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» Sahlqvist antecedent: built from L, T, and boxed atoms
using ¢ and A.

» Positive formula: built from variables and T using V, A, O, ¢
(no negation or implication).

» Simple Sahlqvist formula: A — B, where B is positive and A
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» Sahlqvist formula: built from simple Sahlqvist formulae using
O and V.

Sahlqvist’s statements:
> the class of frames of a Sahlqvist formula is first-order
definable;
» every Sahlqvist formula is canonical.

Corollary. A normal modal logic axiomatised by Sahlqvist formulae
and/or formulae without variables is Kripke complete.
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Sahlqvist Formulae: Examples

Op—p reflexivity
Op — OOp | transitivity
oOp — p symmetry

OOp — Op | density
oOp — OOp | Church — Rosser

The GL axiom, 0O(dp — p) — Op, is not a Sahlqvist formula.
It is also not canonical and doesn't correspond to a first-order
condition on frames.
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» S4 = K + transitivity + reflexivity

» Topological model: (X, v), where X = (X, 7) is a topological
space, v: Fm — P(X).

» v(DOA) = Int(v(A)); Boolean connectives are interpreted
classically, as set-theoretic operations.

> Dually, v(OA) = Cl(v(A)).

» Completeness follows from Kripke completeness: a Kripke

frame F = (W, R) can be converted into a topological space
with X = W, and open sets are those that are closed under R.

» Then viripke(OA) = Int(v(A)) = Viopological (DA).
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x€d(S) <= VUert(xeU=3y#x,y € UNA).

» Monotonicity: if S; C Sy, then d-(51) C d-(S2).

» Scattered spaces: every nonempty S C X has an isolated
point.

» For scattered spaces, d-(S) = d-(S — d;(5)).

> Interpret ¢ as d,; Booleans are interpreted classically.

» GL is sound w.r.t. this interpretation:

OA < O(A A —OA)

» Corollary: in all scattered spaces, d(d(S)) C d-(S5).

» Completeness follows from Kripke completeness by
considering the upset topology (x € U and xRy = y € U) on
a finite irreflexive Kripke frame (isolated points are maximal
elements):

xlFQOA < Jy e R(x)ylF A <= x € d(v(A)).



