Logic II

(LGIC 320 / MATH 571 / PHIL 412)
Lecture Notes by Stepan Kuznetsov University of Pennsylvania, Spring 2017

EXERCISES

Lect. 6-8: λ-calculus, Natural Deduction, and the Curry - Howard Correspondence

Exercise 1. For each of the following formulae give a natural deduction proof (if possible, using only intuitionstic rule for \perp) and construct a λ-term that encodes this proof. You can use a proof assistant to speed your work up a bit.

1. $(p \vee q) \rightarrow(q \vee p)$
2. $(p \vee q) \rightarrow(q \wedge p)$
3. $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$
4. $(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow q)$
5. $p \rightarrow \neg \neg p$
6. $\neg \neg p \rightarrow p$
7. $\neg \neg \neg p \rightarrow \neg p$
8. $(p \rightarrow q) \rightarrow(\neg p \vee q)$
9. $(\neg p \vee q) \rightarrow(p \rightarrow q)$
10. $(p \rightarrow q) \vee(q \rightarrow r) \vee(r \rightarrow p)$
11. $(\neg p \vee \neg q) \rightarrow \neg(p \wedge q)$
12. $\neg(p \wedge q) \rightarrow(\neg p \vee \neg q)$
13. $(\neg p \wedge \neg q) \rightarrow \neg(p \vee q)$
14. $\neg(p \vee q) \rightarrow(\neg p \wedge \neg q)$
15. $((p \rightarrow q) \rightarrow q) \rightarrow p$
16. $((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q$

Exercise 2. Is the following substitution free (e.g., allowed to be performed without violating the meaning of the λ-term)? If yes, what is the result of the substitution?

1. y for x in $((\lambda x .(z x)) y) x)$;
2. $(x z)$ for y in $\lambda z .(y(\lambda x . z))$;
3. $(x z)$ for y in $\lambda y \cdot(y(\lambda z . z))$.

Exercise 3. Does there exist a closed simply typed λ-term of type $((p \rightarrow q) \rightarrow q) \rightarrow p$?
Exercise 4. Construct a combinatory term of type:

1. $(p \rightarrow q) \rightarrow((q \rightarrow r) \rightarrow(p \rightarrow r))$;
2. $(p \rightarrow r) \rightarrow(p \rightarrow(q \rightarrow r))$;
3. $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow(r \rightarrow s)) \rightarrow(p \rightarrow(q \rightarrow s)))$.

Hint: first construct a λ-term (without free variables) of the desired type, then simulate λ as λ^{*} using the \mathbb{K} and \mathbb{S} combinators.

Exercise 5. Construct such λ-terms u_{1} and u_{2} that u_{1} is β-reducible to u_{2} and u_{2} is typable but u_{1} is not typable.

Exercise 6. Construct such λ-terms u_{1} and u_{2} without free variables and such types A_{1} and A_{2} that u_{1} is β-reducible to u_{2}, u_{2} is of types both A_{1} and A_{2}, but u_{1} is only of type A_{1}, but not A_{2}.

Exercise 7*. Let a propositional formula A contain only variables p_{1}, \ldots, p_{k}. Prove that

$$
\vdash_{\mathrm{CL}} A \quad \text { iff } \quad \vdash_{\mathrm{Int}}\left(p_{1} \vee \neg p_{1}\right) \rightarrow\left(p_{2} \vee \neg p_{2}\right) \rightarrow \ldots \rightarrow\left(p_{k} \vee \neg p_{k}\right) \rightarrow A
$$

Exercise 8*. Prove Kripke completeness of the fragment of Int with only one connective, implication (\rightarrow). Hint: construct a canonical model consisting of deductively closed theories. (Note that disjunctivity is not needed here, since we don't have disjunction.)
Prove that adding Peirce's law, $((p \rightarrow q) \rightarrow q) \rightarrow p$ to this calculus yields the implicational fragment of CL.

