
every ti is finite (respectively, countable). The corresponding h-sequences are
called hf - (respectively, h†-)sequences .

Every denumerable uniform tree can be represented as a subtree of ITω:

Tt = {α ∈ ω∗ | |α| ≤ h, ∀i αi < ti}.

Every h-sequence t of cardinals gives rise to the truncated h≤ω-sequence t†, in
which every infinite ti is replaced with ω.

We shall construct explicit axiomatisations for all denumerable levelwise
uniform trees and show that

IL(K(Tt)) = IL(K(Tt†))

for any uncountable Tt. Note that for h = 0 there is the empty sequence
corresponding to a one-element tree Tk of depth 1. A constant sequence t =
(n, . . . , n) of length h ≥ 0 corresponds to a uniform tree Tt = IT k+1

n considered
in Section 6.10 or to IT k+1

ω if n = ω.

Definition 6.11.2 Let A be a predicate formula and let q, p0, p1, . . . , pn be dif-
ferent proposition letters non-occurring in A, n > 0. We put

p−i :=
∨

{pj | 0 ≤ j ≤ n, j 6= i}

and define the formulas

BrA
n :=

n∧
i=0

( (pi ⊃ p−i ) ⊃ p−i ) ∧

(
A ⊃

n∨
i=0

pi

)
⊃

n∨
i=0

pi,

Br′An :=
n∧

i=0

( (q ⊃ pi) ⊃ q ) ∧
∧
i<j

(q ⊃ pi ∨ pj) ∧ (A ⊃ q) ⊃ q.

We will also use the notation Brn[A], Br′n[A] for BrA
n , Br

′A
n .

Obviously, BrA
n and Br′An are equivalent to

(
A ⊃

n∨
i=0

pi

)
⊃ Brn and (A ⊃

q) ⊃ Br′n respectively. Thus Br⊥n and Br′⊥n are equivalent to Brn and Br′n.
Now let us show that both axioms are actually deductively equivalent (cf.

Lemma 2 for Brn and Br′n):

Lemma 6.11.3 QH +BrA
n = QH +Br′An (for n > 0).
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Proof (⊇) Let p := p1 . . . pn, C := C1 . . . Cn, where Ci :=
∧
j 6=i

pj and let us

show that

(1) QH ⊢ [C/p]BrA
n ⊃ Br′An .

Let B be the premise of Br′An , C−
i :=

∨
j 6=i

Cj ,

E :=
n∧

i=0

(Ci ⊃ C−
i • ⊃ C−

i ) ∧

(
A ⊃

n∨

i=0

Ci

)

the premise of [C/p]BrA
n .

It suffices to check that

(2) B ⊢QH E ∧

(
n∨

i=0

Ci ⊃ q

)
;

hence we can obtain

B, [C/p]BrA
n =

(
E ⊃

n∨

i=0

Ci

)
⊢QH

n∨

i=0

Ci,

n∨

i=0

Ci ⊃ q,

and thus
[C/p]BrA

n , B ⊢QH q,

which implies (1).
For the proof of (2) first note that

(3)
∧

i<j

(q ⊃ pi ∨ pj) ⊢H q ⊃

n∨

i=0

Ci.

To show this, we argue in H. Assume q and
∧
i<j

(q ⊃ pi ∨ pj). Then
∧
i<j

(pi ∨

pj), which is equivalent to
n∨

i=0

Ci by distributivity – in fact, this should be a

disjunction of conjunctions, in which every conjunction contains either pi or
pj from each distinct pair (i, j); so there is at most one pi missing from that
conjunction.

Thus

(4) B ⊢QH q ⊃ Ci ∨ C
−
i .

We also have

(5) H ⊢ C−
i ⊃ pi,

since pi is present in every Cj for j 6= i. Hence

(6) Ci ⊃ C−
i ⊢H Ci ⊃ pi
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by (5),

(7) B,Ci ⊃ C−
i ⊢QH q ⊃ C−

i

by (4),

(8) B,Ci ⊃ C−
i ⊢QH q ⊃ pi

by (7), (5),

(9) B,Ci ⊃ C−
i ⊢QH q

by (8), since (q ⊃ pi) ⊃ q is a conjunct in B,

(10) B,Ci ⊃ C−
i ⊢QH C−

i

by (9), (7). Thus

(11) B ⊢QH Ci ⊃ C−
i • ⊃ C−

i .

Next,

(12) B ⊢QH A ⊃
n∨

i=0

Ci,

by (3) and since A ⊃ q is also a conjunct in B.
Next, we obviously have

Ci ⊢H pj ,

for j 6= i, hence
Ci ⊢H q ⊃ pj,

and consequently

(13) B,Ci ⊢QH q,

since B ⊢QH (q ⊃ pj) ⊃ q. Thus

(14) B ⊢QH Ci ⊃ q.

by (13). Eventually (2) follows from (11), (12), and (14).
(⊆) Similarly,

(15) [D, p−1 , . . . , p
−
n /q, p1, . . . , pn]Br′An ⊢QH BrA

n ,

where D :=
n∨

i=0

pi.

In fact, ⊢H D ≡ pi ∨ p
−
i , hence

⊢H (D ⊃ p−i ) ≡ (pi ⊃ p−i ),
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and thus

pi ⊃ p−i • ⊃ p−i ⊢H D ⊃ p−i • ⊃ p−i .

Since ⊢H p−i ⊃ D, this implies

(16) pi ⊃ p−i • ⊃ p−i ⊢H D ⊃ p−i • ⊃ D.

It also obvious that

(17) H ⊢ D ≡ p−i ∨ p−j

for i < j. So by (16), (17) the premise of BrA
n :

n∧

i=0

(pi ⊃ p−i • ⊃ p−i ) ∧ (A ⊃ D)

implies the premise of [D, p−1 , . . . , p
−
n /q, p1, . . . , pn]Br′An :

n∧

i=0

(D ⊃ p−i • ⊃ D ) ∧
∧

i<j

(D ⊃ p−i ∨ p−j ) ∧ (A ⊃ D).

Since the conclusions of [D, p−1 , . . . , p
−
n /q, p1, . . . , pn]Br′An and BrA

n coincide, the
claim (15) follows. �

Lemma 6.11.4 The following formulas are QH-theorems:

(1) A⊃BrA
n , A⊃Br′An ,

(2) (A1⊃A2)⊃(BrA1
n ⊃BrA2

n ), (A1⊃A2)⊃(Br′A1
n ⊃Br′A2

n ),

(3)
r∧

i=1

BrAi
n ⊃Brn

[
r∧

i=1

Ai

]
,

r∧
i=1

Br′Ai
n ⊃Br′n

[
r∧

i=1

Ai

]
.

(4) Brn ⊃ BrA
n , Br

′
n ⊃ Br′An .

Proof
(1) A trivial exercise.
(2) Note that A1 ⊃ A2, A2 ⊃ D ⊢ A1 ⊃ D.
(3) By Lemma 1.1.3(5),

QH⊢
r∧

i=1

((Ai⊃q)⊃q)⊃

((
r∧

i=1

Ai⊃q

)
⊃q

)
.

Since Br′An is equivalent to B ⊃ (A ⊃ q• ⊃ q), where B does not depend on A
and q, the claim follows. For BrA

n replace q with
∨
i

pi.

(4) Follows from (2), since ⊢QH ⊥ ⊃ A. �



560 CHAPTER 6. KRIPKE COMPLETENESS FOR VARYING DOMAINS

For a set of formulas Θ we define the sets

BrΘn := Brn[Θ] := {BrA
n | A ∈ Θ}, Br′Θn := Br′n[Θ] := {Br′An | A ∈ Θ}.

Then
QH +BrΘn = QH +Br′Θn ⊆ QH + Θ

by 6.11.3 and 6.11.4 (1).
We also put

Brω := Br′ω := ⊤, BrΘω := Br′Θω := ∅.

Lemma 6.11.5 Let Θ1,Θ2 be sets of sentences and let L be an s.p.l., n > 0.

(1) If L+ Θ1 ⊆ L+ Θ2, then

(a) L+Brn[Θ1] ⊆ L+Brn[Θ2] provided Θ2 is ∀-perfect in L;

(b) L+Brn[Θ∀
1 ] ⊆ L+Brn[Θ∀

2 ] for any Θ1,Θ2.

(2) If L+ Θ1 = L+ Θ2, then

(a) L+Brn[Θ1] = L +Brn[Θ2] provided Θ1,Θ2 are ∀-perfect in L;

(b) L+Brn[Θ∀
1 ] = L+Brn[Θ∀

2 ].

Proof Cf. Lemma 2.8.7 (on δ-operation). Recall that Θ∀ is ∀-perfect in QH
for any Θ. �

Lemma 6.11.6 Let F be an intuitionistic Kripke frame of finite depth, 0 <
n < ω. Then

BrA
n ∈ IL(F) iff ∀u ∈ F (|β(u)| > n⇒ F↑u  A).

So BrA
n states that ‘the branching is ≤ n until A becomes true’.

Proof Let ≤ be the accessibility relation in F.
(If.) Suppose Br′An 6∈ IL(F), so due to the finiteness of height, there exists

a Kripke model over F and u ∈ F of maximal height refuting Br′An , i.e.

u  (q ⊃ pi) ⊃ q, u  (A ⊃ q), u  q ⊃ pi ∨ pj for i 6= j, u 6 q, ∀v > u v  q.

Then u 6 q ⊃ pi, so there exist a minimal vi > u such that vi  q, vi 6 pi, and
obviously vi ∈ β(u). Since u  q ⊃ pi ∨ pj , it follows that vi  pj for all j 6= i.
So all vi differ, and thus |β(u)| > n.

Since u 6 q, u  A ⊃ q, it follows that u 6 A, therefore F↑u 6 A.
(Only if.) Suppose F ↑ u 6 A and there exist different v0, . . . , vn ∈ β(u).

Consider an intuitionistic model over F such that u 6 A and

v 6 q ⇔ v ≤ u,

v 6 pi ⇔ v ≤ vi.
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(Such a model exists, since pi, q do not occur in A.) Then u 6 q and u  A ⊃ q,
since u 6 A. Also u  q ⊃ pi ∨ pj for i 6= j, since

v > u⇒ v 6≤ vi ∨ v � vj .

Finally note that v 6 q ⊃ pi; thus u 6 q ⊃ pi and u  (q ⊃ pi) ⊃ q. Hence
F 6 Br′An �

Remark 6.11.7 Note that QH +Br′EM
n = QH +Br′n, and so

QH +BrEM
n = QH +Brn

(recall that EM = p ∨ ¬p). In fact, Br′EM
n ⊢ (EM ⊃ q) ⊃ Br′n, whence we

deduce (q ∨ ¬q ⊃ q) ⊃ Br′n. The latter is equivalent to ⊢ (¬q ⊃ q) ⊃ Br′n,
which readily implies Br′n, since H ⊢ ((q ⊃ pi) ⊃ q) ⊃ (¬q ⊃ q).

From the semantical point of view, the statement we have proved means
that if the branching is ≤ n in all nonmaximal points then it is ≤ n everywhere.
However the equality of logics does not directly follow from this semantical
argument, once we have not yet proved the completeness of QH +BrEM

n .

Now let us prove a natural analogue of the main lemma on n-branching,
6.10.2, for BrΘn . We begin with an analogue of 6.10.1.

Lemma 6.11.8 Let L be an s.p.l., Θ a set of sentences that are ∀-perfect in L.
Assume that BrΘn ⊆ L, Γ ∈ V PL and L+ Θ 6⊆ Γ. Also let E be a characteristic
formula for Γ, and assume that (Γ ∪ {E},∆i) are L-consistent theories in the
language L(Γ) for i = 0, 1, . . . , n.

Then (Γ ∪ {E},∆i ∪ ∆j) is L-consistent for some i 6= j.

Proof Since L+ Θ 6⊆ Γ, there exists A ∈ Sub(Θ) such that A ∈ (−Γ). In fact,
if B ∈ L+ Θ − Γ, then by ∀-perfection, there exist A1, . . . , Ak ∈ Sub(Θ) such
that ⊢L A1 ∧ . . .∧Ak ⊃ B; by Lemma 2.7.12 we may assume that A1, . . . , Ak ∈
L(Γ), since DΓ is denumerable and the parameters of Ai can be replaced with
constants from DΓ. Hence Ai ∈ (−Γ) for some i.

Now we proceed as in the proof of Lemma 6.10.1 and find Ci (for 0 ≤ i ≤ n)
such that ((E ⊃ Ci) ⊃ E) ∈ Γ and (E ⊃ Ci ∨ Cj) ∈ Γ whenever i < j.

Finally, since Br′Θn ⊆ L,

⊢L

n∧

i=0

((E ⊃ Ci) ⊃ E) ∧
∧

i<j

(E ⊃ Ci ∨ Cj) ∧ (A ⊃ E) ⊃ E,

So by L-consistency, this formula is in Γ. Hence (A ⊃ E) 6∈ Γ, which contradicts
the property of characteristic formula E. �

Lemma 6.11.9 Let L be an s.p.l., Θ be a set of sentences that are ∀-perfect in
L, Γ ∈ V PL. Also assume that L+ Θ 6⊆ Γ and BrΘn ⊆ L for a finite n. Let E
be a characteristic formula for Γ.

Then there exist Γ1, . . . ,Γm ∈ V PL (where m ≤ n) such that
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(1) DΓ1 = · · · = DΓm
;

(2) Γ ∪ {E} ⊆ Γi for i = 1, . . . ,m (and thus, Γ < Γi);

(3) if (A1 ⊃ A2) ∈ (−Γ) and A1 6∈ Γ, then (A1 ⊃ A2) 6∈ Γi for some i.

Proof Along the same lines as 6.10.2, using Lemma 6.11.8 instead of 6.10.1.
�

Definition 6.11.10 Let t = (ti | i < h) be an h†-sequence, h > 0. Put

C+(t) := {h+ 1} ∪ {i < h | i 6= 0, ti−1 < ti},

C(t) := {0, h+ 1} ∪ {i < h | i 6= 0, ti−1 6= ti}.

The levels from C+(t) and C(t) are respectively called +-critical and critical
for t.

For i ∈ C(t), i < h, put

i∗ := min{j > i | j ∈ C(t)},

i+ :=

{
h+ 1 if ∀j > i tj ≤ ti,
min{j > i | tj > ti} otherwise.

Obviously, i < i∗ ≤ i+ and i+ ∈ C+(t), although i+ may be non-equal to
min{j > i | j ∈ C+(t)} (the next element of C+(t)).

It is also clear that for any u ∈ Tt of level i < h, the tree Tt ↑u is of depth
hi := h+ 1 − i, and Tt ↑u ∼= T i

t := Tt↑i, where t ↑ i := (ti, ti+1, . . . , th−1).

Lemma 6.11.11 Let t = (ti | i < h) be an h†-sequence, and let i ∈ C(t), 0 ≤
i < h. Assume that the logics

Li∗ := IL(K(T i∗

t )), Li+ := IL(K(T i+

t ))

are strongly complete w.r.t. the classes of frames K(T i∗

t ) and K(T i+

t ) respec-
tively. Let Θi+ be a set of sentences that are ∀-perfect in QHP+

k+1, and assume

that QHP+
k+1 + Θi+ = Li+ .

Then the logic
Li := ∆i∗−i(Li∗) +Brti

[Θi+ ]

is strongly complete w.r.t. K(T i
t ), and therefore Li = IL(K(T i

t)).

We may also put
Li∗ := QH + ⊥ iff i∗ = k + 1

and similarly,
Θi+ := {⊥} iff i+ = k + 1.

So T k+1
t is an ‘empty tree’ and its logic is inconsistent. Also note that

QHP+
k+1−i ⊆ Li, since LP+

k+1−i∗ ⊆ Li∗ , so QHP+
k+1−i = ∆i∗−1(LP+

k+1−i∗) ⊆

∆i∗−i(Li∗) ⊆ Li.
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Proof Fix a point u0 ∈ Tt of height i, so T i
t = Tt ↑ u0.

First let us show that T i
t is an Li-frame. In fact, ∆i∗−i(Li∗) ⊆ IL(T i

t), since
Li∗ is valid at all points of height ≥ i∗ − i in T i

t , i.e. at levels ≥ i∗ in Tt. Also
BrA

ti
∈ IL(T i

t) for any A ∈ Θi+ by Lemma 6.11.6, since A ∈ IL(T j
t )=IL(T i

t ↑v)
for any v of level j ≥ i+ and the branching of Tt is ≤ ti at any point of level
i ≤ j < i+ (to minimise calculations, we consider levels in the tree Tt not in
T i
t).

Now we prove the strong completeness. Let R be the accessibility relation
in Tt. Consider an Li∀-place Γ. We put Γu0 := Γ for root u0 of T i

t and
construct (inductively) Li∀-places Γu for points u ∈ T i

t of levels from i till i+ or
i∗. During our construction we take care of the naturalness property (⊃)′ from
Lemma 6.4.23 and the property of ∀≤-models: Γu ≤ Γv if uRv in T i

t .
Let us begin with the ‘trivial’ case: Li + Θi+ ⊆ Γu0 . Then we put Γv := Γu0

for all v ∈ R(u0) of levels < i+. And for any w of level i+ we obtain a natural
model over Tt ↑w = T i∗

t with Γu0 ≤ Γw by the strong completeness of Li+ ; in
fact, Γu0 is an Li+ -place, since Li+ = QHP+

k+1 + Θi+ ⊆ Li + Θi+ ⊆ Γu0 . Note
that the naturalness condition (⊃)′ holds for all points v of levels j < i+; in
fact, if (A1 ⊃ A2) ∈ (−Γv), then (A1 ⊃ A2) 6∈ Γw for any w ∈ R(v) of level i+.

Now consider the ‘nontrivial’ case Li + Θi+ 6⊆ Γu0 . Then if ti < ω, we apply
Lemma 6.11.9 (for n = ti, Θ = Θi+) and find Li∀-places Γv for v ∈ β(u0) such
that Γu0 < Γv for all v and the naturalness condition (⊃)′ for Γu0 holds, cf.
the proof of 6.10.3 (recall that a characteristic formula E exists by Proposition
6.3.12, since LP+

n+1 ⊆ Li).
Then we repeat the same construction for points v ∈ β(u0) and so on, till

level i∗; note that tj = ti for all levels j such that i ≤ j < i∗. If for a certain
v, Li + Θi+ ⊆ Γv and Lemma 6.11.9 is inapplicable, then we proceed as in the
‘trivial’ case, and repeat this L∀-place Γv at all points above v till level i+. If
we successfully arrive at a point w of level i∗, then we obtain a sequence of
Li∀-places Γu0 < . . . < Γw. By Lemma 6.3.1 we can conclude that Li∗ ⊆ Γw

(i.e. Γw is an Li∗ -place), since Γu0 is a ∆i∗−i(Li∗)-place. Now we apply the
strong completeness of Li∗ and obtain a natural model over Tt ↑w = T i∗

t .
There also exists a degenerate case, when at point u0 (or at some interme-

diate point) Lemma 6.11.9 should be applied to m = 0, so it does not produce
any L∀-place Γv > Γu0 . But in this case the naturalness condition (⊃) trivially
holds for Γu0 , so we can repeat the place Γu0 at every v ∈ Tt ↑ u0 and thus
obtain a required natural model.

Finally let us mention the case ti = ω. Now if (A1 ⊃ A2) ∈ (−Γu0) and
A1 6∈ Γu0 , we construct an L∀-place Γv such that Γu0 ∪ {A1} ⊆ Γv, A2 6∈ Γv

(thus (A1 ⊃ A2) 6∈ Γv and Γu0 < Γv), cf. the proof of Lemma 6.2.13(2). So we
obtain infinitely many L∀-places Γv for v ∈ β(u0) — if there are only finitely
many, then we can repeat one of them at all other points v ∈ β(u0). We
apply this construction to all points from β(u0) and further on, till level i∗.
Eventually we obtain Li∗∀-places Γw for all points w of level i∗ and use the
strong completeness of Li∗ as in the previous case. �

It is clear that Lemma 6.11.11 yields a ∀-perfect axiomatisation of IL(K(T i
t))
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for any h†-sequence t and i ∈ C(t); in particular, for IL(K(Tt)) = IL(K(T 0
t )).

Proposition 6.11.12 Let t = (ti | i < h) be an h†-sequence. Consider the
sequence Θi for i ∈ C(t) constructed by induction on h+ 1 − i:

Θh+1 := {⊥},

Θi := δ0i∗−i(Θi∗) ∪ (Brti
[Θi+ ])∀ for i < h.

Then all Θi are ∀-perfect in LP+
h+1,

IL(K(T i
t)) = LP+

h+1 + Θi,

and these logics are strongly Kripke-complete w.r.t. K(T i
t). In particular,

IL(K(Tt)) = LP+
h+1 + Θ0

is strongly Kripke-complete w.r.t. K(Tt).

Proof Every Θi is ∀-perfect in LP+
h+1 and

LP+
h+1 + δ0i∗−i(Θi∗) = LP+

h+1 + ∆i∗−i(LP+
h+1 + Θi∗) = ∆i∗−i(LP+

h+1 + Θi∗)

by Proposition 2.13.33. Recall that LP+
h+1 ⊆ IL(K(Tt)) ⊆ IL(K(T i

t ) and also

that every set of the form Θ∀ is ∀-perfect in QH and ∀-perfection is
⋃

-additive.
So we can apply Lemma 6.11.11 at the induction step i. �

Note that APh+1−i = δ0h+1−i⊥ ∈ Θi for any i, since ⊥ ∈ Θh+1 and δ0i∗−i

(δ0h+1−i∗⊥) = δ0h+1−i⊥.

Recall that LP+
h+1+APh+1−i = LP+

h+1−i by Proposition 2.13.31, so LP+
h+1−i ⊆

LP+
h+1 + Θi for all i ∈ C(t).
Also note that for h = 0 and the empty h-sequence t we have C(t) =

{0, 1}, Θ1 = {⊥}, Θ0 = {δ⊥} = {AP1}, and this axiom generates classical
logic QCL = IL(K(Tk)).

For a constant sequence t = (n, . . . , n) of length k > 0 (where 0 < n ≤ ω)
we have C(t) = {0, k + 1}, Θk+1 = {⊥}. If n is finite, then Θ0 = {δ0k+1⊥} ∪

{Br⊥n } = {APk+1, Brn}, so we obtain the axiomatisation LP+
k+1 +Brn for the

uniform tree T k+1
n described in Section 6.10.

If n = ω, then Θ0 = {APk+1}, so we obtain a standard axiomatisation
LP+

k+1 of IT k+1
ω ; recall that BrΘω = ∅.

In some cases the axiomatisation described in Proposition 6.11.12 can be
simplified. Note that by Lemmas 2.9.4 and 6.11.5, δ0k and Brn[(. . .)∀] preserve
deductive equivalence, so every Θi can be replaced with its simpler deductive
equivalent. E.g. if A ∈ Θi∗ and A ∈ Θi for some i < h, then we can eliminate
δ0i∗−iA from δ0i∗−i(Θ

∗
i ), as this formula follows from A.

Proposition 6.11.12 can be strengthened as follows.
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Proposition 6.11.13 Let t = (ti | i < h) be an h†-sequence, L0 an s.p.l. such
that LP+

h+1 ⊆ L0 ⊆ IL(K(Tt)). For each i ∈ C[t] let Θi be a set of sentences,
which is ∀-perfect in L0 whenever i ∈ C+(t). Assume that L0+Θh+1 = QH+⊥,
and for any i < h in C(t)

L0 + Θi = L0 + ∆i∗−i(L0 + Θi∗) +Brti
[Θi+ ].

Then L0 + Θi = IL(K(T i
t)) for all i ∈ C(t); in particular,

L0 + Θ0 = IL(K(Tt)).

Proof Again we proceed by induction on h + 1 − i, and the argument at
the induction step fully repeats the proof of Proposition 6.11.12, cf. the proof
of Lemma 6.11.11, which is actually a particular case of this construction for
L0 = LP+

h+1. �

So Proposition 6.11.12 yields an infinite axiomatisation for any nonconstant
t, since any set of the form (BrΘti

)∀ is infinite, while Proposition 6.11.13 allows
us to find a finite axiom system for the case of increasing t.

Viz., consider an increasing h†-sequence t = (ti | i < h), i.e. t0 ≤ t1 ≤
. . . ≤ th−1, with the critical levels 0 = i0 < i1 < . . . < ik < h and put
ik+1 := h + 1, so all these levels are +-critical except for 0. Let t′ be the
corresponding subsequence: t′j := tij

for 0 ≤ j ≤ k + 1, so

ti =

{
t′j if i ∈ [ij, ij+1[, j < k,
t′k if ik ≤ i < h.

Obviously,
i+ = i∗ = min {j > i | tj > ti} = ij+1

for i = ij , 0 ≤ j ≤ k.
Then we define the finitely axiomatisable logics

L(t) := LP+
h+1 +Brt′

k
+ {Brt′

j
[APh+1−ij+1 ] | j < k}.

Note that if t′k = ω, the axiom Brt′
k

= ⊤ is redundant.

Theorem 6.11.14 IL(K(Tt)) = L(t) for any increasing h†-sequence t.

Proof We apply Proposition 6.11.13 to L0 = L(t) and Θi = {APh+1−i} for
each i ∈ C(t) = {i0, . . . , ik, ik+1} (where i0 = 0, ik+1 = h + 1). Obviously
L(t) ⊆ IL(K(Tt)) by Lemma 6.11.6, since the branching is ≤ t′j at all points

of levels < ij+1, and APh+1−ij+1 ∈ IL(K(T i
t)) for i ≥ ij+1. The sets Θi are

∀-perfect in L0 by 2.8.13(2).
For i = ij ∈ C(t), j < k we have

L0 + ∆i∗−i(L0 + Θi∗) = L0 + ∆ij+1−ij (L0 +APh+1−ij+1 )
= L0 + δ0ij+1−ij

APh+1−ij+1 = L0 +APh+1−ij
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and Brti
[Θi+ ] = Brt′

j
(APh+1−ij+1 ) ∈ L0. Thus

L0 + Θi = L0 + ∆i∗−i(L0 + Θi∗) +Brti
[Θi+ ].

Finally by 6.11.13, IL(K(Tt)) = L0 + Θ0 = L0 +APh+1 = L(t), since APh+1 ∈
L(t). �

On the other hand, for all non-increasing h†-sequences t the corresponding
logics IL(K(Tt)) are not finitely axiomatisable [. . .]; a proof will be given in
Volume 2.

Let us also present a simplified infinite axiomatisation for IL(K(Tt)) for a
decreasing t.

Proposition 6.11.15 Let t = (ti | i < h) be a decreasing h†-sequence: t0 ≥
t1 ≥ . . . ≥ th−1; then

IL(K(Tt)) = LP+
h+1 +Brt0 +

⋃
{δ0i ({Brti

}∀) | 0 < i < h, ti 6= ti−1}.

Proof Readily follows from Proposition 6.11.13. Note that here C+(t) =
{h+1}, i+ = h+1 for any i < h, Brti

[Θh+1] = {Br⊥ti
} and Br⊥ti

is H-equivalent
to Brti

. �

Finally we obtain axiomatisations for uncountable levelwise uniform trees.

Theorem 6.11.16 Let t be an h-sequence with some ti > ω (i.e. Tt is uncount-
able). Then IL(K(Tt)) = IL(K(Tt†)).

Proof Obviously Tt ։ Tt≤ω , so by Proposition 3.3.14, IL(K(Tt)) ⊆ IL(K
(Tt†)).

On the other hand, IL(K(Tt)) ⊇ IL(K(Tt≤ω )), since all the axioms used in
the axiomatisation Θ0 for Tt≤ω (Proposition 6.11.12), are also valid in Tt.

More precisely, we can show (by induction on h+1−i) that Θi ⊆ IL(K(Tt† ↑
u)) for points u of level i, for any i ∈ C(t†). The argument is almost obvious,
cf. soundness proof for Lemma 6.11.11. In fact, recall that BrΘω = ∅, so the
levels i with ti = ω do not bring anything new to the axiomatisation Θi, and
thus to Θj for j ≤ i. �

Therefore we really have an explicit recursive axiomatisation for an arbitrary
levelwise uniform tree of any cardinality.

For an h-sequence of cardinals t = (ti | i < h) let us also consider a poset
Tt + 1 obtained by adding the top element. Then the following holds.

Proposition 6.11.17 Let t = (ti | i < h) be an h†-sequence. Then IL(K(Tt +
1)) = QHP+

h+2 + J + Θ̂0, where the sets Θ̂i for i ∈ C[t] are constructed just as
in Proposition 6.11.12, but with a difference at the beginning

Θ̂h+1 := {AP1},
4
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Θ̂i := δ0i∗−i(Θ̂i∗) ∪ (Brti
[Θ̂i+ ])∀ for i < h.

All of them are ∀-perfect in QHP+
h+1.

This logic is strongly complete (w.r.t. K(Tt + 1)).

We can also obtain a finite axiomatisation of IL(K(Tt +1)) for an increasing
t (cf. Theorem 6.11.14) and a simplified infinite axiomatisation for a decreasing
t (cf. Proposition 6.11.15). We also have

IL(K(Tt + 1)) = IL(K(Tt† + 1))

for an uncountable t (cf. Theorem 6.11.16).
One can also consider logics with equality and obtain the following conse-

quence from the results of Section 3.9:

Proposition 6.11.18 Let t be an h-sequence (h ≥ 0). Then

IL=(KE(Tt)) = (IL(K(Tt)))
=,

IL=(K(Tt)) = (IL(K(Tt)))
=d,

and similarly for Tt + 1. The corresponding logics are strongly complete w.r.t.
these classes of Kripke frames or sheaves.

4So to say, the depths increase by 1.
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Chapter 7

Kripke completeness for
constant domains

In this chapter we prove completeness results in Kripke semantics with constant
domains for modal logics containing Barcan axioms and superintuitionistic logics
containing CD.

7.1 Modal canonical models with constant do-
mains

Let us first describe canonical models with constant domains for modal logics.
Since the Barcan formula is not valid in frames with varying domains, it is clear
that every m.p.l. containing Ba is not V -canonical. Thus canonical models
should be restricted to L-places having a fixed denumerable domain S0.

Here is a precise definition.

Definition 7.1.1 Let L be an N -modal logic containing Bai for 1 ≤ i ≤ N .
Let CPL be the set of all L-places (from V PL) with the set of constants S0.
The canonical frame and the canonical model with a constant domain for L are
defined as CFL := V FL|CPL, CML := VML|CPL.

For the sake of simplicity, the notation of relations and the domain function in
CFL is the same as in V FL. So in particular, DL is constant: DL(Γ) = S0.

It is clear that mentioning the superset S∗ is not necessary. Thus we can
consider CPL as consisting of (L, S0)-Henkin theories rather than L-places.

Now we have to show that the restricted relations RLi are selective on CPL.
Unfortunately, a direct analogue of Lemma 6.1.9 does not hold for the case
of constant domains, because one cannot extend an L-consistent theory Γ ⊆

MF
(=)
S0

to an (L, S0)-Henkin theory Γ without adding new constants.1 But the
following lemma suggests the way out.

1The corresponding counterexample for the intuitionistic case was constructed by Ghilardi.

569
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Lemma 7.1.2 Let L be an N -modal predicate logic, L ⊢ Bai for every i ≤ N .

Let Γ ∈ CPL, A ∈ MF
(=)
N (S0) and ✸iA ∈ Γ for some i. Then there exists

Γ′ ∈ CPL such that �−
i Γ ⊆ Γ′ and A ∈ Γ′.

This lemma means that the relations RLi on CPL are selective, cf. Definition
6.1.31 (recall that ΓRLiΓ

′ ⇔ �−
i Γ ⊆ Γ′ ⇔ ✸iΓ

′ ⊆ Γ, cf. Definition 6.1.14).

Proof Let us enumerate the set of modal S0-sentences of the form ∃xA(x), viz.
{∃xAk(x) | k > 0}. Then we construct a sequence of finite subsets (Γk|k ∈ ω)

of MF
(=)
S0

such that for any k ∈ ω

✸i

(∧
Γk

)
∈ Γ. (✸)

We put Γ0 := {A} and Γk := Γk−1 ∪ {∃xAk(x) ⊃ Ak(c)} for some c ∈ S0 (say,
for the first one in an enumeration of S0), such that (✸) holds. Let us show the
existence of this c.

In fact, by the inductive hypothesis, ✸i(
∧

Γk−1) ∈ Γ. We also have

L ⊢ �i∃y(∃xAk(x) ⊃ Ak(y))

(say, for a new variable y). Thus

✸i∃y
(∧

Γk−1 ∧ (∃xAk(x) ⊃ Ak(y))
)
∈ Γ.

Now by the Barcan axiom,

∃y✸i

(∧
Γk−1 ∧ (∃xAk(x) ⊃ Ak(y))

)
∈ Γ,

and thus by property (vi) of Henkin theories

✸i

(∧
Γk−1 ∧ (∃xAk(x) ⊃ Ak(c))

)
∈ Γ for some c ∈ S0.

Let Γω :=
⋃

k∈ω

Γk. Then �−Γ ∪ Γω is L-consistent. In fact, suppose

�−
i Γ ⊢L ¬(

∧
Γk) for some k. Then Γ ⊢L �i¬(

∧
Γk), i.e. ¬✸i(

∧
Γk) ∈ Γ.

This contradicts (✸).
Finally by Lemma 6.1.5, �−

i Γ ∪ Γω can be extended to an (L, S0)-complete
theory Γ′. Clearly Γ′ is an (L, S0)-Henkin theory, and �−

i Γ ∪ {A} ⊆ Γ′. �

Remark 7.1.3 The above lemma implies that every L-consistent theory of the
form �−Γ ∪ Γ0 with finite Γ0, can be extended to an (L, S0)-Henkin theory. In
fact, 7.1.2 is applicable, since in this case ✸i(

∧
Γ0) ∈ Γ (otherwise ¬✸i(

∧
Γ0) ∈

Γ, which implies �i¬(
∧

Γ0) ∈ Γ, i.e. ¬(
∧

Γ0) ∈ �−
i Γ).

This argument fails if Γ0 is infinite. In fact, if ✸i(
∧

Γ′
0) ∈ Γ for any finite

subset Γ′
0 of Γ0 and ∃yA(y) has Henkin property (w.r.t. Γ) for any Γ′

0, then
there exist constants c′ ∈ S0 satisfying

∧
Γ′

0 ∧ A(c′) for all finite Γ′
0 ⊆ Γ0, but

we cannot state the existence of a single constant c for all these Γ′
0, and thus

for the whole infinite set Γ0.
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Now since the relations RLi are selective on CPL, we readily obtain the main
property of the canonical model with a constant domain (cf. Lemma 6.1.21):

Theorem 7.1.4 For any Γ ∈ CPL and A ∈MF
(=)
N (S0),

CML,Γ � A iff A ∈ Γ.

Corollary 7.1.5 For a logic L with Barcan axioms, for any formula A,

CML � A iff L ⊢ A.

Proof (Cf. 6.1.22). We can consider only the case when A is a sentence. ‘Only
if’ follows from 6.1.3 and Theorem 7.1.4. To check ‘if’, suppose A 6∈ L; then by
6.1.10, we have A 6∈ Γ for some (L, S0)-Henkin theory Γ; hence CML,Γ 6�A, by
Theorem 7.1.4. �

Definition 7.1.6 A m.p.l.(=) is called C-canonical if CFL � L.

Corollary 7.1.7 Every C-canonical m.p.l. is strongly CK-complete. Every C-
canonical m.p.l.= is strongly CKE-complete.

Proof Similar to Corollary 6.1.24. �

For an N -m.p.l.(=) Λ put ΛC := Λ +
N∧

i=1

Bai.

The next result is an analogue of 6.1.29 for constant domains; the proof is
very similar.

Theorem 7.1.8 Let Λ be a propositional PTC-logic. Then the logics QΛC,
QΛC= are C-canonical.

Proof The argument for closed axioms is trivial, cf. 6.1.29.
If A = ✸β�kp ⊃ �γp ∈ L = QΛ(=) + Ba, then R−1

Lβ ◦ RLγ ⊆ RLk. In
fact, suppose ΓRLβ∆1, ΓRLα∆2, �kB ∈ Γ. Then ✸β�kB ∈ Γ (note that
B ∈ L(∆1) = L(Γ), since the domain is constant), and thus from ✸β�kB ⊃
�γB ∈ L ⊆ Γ it follows that �γB ∈ Γ. Therefore B ∈ ∆2, since ΓRLγ∆2. So
we obtain ∆1Rk∆2, and eventually CFL � A. �

This theorem is actually a particular case of a more general completeness
result by Tanaka–Ono, which will be proved in Section 7.4.

7.2 Intuitionistic canonical models with constant

domains

Let us now consider intuitionistic models.
Let L be a superintuitionistic predicate logic (with or without equality)

containing the formula CD. Then L is definitely not V -canonical, and we have
to extract a subframe of V FL with a fixed denumerable domain S0.
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Definition 7.2.1 Let CPL be the set of all (L∃∀, S0)-complete intuitionistic
theories; they are called CDL-places.

Recall that (Section 7.2) for L containing CD, L∃∀-completeness is equiva-
lent to the property

(Ac) ∀xA(x) ∈ Γ iff for all c ∈ S0 A(c) ∈ Γ.

This reflects the property of forcing in intuitionistic Kripke models with
constant domains:

u  ∀xA(x) iff for all c ∈ D(u) u  A(c).

As in the modal case, we omit S0 from our notation.

Definition 7.2.2 The canonical frame and the canonical model with a con-
stant domain for a superintuitionistic logic L containing CD are (respectively)
CFL := V FL|CPL and CML := VML|CFL.

Again we use the same notation of relations and domains as in V FL; so (DL(Γ) =
S0) and ΓRLΓ′ iff Γ ⊆ Γ′.

Note that RL coincides with ≤ on CPL, since every proper extension of Γ
contains additional S0-formulas (see Definition 6.2.11).

Now let us show that the relation RL is selective on CPL. The property
6.2.12(∀) follows readily from (Ac); so it remains to check 6.2.12(⊃).

Lemma 7.2.3 Let L be a superintuitionistic predicate logic containing CD,
Γ ∈ CPL, and let (Γ ∪ Γ0,∆0) be an L-consistent theory with finite Γ0,∆0.
Then there exists an L∃∀-complete theory Γ′ � (Γ ∪ Γ0,∆0) (i.e. Γ ∪ Γ0 ⊆
Γ′,∆0 ∩ Γ′ = ∅).

Proof Similar to Lemma 6.2.6. We enumerate IF (=)(S0) as {Bk | k ∈ ω} and
construct an increasing sequence of finite theories (Γ0,∆0) � . . . � (Γk,∆k) �
. . . such that (Γ ∪ Γk,∆k) is consistent for any k ∈ ω. The construction is as
follows.

(1) If Bk is not of the form ∃xA(x) or ∀xA(x), we define

(Γk+1,∆k+1) :=

{
(Γk ∪ {Bk},∆k) if (Γ ∪ Γk ∪ {Bk},∆k) is L-consistent,
(Γk,∆k ∪ {Bk}) otherwise.

Then the consistency of (Γ∪Γk,∆k) implies the consistency of (Γ∪Γk+1,∆k+1);
this is proved as in Lemma 6.2.6.

(2) If Bk = ∃xA(x) and (Γ ∪ Γk ∪ {Bk},∆k) is L-consistent, then

Γ 6⊢L

∧
Γk ∧ ∃xA(x) ⊃

∨
∆k,

and thus
∀x(
∧

Γk ∧A(x) ⊃
∨

∆k) 6∈ Γ.
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Hence by (Ac),

(
∧

Γk ∧A(c) ⊃
∨

∆k) 6∈ Γ for some c ∈ S0,

and so
Γ 6⊢
∧

Γk ∧A(c) ⊃
∨

∆k,

by Lemma 6.2.5(v). Thus

Γ 6⊢
∧

Γk ∧ ∃xA(x) ∧A(c) ⊃
∨

∆k,

i.e. the theory (Γ ∪ Γk+1,∆k+1), where

Γk+1 := Γk ∪ {∃xA(x), A(c)}, ∆k+1 := ∆k,

is L-consistent.
Otherwise, if (Γ ∪ Γk ∪ {Bk},∆k) is L-inconsistent, we put

(Γk+1,∆k+1) := (Γk,∆k ∪ {Bk});

then as in (1), we obtain that (Γ ∪ Γk+1,∆k+1) is consistent.
(3) If Bk = ∀xA(x) and

Γ 6⊢L

∧
Γk ⊃

∨
∆k ∨ ∀xA(x),

then by axiom CD,

∀x(
∧

Γk ⊃
∨

∆k ∨A(x)) 6∈ Γ.

Hence
(
∧

Γk ⊃
∨

∆k ∨A(c)) 6∈ Γ

for some c ∈ S0. Take this c and define

(Γk+1,∆k+1) := (Γk,∆k ∪ {∀xA(x), A(c)});

then (Γ ∪ Γk+1,∆k+1) is L-consistent.
Otherwise, if

Γ ⊢L

∧
Γk ⊃

∨
∆k ∨ ∀xA(x),

we define
(Γk+1,∆k+1) := (Γk ∪ ∀xA(x),∆k);

then (Γ ∪ Γk+1,∆k+1) is again L-consistent.
Eventually, the theory Γ′ := Γ ∪

⋃
k∈ω

Γk (or
⋃

k∈ω

Γk itself) is L∃∀-complete,

and (Γ ∪ Γ0,∆0) � Γ′ as required. �

Note that only property (Ac) of the original theory Γ is essential in the above
proof, and the existential property is not used.
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Lemma 7.2.4 Suppose L ⊢ CD, Γ ∈ CPL, (A1 ⊃ A2) 6∈ Γ. Then there exists
Γ′ ∈ CPL such that Γ ⊆ Γ′ (i.e. ΓRLΓ′), A1 ∈ Γ′, A2 6∈ Γ′. In other words, the
relation RL on CPL satisfies 6.2.12 (⊃) and is selective.

Proof If (A1 ⊃ A2) 6∈ Γ, then the theory (Γ ∪ {A1}, {A2}) is L-consistent,
and so we can apply Lemma 7.2.3. �

Remark 7.2.5 Note that in Lemma 7.2.3 the sets Γ0,∆0 are finite, and thus
it is actually equivalent to Corollary 7.2.4. If Γ0 ∪ ∆0 is infinite, one cannot
always find an L∃∀-complete extension for an L-consistent theory (Γ ∪ Γ0,∆0)
(as we have mentioned, this was shown by Ghilardi).

From Corollary 7.2.4 and the conditions 6.2.12(⊃), (∀) we obtain the main
property of the canonical model:

Theorem 7.2.6 For any Γ ∈ CPL and A ∈ IF (=)(S0)

CML,Γ  A iff A ∈ Γ.

Corollary 7.2.7 For a logic L containing CD, for any formula A

CML  A iff L ⊢ A.

Proof By Lemma 6.2.6, for an L-unprovable S0-sentence A there exists an
L∃∀-complete theory Γ ∈ CPL such that A 6∈ Γ. Thus CML,Γ 6 A, by Theorem
7.2.6. �

Now we can repeat Definition 7.1.6 for the intuitionistic case.

Definition 7.2.8 An s.p.l (=) L is called C-canonical if CFL � L.

From Corollary 7.2.7 we obtain

Proposition 7.2.9 Every C-canonical s.p.l. containing CD is Kripke-complete.

7.3 Some examples of C-canonical logics

Unlike the case of varying domains, there are quite a few natural examples of
C-canonicity; some of them were first found by H. Ono.

Let QHC := QH + CD, QHCK := QHC + KF . Sometimes we also use
the notation QΛC, QΛCK for an arbitrary intermediate propositional logic Λ.

Theorem 7.3.1 The logics QHC=, QHC, QHC=d, QHC=s are C-canonical.

Proof Similar to Proposition 7.2.15. �

Proposition 7.3.2 Classical logic QCL is C-canonical.
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Proof The frame CFQCL is discrete, i.e. ΓRQCLΓ′ iff Γ = Γ′, cf. the proof of
Lemma 6.3.4(i) (recall that RL =⊆ in CFL). �

C-canonicity also holds for many logics of finite depth.

Lemma 7.3.3 Let k > 0, and let L be a superintuitionistic logic.

(1) If CD ∧APk ∈ L, then CFL is of depth ≤ k.

(2) If L = QHC +APk, then CFL is of depth k.

Proof

(1) Suppose Γk ⊂ Γk−1 ⊂ . . . ⊂ Γ1 ⊂ Γ0 in CFL, and let Ai ∈ (Γi−1 − Γi) for
1 ≤ i ≤ k. Then by induction on i it follows that

Bi := Ai ∨ (Ai ⊃ Ai−1 ∨ (Ai−1 ⊃ · · · ⊃ A2 ∨ (A2 ⊃ A1 ∨ ¬A1) . . . )) 6∈ Γi

(for 1 ≤ i ≤ k). In fact, Bi+1 = Ai+1 ∨ (Ai+1 ⊃ Bi) for 0 ≤ i ≤ k − 1
(where B0 = ⊥). Then B0 6∈ Γ0, by consistency. Suppose Bi 6∈ Γi,
but Bi+1 ∈ Γi+1. Then Ai+1 ∈ Γi+1 or (Ai+1 ⊃ Bi) ∈ Γi+1. The
first option contradicts the choice of Ai+1. In the second case we have
(Ai+1 ⊃ Bi) ∈ Γi+1 ⊆ Γi. Since Ai+1 ∈ Γi, we obtain Bi ∈ Γi, which
contradicts the inductive hypothesis.

Therefore Bk 6∈ Γk, while Bk is a substitution instance of APk. This
contradicts Corollary 7.2.7.

(2) Recall that L 6⊢ APk−1 = qk−1 ∨ (qk−1 ⊃ · · · ⊃ (q2 ∨ (q2 ⊃ q1 ∨ ¬q1)))
(since APk−1 is refuted in a k-element chain with a constant domain). By
Corollary 7.2.7 there exists Γk−1 ∈ CPL such that Γk−1 6 APk−1. Then
Γk−1 6 qk−1, Γk−1 6 qk−1 ⊃ APk−1, and so there exists Γk−2 ⊇ Γk−1

such that Γk−2  qk−1, Γk−2 6 APk−2. By induction we obtain a chain
Γk−1 ⊂ Γk−2 ⊂ · · · ⊂ Γ1 ⊂ Γ0 such that Γi 6 APi, Γi 6 qi, Γi−1  qi for
i > 0.

�

Remark 7.3.4 Note that the argument used in the above proof of (1) fails
for the case of varying domains, because the formula Ai can contain additional
constants not occurring in Γi, thus we may not find an appropriate substitu-
tion instance of APk refuted in Γk. This observation somewhat explains why
propositional axioms cannot describe the finite depth in this case and we need
predicate axioms taking new individuals into account.

Lemma 7.3.5 Let L be a superintuitionistic logic containing Z. Then every
cone in CFL is linearly ordered, i.e. for any Γ,Γ′,Γ′′ ∈ CPL, Γ ⊆ Γ′ and
Γ ⊆ Γ′′ imply that Γ′ and Γ′′ are ⊆-comparable.

Proof Suppose A1 ∈ (Γ′ −Γ′′) and A2 ∈ (Γ′′ −Γ′). Then Γ 6 A1 ⊃ A2, A2 ⊃
A1, and thus Γ 6 (A1 ⊃ A2) ∨ (A2 ⊃ A1). This contradicts CML  L. �
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Proposition 7.3.6 The following superintuitionistic predicate logics are C-
canonical:

(1) QLC + CD = QH + CD ∧AZ;

(2) QH + CD ∧APk;

(3) QH + CD ∧AZ ∧APk for k > 0.

They are respectively determined by the following classes of Kripke frames with
constant domains:

(1) linear Kripke frames;

(2) Kripke frames of depth k;

(3) k-element chains.

These logics are also determined by countable frames of the corresponding kind.

(1) was proved in Ono [Ono, 1983], [Minari, 1983].

Remark 7.3.7 The logic QLC + CD was also characterised algebraically in
[Horn, 1969]. Note that it is also equivalent to the logic IF introduced in [Takeuti
and Titani, 1984].

Remark 7.3.8 Note that canonical and quasi-canonical frames with varying
domains (for any logic) obviously do not validate AZ. In fact, two exten-
sions of an L-place with incomparable sets of new constants are always RL-
incomparable. Thus the logic QLC and all its extensions are not V -, U -, or
U≤-canonical. Still QLC is Kripke complete, as we showed in Section 6.7.

Now consider the logics

QHCK := QHC +KF, QS4CK+ := QS4C +MK+,

where

MK+ := ✸∀x�(P (x) ⊃ �P (x)).

Note that QS4CK+ contains S4.1.

Lemma 7.3.9 (1) Let L be a superintuitionistic logic containing Kuroda for-
mula KF . Then its C-canonical frame CFL is coatomic.

Moreover, for any CDL-place Γ ∈ CPL there exists a CDQCL-place Γ′ ⊇
Γ.

(2) Let L be an m.p.l. containing QS4CK+. Then CFL is coatomic.

Note that QCL-complete theories are maximal in CFL (cf. Lemma 6.3.4(i)).
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Proof (1) For Γ ∈ CPL, we construct a sequence Γ = Γ0 ⊆ Γ1 ⊆ . . . in CPL

as follows
Let A0, A1 . . . be an enumeration of IF . For a CDL-place Θ a formula A is

said to be critical if CML,Θ 6 ∀(A ∨ ¬A).
Since L ⊢ KF , we have ⊢L ¬¬∀(A∨¬A), which follows from ⊢QCL ∀(A∨¬A)

by the Glivenko theorem. Hence Θ 6 ¬∀(A ∨ ¬A) for any Θ and A.
Now assume that Γn is constructed and An is critical for Γn. Since Γn 6

¬∀(An ∨¬An), there exists Γn+1 ⊃ Γn such that Γn+1  ∀(An ∨¬An). If An is
not critical for Γn, we put Γn+1 := Γn.

This procedure makes all formulas noncritical — An is always noncritical for
Γn+1.

Eventually we obtain a theory Γ′ :=
⋃
n

Γn. It is clear that (Γ′,−Γ′) is L-

consistent, otherwise Γn ⊢L

∨
∆ for some n and finite ∆ ⊆ −Γ′ ⊆ −Γn — but

then (Γn,−Γn) is L-inconsistent. Since every Γn has the (EP), so does Γ′.
So Γ′ is an L-place, and moreover, QCL ⊆ Γ′. In fact, by the deduction

theorem, B ∈ QCL implies Sub(p ∨ ¬p) ⊢QH B; hence there exist formulas
A0, . . . , An such that ∀(A0∨¬A0), . . . ,∀(An∨¬An) ⊢QH B; therefore Γ′ ⊢QH B,
whence B ∈ Γ′

By 6.3.3, Γ′ is a QCL-place, and therefore an L∀-place (by 6.3.2), and it is
maximal in CFL.

(2) Similar to (1). Again starting from Γ ∈ CPL, we construct a sequence
Γ = Γ0RLΓ1 . . . in CFL.

Let MF1 be the set of all S0-formulas with at most one parameter, and let
A0, A1 . . . be an enumeration of MF1. Now we call a formula A critical for
Θ ∈ CPL if CML,Θ 6 ∀�(A ⊃ �A).

Suppose Γn is constructed and An is critical for Γn. Since L ⊇ QS4CK+,
we have Γn � ✸∀�(An ⊃ �An), so there exists Γn+1 ∈ RL(Γn) such that
Γn+1 � ∀�(An ⊃ �An). If An is not critical for Γn, we put Γn+1 := Γn.

Then we claim that the theory

Γ′ :=
⋃

n

�−Γn

is L-consistent. In fact, otherwise
k⋃

n=1
�−Γn is L-inconsistent for some finite k.

But this is impossible, since ΓnRLΓk+1 for n ≤ k + 1, and thus
k⋃

n=1
�−Γn ⊆

Γk+1.
Now by the Lindenbaum lemma, there exists an L-complete ∆ ⊇ Γ′. It

follows that ∆ is a Henkin theory. In fact, consider an arbitrary formula An(y) of
the form ∃xB(x) ⊃ B(y), where FV (B(x)) ⊆ {x} as usual. By our construction
and reflexivity, Γn+1 � ∀y(An(y) ⊃ �An(y)). Since Γn+1 is a Henkin theory,
there exists c ∈ S0 such that Γn+1 � An(c). We also have Γn+1 � An(c) ⊃
�An(c), so Γn+1 � �An(c). Hence An(c) ∈ �−Γn+1 ⊆ ∆. Therefore ∆ ∈ CPL.

It remains to note that ∆ is maximal — assuming ∆RL∆′, let us show that
∆′ = ∆ (or ∆ ⊆ ∆′). Suppose A = An ∈ ∆ (i.e. ∆ � An) for an S0-sentence



578 CHAPTER 7. KRIPKE COMPLETENESS

An. By construction ΓnRL∆, so ∆ � ∀(An ⊃ �An), which is the same as
∆ � An ⊃ �An, and thus ∆ � �An, which implies An ∈ ∆′. �

Remark 7.3.10 Note that the proof in case (1) almost repeats the proof of
Lemma 7.2.3, when we construct a QCL∃∀-complete extension Γ′ of Γ. But in
our case we cannot directly apply Lemma 7.2.3 to the logic QCL(=) and empty
Γ0,∆0, because the basic theory Γ is not in general QCL(=)∃-complete. Nor
we can apply Lemma 7.2.3 to an L∃-complete Γ and ∆0 = ∅, Γ0 = QCL(=)

(or Γ0 = {∀̄(A ∨ ¬A) | A ∈ IF (=)}), since Γ is infinite.

Proposition 7.3.11 The logics QHCK and QLCCK are C-canonical. The
former is determined by Kripke frames with constant domains and the McKinsey
property, and the latter by chains with the greatest element and constant domains
and also by countable chains with the greatest element and constant domains.

Recall that QH + CD ∧APk ⊢ KF for any k, since a poset of a finite depth is
clearly coatomic.

Remark 7.3.12 Note that the logic of the weak excluded middle with constant
domains QH+CD∧AJ is not C-canonical. Recall that a Kripke frame validates
AJ iff it is directed, i.e. ∀v1∀v2∃w(v1Rw & v2Rw). This property fails for the
canonical frame, and our ‘extension lemma’ 8.2.3 does not allow us to extend
the L-consistent theory Γ′ ∪Γ′′ (where Γ ⊂ Γ′ and Γ ⊂ Γ′′) to an L∃∀-complete
theory with the same set of constants S0. The logic QH +CD ∧AJ is actually
Kripke-incomplete [Shehtman and Skvortsov, 1990; Ghilardi, 1989], see also
Volume 2. But there is no difficulties with the logic QH + CD ∧AJ ∧KF , as
we shall see now.

Lemma 7.3.13 Let L be a superintuitionistic logic containing CD∧AJ ∧KF .
Then for any Γ ∈ CPL the set {∆ ∈ CPL | Γ ⊆ ∆} has the greatest element.

Proof By 7.3.9, there exists a CDQCL-place ∆ ⊇ Γ. Suppose ∆ is not the
greatest in CFL↑Γ, then there exists another

CDQCL-place ∆1 ⊇ Γ, and thus ∆ 6⊆ ∆1, since ∆ is maximal. So there
exists A ∈ IF (S0) such that ∆  A, ∆1 6 A; hence ∆1  ¬A by maximality
of ∆1. Thus Γ 6 ¬A ∨ ¬¬A, which contradicts ⊢L ¬A ∨ ¬¬A. �

Proposition 7.3.14 The logics QHC+AJ ∧KF and QHC+CD∧AJ ∧APk

for k > 0 are C-canonical. The former is determined by Kripke frames with
constant domains and top elements, and the latter, by the same kind of frames
of depth k.

Definition 7.3.15 A subordination L-map with constant domains is a natural
L-map from a subordination frame to CFL.

Lemma 7.3.16 Let L ⊇ QH + CD and let Γ be an L∀-place. Then there
exists a subordination L-map with constant domains g : ITω −→ CFL such that
g(f) = Γ.
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Proof From Lemma 7.2.4 and an analogue to Lemma 6.4.16. �

Lemma 7.3.17 Let L ⊇ QH +CD+KF + J and let Γ be an L∀-place. Then
there exists a subordination L-map with constant domains h : ITω + 1 −→ CFL

such that h(f) = Γ.

Proof Let g be the subordination map given by Lemma 7.3.16. Let Γ′ =
{A | ¬¬A ∈ Γ}.

Suppose A ∈ g(α) for some α ∈ ITω. Then ⊢L ¬A ∨ ¬¬A by AJ , Γ 0L ¬A,
therefore Γ ⊢L ¬¬A and A ∈ Γ′.

Moreover, Γ′ is a QCL∀-place. In fact, it is clearly L-consistent and closed
under deduction in L. Since for every DΓ-sentence A, ⊢L ¬¬A ∨ ¬¬¬A, Γ
contains either ¬¬A or ¬¬¬A, so Γ′ contains either A or ¬A.

To check the existence property, suppose A(c) 6∈ Γ′ for all c. Then by
AJ we deduce that ¬A(c) ∈ Γ for all c and so ∀x¬A(x) ∈ Γ ⊆ Γ′. Since
⊢QH ∀x¬A(x) ⊃ ¬∃xA(x), we have ¬∃xA(x) ∈ Γ′ and so ∃xA(x) 6∈ Γ′.

To show the coexistence property, suppose ∀xA(x) 6∈ Γ′. Then ¬∀xA(x) ∈
Γ′. But QH+KF ⊢ ¬¬(¬∀xA(x) ⊃ ∃x¬A(x)), hence (¬∀xA(x) ⊃ ∃x¬A(x)) ∈
Γ′ and ∃x¬A(x) ∈ Γ′. By existence property, ¬A(c) ∈ Γ′ for some c and so
A(c) 6∈ Γ′.

Since Γ′ is maximal, we see that A ∈ Γ′ and B 6∈ Γ′ whenever (A ⊃ B) 6∈ Γ′.
Therefore h extending g by h(∞) := Γ′ is natural. �

From Lemmas 7.2.3 and 7.3.17, we obtain

Theorem 7.3.18 The logic QH + CD + KF + AJ is determined by the sub-
ordination frame with the greatest element and constant domains.

7.4 Predicate versions of subframe and tabular

logics

The results on canonicity of some families of predicate logics presented in this
and the next section are due to H. Ono, T. Shimura and Y. Tanaka. But the
original proofs are essentially simplified, thanks to canonical models and some
results on propositional logics.

Definition 7.4.1 Let L be a modal or superintuitionistic predicate logic with
constant domains. The canonical general frame of L is

CΦL := ((CFL)π,WL),

where WL is {θL(A) | A ∈ MFN (S0)} in the modal case or {θI
L(A) | A ∈

IF (S0)} in the intuitionistic case.

Lemma 7.4.2 CΦL is well-defined.
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Proof Similar to 1.6.7. Note that WL is a subalgebra of MA((CFL)π), since
by definition

θL(¬A) = −θL(A), θL(A ∧B) = θL(A) ∩ θL(B), θL(�iA) = �iθL(A).

�

Lemma 7.4.3 CΦL is refined.

Proof It is again similar to the propositional logic.
CΦL is differentiated, since Γ 6= ∆ implies Γ 6⊆ ∆ (or vice versa), and thus

by Theorem 7.1.4 (or 7.2.6 in the intuitionistic case), Γ ∈ θL(A), ∆ 6∈ θL(A) for
some A.

Tightness in the modal case

∀A (Γ � �iA⇒ ∆ � A) ⇒ ΓRL,i∆

follows from the definition of RL,i and 7.1.4. In the intuitionistic case this is
written as

∀A (Γ � A⇒ ∆ � A) ⇒ Γ ⊆ ∆

and follows from 7.2.6. �

Remark 7.4.4 CΦL is not descriptive, as S. Ghilardi noticed.

Proposition 7.4.5 For any m.p.l. or s.p.l. L, CΦL validates Lπ.

Proof Again we consider only the modal case. We can argue as in the proof of
1.7.11. Viz., consider a formula A ∈ Lπ⌈k and a valuation ψ in CΦL. Choose Bi

such that ψ(pi) = θL(Bi), and let S := [B1, . . . , Bk/p1, . . . , pk]. Then SA ∈ L,
so ψ(A) = θL(SA) = CPL by 1.2.9 and the canonical model theorem 7.1.4. �

Proposition 7.4.6 If a propositional modal or intermediate logic Λ is r-persistent,
then the predicate logic QΛC is C-canonical.

Proof Let L = QΛC. By 7.4.5, CΦL � Λ. By 7.4.3, this frame is refined, so
by r-persistence, we obtain CFL � Λ. Since CFL has constant domains, it also
validates the Barcan formula, and thus the whole L. �

Hence we obtain the main result from [Tanaka and Ono, 1999]:

Theorem 7.4.7 (Tanaka–Ono) For any universal propositional modal logic
Λ, the logic QΛC is C-canonical. [and so, strongly Kripke complete]

Proof By Theorem 1.12.8, Λ is r-persistent, so QΛC is C-canonical by Propo-
sition 7.4.6. �

This allows us to construct many examples of canonical predicate logics.
In almost the same way we prove the result from [Shimura, 1993]:
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Theorem 7.4.8 (Shimura) If Λ is a subframe intermediate logic, then QΛC
is C-canonical.

Proof By Theorem 1.12.27, Λ is r-persistent. So we can apply Proposition
7.4.6. �

The next result for the intuitionistic case was proved in [Ono, 1983]; the
modal version is probably new.

Theorem 7.4.9 If a propositional modal or intermediate logic Λ is tabular,
then QΛC is C-canonical.

Proof By Proposition 1.14.7, Λ is r-persistent. So we can apply 7.4.6. �

7.5 Predicate versions of cofinal subframe logics

In this section we prove completeness results from [Shimura, 2001].
Now we use an auxiliary ‘pre-canonical’ model dual to the Lindenbaum al-

gebra of S0-sentences.

Definition 7.5.1 Let L be an N -m.p.l. with constant domains, C+PL the set
of all L-complete theories with the set of constants S0. We define the following
propositional frames and models:

• the pre-canonical frame of L is C+FL := (C+PL, R1, . . . , RN ), where Ri

is defined as in the canonical model:

ΓRi∆ ⇐⇒ ∀A ∈MFN (S0) (�iA ∈ Γ ⇒ A ∈ ∆);

• the pre-canonical model of L is C+ML := (C+FL, θ
+
L ), where

θ+L (pi) := {Γ ∈ C+PL | pi ∈ Γ};

• the pre-canonical general frame of L is

C+ΦL := (C+FL, {|A| | A ∈MFN (S0)}),

where |A| := {Γ ∈ C+PL | A ∈ Γ}.

Lemma 7.5.2 C+ΦL is well-defined.

Proof We have to show that the sets |A| constitute a subalgebra ofMA(C+FL).
This follows from the equalities:

|¬A| = −|A|, |A ∧B| = |A| ∩ |B|, |�iA| = �i|A|.

The first two are just reformulations of 6.1.2(iii) and 6.1.3(i). For the third,
note that the inclusion |�iA| ⊆ �i|A| readily follows from the definition of Ri.
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The converse |�iA| ⊇ �i|A| is proved as in propositional logic and similarly
to 6.1.16. In fact, suppose �iA 6∈ Γ. Then the theory

∆0 := �−
i Γ ∪ {¬A}

is L-consistent. For otherwise we have �−
i Γ ⊢L A, hence Γ ⊢L �iA by Lemma

2.., which contradicts �iA 6∈ Γ.
Now by the Lindenbaum lemma 6.1.5 there exists an L-complete ∆ ⊇ ∆0.

So ∆ ∈ |¬A| = −|A|, and also ΓRi∆. Thus Γ 6∈ �i|A|. �

As complete theories may be not Henkin, the canonical model theorem for
this model holds only for propositional formulas; this explains the name ‘pre-
canonical’.

Proposition 7.5.3 Let L be an N -m.p.l. with constant domains.

(1) For any N -modal propositional formula A, for any L-complete Γ

C+ML,Γ � A iff A ∈ Γ.

(2) For any N -modal propositional formula A,

C+ML � A iff A ∈ L.

(3) ML(C+ΦL) = Lπ.

Proof
(1) Standard, by induction on the length of A, using properties of complete
theories 6.1.3. We also need an analogue of 6.1.16 for complete theories; its
proof uses 6.1.5.

(2) ‘If’ follows from (1), since L-complete theories contain L. For ‘only if’
use the Lindenbaum lemma 6.1.5.

(3) (⊆) If A 6∈ Lπ, then by (2), C+ML 6�A, and thus C+ΦL 6�A.
(⊇) The claim (1) can be written as θ+L (A) = |A|. So we can argue as in

the proof of 1.7.11. Viz., consider a formula A ∈ Lπ⌈k and a valuation ψ in
C+ΦL. Choose Bi such that ψ(pi) = |Bi| = θ+L (Bi), and consider a substitution
S := [B1, . . . , Bk/p1, . . . , pk]. Then SA ∈ L, so ψ(A) = θ+L (SA) = C+PL by
1.2.9 and (2). �

We also have an analogue of Theorem 1.7.19:

Theorem 7.5.4 Let L be an m.p.l. with constant domains. Consider the modal
algebra Lind(L(S0)) of all S0-sentences up to the equivalence ⊢L A ≡ B. Then

Lind(L(S0))+ ∼= C+ΦL.

Lemma 7.5.5 C+ΦL is descriptive.
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Proof It is again similar to the propositional case.
C+ΦL is differentiated, since Γ 6= ∆ implies Γ 6⊆ ∆, and thus Γ ∈ |A|, ∆ 6∈

|A| for some A.
Tightness

∀A (Γ ∈ �i|A| ⇒ ∆ ∈ |A|) ⇒ ΓRi∆

follows from the definition of Ri and the equality |�iA| ⊆ �i|A| we have already
proved.

For compactness, note that if V is a set of interior sets with non-empty finite
intersections, then the theory Γ0 := {A | |A| ∈ V} is L-consistent. In fact, if

Γ0 ⊢L ⊥, then ⊢L ¬
k∧

i=1

Ai for some |A1|, . . . , |Ak| ∈ V , so
k⋂

i=1

|Ai| = |
k∧

i=1

Ai| = ∅

— a contradiction. By the Lindenbaum lemma, there exists an L-complete
Γ ⊆ Γ0, so

⋂
V ∋ Γ.

Alternatively, one can apply Theorem 7.5.4 and Proposition 1.7.20. �

Quite similar constructions and proofs can be made in the intuitionistic case.

Definition 7.5.6 For an s.p.l. L with constant domains, let C+PL the set
of all L-complete intuitionistic theories with the set of constants S0. Then we
define the pre-canonical model, the pre-canonical frame and the pre-canonical
general frame of L:

C+FL := (C+PL,⊆),
C+ML := (C+FL, θ

+
L ),

C+ΦL := (C+FL, {|A| | A ∈ IF (S0)}),

where
θ+L (pi) := {Γ ∈ C+PL | pi ∈ Γ},
|A| := {Γ ∈ C+PL | A ∈ Γ}.

Lemma 7.5.7 In the intuitionistic case C+ΦL is well-defined.

Proof Let us show that {|A| | A ∈ IF (S0)} is a subalgebra of HA(C+FL). It
is sufficient to check the equalities:

|⊥| = ∅, |A ∧B| = |A| ∩ |B|, |A ∨B| = |A| ∪ |B|, |A ⊃ B| = |A| → |B|.

The first one is trivial; the second and the third follow from Lemma 6.2.5.
The equality |A ⊃ B| = |A| → |B| is checked as in the propositional case.

In fact, |A ⊃ B| ⊆ |A| → |B|, since |A ⊃ B| ∩ |A| ⊆ |B|. The latter follows from
the implications

(A ⊃ B) ∈ Γ & A ∈ Γ ⇒ Γ ⊢L B ⇒ B ∈ Γ.

To show the converse, suppose (A ⊃ B) 6∈ Γ. Then the theory (Γ ∪ {A}, {B})
is L-consistent. For otherwise we have Γ, A ⊢L B, which implies Γ ⊢L A ⊃ B,
by the Deduction theorem, and next (A ⊃ B) ∈ Γ by 6.2.5.

Thus by Lemma 7.2.3 there exists an L-complete ∆ � (Γ∪{A}, {B}), hence
Γ ⊆ ∆ ∈ (|A| − |B|), and therefore Γ 6∈ (|A| → |B|). �
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The next proposition is an analogue of 7.5.3.

Proposition 7.5.8 Let L be an s.p.l. with constant domains. Then

(1) for any intuitionistic propositional formula A, for any L-complete Γ

C+ML,Γ  A iff A ∈ Γ;

(2) for any intuitionistic propositional formula A,

C+ML  A iff A ∈ L;

(3) IL(C+ΦL) = Lπ.

Proof Repeats the proof of 7.5.3, with minor changes; for example, use 1.2.13
instead of 1.2.9. We leave the details to the reader. �

Hence we obtain

Theorem 7.5.9 For any s.p.l. L with constant domains, C+ΦL
∼= Lind(L(S0))+,

where Lind(L(S0)) is the Lindenbaum algebra of S0-sentences in L.

Lemma 7.5.10 For any s.p.l. L with constant domains, C+ΦL is descriptive.

Proof Similar to 7.5.5. �

Lemma 7.5.11 In each of the following cases the pre-canonical frame C+ΦL

is coatomic:

(1) L is an s.p.l. containing QHCK;

(2) L is an m.p.l. containing QS4CK+.

Proof (1) Follows the lines of the proof of 7.3.9.
(2) Since L ⊇ S4.1, we can apply the same argument as in the propositional
case for S4.1 — its canonical frame is coatomic. �

Now we can prove the main completeness results of this section. We begin
with a theorem from [Shimura, 1993].

Definition 7.5.12 A world t in a transitive frame is called terminal if it is
accessible from every nonmaximal cluster and its cluster t∼ is maximal and
either trivial or degenerate. A finite transitive frame is called weakly directed
if it contains a terminal world.

Theorem 7.5.13 Let Λ be an intermediate propositional logic axiomatisable by
cofinal subframe formulas of weakly directed finite rooted posets. Then QΛCK
is C-canonical.
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Proof If Λ = H + {CSI(F ) | F ∈ F} for a set F of weakly directed posets,
L = QΛCK, let us show that CFL  CSI(F ) for F ∈ F . Suppose the contrary,
then CFL is cofinally subreducible to some F ∈ F .

By Theorems 1.12.22, 1.12.30, there exists f : G ։ F for a cofinal G ⊆
CFL ↑ u0 (for some u0) such that f−1(x) consists only of maximal points,
whenever x is maximal in F .

Then let us prolong f to f ′ : G′ ։ F for a cofinal G′ ⊆ C+FL ↑ u0.
Since KF ∈ L, C+FL is coatomic by Lemma 7.5.11, so it suffices to extend

f only to maximal points of C+FL. We can do this as follows.
Let y ∈ C+PL−CPL be a ‘new’ maximal point (so y is a classical non-Henkin

theory). We put f ′(y) := t, where t is a (fixed) terminal world of F .
Thanks to the McKinsey property, the subframe G′ := G ∪ (maximal points

of C+FL) is cofinal in C+FL. Since f ′ sends maximal points to maximal points,
the lift property is preserved. The monotonicity of f ′ follows from the definition:
if uRGy, and u ∈ G, y ∈ G′ −G, then u is nonmaximal, so f(u) is nonmaximal
by the choice of f , while f ′(y) is terminal; hence f ′(u) = f(u)RF f ′(y). (Here
FG, RF denote the accessibility relations in G, F respectively.)

Therefore, C+FL is subreducible to F , so C+FL 6 CSI(F ), and thus
C+FL 6 Λ.

On the other hand, C+ΦL  Λ by 7.5.8 and C+ΦL is descriptive (7.5.10),
hence C+FL  Λ by d-persistence (Theorem 1.12.28).

This is a contradiction. �

The next lemma and theorem are also taken from [Shimura, 1993].

Lemma 7.5.14 Let L be an s.p.l. containing QHK, and assume that a cone
CML ↑ u has finitely many maximal worlds. Then C+ML ↑ u has the same
maximal worlds.

Proof Let x1, . . . , xn be all maximal worlds in CML ↑ u, and suppose that y
is another maximal world in C+ML ↑ u.

By distinguishability, there exist Ai ∈ xi − y; then ¬Ai ∈ y, since y is
classical. Hence ¬A1 ∧ . . . ∧ ¬An ∈ y, and thus ¬(¬A1 ∧ . . . ∧ ¬An) 6∈ u,

which is equivalent to

(
¬¬

n∨
i=1

Ai

)
6∈ u, and to CML, u 6 ¬¬

n∨
i=1

Ai. But then

CML, v  ¬
n∨

i=1

Ai for some v ∈ RL(u), while by the McKinsey property, vRLxi

for some i. Then xi  Ai contradicts xi  ¬
n∨

i=1

Ai. �

Theorem 7.5.15 Let Λ be a cofinal subframe intermediate propositional logic
containing a formula CSI(Vn) for some finite n, where Vn = IT 2

n. Then QΛCK
is C-canonical.

Proof By Theorem 7.5.13, QHCK + CSI(Vn) is C-canonical, so CFL 
CSI(Vn) (where L := QΛCK). This means that CFL is not cofinally subre-
ducible to Vn, and thus every cone CFL ↑ u contains at most (n − 1) maximal
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points, otherwise, due to the McKinsey property 7.3.9, there exists a cofinal
subreduction to Vn.

Now we can show that CFL  CSI(F ) whenever CSI(F ) ∈ Λ. In fact,
otherwise CFL is cofinally subreducible to F and by 1.12.27, there exists f :
G ։ F for a cofinal G ⊆ CFL ↑ u such that for every maximal x ∈ F, f−1(x)
contains only maximal points of CFL.

Then G is cofinal in C+FL ↑ u. In fact, by Lemma 7.5.14, C+FL ↑ u has
the same maximal points as CFL ↑ u, and they are all in G, as G is cofinal in
CFL ↑u. By 7.5.11, the set of maximal points is cofinal in C+FL.

Therefore f is a cofinal subreduction from C+FL to F . Now we can use
the same argument as in the proof of Theorem 7.5.13 to show that C+FL  Λ,
which leads to a contradiction. �

Hence we obtain another proof of 7.3.14.

Corollary 7.5.16 QΛCK is C-canonical for Λ = H +AJ .

Proof In fact, Λ = H + CSI(V2) — a cofinal subreduction to V2 does not
exist iff a frame is confluent. �

Let us now prove the main result from [Shimura, 2001] with slight additions.

Theorem 7.5.17 Let Λ be a modal propositional logic axiomatisable above S4
by cofinal subframe formulas of weakly directed posets. Then QΛCK+ is C-
canonical.

Proof Similar to the proof of 7.5.13.
It is sufficient to show that CFL � CSM(F ), provided CSM(F ) ∈ Λ and

F is a weakly directed poset. Suppose the contrary, then CFL is cofinally
subreducible to F .

By Theorems 1.12.22, 1.12.30, there exists f : G ։ F for a cofinal G ⊆
CFL ↑ u0 such that for any maximal x ∈ F , f−1(x) consists only of maximal
points.

Then we prolong f to f ′ : G′ ։ F for a cofinal G′ ⊆ C+FL ↑ u0.
Since by 7.5.11 C+FL is coatomic, we extend f to maximal points of C+FL

by sending every y ∈ C+PL − CPL to a certain terminal world of F . Hence
C+FL 6�CSM(F ).

On the other hand, C+ΦL � CSM(F ) by 7.5.3 and C+ΦL is descriptive
(7.5.5), hence C+FL � CSM(F ) by d-persistence (1.12.30(4), 1.12.22), which
leads to a contradiction. �

Corollary 7.5.18

(1) Let Λ be a cofinal subframe intermediate logic containing the formula
SI(FS3). Then L = QΛCK is C-canonical.

(2) The same holds for a ∆-elementary cofinal subframe Λ ⊇ S4.1 containing
SM(FS3) and L = QΛCK+.
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Proof
(1) As we know from 7.5.13, if CSI(F ) ∈ L and F is a weakly directed finite
rooted poset, then CFL  CSI(F ). So assuming that CFL 6 CSI(F ), and F
is not weakly directed we can show that CSI(F ) 6∈ Λ. By assumption, CFL is
cofinally subreducible to F .

Let F = (W,R) and for any a ∈ W put â := R(a) ∩ max(F ). We claim

that {â | a ∈ W − max(F )} is a chain in (2max(F ),⊆). In fact, if â, b̂ are ⊆-

incomparable and m1 ∈ â− b̂, m̂2 ∈ b̂ − â, then F contains a subframe (where
0 is the root):

m2

0

a b

m1
• •

•

• •

So F , and thus CFL, is subreducible to FS3. But then CFL 6 SI(FS3), which
contradicts the canonicity of QHCK + SI(FS3) ⊆ L.

Therefore the sets â constitute a chain, so there must be the least of them,
say â. But then every non-maximal a sees every m ∈ â0 which means that F is
weakly directed. This is a contradiction.
(2) If CSM(F ) ∈ Λ, then we may assume that F is a blossom frame (by 1.12.30),
and hence a poset (since S4.1 ⊆ Λ). Now we can repeat the argument from the
proof of (1) replacing CSI with CSM . �

Lemma 7.5.19

(1) A rooted S4.1-frame is not cofinally subreducible to FS1 iff the set of its
inner points is a quasi-chain.

(2) A rooted S4.1-frame is not cofinally subreducible to FS2 iff every maximal
point is accessible from every inner point.

Proof

(1) (If.) If f is a subreduction of G to FS1, f(a1) = 1, f(a2) = 2, then both
a1, a2 see points in f−1(3), so they are inner in G. a1, a2 are incomparable,
since 1, 2 are. Thus inner points are not in a quasi-chain.

(Only if.) If G is coatomic, has a root a0 and two incomparable inner
points a1, a2, then the partial map f : G→ FS1 sending ai to i and every
maximal point to 3 is a cofinal subreduction.
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(2) (If.) If f is a cofinal subreduction of G to FS2, f(a1) = 1 and a1 sees
a maximal point a2, then f(a2) = 2. Similarly there exists a maximal
a3 ∈ f−1(3). So a1 is an inner point and a1 does not see a3.

(Only if.) Suppose G is coatomic with root a0 and has an inner point a1,
which does not see a certain maximal point a3. Then the map defined on
a0, a1 and all maximal points of G is a cofinal subreduction if it sends ai

to i and all other maximal points to 2.

�

Proposition 7.5.20

(1) Let Λ be an intermediate propositional cofinal subframe logic containing
CSI(FS1) or CSI(FS2). Then L = QΛCK is C-canonical.

(2) The same holds for a ∆-elementary cofinal subframe Λ ⊇ S4.1 containing
CSM(FS1) or CSM(FS2) and L = QΛCK+.

Proof (1) By Theorem 7.5.15, the logics QHCK + CSI(FS1), QHCK +
CSI(FS2) are C-canonical, so CFL  CSI(FS1) or CFL  CSI(FS2).

Now assuming CSI(F ) ∈ Λ let us show CFL  CSI(F ). In fact, if CFL 6
CSI(F ), i.e. CFL is cofinally subreducible to F , then F is weakly directed.
For, the validity of CSI(FSi) is preserved by cofinal subreductions, thus F 
CSI(FS1) or F  CSI(F2). Therefore F is weakly directed by Lemma 7.5.19.
Hence CFL  CSI(F ) by Theorem 7.5.15.

To prove (2), use the same argument applying 7.5.17. �

Figure 7.1. FS1. Figure 7.2. FS2. Figure 7.3. FS3.

Since incompatible sets are always strongly incompatible in the canonical
models of the intermediate propositional logics, we can prove that all cofinal
subframe propositional logics are canonical.

Question 7.5.21 Let L be an s.p.l. with constant domains. Is every incompat-
ible subset of CPL strongly incompatible?
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Question 7.5.22 2 Is QΛ+CD+KF strongly complete for every cofinal sub-
frame logic Λ? What happens in the case Λ = H+CSI(FS3) where FS3 is the
frame in Fig. 7.3?

7.6 Natural models with constant domains

In this section we transfer the method described in section 6.4 to constant
domains.

Lemma 7.6.1 Let M be a Kripke model for a modal logic L with the constant
domain S0. Then for any world u ∈M , for any S0-sentence A

M,u � A iff CML, νM (u) � A.

The same holds in the intuitionistic case, with obvious changes.

Lemma 7.6.2 Let M be the same as in the previous lemma, Ri the accessibility
relations in M . Then for any u, v ∈M

uRiv ⇒ νM (u)RLiνM (v).

Definition 7.6.3 Let L be an m.p.l.(=) containing Barcan axioms or an s.p.l.
(=) containing CD, F = (W,R1, . . . , RN ) a propositional frame of the corre-
sponding kind. A CDL-map based on F is a monotonic map from F to (the

propositional base of) CF
(=)
L .

Definition 7.6.4 Let h be a CDL-map based on a propositional frame F . The
predicate Kripke frame associated with h is F(h) := F ⊙ S0.

If L is a logic with equality, the Kripke frame with equality associated with
h is F=(h) := (F,D,≍), where

c ≍u d iff (c = d) ∈ h(u).

The CDL-model associated with h is M (=)(h) := (F(=)(h), ξ(h)), where

ξ(h)u(Pm
k ) := {c ∈ Sm

0 | Pm
k (c) ∈ h(u)}

for u ∈ F .

Definition 7.6.5 A CDL-map h : F −→ CFL and the associated CDL-model
M(h) are called natural if h = νM(h),L, i.e. for any u ∈ F , A ∈ L(u)

M(h) � ()A iff CML, h(u) � ()A (⇔ A ∈ h(u)).

Lemma 7.6.6 For a modal logic L, a CDL-map h : F −→ CFL is natural iff
it is selective (in the sense of Definition 6.4.7).

2[Shimura, 1993]
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Proof The same as for 6.4.8. �

Definition 7.6.7 An intuitionistic CDL-map h : F −→ CFL based on F =
(W,R) is called selective if it satisfies the condition

(⊃) if (A1 ⊃ A2) ∈ (−h(u)), then A1 ∈ h(v), A2 6∈ h(v) for some v ∈ R(u).

Note that now we do not postulate the analogue of condition (∀) from Definition
6.4.9; it obviously holds for v = u, since h(u) satisfies (Ac).

Lemma 7.6.8 An intuitionistic CDL-map h : F −→ CFL is natural iff it is
selective.

Proof Similar to 6.4.10. The only difference is the case A = ∀xB in the ‘if’
part:

If A 6∈ h(u), then by (Ac), there exists c ∈ Du such that B(c) 6∈ h(u). By
induction hypothesis, u 6 B(c). Hence u 6 A.

The other way round, if u 6 ∀xB, then since the domain is constant, there
exists c ∈ Du such that u 6 B(c). Thus h(u) 6 B(c), which implies h(u) 6 A.

�

Lemma 7.6.9 Let L be a modal (resp., superintuitionistic) logic containing
Barcan formulas (resp. CD), M1 ⊆ CML a selective submodel, F1 the proposi-
tional frame of M1, h : F ։ F1. Then h is a natural CDL-map.

Proof Cf. Lemma 6.4.11. �

Lemma 7.6.10

(1) Let L be an N -modal logic containing Barcan formulas for all �i, Γ ∈
CPL. Then there exists a CD-Kripke model M based on a standard greedy
tree F such that νM (f) = Γ and M � L.

(2) If L contains ✸i⊤ for 1 ≤ i ≤ N , then one can take F = FNTω.

(3) If L is 1-modal and L ⊇ QS4, then the claim holds for F = ITω.

Proof Cf. Lemma 6.4.12. �

Proposition 7.6.11

(1) QKNC = ML(CKFNTω), QDNC = ML(CKFNTω),

(2) QKNC= = ML=(CKE(FNTω)), QDNC
= = ML=(CKE(FNTω)).

Proof Follows from the previous lemma, cf. 6.4.13. �

Proposition 7.6.12 Let Λ be an N -modal propositional PTC-logic. Then

(1) QΛC = ML(CKGT (Λ)).
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(2) QΛC= = ML=(KE(GT (Λ))).

Proof Similar to Proposition 6.4.14.
(1) By 7.1.8, QΛC is CK-complete. Then by 1.11.5 and 3.12.8 we obtain

L = ML(CKV0(Λ)), and hence L = ML(CKV1(Λ)), by 3.3.21. (We use the
same notation V0, V1 as in the proof of 6.4.14.) Now by 1.11.11 and 3.3.14 it
follows that ML(CKGT (Λ)) ⊆ L.

(2) The proof is similar. �

In the same way we obtain an analogue of Proposition 6.4.15

Proposition 7.6.13

(1) QKNC= + CE = ML=(CKFNTω), QDNC= + CE = ML=(CKFNTω).

(2) Let Λ be a propositional PTC-logic. Then QΛC=+CE = ML=(CKGT (Λ)).

Natural models with constant domains are a particular case of natural mod-
els described in section 6.4; only the notation is slightly simplified in this case.

Definition 7.6.14 Let L be a predicate logic, F a propositional Kripke frame,
and let R′

i (1 ≤ i ≤ N) or R′ in the intuitionistic case be relations on CPL.
An (L,R′

1, . . . , R
′
N)-model on F is a mapping from F to CPL, i.e. N =

(Γu | u ∈ F ) where Γu are (L, S0)-places such that

uRiv ⇒ ΓuR
′
iΓv.

An L-model N is called natural if the conditions from Definitions 6.4.7, 6.4.9
(for the modal or the intuitionistic case respectively) holds (with S0 replacing
Su).

Recall that in the intuitionistic case the condition (∀) from Definition 6.4.9 holds
obviously already with v = u, since theories in CPL are L∀-complete, i.e they
satisfy Ac from Definition 7.2.1.

As in Section 6.4, a natural (L,RL)-model is called a natural L-model. (Re-
call that R̄⊂

L = RL in the intuitionistic case with constant domains.)
All main properties of natural models and crucial lemmas from Section 6.4

(together with their proofs) can be directly transferred to the case of constant
domains: namely 6.4.8, 6.4.10, 6.4.11, etc. (now one has to use Γ or Γu instead
of L-places (S,Γ) or (Su,Γu) respectively). Therefore the logics with Bai or
with CD (in the N -modal or in the intuitionistic case respectively) satisfy the
main completeness results about the universal tree Tω (or its subtrees). Let us
formulate these completeness theorems for the intuitionistic case.

Proposition 7.6.15

(1) QH + CD = IL(CK(ITω)).

(2) QH= + CD = IL=(CKE(ITω)).
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(3) QH=d + CD = IL=(CK(ITω)).

Proposition 7.6.16 QH+CD∧APh = IL(CK(IT h
ω )) for h > 0 and similarly

for the corresponding logics with equality.

Note that in the case of constant domains a natural analogue of 7.4.12 holds
for any logic L containing APh.

Now let us prove completeness results (w.r.t. coatomic trees) for the logic
QH+CD∧KF . Here the situation is subtler than for varying domains. Namely,
for an arbitrary path w = (u0, u1, . . .) in ITω we cannot always extend an L-
consistent theory Γ =

⋃
i∈ω

Γui
to an L∀-place Γω in the same language (i.e.

with constants from S0). For example, if S0 = {ci | i ∈ ω}, and for each
i, P (ci) ∈ Γui

, while ¬∀xP (x) ∈ Γu0 , then Γω satisfying (Ac) does not exist.
That is why we cannot prove completeness of QH+CD∧KF w.r.t the coatomic
tree ITω with a constant domain. Moreover QH+CD∧KF is not determined
by ITω ⊙ ω, cf. Lemma 3.12.17. We do not know if this logic is complete w.r.t.
ITω ⊙ V with uncountable V , but anyway natural models with denumerable
domains are insufficient.

Instead we can show completeness w.r.t. the class of (denumerable) coatomic

trees of the form IT
G

w (for G ⊆ IT ♯
w) (cf. [Gabbay, 1972]).

Lemma 7.6.17 Let L be a superintuitionistic predicate logic containing CD ∧

KF . Then for any (L, S0)-place Γ there exists a subset G ⊆ IT ♯
ω such that IT

G

ω

is coatomic and for any G′ ⊆ G there exists an L-natural model N = (Γu | u ∈

IT
G′

ω ) (with the constant domain S0) such that Γf = Γ.

Proof First we construct an L-natural model (Γu | u ∈ ITω) on ITω. Recall
that a subset X of ITω is called dense if ∀u R(u) ∩ X 6= ∅. We put XB :=
{u ∈ ITω | B ∈ Γu} for QCL-theorems B ∈ IF (=) (without constants from S0);
actually it is sufficient to consider only theorems of the form B = ∀̄(A∨¬A), cf.
Remark 7.3.1). These sets are dense since L ⊢ ¬¬B (by the Glivenko theorem),
thus ¬B 6∈ Γu for any u.

Call a path generic if it intersects every XB; let GΓ be the set of generic

paths. Obviously, ∀u ∈ ITω∃w ∈ G(u ∈ w), i.e. the tree IT
G

ω is coatomic. Now
for any generic path w ∈ Gs we take the set Γw :=

⋃
v∈w

Γv. Then Γw ∈ CPL. In

fact, if ⊢L

∧
Γ1 ⊃

∨
∆1 for finite Γ1 ⊆ Γ2,∆1 ⊆ −Γ2, then Γ1 ⊆ Γv,∆1 ⊆ −Γv

for some v ∈ w; also, if ∃xA(x) ∈ Γω, then ∃xA(x) ∈ Γv and A(c) ∈ Γv ⊆ Γw for
some v ∈ w, c ∈ S0. Also by genericity, QCL ⊆ Γw, thus Γw is (QCL, S0)-place

and condition (Ac) for Γw (in a natural model on IT
G′

ω for G′ ⊆ Gs) holds. �

Recall that although GΓ may be uncountable, there always exists a denu-

merable subset G ⊆ GΓ such that IT
G

ω is coatomic. Therefore we obtain the
following completeness result.
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Proposition 7.6.18 The logic QHCK := QH + CD ∧ KF is complete (in

semantics CK) w.r.t. the class of all coatomic trees IT
G

ω ; moreover one can take
only denumerable coatomic trees.

However we do not know if QHCK is determined by a single coatomic tree
of the form ITG

ω . But still it is determined by a single denumerable coatomic

tree, e.g. by Smorynski’s sum ⊎IT
Gi

ω of all coatomic trees refuting nontheorems
of the logic. Note that the sum over all denumerable atomic trees of the form

IT
G

ω is not itself denumerable.
Another alternative is to add maximal elements not above paths, but above

points of ITω as explained below.

Definition 7.6.19 A subset X ⊆ ITω gives rise to a denumerable tree ITX
ω :=

ITω∪X
∗ where X∗ = {u∗ | u ∈ X} is the set of maximal elements u∗ := (u,−1)

such that u∗ is an immediate successor of u.

Obviously the tree ITX
ω is coatomic iff X is a dense subset of ITω.

Lemma 7.6.20 Let L be a superintuitionistic predicate logic containing CD ∧
K. Then for any Γ ∈ CPL and for any X ⊆ ITω there exists an L-natural
model N (with constant domain) on ITX

ω such that Γf = Γ.

Proof We simply extend an L-place Γu (for u ∈ X) to an L- place Γu∗ , by
Lemma 8.3.6. �

Proposition 7.6.21 QHCK = IL(CK(ITX
ω )) for any dense X ⊆ ITω (in

particular, for X = ITω).

A similar completeness result for logics with equality (w.r.t. CKE or w.r.t.
K) is quite obvious.

7.7 Remarks on Kripke bundles with constant
domains

Now let us make some observations on completeness in more general semantics
than K or KE .

Proposition 7.6.16 clearly shows that QH+CD∧APh is determined by the
tree IT h

w in the semantics of Kripke sheaves or even quasi-sheaves (recall that
APh is strongly valid in any Kripke quasi-sheaf based on a frame of depth ≤ h).
In particular, QCL = IL(CK(IT 1)) = IL(CKE(IT 1)) = IL(KQ(IT 1)), where
IT 1 ∼= Z1 is a one-element poset. On the other hand, for Kripke bundles the
situation changes drastically:

Proposition 7.7.1 IL(CKB(IT 1)) = QH + CD.
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Proof Let M be a Kripke model based on ITω with constant domain ω refuting
a nontheorem A, i.e. M,f 6 A. Take a Kripke bundle F based on {u0} in which
Du0 = {au | u ∈ ITω}∪ {bi, ci | i ∈ ω} is quasi-ordered by the following relation
R1:

auR1av iff u 0 v ∈ ITω, for u, v ∈ ITω,
biR1av for all i ∈ ω, v ∈ ITω, and biR1bj for all i, j ∈ ω.

Obviously, F has a constant domain — every ci is incomparable with all elements
of Du0 ; every au has infinitely many predecessors bi (i ∈ ω). Consider the
following map χ from Dv0 onto ω:

χ(ci) = i and χ(bi) = χ(au) = 0 for any i ∈ ω, u ∈ ITω,

and consider the model M ′ over F for the formula A1 (with an additional
parameter z) such that:

M ′, u0  P
′(a2, d1, . . . , dn) ⇔M,u  P (χ(d1), . . . , χ(dn))

where the predicate letter P ′ is substituted for P in A1.
One can easily check that

M ′, u0  B
1(au, d1, . . . , dn) iff M,u � B(χ(d1), . . . , χ(dn))

for any formula B(x1, . . . , xn) and u ∈ ITω (by induction on B). Thus, M ′, v0 6
A1(f), and so A 6∈ IL(F ). �

In the same way we can simulate every Kripke model with a constant domain
by a Kripke bundle model based on one-element poset, so that individuals re-
placing additional parameters of formula A1 correspond to worlds of the original
Kripke frame.

Corollary 7.7.2 IL(CKB(F )) = QH + CD for any propositional base F .

Therefore in the semantics of Kripke bundles the propositional base is not
so important as the structure of individual domains.

Remark 7.7.3 Note that the above corollary does not transfer to logics with
equality — e.g. the formula ∀xy(x = y) ⊃ p ∨ ¬p is strongly valid in every
Kripke bundle over a one-element base.

Remark 7.7.4 One can also try to describe the logic IL(KB(IT 1)) determined
by a one-element base with varying domains. We may conjecture that this logic
is QH, but it is still unclear how to simulate arbitrary Kripke frames with
varying domains within a single domain in a single world.

Remark 7.7.5 Let us also mention the semantics of Kripke quasi-sheaves. One
can easily show that IL(CKQ(IT1)) = QH + CD and IL(KQ(IT1)) = QH for
the ω-chain IT1; in fact, every Kripke model based on ITω can be simulated
in a Kripke quasi-sheaf over IT1 similarly to Proposition 7.7.1. Branching of
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individuals in a quasi-sheaf replaces the branching of worlds. For the case of
varying domains, note that for constructing a natural model over ITω we may
assume that individual domains of all worlds at the same level coincide.

Similarly, IL(CKQ(F )) = QHCK and IL(KQ(F )) = QH + KF for an

(ω + 1)-chain F ; atomic trees IT
G

ω or IT
X

ω can be used here. On the other
hand, note that IL(CKQ(F )) = QH + CD ∧ APh and IL(KQ(F )) = LP+

h for
any poset F of finite height h > 0 (in particular, for an h-element chain).

7.8 Kripke frames over the reals and the ratio-
nals

In this section we consider specific extensions of the intermediate logic of linear
ordered sets with constant domains QLCC, viz. the logic of frames over the
rational and the real line. Both logics happen to be finitely axiomatisable. The
first result is not a big surprise, but the second is a ‘happy chance’ making a
contrast with classical logic. These results were first proved in [Takano, 1987]

who also observed that strong completeness theorem holds in both cases.
We use the following two axioms:

Ta. (∀xP (x) ⊃ ∃xQ(x)) ⊃ ∃x(P (x) ⊃ r) ∨ ∃x(r ⊃ Q(x)).

Ta′. (∀xP (x) ⊃ ∃xQ(x)) ⊃ ∃x(P (x) ⊃ ∃yQ(y)) ∨ ∃x(∃yQ(y) ⊃ Q(x)).

Lemma 7.8.1 QHC + Ta = QLCC + Ta′.

Proof (⊆). It suffices to show that QLCC + Ta′ ⊢ Ta. So we argue in
QLCC + Ta′.

We have

(Q(x) ⊃ r) ∨ (r ⊃ Q(x))

by AZ, hence (Q(x) ⊃ r) ∨ ∃x(r ⊃ Q(x)), ∀x((Q(x) ⊃ r) ∨ ∃x(r ⊃ Q(x))), and
thus

(1) (∀x(Q(x) ⊃ r) ∨ ∃x(r ⊃ Q(x))

by CD. Similarly we have

(2) ∀x(r ⊃ P (x)) ∨ ∃x(P (x) ⊃ r).

From (1) and (2) we obtain either the conclusion of Ta:

∃x(P (x) ⊃ r) ∨ ∃x(r ⊃ Q(x))

or

(3) ∀x(Q(x) ⊃ r) ∧ ∀x(r ⊃ P (x)).
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Now assume the premise of Ta (congruent to the premise of Ta′):

(4) ∀xP (x) ⊃ ∃xQ(x).

Hence by Ta′ we have

∃x(P (x) ⊃ ∃yQ(y)) ∨ ∃x(∃yQ(y) ⊃ Q(x)).

Consider the first option and assume

(5) ∃x(P (x) ⊃ ∃yQ(y)).

By 2.6.15 we also have

∀x(Q(x) ⊃ r) ⊢ ∃yQ(y) ⊃ r.

So
(3), P (x) ⊃ ∃yQ(y) ⊢ P (x) ⊃ r,

and thus
(3), (5) ⊢ ∃x(P (x) ⊃ r).

Now assume

(6) ∃x(∃yQ(y) ⊃ Q(x)).

Since by 2.6.15
∀x(r ⊃ P (x)) ⊢ r ⊃ ∀xP (x),

we have
(3) ⊢ r ⊃ ∀xP (x),

hence
(3), (4) ⊢ r ⊃ ∃xQ(x),

and thus
(3), (4) ⊢ r ⊃ ∃yQ(y).

Now obviously
r ⊃ ∃yQ(y), ∃yQ(y) ⊃ Q(x) ⊢ r ⊃ Q(x),

hence
(3), (4), ∃yQ(y) ⊃ Q(x) ⊢ r ⊃ Q(x),

and thus
(3), (4) ⊢ ∃yQ(y) ⊃ Q(x)• ⊃• r ⊃ Q(x).

Therefore by monotonicity

(3), (4) ⊢ ∃x(∃yQ(y) ⊃ Q(x)) ⊃ ∃x(r ⊃ Q(x)),

and eventually
(3), (4), (6) ⊢ ∃x(r ⊃ Q(x)).
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So we have proved the conclusion of Ta.
(⊇). We have QH + Ta ⊢ Ta′, since obviously [∃xQ(x)/r]Ta ⊜ Ta′. To

show QH + Ta ⊢ AZ, note that

[p, p/P (x), Q(x)]Ta = (∀xp ⊃ ∃xp) ⊃ ∃x(p ⊃ r) ∨ ∃x(r ⊃ p)

is clearly equivalent to (p ⊃ r) ∨ (r ⊃ p). �

In this section we consider subsets of R, in particular, Q, R+ = [0,+∞),
Q+ = R+ ∩ Q as propositional Kripke frames with the accessibility relation ≤.

Theorem 7.8.2

(1) QLCC = IL(CKQ) = IL(Q ⊙ ω).

(2) QLCC is strongly complete w.r.t. CKQ and Q ⊙ ω.

Proof

(1) The inclusion ⊆ follows readily from Proposition 7.3.6. The proof of ⊇ is
quite similar to 6.7.3. By Lemma 6.7.2, Q+ ։ F for any rooted countable
chain F . Then we can apply Propositions 7.3.6, 3.3.14.

(2) By the Shimura theorem, QLCC is strongly Kripke complete, hence it is
also strongly complete w.r.t. the class of countable chains with domain
ω. By 6.7.2 we know that Q+ ։ F for any countable chain F . Hence
Q+ ⊙ω ։ F ⊙ω by 5.1 and eventually strong completeness w.r.t. Q+ ⊙ω
follows by 5.1.

�

Definition 7.8.3 Let F0 ⊆ F be linear Kripke frames with a constant domain
V , R the accessibility relation in F. Let M = (F, θ), M0 = (F0, θ0) be intuition-
istic Kripke models. M is called a right extension of M0 if for any V -sentence
A

θ+(A) = R(θ+0 (A)). (∗r)

So we have

M,u � A iff ∃v ∈ F0 (vRu & M0, v  A)

Note that (∗r) readily implies θ+0 (A) = θ+(A) ∩ F0, i.e. M0 ⊆M .
A right extension is obviously unique (if it exists).

Definition 7.8.4 Let F0 ⊆ F be linear Kripke frames with a constant domain
V , R the accessibility relation in F. Let M = (F, θ), M0 = (F0, θ0) be intuition-
istic Kripke models. M is called a left extension of M0 if for any V -sentence
A, for any u ∈M

u ∈ θ+(A) iff R(u) ∩ F0 ⊆ θ+0 (A).
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The latter condition can also be written as follows

θ+(A) = �Rθ
+
0 (A), (∗l)

where
�RU := {u | R(u) ∩ F0 ⊆ U}.

(∗l) is also equivalent to

M,u 6 A iff ∃v ∈ F0 (uRv & M0, v 6 A).

Lemma 7.8.5 Let F ⊙ V be a linear Kripke frame over F = (W,R), W0 ⊆W
and let M0 = (F |W0, θ0) be a Kripke model such that

(1r) R(W0) = W ,

(2r) for any V -sentence ∀xB(x)

⋂

a∈V

R(θ+0 (B(a))) ⊆ R(θ+0 (∀xB(x))).

Then there exists a right extension of M0 over F .

Note that the converse to (2r) obviously holds, so (2r) is equivalent to

R(θ+0 (∀xB(x))) =
⋂

a∈V

R(θ+0 (B(a))).

Proof We define the valuation θ by the equality from 7.8.3

θ+(A) = R(θ+0 (A)) (∗r)

for all atomic V -sentences A. θ is obviously intuitionistic, since R is transitive.
Then we check (∗r) for any V -sentence A by induction.

(I) Consider the case A = B ⊃ C. By the induction hypothesis, it suffices
to show that for any u

u ∈ R(θ+0 (A)) iff ∀v ∈ R(u) (v ∈ R(θ+0 (B)) ⇒ v ∈ R(θ+0 (C)).

(‘Only if’). Assuming u ∈ R(θ+0 (A)), uRv and v ∈ R(θ+0 (B)), let us check
v ∈ R(θ+0 (C)).

By assumption there exists u1Ru such that u1  B ⊃ C and v1Rv such
that v1  B (where  refers to M0). Let w1 = max(u1, v1); then w1Rv. Now
u1  B ⊃ C implies w1  B ⊃ C; v1  B implies w1  B. Thus w1  C, and
so v ∈ R(θ+0 (C)).

(‘If’). We suppose u 6∈ R(θ+0 (A)) and show

∃v ∈ R(u) v ∈ R(θ+0 (B)) −R(θ+0 (C)).

By assumption (1r), there exists v1 ∈ R−1(u) ∩W0. Since u 6∈ R(θ+0 (A)), we
have v1 6 A. Then for some v2 ∈ R(v1), v2  B, but v2 1 C.
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Now put v = max(u, v2). Then v2  B implies v  B, and thus v ∈
R(θ+0 (B)). It remains to check that v 6∈ R(θ+0 (C)).

If v = v2, then v 6∈ R(θ+0 (C)) follows from v2 1 C.
If v = u, then u 6∈ R(θ+0 (B ⊃ C)) implies u 6∈ R(θ+0 (C)). This is because

C ⊃ (B ⊃ C) is an intuitionistic tautology, so M0  C ⊃ (B ⊃ C), i.e.
θ+0 (C) ⊆ θ+0 (B ⊃ C).

(II) If A = B ∧ C, by the induction hypothesis it suffices to show

R(θ+0 (B ∧C)) = R(θ+0 (B)) ∩R(θ+0 (C)). (#)

The inclusion ‘⊆’ follows from θ+0 (B ∧ C) ⊆ θ+0 (B) and θ+0 (B ∧C) ⊆ θ+0 (C).
The other way round, suppose u ∈ R(θ+0 (B)) ∩ R(θ+0 (C)). Then v1 ∈

θ+0 (B), v2 ∈ θ+0 (C) for some v1, v2 ∈ R−1(u). If v = max(v1, v2), then ob-
viously v ∈ θ+0 (B ∧ C), and thus u ∈ R(θ+0 (B ∧ C)). This proves ‘⊇’ in (#).

The remaining cases are left to the reader; note that for the case A = ∀xB(x)
one can use the assumption (2r). �

Remark 7.8.6 (r1), (r2) are not only sufficient, but necessary for the existence
of a right extension. (r2) follows from (∗r) for A = ∀xB(x), (r1) from (∗r) for
A = ⊤.

Lemma 7.8.7 Let F ⊙ V be a linear Kripke frame over F = (W,R), W2 ⊆W
and let M0 = (F |W0, θ0) be a Kripke model such that

(1l) R−1(W0) = W ,

(2l) for any V -sentence ∃xA(x)

⋃

a∈V

�Rθ
+
0 (A(a)) ⊇ �Rθ

+
0 (∃xA(x)).

Then there exists a left extension of M0 over F .

Proof Similar to Lemma 7.8.5. Now we define

θ+(A) := �Rθ
+
0 (A),

for atomic V -sentences A and prove (∗l) by induction for arbitrary A.
Suppose A = B ∨ C. By the induction hypothesis, (∗l) for A is equivalent

to
�Rθ

+
0 (B) ∪�Rθ

+
0 (C) = �Rθ

+
0 (B ∨ C).

The inclusion ‘⊆’ is obvious, so let us check ‘⊇’. Suppose u 6∈ �Rθ
+
0 (B) ∪

�Rθ
+
0 (C). Then

∃v, w ∈ R(u) (v 6∈ θ+0 (B) & w 6∈ θ+0 (C)).

Since R is linear, vRw or wRv. Then respectively, v 6∈ θ+0 (B ∨ C) or w 6∈
θ+0 (B ∨ C), so anyway u 6∈ �Rθ

+
0 (B ∨C).
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Suppose A = B ⊃ C. By the induction hypothesis we can rewrite (∗l) as

u 6∈ �Rθ
+
0 (A) ⇔ ∃v ∈ R(u) v ∈ (�Rθ

+
0 (B) −�Rθ

+
0 (C)).

(⇒) Suppose u 6∈ �Rθ
+
0 (A). Then w 6∈ θ+0 (A) for some w ∈ R(u), and thus

v ∈ θ+0 (B) − Θ+
0 (C) for some v ∈ R(w) ⊆ R(u).

Obviously, v 6∈ �Rθ
+
0 (C). Since M0 is intuitionistic, θ+0 (B) ⊆ �Rθ

+
0 (B).

This proves (⇒).
(⇐) Suppose uRv, v ∈ (�Rθ

+
0 (B) − �Rθ

+
0 (C)). Then w 6∈ θ+0 (C) for some

w ∈ R(v) ⊆ R(u) and v ∈ �Rθ
+
0 (B) implies w ∈ θ+0 (B). Hence

w 6∈ θ+0 (A), so u 6∈ �Rθ
+
0 (A).

The case A = B ∧ C is obvious. The case A = ∃xB(x) follows from (2l), since
its converse holds trivially.

If A = ∀xB(x), we have

u 6∈ θ+(A) ⇔ ∃a ∈ V u 6∈ θ+(B(a)) = �Rθ
+
0 (B(a)), (∗∗)

since the domain is constant and by the induction hypothesis. But θ+0 (A) ⊆
θ+0 (B(a)), so u 6∈ θ+(A) implies u 6∈ �Rθ

+
0 (A).

The other way round, if u 6∈ �Rθ
+
0 (A), then v 6∈ θ+0 (∀xB(x)) for some

v ∈ R(u) ∩ F0. So v 6∈ θ+0 (B(a)) for some a ∈ V , and thus u 6∈ θ+(A) by (∗∗).
�

Lemma 7.8.8 Let M = (Q+⊙V, θ) be an intuitionistic Kripke model, in which
every instance of Ta′ is true. Then there exists an extension θ∗ of θ such that
(R+ ⊙ V, θ∗) is an intuitionistic model.

Proof The proof consists of two parts.
(I) First we define a model over the set

S := Q+ ∪ {σB(y) | ∃yB(y) is a V -sentence, M, 0 1 ∃y(∃zB(z) ⊃ B(y))},

where
σB(y) := inf

R

θ(∃yB(y)).

We would like to define a model M0 with a valuation θ0 over S as a right
extension of θ:

θ0(A) := ≤ (θ+(A)).

By Lemma 7.8.5, it suffices to prove that for the relation ≤ on S, for every
V -sentence ∀xA(x),

⋂

a∈V

≤(θ+(A(a)) ⊆≤(θ+(∀xA(x))) (7.1)

To prove this, we assume that for a certain σ ∈ S

∀a ∈ V ∃q ≤ σ M, q  A(a). (7.2)
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and show that for some q ∈ Q+

q ≤ σ & M, q  ∀xA(x). (7.3)

Case 1. σ ∈ Q+.
Then M,σ  ∀xA(x), so σ ∈ θ+(∀xA(x)) ⊆ ≤(θ+(∀xA(x))), so q = σ

satisfies (7.3).
Case 2. σ = σB(y) 6∈ Q+.

By definition, M, 0 1 ∃y(∃zB(z) ⊃ B(y)). Now let us show

(♭) M, 0 6 ∃x(A(x) ⊃ ∃zB(z)).

Suppose the contrary. Then M, 0  A(a) ⊃ ∃zB(z) for some a ∈ V . By the
assumption (♯), M, qa  A(a) for some qa ≤ σ. So M, qa  ∃zB(z), and hence
σ ≤ qa, by the definition of σB(y). Therefore σ = qa ∈ Q, and we have a
contradiction. Hence (♭) holds.

On the other hand, by the assumption of the lemma,

M, 0  (∀xA(x) ⊃ ∃yB(y)) ⊃ ∃x(A(x) ⊃ ∃zB(z)) ∨ ∃y(∃zB(z) ⊃ B(y)).

Hence M, 0 1 ∀xA(x) ⊃ ∃yB(y), so there is q ∈ Q+ such that M, q  ∀xA(x)
but M, q 1 ∃yB(y). Hence q ≤ σ, by the definition of σ. Thus q satisfies (7.3).
This proves (7.1).

(II) Next, we construct M∗ with a valuation θ∗ over R+ as a left extension
of M0:

M∗, α  A⇔ ∀σ ∈ S (α ≤ σ ⇒M0, σ  A).

We use Lemma 7.8.7 to show the existence of M∗. So we have to check that for
every V -sentence ∃xB(x)

⋃

a∈V

�≤θ
+
0 (B(a)) ⊇ �≤θ

+
0 (∃xB(x)). (7.4)

To prove this, suppose α ∈ �≤θ
+
0 (∃xB(x)), that is

∀σ ∈ S(α ≤ σ ⇒M0, σ  ∃yB(y)). (7.5)

Let us show that α ∈
⋃

a∈V

�≤θ
+
0 (B(a)), i.e. for some a ∈ V

∀σ ∈ S(α ≤ σ ⇒M0, σ  B(a)). (7.6)

Now we argue in M0.
Case 1. 0  ∃y(∃zB(z) ⊃ B(y)).
Then there is a ∈ V such that 0  ∃zB(z) ⊃ B(a), and this a is what we need.
Case 2. 0 1 ∃y(∃zB(z) ⊃ B(y)).

So 0 6 ∃y(∃z) ⊃ B(y)), and hence σB(y) ∈ S.
Let us show that σB(y) 6 ∃yB(y). Suppose the contrary. Then σB(y) 

∃yB(y), so σB(y)  B(a1) for some a1 ∈ V . Then by the assumption of Case 2,

0 6 ∃zB(z) ⊃ B(a1),
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so there exists σ ∈ S such that σ  ∃zB(z), and σ 6 B(a). Thus σ < σB(y),
since σB(y)  B(a).

Hence
∃q ∈ Q+ σ < q < σB(y),

and then
M0, q  ∃zB(z),

which implies
M, q  ∃zB(z).

But this contradicts q < σB(y).
Now, by (7.5), M0, σ 6 ∃yB(y) implies σB(y) < α.
But then there is q ∈ Q such that σB(y) < q < α. Since σB(y) < q, it follows

that M0, q  ∃yB(y). Hence M0, q  B(a) for some a ∈ V , and this a satisfies
(7.6). Thus (7.4) is proved. �

Theorem 7.8.9 QHC + Ta = IL(CKR).

Proof (⊆). Let us show that R ⊙ V  Ta. So consider an arbitrary model
over R ⊙ V , α ∈ R and show

α  (∀xP (x) ⊃ ∃xQ(x)) ⊃ ∃x(P (x) ⊃ r) ∨ ∃x(r ⊃ Q(x)). (7.7)

Suppose the contrary. Then there exists β ≤ α such that

β  ∀xP (x) ⊃ ∃xQ(x), but β 1 ∃x(P (x) ⊃ r), β 1 ∃x(r ⊃ Q(x)).

Thus for any a ∈ V , there is γa ≥ β such that γa  P (a), γa 6 r. Similarly,
for any b ∈ V there is δa ≥ β such that δb  r, δb 1 Q(a). From γa 1 r and
δb  r it follows that γa < δb, for every a, b ∈ V .

Now put ε := supa∈V γa. Then β ≤ ε and ε  ∀xP (x). Also β  ∀xP (x) ⊃
∃xQ(x), hence ε  ∃xQ(x).

On the other hand, ε ≤ δb for any b ∈ V , so ε 1 ∃xQ(x). This contradiction
proves (7.7)

(⊇). We assume QHC + Ta 6⊢A for a sentence A and construct a coun-
termodel for A over R+. Since R+ is a generated subframe, this implies A 6∈
IL(CKR).

By Lemma 7.8.1, QLCC + Ta′ 0 A. By Theorem 7.8.2(2), we obtain a
model M = (Q+ ⊙ V, θ) and q0 ∈ Q such that every instance of Ta′ is true
at M, q0 and M, q0 1 A. We may assume that q0 = 0. By Lemma 3.3.18,
M ′ := M ↾ Q+ is a model, in which every instance of Ta′ is true. Hence by
Lemma 7.8.8 there is an extension M∗ of M ′ over R+. �

Proposition 7.8.10 (1) QLCC +KF = IL(CK([0, 1] ∩ Q)).

(2) QHC + Ta+KF = IL(CK[0, 1]).

We skip the proof, since it is very similar to Theorems 7.8.2 and 7.8.9.
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Proposition 7.8.11 For any linearly ordered set F , the following conditions
are equivalent:

(1) F is Dedekind complete (i.e. every non-empty subset with an upper bound
has a supremum);

(2) IL(CKF ) ⊢ Ta′.

Proof
The proof of (1) ⇒ (2) is the same as for (⊆) in 7.8.9.
Let us show (2)⇒(1). Suppose (2), but not (1). Then there exists a non-

empty X ⊆ W with an upper bound, but without a supremum. Let Y be the
(non-empty) set of upper bounds of X . We index both X and Y by elements of
V of cardinality |W | so that X = {ξa | a ∈ V } and Y = {ηa | a ∈ V }. Consider
a model M over W ⊙ V , in which

(i) w  P (a) ⇔ ξa ≤ w,

(ii) w  Q(a) ⇔ ηa < w.

Let us show that for any w ∈W

(3) w ∈ Y ⇔ w  ∀xP (x) ⇔ w  ∃xQ(x).

The first equivalence is obvious:

w  ∀xP (x) ⇔ ∀a ξa ≤ w ⇔ w ∈ Y

by (i) and the definition of Y .
Next, by (ii)

W  Q(a) ⇔ w > η0,

which implies w ∈ Y .
Conversely, suppose w ∈ Y . Since w is not a supremum of X , there is a ∈ V

such that ηa < w. Hence w  Q(a), and thus w  ∃xQ(x).
Therefore

(4) M  ∀xP (x) ⊃ ∃yQ(y).

Now consider any ξ ∈ X . Let us show that

(5) ξ 6 ∃x(P (x) ⊃ ∃zQ(z)).

In fact, for any a
ξ ≤ ηa, ηa 6 Q(a), ηa  ∃zQ(z)

by (3), hence
ξ 6 ∃zQ(z) ⊃ Q(a).

(6) ξ  ∃y(∃zQ(z) ⊃ Q(y)).
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In fact, let us show

(7) ξ 6 P (a) ⊃ ∃yQ(y)

for any a ∈ V . Consider ξ′ = max(ξ, ξa). Then ξ′ ∈ X, ξ ≤ ξ′, ξ′  P (a), and
ξ′ 6 ∃yQ(y) by (3). This implies (7) and (6).

But (2) implies

ξ  (∀xP (x) ⊃ ∃yQ(y)) ⊃ ∃x(P (x) ⊃ ∃zQ(z)) ∨ ∃y(∃zQ(z) ⊃ Q(y)),

which contradicts (4), (5), (6). �

Proposition 7.8.12

(1) IL(CKQ) ⊂ IL(CKR).

(2) If a formula A does not contain ∀ or ∃, then IL(CKR) ⊢ A iff IL(CKQ) ⊢
A.

Proof

(1) IL(CKQ) ⊆ IL(CKR) readily follows from Theorems 7.8.2 and 7.8.9, while
IL(CKQ) 6= IL(CKR) by Proposition 7.8.11.

(2) Let us consider only formulas without occurrences of ∀.

Let A(x1, . . . , xn) be a ∀-free formula, and suppose IL(CKQ) 6 A. Con-
sider a Kripke model M0 = (Q ⊙ V, θ), q ∈ Q, a1, . . . , an ∈ V , such that
M0, q 6 A(a1, . . . , an). We define M over R similarly to the proof of 7.8.4:

(♯) M,α  B ⇔ ∃q ∈ Q (q ≤ α & M0, q  B

for every α ∈ R and atomic V -sentence B. Now we prove (♯) for any
∀=free B. but unlike Lemma 7.8.5, we do not need the assumption (7.1).
Hence M, q 6 A(a1, . . . , an).

∃-free formulas are considered similarly using Lemma 7.8.7 instead of
Lemma 7.8.5.

�

Takano [Takano, 1987] also proved that IL(K(R − Q)) = QLC + CD. Ac-
tually his method proves the following statement.

Theorem 7.8.13 If W ⊆ R and both W and F−W are dense in R, F = (W,<),
then IL(CKF ) = IL(F ⊙ ω) = QLC + CD.

Proof It is sufficient to show that IL(F ⊙ω) ⊆ IL(Q⊙ω). So given a sentence
B and a countermodel M = (Q ⊙ ω, ξ) for B, we construct a model M1 over
F ⊙ ω refuting B. The construction consists of two stages.
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(I) At the first stage we take a denumerable subset W0 of W that is dense in
R, F0 = (W0, <), and construct a model M0 = (F0 ⊙ ω, ξ0) refuting B and
satisfying the following condition:

inf
R
ξ+0 (A) 6∈ (W −W0) for every ω-sentence A. (+)

Put
S := {inf ξ+(A) | A is an ω-sentence} − Q

and enumerate the sets Q ∪ S and W0, i.e. put Q ∪ S = {uk | k ∈ ω} and
W0 = {vn | n ∈ ω}. Now since W0 and R−W are dense in R, there exists an
order embedding h : Q∪ S −→ R such that h[Q] = W0 and h[S] ⊆ R −W .

To construct h, we can apply the back-and-forth method and define in
turn h(uk) and h−1(vn) for new elements of Q ∪ S and W0 respectively,
preserving the order <. Or we can define h(uk) in the following direct way,
by induction on k. Suppose h(ui) for i < k are already defined, let

ul := max{ui | i < k, ui < uk}, ur := min{ui | i < k, uk < ui}.

If uk ∈ Q, we put h(uk) = vn for the least n such that vn ∈ (h(a), h(ur)).
And if u ∈ S, we choose h(uk) in (h(ul), h(ur))−W . Then definitely every
vn ∈ W0 is h(uk) for a suitable k, so to say, n becomes ‘the least possible’
at some stage of the construction.

We leave the routine technical details to the reader.

Let us show that

∀X ⊆ Q (inf
R
X ∈ Q ∪ S ⇒ inf

R
h[X ] = h(inf

R
X)). (∗)

In fact, let infRX = uk. Then h(uk) ≤ h(u) for all u ∈ X . Suppose
infR h(X) > h(uk). By density, there exists v ∈W0 such that h(uk) < v <
infR h(X); let v = h(u), u ∈ Q. Then u is a lower bound of X , so u ≤ uk,
and hence v = h(u) ≤ h(uk). This is a contradiction.

Obviously, the restriction h0 = h|Q is an order isomorphism between Q
and W0, so h−1

0 : W0 → Q is a p-morphism. Now by Lemma 5.1 we obtain
a model M0 = (W0 ⊙ ω, ξ0) such that

ξ+0 (A) = h[ξ+(A)]

for every ω-sentence A. This model is a required one, because (∗) readily
implies (+). In fact,

inf
R
ξ+0 (A) = h(inf

R
ξ+(A)) ∈ h[Q ∪ S] ⊆W0 ∪ (R −W ).

(II) Now we apply Lemma 7.8.4 and obtain a right extension M1 of M0. This
model is a required one over W . It is sufficient to check the condition (r2).
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So we take an arbitrary w0 ∈ W , assume that

∀a ∈ V ∃u ∈W0 (u ≤ w0 & M0, u  A(a)), (7a)

and find u ∈ W0 such that

u ≤ w0 and M0, u  ∀xA(x). (7b)

Put u0 := infR{u ∈W0 |M0, u  ∀xA(x)}.

Case 1. u0 ∈W0 and M0, u0  ∀xA(x).

Let us show that u0 ≤ w0. Suppose the contrary: w0 < u0. Then by density
there exists u1 ∈ W0 such that w0 < u1 < u0. On the other hand, for every
a ∈ V there exists u ∈ W0 such that u ≤ w0 < u2 and M0, u  A(a),
so M0, u1  A(a) as well. Hence M0, u1  ∀xA(x) and u1 < u0, which
contradicts the choice of u0.

Thus we conclude that u = u0 satisfies (7b).

Case 2. u0 ∈ W0 and M0, u0 6 ∀xA(x). Then M0, w0 6 A(a) for some
a ∈ V . By (7a), there exists u ∈ W0 such that u ≤ w0 and M0, u  A(a).
Then u0 < u, and so M0, u  ∀xA(x) by the definition of u0. Thus u
satisfies (7b).

Case 3. u0 6∈ W0. Then u0 6∈W by (+). Let us show that u0 < w0. Suppose
the contrary. Then w0 < u0, since w0 ∈ W and u0 6∈ W . So by density,
there exists w ∈ W0 such that w0 < w < u0. Then M0, w 6 ∀xA(x), by
the definition of u0. So M0, w 6 A(a) for some a ∈ V . On the other hand,
M0, u  A(a) for some u ≤ w0, and hence M0, w  A(a) as well. Since
u ≤ w0 < w, this is a contradiction.

Now since u0 < w0, there exists u ∈ W0 such that u ≤ w0 and M0, u 
∀xA(x). This u satisfies (7b).

�

Corollary 7.8.14 IL(CK(R − Q)) = IL((R − Q) ⊙ ω) = QLC + CD.

Remark 7.8.15 The above argument can be readily transferred to the logics
with equality. In fact, Lemmas 7.8.5 and 7.8.7 are extended easily.

The conditions (r∗) and (l∗) for equality:

M,u  a = b⇔ ∃v ∈W0(vRw & M0, u  a = b)

and

M,u 6 a = b⇔ ∃v ∈W0 (wRv & M0, v 6 a = b)

respectively follow from (r1) and (l1).

Thus we obtain the following analogues of Theorems 7.8.2, 7.8.9 and 7.8.12:
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(1) If W and (R −W ) are dense in R then

IL=(CKE(W )) = QLC= + CD, IL=(CK(W )) = QLC=d + CD;

in particular

IL=(CKEQ) = IL=(CKE(R − Q)) = QLC= + CD,

IL=(CKQ = IL=(CK(R − Q)) = QLC=d + CD.

(2)
IL=(KER) = QLC= + CD + Ta,

IL=(K(R)) = QLC=d + CD + Ta.

These results imply corollaries for the Kripke semantics with nested domains.
Recall that IL(K(Q)) = QLC, IL=(KEQ) = QLC=. IL=(KQ) = QLC=d.

Hence by the method from section 3.9 we obtain

Proposition 7.8.16 If subsets W and R −W are dense in R, then

IL(KW ) = QLC, IL=(KEW ) = QLC=, IL=(KW ) = QLC=d.

Let us finally mention some simple consequences of the above results.

Theorem 7.8.17 The logics IL=(KR), IL=(KER) are recursively axiomatis-
able.

Proof Follows from 7.8.9 and 3.9.4. �

Corollary 7.8.18 IL(KR) is recursively axiomatisable.

Proof In fact, we already know that IL=(KR), IL=(KER) are its conservative
extensions (by 3.8.6 and 2.16.13). �

As we know, the completeness proof for QLC can be extended to logics with
equality, so

IL=(CKEQ) = QLC=, IL=(CKQ) = QLC=d.

As we know from 7.8.2 and 7.8.14

IL(CK(R − Q)) = IL(CKQ) = QLC + CD.

Thus 7.8.18 implies

Proposition 7.8.19

IL(K(R − Q)) = IL(KQ) = QLC;
IL=(KE(R − Q)) = IL=(KEQ) = QLC=;

IL=(K(R − Q)) = IL=(KQ) = QLC=d.
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Perhaps Takano’s proof for R − Q can also be transferred to the case with
nested domains, but the embedding method provides the result rather easily.

As for an explicit axiomatisation for IL(KR), IL=(KR), IL=(KER), one
can easily see that Ta is refuted in a frame over R. In fact, informally speaking,
Ta means the following.

Suppose ∀xP (x) ⊃ ∃yQ(y) is true, say at world 0 ∈ R. Let v be the g.l.b.
of the set {u | u  r} (if this set is empty, then Ta holds trivially). Now if
v 6 ∀xP (x), i.e. u 6 P (a) for some u ≥ v, then 0  P (a) ⊃ r. Otherwise
v  ∀xP (x), and then v  ∃yQ(y), i.e. r  Q(b) for some b, so 0  r ⊃ Q(b).

If the domain is constant, both individuals a, b are in D0, but in the case of
nested domains a, b can exist only in larger domains Du or Dv, so the formula
Ta is refutable. Constructing a counterexample is left as an exercise for the
reader.

Conjecture. IL(KR) = QLC

By Theorem 3.8.6, this conjecture implies the equality

IL=(KER) = QLC=,

and (as one can show),
IL=(KR) = QLC=d.



Bibliography

[Alechina, van Lambalgen, 1994] N. Alechina and M. van Lambalgen. Corre-
spondence and completeness for generalized quantifiers. Bulletin of the IGPL,
3 167–190, 1994

[Barendregt, 1981] H.P. Barendregt. The Lambda Calculus. Its syntax and se-
mantics. Studies in Logic and Foundations of Mathematics, v. 103. North
Holland Publishing Company, 1981.

[Bell, 2001] J. Bell. Logical options: An introduction to classical and alternative
logics Broadview Press Ltd, Canada (1 Jun 2001).

[Birkhoff, 1979] G. Birkhoff. Lattice theory, 3rd revised edition. American
Mathematical Society Colloquium Publications, 25. American Mathematical
Society, Providence, R.I, 1979.

[Blackburn, de Rijke and Venema, 2001] P. Blackburn, M. De Rijke, and Y.
Venema. Modal logic. Cambridge University Press, 2001.

[Boolos, Burgess, and Jeffrey, 2002] G.S. Boolos, J.P. Burgess, and R.C. Jef-
frey. Computability and logic. Cambridge University Press, 2002.

[Borceaux, 1994] F. Borceaux. Handbook of categorical algebra, v. 1–3. Cam-
bridge University Press, 1994.

[Bourbaki, 1968] N. Bourbaki. Elements of mathematics: theory of Sets. Her-
mann, 1968.

[Chagrov and Zakharyaschev, 1997] A. V. Chagrov and M. V. Zakharyaschev.
Modal logic. Oxford University Press, 1997.

[Church, 1996] A. Church. Introduction to mathematical logic. Princeton Uni-
versity Press, 1996.

[Corsi and Ghilardi, 1989] G. Corsi and S. Ghilardi. Directed frames. Archive
for math. logic, 29:53–67, 1989.

[Corsi, 1989] G. Corsi. A logic characterized by the class of linear Kripke frames
with nested domains. Studia Logica, 48:15–22, 1989.

609



610 Bibliography

[Corsi, 1993] G. Corsi. Quantified modal logics of positive rational numbers and
some related systems. Notre Dame Journal of Formal Logic, 34:263–283,1993.

[Corsi, 1992] G. Corsi. Completeness theorem for Dummett’s LC quantified
and some of its extensions. Studia Logica, 51:317–335, 1992.
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