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Gentzen-Style Sequent Calculi

1. The Language

We define Gentzen-style sequential calculi for first-order classical and intuitionistic logics. For-
mulae are defined in a standard way (see previous lecture notes) and are denoted by small Greek
letters. Capital Greek letters denote finite (possibly empty) multisets of formulae. For classical
logic, sequents are of the form Γ⇒ ∆, for intuitionistic—of the form Γ⇒ ϕ.

The left- and right-hand sides of the sequent are called antecedent and succedent respectively.
The system LK and LJ formulated below are equivalent to Hilbert-style calculi for FO-CL

and FO-Int respectively: ϕ is derivable in a Hilbert-style calculus iff ⇒ ϕ is derivable in the
corresponding sequent calculus. Moreover, Γ⇒ ∆ is derivable in the sequent calculus iff

∧
Γ→

∨
∆

is derivable in the Hilbert-style calculus. Finally, in the Hilbert-style calculus we have Γ ` ϕ for a
finite Γ (if Γ is infinite, it can be truncated, since only a finite number of formulae can be used in
the derivation) iff Γ⇒ ϕ is derivable in the corresponding sequent calculus.

2. Axioms and Rules for Classical Logic (LK)

I. Axioms
ϕ⇒ ϕ ⊥ ⇒

II. Propositional rules

Γ, ϕi ⇒ ∆

Γ, ϕ1 ∧ ϕ2 ⇒ ∆
(∧L)

Γ⇒ ϕ1,∆ Γ⇒ ϕ2,∆

Γ⇒ ϕ1 ∧ ϕ2,∆
(∧R)

Γ, ϕ1 ⇒ ∆ Γ, ϕ2 ⇒ ∆

Γ, ϕ1 ∨ ϕ2 ⇒ ∆
(∨L)

Γ⇒ ϕi,∆

Γ⇒ ϕ1 ∨ ϕ2,∆
(∨R)

Γ1 ⇒ ϕ,Γ2 ∆1, ψ ⇒ ∆2

∆1,Γ1, ϕ→ ψ ⇒ ∆2,Γ2
(→ L)

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆
(→ R)

III. Quantifier rules

Γ, ϕ(t)⇒ ∆

Γ,∀xϕ(x)⇒ ∆
(∀L)

Γ⇒ ϕ(y),∆

Γ⇒ ∀xϕ(x),∆
(∀R)

Γ, ϕ(y)⇒ ∆

Γ,∃xϕ(x)⇒ ∆
(∃L)

Γ⇒ ϕ(t),∆

Γ⇒ ∃xϕ(x),∆
(∃R)

Constraints: y /∈ FV (Γ,∆); the substitution of t for x is free.
IV. Structural rules

Γ⇒ ∆
Γ, ϕ⇒ ∆

(weak − L)
Γ, ϕ, ϕ⇒ ∆

Γ, ϕ⇒ ∆
(contr − L)
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Γ⇒ ∆
Γ⇒ ϕ,∆

(weak −R)
Γ⇒ ϕ,ϕ,∆

Γ⇒ ϕ,∆
(contr −R)

V. Cut
Γ1 ⇒ ϕ,Γ2 ϕ,∆1 ⇒ ∆2

Γ1,∆1 ⇒ Γ2,∆2
(cut)

3. Axioms and Rules for Intuitionistic Logic (LJ)

ϕ⇒ ϕ ⊥ ⇒ ϕ

II. Propositional rules

Γ, ϕi ⇒ ζ

Γ, ϕ1 ∧ ϕ2 ⇒ ζ
(∧L)

Γ⇒ ϕ1 Γ⇒ ϕ2

Γ⇒ ϕ1 ∧ ϕ2
(∧R)

Γ, ϕ1 ⇒ C Γ, ϕ2 ⇒ ζ

Γ, ϕ1 ∨ ϕ2 ⇒ ζ
(∨L)

Γ⇒ ϕi

Γ⇒ ϕ1 ∨ ϕ2
(∨R)

Γ⇒ ϕ ∆, ψ ⇒ ζ

∆,Γ, ϕ→ ψ ⇒ ζ
(→ L)

Γ, ϕ⇒ ψ

Γ⇒ ϕ→ ψ
(→ R)

III. Quantifier rules

Γ, ϕ(t)⇒ ζ

Γ,∀xϕ(x)⇒ ζ
(∀L)

Γ⇒ ϕ(y)

Γ⇒ ∀xϕ(x)
(∀R)

Γ, ϕ(y)⇒ ζ

Γ,∃xϕ(x)⇒ ζ
(∃L)

Γ⇒ ϕ(t)

Γ⇒ ∃xϕ(x)
(∃R)

Constraints: y /∈ FV (Γ, ζ); the substitution of t for x is free.
IV. Structural rules

Γ⇒ ζ

Γ, ϕ⇒ ζ
(weak)

Γ, ϕ, ϕ⇒ ζ

Γ, ϕ⇒ ζ
(contr)

V. Cut
Γ⇒ ϕ ϕ,∆⇒ ζ

Γ,∆⇒ ζ
(cut)

4. Cut Elimination

Theorem 1. Both for LK and LJ, any sequent that can be derived, can be derived without using
(cut).

To prove this theorem, first replace cut with a more general rule called mix.
For LK:

Γ1 ⇒ ϕk,Γ2 ϕn,∆1 ⇒ ∆2

Γ1,∆1 ⇒ Γ2,∆2
(mix)

For LJ:
Γ⇒ ϕ ϕn,∆⇒ C

Γ,∆⇒ C
(mix)

Here ϕn means ϕ,ϕ, . . . , ϕ (n times).
Then proceed by triple nested induction on the following parameters:
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1. the total number of mixes in a derivation (we start by eliminating the topmost ones);

2. the complexity of the formula ϕ in a mix;

3. the summary height of the (mix-free) derivations of the premises of mix.

5. Harrop’s Theorems

Cut-free proofs are extremely easy to analyse. For example, proving disjunctive property of
intuitionistic logic becomes a triviality: if `Int ϕ1 ∨ ϕ2, then the sequent ⇒ ϕ1 ∨ ϕ2 can be proved
in LJ without cut. Let’s look at the last rule in this derivation. It couldn’t be a structural rule
(since the left-hand side is empty), therefore it is (∨R) decomposing the disjunction. Its premise
is exactly ⇒ ϕi (i = 1 or 2). Hence, `Int ϕ1 or `Int ϕ2.

The same works for the existential quantifier (where semantic proof is quite subtle): if⇒ ∃xϕ(x)
is derivable in LJ, then the last rule could only be (∃R), yielding ⇒ ϕ(t) for some term t.

Harrop’s theorems generalize disjunctive and existential properties of intuitionistic logic.

Definition. The strictly positive position (s.p.p.) of a subformula occurrence is defined recursively:

1. a formula is in s.p.p. in itself;

2. a subformula is in s.p.p. in ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2, if it is in s.p.p. in ϕ1 or ϕ2;

3. a subformula is in s.p.p. in ϕ→ ψ, if it is in s.p.p. in ψ.

In other words, a subformula is in s.p.p. iff it never goes into the left-hand side of an implication.

Theorem 2 (Harrop). 1. If Γ has no subformula of the form ξ1 ∨ ξ2 in s.p.p. and Γ⇒ ϕ1 ∨ϕ2

is derivable in LJ, then Γ⇒ ϕi is derivable in LJ for some i.

2. If Γ has no subformula of the form ξ1 ∨ ξ2 or ∃z ξ(z) in s.p.p. and Γ⇒ ∃xψ(x) is derivable
in LJ, then Γ⇒ ψ(t) is derivable in LJ for some term t.

The constraints are inevitable due to the trivial examples: ϕ1∨ϕ2 ⇒ ϕ1∨ϕ2, ∃xψ(x)⇒ ∃xψ(x),
and ψ(t1) ∨ ψ(t2)⇒ ∃xψ(x), that violate this theorem.

Proof. 1. Starting from the root of the proof tree (the goal sequent), we draw the main track: it
goes upwards through one-premise rules, and turns right on (→ L); on (∨L) and (∧R) it branches.
However, (∨L) can be applied only if there is a ∨ in s.p.p. in the antecedent, which is not allowed.
The other rule, (∧R), cannot be applied, until ϕ1 ∨ϕ2 gets decomposed, since the main connective
in the succedent is not ∧. Therefore, the main track doesn’t branch until we decompose ϕ1 ∨ ϕ2:

Γ̃⇒ ϕi

Γ̃⇒ ϕ1 ∨ ϕ2

(∨R)

...
Γ⇒ ϕ1 ∨ ϕ2

Then we can remove this rule and replace ϕ1∨ϕ2 with ϕi along the main track. This yields Γ⇒ ϕi.
All the rules remain valid.
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2. For the ∃ case, we proceed in the same way. We go along the main track until we reach (∃R):

Γ̃⇒ ψ(t)

Γ̃⇒ ∃xψ(x)
(∨R)

...
Γ⇒ ∃xψ(x)

and replace ∃xψ(x) with ψ(t). There is, however, a tricky place here. The global constraint
y /∈ FV(Γ, ϕ) in the (∃L) and (∀R) rules can be violated. Indeed, when we replace

Γ, ξ(y)⇒ ∃xψ(x)

Γ,∃z ξ(z)⇒ ∃xψ(x)
(∃L)

with
Γ, ξ(y)⇒ ψ(t)

Γ,∃z ξ(z)⇒ ψ(t)
(∃L)?

the “fresh” variable y could accidentally occur in t (e.g., t = y). This makes this rule invalid and
ruins our derivation. Luckily, (∃L) on the main track is explicitly prohibited (no ∃ in s.p.p. in Γ),
and (∀R) cannot appear before we decompose ∃xψ(x). All other rules are OK.

6. Herbrand’s Theorem

Harrop’s theorems don’t work for classical logic. The first one is violated by the law of excluded
middle: one can derive the disjunction p ∨ ¬p, but neither of its disjuncts is derivable. For the
second one, one could construct something like ∃x ((x = 0∧ P )∨ (x 6= 0∧¬P )), which is the same
as p ∨ ¬p, but with ∃ instead of ∨. However, a weaker version of the second theorem still holds.

Definition. The strictly negative position (s.n.p.) of a subformula is defined recursively:

1. a subformula is in s.n.p. in ϕ→ ψ, if it is in s.p.p. in ϕ or in s.n.p. in ψ;

2. a subformula is in s.n.p. in ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2 if it is in s.n.p. in ϕ1 or ϕ2;

3. a formula is not in s.n.p. in itself.

In other words, the subformula is under implication of depth exactly 1.

Theorem 3 (Herbrand). If Γ has no subformulae of the form ∃z ξ(z) in s.p.p. and ψ(x) has no
subformulae of the form ∀z ξ(z) in s.p.p. and no subformulae of the form ∃z ξ(z) in s.n.p., and
Γ ⇒ ∃xψ(x) is derivable in LK, then there exist a finite number of terms t1, . . . , tk such that
Γ⇒ ψ(t1) ∨ . . . ∨ ψ(tk) is derivable in LK.

Proof. Consider the main track of the succedent formula. In contrast to Harrop’s case, now it can
branch on two-premise rules ((∨L) and (∧R)) and also on (contr−R): in the latter case, two tracks
go along the same sequent. We trace back along these branches up to the rules that introduces
∃xψ(x). There is a finite number of (∃R) rules:

Φ1 ⇒ ψ(t1)

Φ1 ⇒ ∃xψ(x),Ψ1
(∃R)

. . .

Φk ⇒ ψ(tk)

Φk ⇒ ∃xψ(x),Ψk
(∃R)
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Then we replace ∃xψ(x) with ψ(t1)∨ . . .∨ψ(tk) along all branches of the main track. These (∃R)
rules get replaced by series of (∨R) rules. The formula ∃xψ(x) could also appear from an axiom
or weakening. The former case is prohibited by the constraints of the theorem. The latter one is
possible, then after replacement weakening is still valid. (If there were no (∃R) applications at all,
only weakenings, one can take arbitrary t1, . . . , tk.)

The restrictions of the theorem prohibit usage of (∃L) and (∀R), which cause problems as in
the 2nd Harrop’s theorem (see above). Other rules are OK.

A non-trivial example that shows importance of the constraints in Herbrand’s theorem even for
an empty Γ is the so-called drinker’s formula, ∃x (P (x) → ∀y P (y)). The informal reading is “in
a bar, there always exists a guy such that if he drinks, everybody drinks.” This is classically (but
not intuitionistically) valid: indeed, if everyone drinks, we can take an arbitrary drinker for x; if
some x0 doesn’t drink, then P (x0)→ ∀y P (y) is true ex falso. This can be transformed into an LK
proof (exercise!). Herbrand’s theorem and, of course, existential property here is invalid (therefore,
by the way, drinker’s formula is not derivable intutionistically).
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