LGIC 320 / MATH 571: Logic II

Preliminary Outline

- 1. Propositional intuitionistic logic (Int)
 - Foundations and motivations. BHK semantics
 - Hilbert-style axiomatization
 - Kripke semantics, completeness theorem
 - Disjunctive property; double-negation translation (CL \rightarrow Int)
 - Finite-valued logics; Int is not finite-valued
 - Topological semantics; completeness theorem

2. Lambda calculus

- Untyped lambda calculus as a universal computational model
- The Church Rosser (diamond) property
- Simply typed lambda calculus
- Strong normalization [proof optional]
- Set-theoretic models for lambda-calculus, completeness theorem
- Natural deduction for Int; the Curry Howard correspondence
- Combinators and the Hilbert-style calculus for Int
- 3. First-order intuitionistic logic (FO-Int)
 - Hilbert-style axiomatization
 - Kripke semantics, completeness theorem
 - Double-negation translation (FO-CL \rightarrow FO-Int)
 - Disjunctive property; constructivity of the existential quantifier
 - The constant domain principle
 - Curry Howard for FO-Int; calculus of inductive constructions (CIC)
 - Application: the Coq proof assistant

4. Sequent (Gentzen-style) calculi

- Sequent calculi for FO-CL and FO-Int
- Cut elimination: semantic and syntactic approaches
- Disjunctive property, constructivity of the existential quantifier, and Herbrand's theorem syntactically
- Substructural logics, linear logic and its variants
- Semi-Thue systems; undecidability of propositional linear logic
- Application: non-commutative linear logic in linguistics (the Lambek calculus)
- 5. Modal logic
 - Kripke semantics for modal logic, complete and incomplete logics
 - Canonical model, canonicity
 - Sahlqvist formulae, Sahlqvist's completeness theorem [proof optional]
 - Completeness and finite model property of GL (Gödel-Löb logic)
 - Topological semantics for S4 and GL
 - Arithmetical interpretation of GL, Solovay's theorem [proof optional]
 - Sequent calculi for modal logics; infinite and cyclic proofs for GL