Logic II (LGIC 320 / MATH 571 / PHIL 412) Lecture Notes by Stepan Kuznetsov University of Pennsylvania, Spring 2017

EXERCISES

Lect. 1 & 2: Propositional Intuitionstic Logic

Exercise 1. For each of the following formulae establish whether the formula is derivable if Int (if "yes", derive it, maybe using Deduction Theorem; if "no", construct a Kripke model that falsifies it):

1. $(p \lor q) \to (q \lor p)$ 9. $(\neg p \lor q) \to (p \to q)$ 2. $(p \lor q) \to (q \land p)$ 10. $(p \to q) \lor (q \to r) \lor (r \to p)$ 3. $(p \to q) \to (\neg q \to \neg p)$ 11. $(\neg p \lor \neg q) \to \neg (p \land q)$ 4. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$ 12. $\neg (p \land q) \rightarrow (\neg p \lor \neg q)$ 13. $(\neg p \land \neg q) \rightarrow \neg (p \lor q)$ 5. $p \rightarrow \neg \neg p$ 14. $\neg (p \lor q) \rightarrow (\neg p \land \neg q)$ 6. $\neg \neg p \rightarrow p$ 15. $((p \rightarrow q) \rightarrow q) \rightarrow p$ 7. $\neg \neg \neg p \rightarrow \neg p$ 16. $(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q$ 8. $(p \to q) \to (\neg p \lor q)$

Exercise 2.

- 1. Is the formula $(p \to q) \lor (q \to p)$ derivable in Int?
- 2. Does adding the axiom scheme $(A \to B) \lor (B \to A)$ to Int yield CL?

Exercise 3. Glivenko's theorem. Prove that for any formula A the following holds: $\vdash_{CL} A$ if and only if $\vdash_{Int} \neg \neg A$. (Compare with the double negation translation.)

Exercise 4*. Construct a formula that can be falsified by a Kripke model of depth n, but is true in all Kripke models of depth less than n. (The *depth* of a model is the length of the longest sequence x_1, \ldots, x_n of possible worlds, where $x_i R x_{i+1}$, but not $x_{i+1} R x_i$ (in particular, all the elements of such a sequence are distinct).)

Hint: first try small *n*'s: n = 1, 2, ...

Exercise 5^{*}. Show that adding the axiom scheme $\neg A \lor \neg \neg A$ ("weak excluded middle") to Int yields a logic that is strictly stronger than Int (i.e., $\nvdash_{\text{Int}} \neg p \lor \neg \neg p$) and strictly weaker than CL (i.e., it doesn't yet derive the original law of excluded middle).

Exercise 6.

- 1. Prove that for any formula A the following holds: $\vdash_{CL} \neg A$ if and only if $\vdash_{Int} \neg A$.
- 2. Prove that if A is built from variables using only \neg and \land , then $\vdash_{\text{CL}} A$ if and only if $\vdash_{\text{Int}} A$.