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Modal Logic

1. The Language and Kripke Semantics

For simplicity, we consider only one modality (polymodal systems are outside the scope of our
course). Also we do only the propositional case.

Modal formulae are built from propositional variables (p, q, r, . . .) using standard logical (Boolean)
connectives, ∨, ∧, →, ⊥, and one extra unary operation, �, which is the modality. The interpre-
tation of �A is quite diverse: it could mean “A is necessarily true”, “A is provable”, “I believe
that A is true”, “I know that A is true”, “A will be true tomorrow” etc. Different meanings of the
modalities suggest different principles to be taken as axioms. Therefore we consider many modal
logics and try, if possible, to construct a united theory for them.

First we define a formal semantic framework for modal logic, namely, Kripke semantics.

Definition. A Kripke frame is a structure F = 〈W,R〉, where W is a non-empty set of possible
worlds, and R ⊆W ×W is a binary relation on W .

Note that, contrary to the intuitionistic situation, here R is arbitrary, not necessarily a preorder.

Definition. A Kripke model is a structure M = 〈F , v〉, where F is a Kripke frame and v : W ×
Var→ {0, 1} is an arbitrary valuation function.

Again, we don’t impose any monotonicity conditions on v.

Definition. The truth of a formula A in a world x ∈W is defined recursively:

M, x  p ⇐⇒ v(x, p) = 1

M, x  A ∨B ⇐⇒ M, x  A or M, x  B

M, x  A ∧B ⇐⇒ M, x  A and M, x  B

M, x  A→ B ⇐⇒ M, x 6 A or M, x  B

M, x 6 ⊥
M, x  �A ⇐⇒ M, y  A for all y ∈ R(x)

We also introduce three abbreviations: ¬A ≡ (A→ ⊥), > = ¬⊥, and ♦A ≡ ¬�¬A.

M, x  ♦A ⇐⇒ M, y  A for some y ∈ R(x).

♦ is the dual modality to �.
Note that the following formula,

�(A→ B)→ (�A→ �B),

called the normality axiom, is true in all Kripke models.
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Definition. The logic of frame F , denoted by Log(F), is the set of all modal formulae that are
true in all worlds of all models on the frame F . The logic for a class of frames, C, is

Log(C) =
⋂
F∈C

Log(F).

Definition. A normal modal logic is a set of formulae that includes all propositional tautologies,
the normality axiom, and is closed under substitution and the following rules:

A A→ B
B

MP
A
�A Nec

Log(C) is always a normal modal logic.

Definition. A normal modal logic L is Kripke complete, if L = Log(C) for some C.

Definition. For a normal modal logic L let Mod(L) = {F | F  A for every A ∈ L}.

The mappings Log and Mod are contravariant: if C1 ⊆ C2, then Log(C1) ⊇ Log(C2), and if
L1 ⊆ L2, then Mod(L1) ⊇ Mod(L2).

Proposition 1. L is Kripke complete iff L = Log(Mod(L)).

Proof. The “if” part is by definition. For the “only if” part note that always L ⊆ Log(Mod(L))
(since L is true in all frames from Mod(L)). On the other hand, L = Log(C) for some C, and
C ⊆ Mod(L) (since all formulae of L are true in any frame from C). Therefore, L = Log(C) ⊇
Log(Mod(L)).

Thus, a Kripke complete modal logic is a normal modal logic that is complete w.r.t. the class
of its frames.

The minimal normal modal logic is denoted by K. Since it is true in all Kripke models,
Mod(K) = {all Kripke frames}. Later we’ll show that K (among other logics) is Kripke complete,
i.e. Log(all Kripke frames) = K.

2. Classic Examples

In this section we briefly describe several well-known modal axioms (principles) and the corre-
sponding classes of Kripke frames (the proof is left as an exercise).

reflexivity �p→ p all frames with reflexive R
transitivity �p→ ��p all frames with transitive R
symmetry ♦�p→ p all frames with symmetric R
seriality ♦> all frames such that R(x) is non-empty for every x

By L1 + L2 we denote the closure of L1 ∪ L2 under the MP and Nec inference rules. It is
easy to see that Mod(L1 + L2) = Mod(L1) ∩ Mod(L2). For example, the class of frames for
K+♦�p→ p+�p→ p is the class of all symmetric reflexive frames. Some important combinations
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have specific names:

T = K + reflexivity

K4 = K + transitivity

S4 = K + reflexivity + transitivity

K5 = K + transitivity + symmetry

S5 = K + reflexivity + transitivity + symmetry

D = K + seriality

. . .

In the next section we show completeness for all these modal logics using one technique.

3. Canonical Models and Canonicity

The completeness proof strategy is basically the same as for intuitionistic logic.

Definition. Let L be a normal modal logic. A theory over L is a set of formulae that includes L
is closed under MP (but maybe not Nec). A theory is consistent, if it doesn’t include ⊥. A theory
is complete, if for any formula A it includes A or ¬A.

The standard saturation lemma holds: any consistent set of formulae that includes L can be
embedded into a complete consistent theory.

Definition. The canonical frame for L is FL = 〈WL, RL〉, where WL is the set of all complete
consistent theories over L, and xRLy if for every �A ∈ x we have A ∈ y.

Definition. The canonical model for L is a modelML on the frame FL with the valuation function
vL such that ML, x  p ⇐⇒ p ∈ x.

Next, we prove the main semantic lemma:

Lemma 2. ML, x  A ⇐⇒ A ∈ x.

Proof. The only interesting case is A = �B. Then if �B ∈ x, for any y ∈ RL(x) we have B ∈ y,
and therefore by induction y  B. Hence x  �B.

For the reverse direction, suppose �B /∈ x. Take the set L ∪ {C | �C ∈ x} ∪ {¬B}. This set
is consistent: otherwise L ` C1 → (C2 → . . . → (Ck → B) . . .), by Nec L ` �(C1 → (C2 → . . . →
(Ck → B) . . .)), and by normality L ` �C1 → (�C2 → . . . → (�Ck → �B) . . .), and �B ∈ x.
Saturate this set and obtain y. By definition, xRLy and ¬B ∈ y. Therefore, y  ¬B, whence
y 6 B and x 6 �B.

Then, if L 6` A, then L∪ {¬A} can be saturated to a world x ∈WL, and thereforeML 6 A. It
looks like this shows Kripke completeness for an arbitrary L, but things are not that simple. The
problem is that in the definition of completeness we use frames rather than concrete models. It
could be possible (and we present examples in the next section), that on the frame FL there exists
another valuation v′ such that 〈FL, v′〉 6 L, and therefore FL /∈ Mod(L).

Definition. L is canonical, if it is true in its canonical frame, FL.

Since for a canonical logic L = Log({FL}), every canonical logic is complete.
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Proposition 3. If L1 and L2 are canonical, then so is L1 + L2.

Proof. First we show that if L ⊆ L′, then FL′ is a conic subframe of FL, i.e., WL′ ⊆WL, the relation
is induced, and WL′ is closed under RL. This is done straightforwardly by definition. Therefore,
Log(FL′) ⊇ Log(FL) (truth is the same, the set of worlds gets smaller).

Now we need to show that L1 and L2 are true in FL1+L2 . We know that Li is true in FLi , and
therefore it is true in its conic subframe FL1+L2

This proposition, though trivial, is important: it allows to show canonicity independently for
different axioms. For example, if we show that the transitivity, seriality, reflexivity, and symmetry
axioms are canonical (exercise!), we prove that all the logics listed in the previous section are
canonical and therefore Kripke complete.

4. The Gödel – Löb Logic

In this section we present an interesting logic, which is, by the way, an example of a non-
canonical (but yet Kripke complete) normal modal logic. This is the system

GL = K +�(�p→ p)→ �p.

Lemma 4. GL ` transitivity.

Proof. Exercise.

Lemma 5. The class Mod(GL) is the class of all transitive Kripke frames without infinite chains
of the form x1Rx2Rx3R . . . (in particular, without cycles and reflexive points).

Proof. IfM, x 6 GL, then x  �(�p→ p) and x 6 �p. The latter means that there exists a world
x1 ∈ R(x) such that x1 6 p. On the other hand, x1  �p → p, and therefore x1 6 �p. Moreover,
by transitivity x  ��(�p→ p), and therefore x1  �(�p→ p). Now x1 is in the same situation
as x and we can continue ad infinitum: x2, x3, . . . Thus, if GL is not true in a model, its frame has
an infinite chain or is not transitive.

For the vice versa direction, we use the previous lemma to establish transitivity. Then, if the
frame has an infinite chain, let p be false along this chain and true elsewhere. Then �p is also false
in all worlds of the chain, therefore �p → p is true everywhere, and in the beginning of the chain
we have �(�p→ p), but not �p.

In order to prove that GL is not canonical, we first introduce another, more natural interpreta-
tion of GL. Consider a Gödelian arithmetical theory T , correct w.r.t. standard model (for example,
T = PA), and let PrT (x) be Gödel’s provability predicate for T . Then we interpret propositional
variables of the modal language as arbitrary closed arithmetical formulae, commute with Boolean
operations, and let (�A)∗ = PrT (pA∗q), where pϕq is the Gödel number of ϕ. The Hilbert –
Bernays conditions on Pr and Löb’s theorem (which is the formalised version of the 2-nd Gödel
theorem for the theory T ∪ {¬ϕ}) show correctness of GL w.r.t. this interpretation:

if GL ` A, then T ` A∗.

Note that reflexivity is not provable in GL: although PrT (pϕq) entains ϕ, if T is a correct theory,
this fact is not provable in T unless ϕ is provable itself (Löb). However, this strange status of
reflexivity leads to reflexive points in the canonical frame FGL. Indeed, let N be the standard
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interpretation of arithmetic, and let x0 = {A | N � A∗}. This x0 is a complete theory over GL (a
world of FGL) and, moreover, if �A ∈ x, then A ∈ x (because N � T ). Therefore, x0 is a reflexive
point, x0Rx0Rx0R . . . is an infinite chain, whence FGL doesn’t satisfy GL, therefore this logic isn’t
canonical.
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