Logic II (LGIC 320 / MATH 571 / PHIL 412) Lecture Notes by Stepan Kuznetsov University of Pennsylvania, Spring 2017

EXERCISES

Lect. 11–15: First Order Intuitionistic Logic

Exercise 1. For each of the following formulae, find out whether it is provable in FO-Int. If yes, provide a proof (possibly, using Deduction Theorem). You can use a proof assistant to speed your work up a bit. If no, construct a Kripke model that falsifies the formula.

1. $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$	8. $\exists x \forall y Q(x,y) \to \forall y \exists x Q(x,y)$
2. $\forall x \neg P(x) \rightarrow \neg \exists x P(x)$	9. $\forall y \exists x Q(x,y) \to \exists x \forall y Q(x,y)$
3. $\neg \neg \forall x P(x) \to \forall x \neg \neg P(x)$	10. $\forall x P(x) \to \exists x P(x)$
4. $\neg \neg \exists x P(x) \to \exists x \neg \neg P(x)$	11. $\exists x P(x) \to \forall x P(x)$
5. $\exists x \neg \neg P(x) \rightarrow \neg \neg \exists x P(x)$	12. $\neg \neg \forall x \left(P(x) \lor \neg P(x) \right)$
6. $\forall x P(x) \lor \exists x \neg P(x)$	13. $\forall x \neg \neg (P(x) \lor \neg P(x))$
7. $\exists x P(x) \lor \forall x \neg P(x)$	14. $\neg(\forall x \neg \neg P(x) \land \neg \forall x P(x))$

Exercise 2. Show that Glivenko's theorem is false for FO-Int, i.e., construct a formula φ (without free variables) such that $\vdash_{\text{FO-CL}} \varphi$, but $\not\vdash_{\text{FO-Int}} \neg \neg \varphi$.

Hint: use one of the formulae of the previous exercise, and remember that for formulae of the form $\varphi = \neg \psi$ the double negation principle $(\neg \neg \varphi \rightarrow \varphi)$ is intuitionistically derivable.

Exercise 3. Does adding the principle $\forall x (\psi \lor \varphi(x)) \to \psi \lor \forall x \varphi(x)$ (where x is not a free variable of ψ) to FO-Int yield FO-CL?

Exercise 4*. Prove the constructive property of \exists in intuitionistic logic: if $\vdash_{\text{FO-Int}} \exists x \varphi(x)$, then $\vdash_{\text{FO-Int}} \varphi(t)$ for some term t.