Logic II (LGIC 320 / MATH 571 / PHIL 412) Lecture Notes by Stepan Kuznetsov University of Pennsylvania, Spring 2017

EXERCISES

Lect. 6–8: λ -calculus, Natural Deduction, and the Curry – Howard Correspondence

Exercise 1. For each of the following formulae give a natural deduction proof (if possible, using only intuitionstic rule for \perp) and construct a λ -term that encodes this proof. You can use a proof assistant to speed your work up a bit.

9. $(\neg p \lor q) \to (p \to q)$ 1. $(p \lor q) \to (q \lor p)$ 2. $(p \lor q) \to (q \land p)$ 10. $(p \to q) \lor (q \to r) \lor (r \to p)$ 3. $(p \to q) \to (\neg q \to \neg p)$ 11. $(\neg p \lor \neg q) \to \neg (p \land q)$ 4. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$ 12. $\neg (p \land q) \rightarrow (\neg p \lor \neg q)$ 13. $(\neg p \land \neg q) \rightarrow \neg (p \lor q)$ 5. $p \rightarrow \neg \neg p$ 14. $\neg (p \lor q) \rightarrow (\neg p \land \neg q)$ 6. $\neg \neg p \rightarrow p$ 7. $\neg \neg \neg p \rightarrow \neg p$ 15. $((p \rightarrow q) \rightarrow q) \rightarrow p$ 8. $(p \to q) \to (\neg p \lor q)$ 16. $(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q$

Exercise 2. Is the following substitution free (e.g., allowed to be performed without violating the meaning of the λ -term)? If yes, what is the result of the substitution?

- 1. y for x in $((\lambda x.(zx))y)x)$;
- 2. (xz) for y in $\lambda z.(y(\lambda x.z))$;
- 3. (xz) for y in $\lambda y.(y(\lambda z.z))$.

Exercise 3. Does there exist a closed simply typed λ -term of type $((p \to q) \to q) \to p$? **Exercise 4.** Construct a combinatory term of type:

1.
$$(p \to q) \to ((q \to r) \to (p \to r));$$

2. $(p \to r) \to (p \to (q \to r));$
3. $(p \to (q \to r)) \to ((p \to (r \to s)) \to (p \to (q \to s)))$

Hint: first construct a λ -term (without free variables) of the desired type, then simulate λ as λ^* using the K and S combinators.

Exercise 5. Construct such λ -terms u_1 and u_2 that u_1 is β -reducible to u_2 and u_2 is typable but u_1 is not typable.

Exercise 6. Construct such λ -terms u_1 and u_2 without free variables and such types A_1 and A_2 that u_1 is β -reducible to u_2 , u_2 is of types both A_1 and A_2 , but u_1 is only of type A_1 , but not A_2 .

Exercise 7^{*}. Let a propositional formula A contain only variables p_1, \ldots, p_k . Prove that

 $\vdash_{\mathrm{CL}} A \quad \text{iff} \quad \vdash_{\mathrm{Int}} (p_1 \vee \neg p_1) \to (p_2 \vee \neg p_2) \to \ldots \to (p_k \vee \neg p_k) \to A.$

Exercise 8*. Prove Kripke completeness of the fragment of Int with only one connective, implication (\rightarrow) . *Hint:* construct a canonical model consisting of deductively closed theories. (Note that disjunctivity is not needed here, since we don't have disjunction.)

Prove that adding Peirce's law, $((p \to q) \to q) \to p$ to this calculus yields the implicational fragment of CL.