Logic II

(LGIC 320 / MATH 571 / PHIL 412)
Lecture Notes by Stepan Kuznetsov University of Pennsylvania, Spring 2017

EXERCISES

Lect. 1 \& 2: Propositional Intuitionstic Logic

Exercise 1. For each of the following formulae establish whether the formula is derivable if Int (if "yes", derive it, maybe using Deduction Theorem; if "no", construct a Kripke model that falsifies it):

1. $(p \vee q) \rightarrow(q \vee p)$
2. $(p \vee q) \rightarrow(q \wedge p)$
3. $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$
4. $(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow q)$
5. $p \rightarrow \neg \neg p$
6. $\neg \neg p \rightarrow p$
7. $\neg \neg \neg p \rightarrow \neg p$
8. $(p \rightarrow q) \rightarrow(\neg p \vee q)$
9. $(\neg p \vee q) \rightarrow(p \rightarrow q)$
10. $(p \rightarrow q) \vee(q \rightarrow r) \vee(r \rightarrow p)$
11. $(\neg p \vee \neg q) \rightarrow \neg(p \wedge q)$
12. $\neg(p \wedge q) \rightarrow(\neg p \vee \neg q)$
13. $(\neg p \wedge \neg q) \rightarrow \neg(p \vee q)$
14. $\neg(p \vee q) \rightarrow(\neg p \wedge \neg q)$
15. $((p \rightarrow q) \rightarrow q) \rightarrow p$
16. $((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q$

Exercise 2.

1. Is the formula $(p \rightarrow q) \vee(q \rightarrow p)$ derivable in Int?
2. Does adding the axiom scheme $(A \rightarrow B) \vee(B \rightarrow A)$ to Int yield CL?

Exercise 3. Glivenko's theorem. Prove that for any formula A the following holds: $\vdash_{\mathrm{CL}} A$ if and only if $\vdash_{\text {Int }} \neg \neg A$. (Compare with the double negation translation.)

Exercise 4^{*}. Construct a formula that can be falsified by a Kripke model of depth n, but is true in all Kripke models of depth less than n. (The depth of a model is the length of the longest sequence x_{1}, \ldots, x_{n} of possible worlds, where $x_{i} R x_{i+1}$, but not $x_{i+1} R x_{i}$ (in particular, all the elements of such a sequence are distinct).)
Hint: first try small n 's: $n=1,2, \ldots$
Exercise 5*. Show that adding the axiom scheme $\neg A \vee \neg \neg A$ ("weak excluded middle") to Int yields a logic that is strictly stronger than Int (i.e., $\forall_{\text {Int }} \neg p \vee \neg \neg p$) and strictly weaker than CL (i.e., it doesn't yet derive the original law of excluded middle).

Exercise 6.

1. Prove that for any formula A the following holds: $\vdash_{\mathrm{CL}} \neg A$ if and only if $\vdash_{\text {Int }} \neg A$.
2. Prove that if A is built from variables using only \neg and \wedge, then $\vdash_{\mathrm{CL}} A$ if and only if $\vdash_{\text {Int }} A$.
