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Lecture 1, Jan 12

1. Propositional Intuitionistic Calculus

Propositional formulae are built from a countable set of propositional variables Var = {p, q, r, . . .}
and the falsity constant ⊥ using three binary connectives: → (implication), ∧ (conjunction, or log-
ical “and”), ∨ (disjunction, or logical “or”).

Note that in this formulation we haven’t included negation as an official logical operation.
Instead of this, ¬A (“not A”) is considered as a shortcut for (A→ ⊥).

Intuitionistic propositional logic, Int, is defined by the following axioms:

1. A→ (B → A)

2. (A→ (B → C))→ ((A→ B)→ (A→ C))

3. (A ∧B)→ A

4. (A ∧B)→ B

5. A→ (B → (A ∧B))

6. A→ (A ∨B)

7. B → (A ∨B)

8. (A→ C)→ ((B → C)→ ((A ∨B)→ C))

9. ⊥ → A

and one inference rule:
A A→ B

B

called modus ponens (“MP” for short).
Adding the 10th axiom, A ∨ ¬A (tertium non datur, or the law of excluded middle), to Int

yields classical propositional logic, CL.
Note that all these axioms are actually axiom schemata: one can substitute arbitrary formulae

for the meta-variables A, B, C, obtaining instances of axioms. For example, (p∨ q)→ ((q → r)→
(p ∨ q)) is an instance of Ax. 1 (with A = (p ∨ q) and B = (q → r)).

This is a Hilbert-style calculus. The rules and axioms have clear motivation, but practical
derivation can be painful:
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Example 1. Derive E → E.
The derivation is as follows:

(1) (E → ((E → E)→ E))→ ((E → (E → E))→ (E → E)) Ax. 2 with A = C = E and B = (E → E)
(2) E → ((E → E)→ E) Ax. 1 with A = E, B = (E → E)
(3) (E → (E → E))→ (E → E) MP from (2) and (1)
(4) E → (E → E) Ax. 1 with A = B = E
(5) E → E MP from (4) and (3)

Formally speaking, a derivation is a linearly ordered list of formulae, and each of them is either
an instance of an axiom or is obtained from earlier formulae using the MP rule. If there exists a
derivation ending with formula B, then B is called derivable (denoted by `Int B). We also consider
derivations from hypotheses: let Γ be a set of formulae, and we allow them to appear in derivations,
along with axioms of Int. If B is derivable using Γ, we write Γ `Int B.

2. Deduction Theorem

Theorem 1 (Deduction Theorem). Let Γ be an arbitrary finite set of formulae. Then Γ, A `Int B
if and only if Γ `Int A→ B.

Proof. The if part is just an application of MP: from Γ we derive A → B, and then combine it
with the given A yielding B.

For the only if part, proceed by induction on the derivation of B from Γ ∪ {A} in Int. The
possible cases for B are as follows.

Case 1: B is an axiom of Int or B ∈ Γ. Then B is also derivable from Γ, and we obtain A→ B
by applying MP to B and B → (A→ B) (an instance of Ax. 1).

Case 2: B = A. Then B → A (actually A→ A) is derivable, see Example 1.
Case 3: B is obtained from previously derived C and C → B by MP. Then, by induction,

Γ `Int A→ C and Γ `Int A→ (C → B). Then we proceed as follows:
(1) A→ C
(2) A→ (C → B)
(3) (A→ (C → B))→ ((A→ C)→ (A→ B)) an instance of Ax. 2
(4) (A→ C)→ (A→ B) MP from (2) and (3)
(5) A→ B MP from (1) and (4)

The Deduction Theorem makes deriving much simpler:

Example 2. `Int (A ∧B)→ (B ∧A)
By Deduction Theorem (with an empty Γ), it is sufficient to establish A ∧ B `Int B ∧ A. This

is done in the following way:
(1) A ∧B
(2) (A ∧B)→ A an instance of Ax. 3
(3) A MP from (1) and (2)
(4) (A ∧B)→ B an instance of Ax. 4
(5) B MP from (1) and (4)
(6) B → (A→ (B ∧A)) an instance of Ax. 5
(7) A→ (B ∧A) MP from (5) and (6)
(8) B ∧A MP from (3) and (7)
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Actually, the Deduction Theorem is an ouverture for another formalism, called the calculus of
natural deduction (we’ll discuss it later).

3. BHK Semantics

Before going further, let’s discuss some intuitions on which intuitionistic logic is based. We start
with an informal interpretation, called BHK-semantics (due to Brouwer, Heyting, and Kolmogorov).
Under this interpretation, a formula is considered valid (“intuitionistically true”), if it is justified
by something. The question of what a justification, or witness actually is, is now left unanswered
(there are several approaches, and we’ll discuss them later). However, witnessess operate with
logical operations in the following way:

• a witness for A1 ∧A2 is a pair 〈u1, u2〉, where u1 is a witness for A1 and u2 is a justification
for A2;

• a witness for A1 ∨ A2 is a pair 〈i, u〉, where either i = 1 and u is a witness for A1, or i = 2
and u is a witness for A2;

• a witness for A → B defines a function f that transforms any witness for A into a witness
for B (if x justifies A, then f(x) should justify B);

• there is no witness for ⊥.

It’s quite easy to see that all axioms of Int and the MP rule are adequate to BHK. On the
other hand, A ∨ ¬A isn’t: to justify it, you should either justify A or justify ¬A. However, there
exists statements such that neither A nor ¬A is known to be true. Due to the informal nature of
BHK, this doesn’t actually show that one can’t derive, say, p ∨ ¬p in Int. This can be done either
by analyzing derivations (but not in a Hilbert-style calculus), or using a formal semantics, such as
Kripke’s possible worlds semantics.

4. Kripke Semantics

A Kripke model is a triple M = 〈W,R, v〉, where W a non-empty set of possible worlds, R
is a preorder (i.e., a reflexive and transitive relation) on W , and v: Var × W → {0, 1} is the
variable valuation function. The function v is required to be monotonic w.r.t. R: if xRy, then
v(p, x) ≤ v(p, y) for any p ∈ Var. In other words, if v(p, x) = 1 and xRy, then v(p, y) = 1.

By R(x) we denote the set {y | xRy}.
In different worlds, different formulae are considered true. If formula A is true in world x of

M, we write M, x 
 A; 
 is called the forcing relation and defined as follows:

• M, x 6
 ⊥ (falsity is never true);

• M, x 
 p iff v(p, x) = 1 (truth of variables is prescribed by the v function);

• M, x 
 A ∧B iff M, x 
 A and M, x 
 B (conjunction is computed classically);

• M, x 
 A ∨B iff M, x 
 A or M, x 
 B (so is disjunction);

• M, x 
 A→ B iff for every y ∈ R(x) either M, y 6
 A or M, y 
 B.
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These definition is designed (especially in the implication case) to preserve monotonicity of
forcing: if M, x 
 A and xRy, then M, y 
 A.

If the Kripke model has only one world (|W | = 1), then it is a model for classical propositional
logic.

Intuitionistic propositional logic is sound w.r.t. Kripke semantics:

Theorem 2. If `Int A, then for every Kripke model M = 〈W,R, v〉 and for every possible world
x ∈W of this model M, x 
 A.

Proof. In order to prove soundness, one needs to prove two things: (1) if A is an axiom of Int, then
M, x 
 A; (2) if M, x 
 A and M, x 
 A → B, then M, x 
 B (forcing in M is closed under
application of modus ponens).

The (2) part is easy: if x 
 A → B, then for every world y ∈ R(x) we have either y 6
 A or
y 
 B. Take y = x (x is in R(x) by reflexivity of R). Then, given x 
 A, we obtain x 
 B.

For the (1) part, one needs to check all the 9 axioms. It is time-consuming, but technical. Let’s
try one of the most complicated axioms, Ax. 2.

We need to prove x 
 (A → (B → C)) → ((A → B) → (A → C)). In order to establish that
a formula of the form E → F is true in x, one needs to check that for every y ∈ R(x) if y 
 E,
then y 
 F . Consider an arbitrary y ∈ R(x), such that y 
 A→ (B → C). We need to prove that
y 
 (A → B) → (A → C). Again, consider an arbitrary z ∈ R(y), such that z 
 A → B. On this
turn, we need to show that z 
 A→ C. Let w be a world from R(z), such that w 
 A and finally
we need w 
 C. Now the picture is as follows (we omit arrows that come from transitivity and
reflexivity, such as xRx or xRz):

x

y 
 A→ (B → C)

z 
 A→ B

w 
 A

By monotonicity, since yRw and zRw, the formulae A→ (B → C) and A→ B are also true in
w. Since modus ponens is applicable for 
, we have w 
 B → C, w 
 B, and finally w 
 C, which
is our goal.

Other axioms of Int are checked similarly. We leave it as an exercise.

Using this soundness theorem, one can prove that a formula is not derivable in Int.

Example 3. 6`Int p ∨ ¬p
This formula is classically valid, therefore we should use more than one Kripke world to falsify

it. Fortunately, two worlds are already sufficient. Let W = {x, y}, xRy (and, of course, xRx and
yRy, but not yRx). Then let v(p, x) = 0 and v(p, y) = 1.

x 6
 p, x 6
 ¬p

y 
 p
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In this model, neither x 
 p, nor x 
 ¬p (because p is true in y ∈ R(x)). Thus, p ∨ ¬p is not
true in x and therefore is not derivable in Int.

Lecture 2, Jan 17

5. Kripke Completeness

In this section we prove the converse of Theorem 2, the completeness theorem.

Theorem 3. If a formula is true in every possible world of any Kripke model, then it is derivable
in Int.

We proceed by contraposition. Let A be a formula such that 6`Int A. We construct a coun-
termodel for A, that is, a model M that contains a world x, such that M, x 6
 A. In fact, we’ll
construct one model, that acts as a countermodel for all non-derivable formulae. This will be the
canonical model for Int, denoted by M0.

Definition. A set Γ of formulae is called a disjunctive theory, if

1. Γ is deductively closed, i.e., if Γ `Int B, then B ∈ Γ;

2. Γ is consistent, i.e., Γ 6`Int ⊥;

3. Γ is disjunctive, i.e., if Γ `Int A ∨B, then Γ `Int A or Γ `Int B.

Definition. The canonical model for Int is the model M0 = 〈W0, R0, v0〉, where

• W0 is the set of all disjunctive theories,

• R0 is the subset relation (Γ1R0Γ2 ⇐⇒ Γ1 ⊆ Γ2),

• v0 is defined as follows: v0(p,Γ) = 1 ⇐⇒ p ∈ Γ.

The main property ofM0 is that disjunctive theories, as worlds ofM0, force the same formulae
that they derive, as theories over Int:

Lemma 4. M0,Γ 
 B ⇐⇒ B ∈ Γ.

This lemma is sometimes called the Main Semantic Lemma.
Now let A be a formula that is not derivable in Int. To prove thatM0 is a countermodel for A,

it is sufficient to construct a disjunctive theory that doesn’t include A. In classical logic, we would
take {¬A} and extend it to a complete (disjunctive) theory. However, in intuitionistic logic, {¬A}
could be actually inconsistent:

Example 4. Let A = p ∨ ¬p. Then (see Example 3) 6`Int A. On the other hand, `Int ¬¬(p ∨ ¬p)
(exercise!), and therefore ¬A `Int ⊥, i.e., {¬A} is inconsistent.

Still, we need a way to control that A doesn’t get accidentally included into the theory while
we extend it. So, we consider pairs of sets of formulae. Intuitively, in a pair (Γ,∆) Γ is the positive
part (actually, the theory), and ∆ is the negative part (formulae which we want to prevent from
being included into Γ).
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Definition. A pair (Γ,∆) is called “consistent,” if there are no suchG1, . . . , Gn ∈ Γ andD1, . . . , Dk ∈
∆, that

`Int G1 ∧ . . . ∧Gn → D1 ∨ . . . ∨Dk.

Important particular cases are n = 0 and k = 0. The empty conjunction is > = ¬⊥, and the
empty disjunction is ⊥. Thus, (Γ,∅) is consistent iff Γ is consistent as a theory (Γ 6`Int ⊥), and
(∅,∆) is consistent iff no disjunction of formulae from ∆ is derivable in Int. Also, if (Γ,∆) is
consistent, then Γ 6`Int ⊥.

Consistency means that the negative part doesn’t follow from the positive one.

Definition. A consistent pair (Γ,∆) is called complete, if for each formula B either B ∈ Γ or
B ∈ ∆. In other words, complete pairs a consistent pairs of the form (Γ,Fm− Γ).

Disjunctive theories and complete pairs are in a one-to-one correspondence:

Lemma 5. 1. If (Γ,∆) is a complete pair, then Γ is a disjunctive theory.

2. If Γ is a disjunctive theory, then (Γ,Fm− Γ) is a complete pair.

Proof. 1. Since (Γ,∆) is consistent, then Γ is consistent (as a theory). Let Γ `Int B. Then B
cannot be in ∆ (this would violate consistency: take for G1, . . . , Gn the formulae from Γ that occur
in the derivation—there is a finite number of them—and apply Deduction Theorem). Therefore,
by completeness, B ∈ Γ. This means Γ is deductively closed.

Now let Γ `Int B ∨ C. We need to prove that Γ `Int B or Γ `Int C. Suppose the contrary.
Then B,C ∈ ∆. But this violates consistency (take n = 1, k = 2, G1 = B ∨ C, D1 = B, D2 = C).
Therefore Γ is disjunctive.

2. We need to show that (Γ,Fm− Γ) is consistent (then it is complete by definition). Suppose
the contrary: `Int G1 ∧ . . . ∧ Gn → D1 ∨ . . . ∨Dk. Let G = G1 ∧ . . . ∧ Gn. Since Γ is deductively
closed and of course Γ `Int G, G ∈ Γ. Then, by Deduction Theorem Γ `Int D1 ∨ . . . ∨Dk. Since Γ
is disjunctive, we have Γ `Int Di for some i (formally, we have to proceed by induction on k). But
then Di ∈ Γ. Contradiction.

Lemma 6. If (Γ,∆) is a consistent pair, then there exists a complete pair (Γ′,∆′), such that Γ′ ⊇ Γ
and ∆′ ⊇ ∆.

Proof. Enumerate all formulae: B1, B2, . . ., and add them one by one into either Γ or ∆. It is
sufficient to show that the next formula Bi can be added to at least one side without making the
pair inconsistent. If not, then we have

`Int G1 ∧ . . . ∧Gn ∧Bi → D1 ∨ . . . ∨Dk and `Int G1 ∧ . . . ∧Gn → D1 ∨ . . . ∨Dk ∨Bi.

(We can always choose the sameGi’s andDj ’s, because we can weaken the statements by adding new
stuff from Γ and ∆.) Then (exercise!) by Deduction Theorem we can deduce `Int G1 ∧ . . .∧Gn →
D1 ∨ . . . ∨Dk. But we suppose that the pair was consistent before adding Bi. Contradiction.

The process of extending a consistent pair into a complete one is called saturation.
Now we’re ready to prove Lemma 4.

Proof of Lemma 4. Induction on the structure of B.
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1. B is a variable. By definition of v0.

2. B = ⊥. Then M0,Γ 6
 ⊥ (by definition of forcing) and ⊥ /∈ Γ (since Γ is consistent).

3. B = B1 ∨B2. Then Γ 
 B1 ∨B2 iff Γ 
 B1 or Γ 
 B2 iff B1 ∈ Γ or B2 ∈ Γ iff (B1 ∨B2) ∈ Γ.
The second step is by induction, and the third one is due to the disjunctiveness of Γ.

4. B = B1 ∨B2. Proceed as in the ∨ case. The last step holds since Γ is deductively closed (use
axioms for ∧).

5. B = C → D. The most interesting case. Let (C → D) ∈ Γ. Then for any Γ′ ∈ R0(Γ) we
also have (C → D) ∈ Γ′ (since R0 = ⊆). Then if C ∈ Γ′, then D ∈ Γ′ (Γ′ is closed under
modus ponens). By induction this means that if Γ′ 
 C, then Γ′ 
 D, for any Γ′ ∈ R0(Γ).
Therefore, Γ 
 C → D (by definition of forcing).

Now let (C → D) /∈ Γ. We need to show that Γ 6
 C → D, i.e. to construct such Γ′ ∈ R0(Γ)
that Γ′ 
 C and Γ′ 6
 D. By induction this means C ∈ Γ′ and D /∈ Γ′. Consider the pair
(Γ ∪ {C}, {D}). This pair is consistent: otherwise `Int G1 ∨ . . . ∨ Gn ∨ C → D, and by
Deduction Theorem Γ `Int C → D, and this is not the case by our assumption. Therefore, by
Lemma 6 there exists a complete pair (Γ′,∆′), such that Γ ∪ {C} ⊆ Γ′ and {D} ⊆ ∆′. Then
Γ′ is the disjunctive theory we actually need: Γ ⊆ Γ′ (i.e. ΓR0Γ′), C ∈ Γ′, and D /∈ Γ′.

Now we can finish the proof of Theorem 3. Let 6`Int A. Then the pair (∅, {A}) is consistent,
and by Lemma 6 there exists a complete pair (Γ,∆), such that A ∈ ∆. Therefore, A /∈ Γ, and
finally M0,Γ 6
 A (by Lemma 4).

6. Disjunctive Property

If a Kripke model has a minimal element (i.e., such x0, that x0Rx for all x ∈ W , or, in other
words, W = R(x0)), then this element is called the root of the model.

Since the definition of forcing in a world x ∈ W depends only on worlds from R(x), the same
formulae will remain true in x if we remove all the worlds not from R(x). The part of M that is
left is called the cone with root x, and is denoted by M(x).

x

M(x)

M
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Thus, if a formula A is false in a world x of model M, then it is also false in the root of the
model M(x). In other words, if a formula A is not derivable in Int, then there exists a Kripke
model with a root such that A is false in its root.

Now we’re ready to prove an interesting property of intuitionistic disjunction that supports its
BHK understanding:

Theorem 7 (Disjunctive Property). If `Int A ∨B, then `Int A or `Int B.

(The converse also holds trivially, due to the axioms A→ (A ∨B) and B → (A ∨B).)
Disjunctive property is invalid for CL: for example, `CL p∨¬p, but neither `CL p, nor `CL ¬p.

In fact, it supports the constructive reading of disjunction: to prove a disjunction means to choose
one of the disjuncts and prove it.

Proof of Theorem 7. Suppose the contrary: 6`Int A and 6`Int B. Then, due to Theorem 3, there
exist Kripke models M and N and worlds x and y such that M, x 6
 A and N , y 6
 B. As noticed
above, we can assume that x is the root of M and y is the root of N . Also we suppose that the
sets of worlds of M and N do not intersect. Then we can join these two models in the following
way:

z 6
 A ∨B

x 6
 A y 6
 B

M N

We add a new root, z. In order to maintain monotonicity of v, we declare all variables to be
false in z. Then, by monotonicity of forcing, z 6
 A and z 6
 B. Hence, z 6
 A ∨ B, and therefore
6`Int A ∨B by Theorem 2.

Disjunctive property actually means that the “empty” theory without any non-logical axioms,
namely, Θ = {A | `Int A}, is a disjunctive theory. Moreover, every disjunctive theory Γ includes
Θ (because Γ is deductively closed and therefore includes all theorems of Int). This means that
Θ is the root of the canonical model M0, and the canonical model has the following universality
property: `Int A iff M0,Θ 
 A (a formula is derivable in Int if and only if it is true in the root of
the canonical model).

Lecture 3, Jan 19

7. Finite Model Property

The canonical model M0 constructed above is infinite. However, for every formula that is not
derivable in Int there exists a finite countermodel.

Theorem 8. A formula is derivable in Int if and only if it is true in all finite models.
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Proof. If 6`Int A, then M0,Θ 6
 A. Let Φ = SubFm(A) be the set of all subformulae of A. Note
that Φ is finite. The definition of forcing for A refers only to formulae from Φ, therefore, if two
worlds force the same formulae from Φ, we can consider them equivalent and join them into one
world.

To formalize this idea, we define an equivalence relation on W0: x ∼Φ y iff for any formula
A ∈ Φ we have x 
 A ⇐⇒ y 
 A. It is easy to see that ∼Φ is indeed an equivalence relation
(i.e., it is transitive, reflexive, and symmetric). Now we identify equivalent worlds. This procedure
is called filtration of the model M0. We define a new model M0/∼Φ = 〈W0/∼Φ, R̄, v〉. The new
set of worlds W0/∼Φ is the set of equivalence classes of worlds from W0 w.r.t. ∼Φ. The equivalence
class of x ∈ W0 is the set [x]∼Φ = {y | y ∼Φ x}; x1 ∼Φ x2 ⇐⇒ [x1]∼Φ = [x2]∼Φ . Further we omit
the subscript in the notation for [x].

Now, [x]R̄[y] iff x 
 B implies y 
 B for every B ∈ Φ. Note that, since in equivalent worlds
the same formulae from Φ are true, this definition does not depend on what particular elements we
take from [x] and [y]: if [x′] = [x] and [y′] = [y], then the implication x′ 
 B ⇒ y′ 
 B is equivalent
to the implication x 
 B ⇒ y 
 B.

The new relation R̄ is reflexive and transitive by definition.
The new variable valuation, v, is defined as v(p, [x]) = v0(p, x) for p ∈ Φ (for such variables all

worlds from [x] have the same v0 valuation); variables not from Φ are declared to be always false,
to maintain monotonicity.

The filtered model M0/∼Φ is finite (since there is only a finite number of possible valuations
for formulae from Φ) and preserves forcing for formulae from Φ:

M0, x 
 B ⇐⇒ M0/∼Φ, [x] 
 B if B ∈ Φ.

This statement is checked by induction on the structure of B (exercise!). By applying it to A, we
get that M0/∼Φ, [Θ] 6
 A, which is our goal.

Finite model property yields algorithmic decidability of intuitionistic propositional logic:

Theorem 9. Int (more precisely, the set Θ = {A | `Int A}) is decidable.

Proof. We run two algorithms in parallel: one generates all possible derivations, trying to prove
A; the other generates all possible finite Kripke models, trying to find a countermodel. Due to
Theorem 8, one of these algorithms succeeds. Say “yes” if it is the first one, and “no” if it is the
second one.

Lectures 4 & 5, Jan 24, 26

8. Finite-Valued Logics and Intuitionistic Logic

Recall the two-world Kripke model that we used to falsify p∨¬p: . In this frame, each formula
A can have three possible valuations:

x 6
 A

y 6
 A

x 6
 A

y 
 A

x 
 A

y 
 A
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(The fourth possibility, x 
 A and y 6
 A, violates the monotonicity constraint.)
Let’s denote these valuations by 0, 1/2, and 1 respectively. Since the valuation of a complex

formula is determined by valuations of its subformulae (maybe in different worlds), we can use
“truth tables” instead of the Kripke frame here. For example, if v̄(A) = 1 and v̄(B) = 1/2, then
v̄(A → B) = 1/2: indeed, we have x 
 A, y 
 A, x 6
 B, and y 
 B, therefore A → B is true in y
and false in x. The complete truth tables are as follows1:

for A→ B for A ∧B for A ∨B
B

0 1/2 1

0 1 1 1
A 1/2 0 1 1

1 0 1/2 1

B
0 1/2 1

0 0 0 0
A 1/2 0 1/2 1/2

1 0 1/2 1

B
0 1/2 1

0 0 1/2 1
A 1/2 1/2 1/2 1

1 1 1 1

Since v̄(⊥) = 0 and ¬A is an abbreviation for (A→ ⊥), the negation enjoys the following truth
table:

A ¬A
0 1

1/2 0

1 0

(By the way, thus p ∨ ¬p is invalid here, since for v(p) = 1/2 we have v̄(p ∨ ¬p) = 1/2 6= 1.)
A formula A is a “3-valued tautology” if v̄(A) = 1 for any valuation of variables (or, in other

words, if it is true in any Kripke model based on our two-world frame). Trivially, every formula
that is derivable in Int is a 3-valued tautology.

The converse, however, doesn’t hold. Consider the formula

I3 = (p0 ↔ p1) ∨ (p0 ↔ p2) ∨ (p0 ↔ p3) ∨ (p1 ↔ p2) ∨ (p1 ↔ p3) ∨ (p2 ↔ p3).

This formula is a 3-valued tautology: we have 4 variables (p0, p1, p2, p3) and 3 possible truth
values, therefore for any valuation v at least two variables, pi and pj , receive the same truth value
(by the pigeon-hole principle). Then v̄(pi ↔ pj) = 1 and v̄(I3) = 1. On the other hand, there is a
Kripke model that falsifies I3. Consider the following frame:

x

y1 y2 y3

and let pi be true only in yi for i = 1, 2, 3; p0 is false in all worlds. Then y1 falsifies (p0 ↔ p1),
(p1 ↔ p2), and (p1 ↔ p3), y2 falsifies (p0 ↔ p2) and (p2 ↔ p3), and y3 falsifies (p0 ↔ p3). Hence,
all 6 disjuncts are false in x (by monotonicity), and therefore x 6
 I3 and 6`Int I3.

1They correspond to the RM3 logic introduced by B. Sobociński.
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We shall generalize this argument to show that Int does not coincide with any finite-valued
logic. As a corollary, we establish that there is no finite universal Kripke model or frame for Int
(since in a finite frame the set of possible valuations for variables/formulae is also finite).

To do this, we first formulate the notion of a finite-valued logic more accurately. A k-valued
semantic frame is a tuple F = 〈V, T,�→,T,U,�⊥〉, where V is a k-element set of truth values, T ⊂ V
is the set of truth values declared as “true”, �⊥ ∈ V is the interpretation for the falsity constant,
and �→,T,U:V × V → V are binary operations on V (“truth tables”).

As usually, the valuation function v: Var → V is defined arbitrarily on variables and then
propagated to all formulae:

• v̄(p) = v(p) for p ∈ Var;

• v̄⊥ = �⊥;

• v̄(A→ B) = v̄(A)�→ v̄(B);

• v̄(A ∧B) = v̄(A) T v̄(B);

• v̄(A ∨B) = v̄(A) U v̄(B).

A formula A is a k-valued tautology w.r.t. F if v̄(A) ∈ T for any valuation v. The set of all
tautologies is the logic of F :

Log(F) = {A | v̄(A) ∈ T for all v on F}.

Note that we don’t impose any specific restrictions on F : we don’t require T and U to be
commutative, associative, and mutually distributive, we don’t suppose that �→ obeys modus ponens,
we even allow �⊥ to belong to T . This enables some degenerate cases: if T = V , then Log(F ) includes
all formulae and defines the logic of contradiction; if T = ∅, the logic is empty. The more interesting
cases include CL (with V = {0, 1}, �⊥ = 0, and �→, T, U defined by classic truth tables) and a lot of
well-known many-valued logics (see the “Many-Valued Logic” article of the Stanford Encyclopedia
of Philosophy for examples).

Theorem 10. There is no such k-valued semantic frame F , that

{A | `Int A} = Log(F).

In other words, Int is not a k-valued logic for any finite k.

Proof. Suppose the contrary: let Int be the logic of some F = 〈V, T,�→,T,U,�⊥〉.
We call a ∈ T useless, if there are no such k-valued tautology A ∈ Log(F) and valuation

v: Var → V that a = v̄(A) (in other words, this element of T is never used for establishing that
something is a tautology). Then removing a from T doesn’t change the logic. Further (for technical
reasons) we suppose that T doesn’t include useless elements.

Let
Ik =

∨
0≤i<j≤k

(pi ↔ pj).

Now it is sufficient to prove two facts:

1. Ik ∈ Log(F);

11



2. 6`Int Ik.

The proof of the second fact is a straightforward generalization of the argument above for I3

(we construct a Kripke model with a root and k incomparable worlds visible from it, one for each
variable p1, . . . , pk; p0 is never true).

The first fact, however, is essentially non-trivial, because truth tables of F are arbitrary, and it
is true only in the presupposition that the logic of F coincides with Int and that T doesn’t contain
useless elements. To establish that Ik is a k-valued tautology w.r.t. F , we prove the following two
statements:

1. (a�↔ a) ∈ T for every a ∈ V (here b�↔ c is a shortcut for (b�→ c) T (c�→ b); clearly v̄(B ↔ C) =
v̄(B)�↔ v̄(C));

2. if a ∈ T or b ∈ T , then a U b ∈ T .

For the first statement we notice that, since `Int p ↔ p and the logic of F is Int, v̄(p ↔ p) =
v(p)�↔ v(p) ∈ T for any valuation v. Then let v(p) = a.

The second statement is a bit trickier. Suppose that a ∈ T (the b ∈ T case is symmetric). Since
T doesn’t contain useless elements, a = v̄(Ã) for some k-valued tautology Ã. Being a k-valued
tautology w.r.t. F , Ã is derivable in Int. Now let q be a fresh variable, so we can define v(q)
arbitrarily not affecting the valuation of Ã. Let v(q) = b. The formula Ã∨ q is also derivable in Int
(by modus ponens with the Ã→ (Ã ∨ q) axiom). Hence, v̄(Ã ∨ q) = v̄(Ã) U v(q) = a U b ∈ T .

Now we’ve accumulated enough good properties of F to show that Ik is a k-valued tautology
w.r.t. F . Indeed, since we have k + 1 variables (p0, p1, . . . , pk), at least two of them receive the
same truth value: v(pi) = v(pj) = a ∈ T . Due to our first statement, v̄(pi ↔ pj) = a�↔ a ∈ T .
Then we apply the second statement many times to propagate this to the whole disjunction and
get v̄(Ik) ∈ T , therefore Ik ∈ Log(F). Contradiction.

9. Embedding CL into Int

At the first glance, Int is a subsystem of CL (everything provable in Int is also provable in
CL, but not vice versa). Using only CL, however, one cannot distinguish intuitionistically valid
formulae; in fact, the opposite holds: there are formula translations faithfully mapping into a
fragment of Int. We present some of them here.

The Gödel – Gentzen negative translation AN of formula A is defined recursively as follows:

• pN = ¬¬p for p ∈ Var;

• ⊥N = ⊥;

• (A ∧B)N = AN ∧BN ;

• (A ∨B)N = ¬(¬AN ∧ ¬BN );

• (A→ B)N = AN → BN .

Theorem 11. For any formula A,

`CL A iff `Int A
N .

12



The right-to-left direction is obvious: `Int A
N implies `CL A

N , and in CL the formulae AN and
A are equivalent, due to the double negation principle and one of de Morgan laws.

For the opposite direction, we proceed by contraposition and use Kripke models. Let 6`Int A.
Then there exists a countermodelM0 with root x0 such thatM0, x0 6
 A. Now we use the following
key lemma:

Lemma 12. Let M be a model with root x and let B be an arbitrary formula. Then there exists a
world y such that any subformula C of B has the same truth value in all worlds from M(y), and
for the formula B itself this truth value coincides with the truth value of BN in the root world x.

This lemma, being applied to A and M0, immediately yields the main result. Since for every
subformula of A its truth value is the same for all worlds in the coneM0(y), the valuation for these
formulae is actually computed classically, according to truth tables. Therefore, since AN is false in
the root world x0, this valuation assigns “false” to A. Therefore, 6`CL A.

In Lemma 12, the positive case, when BN is true in x, is indeed expected, since the truth of
BN is propagated to the whole model M by monotonicity, and it looks plausible that B should
also be widely true. The negative case, however, is interesting, since for formulae not of the form
BN this generally doesn’t hold. For example, consider the following model:

z 6
 p, z 6
 q

x 
 p, x 6
 q y 6
 p, y 
 q

Here p∨ q is false in the root but is true in both cones on top. The Gödel – Gentzen translation
for disjunction in de Morgan style rules out such branching situations.

Proof of Lemma 12. Proceed by structural induction on B.

1. B = p ∈ Var and x 
 BN = ¬¬p. Then x 6
 ¬p, and therefore there exists a world y ∈ R(x)
such that y 
 p. By monotonicity, p is true in the whole cone M(y).

2. B = p ∈ Var and x 6
 BN = ¬¬p. Then there exists a world y such that y 
 ¬p. By definition
of forcing for negation, p is false in the whole cone M(y).

3. B = ⊥ and x 
 BN = ⊥. Impossible, since ⊥ is never true.

4. B = ⊥ and x 6
 BN = ⊥. Take y = x: B = ⊥ is false everywhere and this coincides with the
truth value of BN in the root.

5. B = B1 ∧ B2 and BN is true in x. By definition, BN = BN
1 ∧ BN

2 , and both BN
1 and BN

2

are true in x. By induction hypothesis, there exists a world y1 such that in M(y1) for every
subformula C of B1 is either true everywhere or false everywhere, and B1 itself is true (since
x 
 BN

1 ). Now, by monotonicity, y1 
 BN
2 . Therefore we can apply induction hypothesis
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once more and obtain a worls y2 ∈ R(y1) such that in the submodel M(y2) our statement
holds both for subformulae of B1 and B2, and therefore for all subformulae of B. Let y = y2.
Since B1 and B2 are both true everywhere in M(y), so is B = B1 ∧B2.

x 
 BN
1 ∧BN

2

y1

y2

B1

B1 and B2

6. B = B1 ∧ B2 and BN = BN
1 ∧ BN

2 is false in x. Then either BN
1 or BN

2 is false in x. Let
it be BN

1 . Apply induction hypothesis to BN
1 and obtain a cone M(y1) in our statement

holds for all subformulae of B1, and B1 itself is false. Now we again go into a subconeM(y2)
to stabilize truth values for subformulae of B2. The truth value of B2 itself doesn’t matter,
because the falsity of B1 already falsifies B = B1 ∧B2.

7. B = B1 ∨ B2 and BN = ¬(¬BN
1 ∧ ¬BN

2 ) is true in x. Then x 6
 ¬BN
1 ∧ ¬BN

2 , and therefore
either ¬BN

1 or ¬BN
2 is false in x. Let it be ¬BN

1 . Then there exists a world y1 ∈ R(x) such
that y1 
 BN

1 . By induction hypothesis there is a world y2 ∈ R(y) such that y2 
 B1 and
in all worlds of M(y2) subformulae of B1 have the same truth value. Applying induction
hypothesis once again, we stabilize also subformulae of B2 in a subcone M(y) for y ∈ R(y2).
The truth value of B2 doesn’t matter, because B1 is sufficient to make B1 ∨B2 true.

8. B = B1∨B2 and BN = ¬(¬BN
1 ∧¬BN

2 ) is false in x. Then there exists a world y1 ∈ R(x) such
that y1 
 ¬BN

1 ∧¬BN
2 , so both ¬BN

1 and ¬BN
2 are true in this world2. Now we proceed exactly

as in Case 5, applying the induction hypothesis first for BN
1 , then for BN

2 (by monotonicity,
¬BN

2 remains true, therefore BN
2 remains false when going upwards). Thus we obtain a world

y such that M(y) satisfies the statement of the lemma for B1 and B2 (and, therefore, for
B1 ∨B2), and B1 ∨B2 is false in all worlds of M(y).

9. B = B1 → B2 and BN = BN
1 → BN

2 is true in x. Consider two subcases:

• BN
1 is false in x. Then, by induction hypothesis, there exists a coneM(y1) such that in

all worlds of this cone B1 is false, and all subformulae of B1 get the same truth values in
all worlds of this cone. Then B1 → B2 is true (ex falso) everywhere inM(y1). Then we
apply the induction hypothesis to B2 to stabilize truth values of its subformulae. The
truth value of B2 itself doesn’t matter, since if B1 is false, B1 → B2 is always true.

2This is the crucial difference of the Gödel – Gentzen translation for disjunction from the original disjunction. In
Int, if A∨B is not true, A and B can be falsified in different worlds. Here we guarantee that there exists a cone (due
to monotonicity) that falsifies A and B simultaneously.
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• BN
1 is true in x. Then, by monotonicity, it is true everywhere, and so is BN

2 . Now we
proceed exactly as in Case 5.

10. B = B1 → B2 and BN = BN
1 → BN

2 is false in x. Then there exists a world y1 such that
y1 
 BN

1 and y1 6
 BN
2 . Apply the induction hypothesis first to B2: we get a cone M(y2)

(where y2 ∈ R(y1)), satisfying the statement for B2 and where B2 is false in all worlds. By
monotonicity, BN

1 is still true in y2. Applying the induction hypothesis to B2 now, we get
such a world y ∈ R(y2) that subformulae of B1 (and, by previous reasoning, of B2 also) get
the same truth values in all worlds ofM(y), and, moreover, B1 is true and B2 is false in these
worlds. Thus, in all worlds of M(y) the formula B = B1 → B2 is false.

The Gödel – Gentzen negative translation can be generalized to theories over CL and Int. For
an arbitrary theory (set of formulae) Γ, let ΓN = {AN | A ∈ Γ}.

Theorem 13. For any theory Γ and formula B,

Γ `CL B iff ΓN `Int B
N .

Proof. As in Theorem 11, the implication from right to left is obvious.
Now let Γ `CL B. Since the derivation is finite, in this derivation we use only a finite subtheory3

Γ0 ⊂ Γ. Let
∧

Γ0 be the conjunction of all formulae from Γ0. Then, applying Deduction Theorem
and axioms for ∧, we get

`CL

∧
Γ0 → B.

By Theorem 11,

`Int

(∧
Γ0 → B

)N
.

Since the Gödel – Gentzen translation commutes with ∧ and →, (
∧

Γ0 → B)N is graphically equal
to
∧

ΓN0 → BN . By applying modus ponens and axioms for ∧, we get ΓN0 `Int B
N , and since

ΓN0 ⊂ ΓN , we obtain our goal: ΓN `Int B
N .

The Gödel – Gentzen negative translation is not the only method of embedding CL into Int. A
simpler translation is given by Glivenko’s theorem:

Theorem 14 (Glivenko). For any formula A,

`CL A iff `Int ¬¬A.

The proof is left as an exercise (hint: use the finite model property).
Glivenko’s theorem also yields faithfullness of the following Kolmogorov double-negation

translation:

• p¬¬ = ¬¬p;

• ⊥¬¬ = ¬¬⊥;

3This is an instance of the compactness argument.
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• (A ∧B)¬¬ = ¬¬(A¬¬ ∧B¬¬);

• (A ∨B)¬¬ = ¬¬(A¬¬ ∨B¬¬);

• (A→ B)¬¬ = ¬¬(A¬¬ → B¬¬);

In this translation, every subformula gets decorated with ¬¬.

Theorem 15. For any formula A,

`CL A iff `Int A
¬¬.

This is a trivial corollary of Glivenko’s theorem, since A¬¬ = ¬¬Ã, where Ã is a formula that
is classically equivalent to A. Then we get the following:

`CL A ⇐⇒ `CL Ã ⇐⇒ `Int A
¬¬.

Here the second step is due to Glivenko’s theorem.

10. Topological Models for Int

Recall the notion of abstract topological space. A topological space is a pair 〈X, τ〉, where X
is a set and τ ⊂ P(X) is a family of subsets of X that are declared as “open”. The family τ is
required to obey the following conditions:

• ∅ ∈ τ , X ∈ τ ;

• if A,B ∈ τ , then A ∩B ∈ τ (τ is closed under finite intersections);

• if A is a family of sets from τ , then its union,
⋃
A, also belongs to τ (τ is closed under

arbitrary unions).

τ is called a topology on X. The standard example of a topological space is the Euclidean
n-dimensional space Rn with the standard topology: a set A ⊂ Rn is open iff for every point x ∈ A
there exists such r > 0 that Br(X) ⊂ A, where Br(x) is the ball of radius r with its center in x. In
other world, a set is open if every its point belongs to it with a neighbourhood.

We’re going to interpret formulae of Int as subsets of a topological space 〈X, τ〉, maintaining
the constraint that the valuation of every formula should be an open set. For variables we define
the valuation arbitrarily, v: Var → τ ; v̄(⊥) = ∅. The propagation for conjunction and disjunction
is easy:

v̄(A ∧B) = v̄(A) ∩ v̄(B), v̄(A ∨B) = v̄(A) ∪ v̄(B).

(Due to the properties of topological spaces, v̄(A ∧B) and v̄(A ∨B) also belong to τ .)
For implication one could classically expect v̄(A→ B) = (X− v̄(A))∪ v̄(B) (in CL, (A→ B) ≡

(¬A ∨ B)), but this set could be not an open one. In order to force it to be open, we modify the
definition:

v̄(A→ B) = In((X − v̄(A)) ∪ v̄(B)).
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Here In(D) is the interior of a set D, i.e., the maximal open set that is included in D. (More
formally, it is the union of all open subsets of D, In(D) =

⋃
{E ∈ τ | E ⊂ D}; by definition, it is

also an open set.)
The valuation for negation is computed as follows:

v̄(¬A) = v̄(A→ ⊥) = In((X − v̄(A)) ∪ v̄(⊥)) = In(X − v̄(A)).

In other words, negation is interpreted as the interior of the complement.
A formula A is considered true under valuation v on a topological space 〈X, τ〉, if v̄(A) = X.
One can easily see that this interpretation violated the law of excluded middle: indeed, a usual

open set A in Rn (for example, an open ball) has a non-trivial border that consists of points that
belong neither to A nor to the interior of its complement, In(Rn − A). Every neighbourhood of a
border point contains points both from A and from its complement.

On the other hands, axioms of Int and the modus ponens rule are valid w.r.t. this interpretation
(exercise!). For example, take axiom A→ (B → A). Then

v̄(A→ (B → A)) = In((X − v̄(A)) ∪ In((X − v̄(B)) ∪ v̄(A))) ⊇ In((X − v̄(A)) ∪ In(v̄(A))),

since In is monotonic (if A ⊆ B, then In(A) ⊆ In(B). Since v̄(A) is open, it coincides with its
interior; then we get In((X − v̄(A)) ∪ v̄(A)) = In(X) = X, thus v̄(A→ (B → A)) ⊆ X. The other
inclusion is obvious.

The following completeness theorem was proved by Tarski:

Theorem 16. For every n ≥ 1 the following holds: `Int A iff v̄(A) = Rn for every valuation v on
Rn with the standard topology.

We shall prove a weaker result, namely, completeness w.r.t. arbitrary topological models. This
class is bigger than the class of models on Rn, and finding a countermodel is easier. In fact, we
build it from a Kripke model.

Theorem 17. If 6`Int A, then there exists a topological space 〈X, τ〉 and a valuation v on it such
that v̄(A) 6= X.

Proof. By Theorem 3, there exists a Kripke countermodel for A, M = 〈W,R, v〉. We construct
a topological space on W in the following way: for any A ⊆ W we declare A ∈ τ iff for every
x ∈ A all points from R(x) also belong to A (in other words, open sets are those that are upwardly
closed under R). Next, define the topological valuation vτ : vτ (pi) = {x ∈ W | x 
 pi}. Due to
monotonicity, these sets are open in τ . Moreover, the main semantic lemma holds:

v̄τ (B) = {x ∈W | x 
 B}

for every formula B (proved by structural induction).
SinceM is a countermodel for A, there exists such x0 ∈W that x0 6
 A. Therefore, x0 /∈ v̄τ (A),

therefore v̄τ (A) 6= W .
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