More Semantics for Modal Logics

Logic II, University of Pennsylvania, Spring 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A syntactic condition to guarantee canonicity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A syntactic condition to guarantee canonicity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Boxed atoms: $\Box \dots \Box p$.

A syntactic condition to guarantee canonicity.

- Boxed atoms: $\Box \ldots \Box p$.
- Sahlqvist antecedent: built from ⊥, ⊤, and boxed atoms using ◊ and ∧.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A syntactic condition to guarantee canonicity.

- Boxed atoms: $\Box \ldots \Box p$.
- Sahlqvist antecedent: built from ⊥, ⊤, and boxed atoms using ◊ and ∧.
- Positive formula: built from variables and ⊤ using ∨, ∧, □, ◊ (no negation or implication).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A syntactic condition to guarantee canonicity.

- Boxed atoms: $\Box \ldots \Box p$.
- Sahlqvist antecedent: built from ⊥, ⊤, and boxed atoms using ◊ and ∧.
- Positive formula: built from variables and ⊤ using ∨, ∧, □, ◊ (no negation or implication).
- Simple Sahlqvist formula: A → B, where B is positive and A is a Sahlqvist antecedent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A syntactic condition to guarantee canonicity.

- Boxed atoms: $\Box \ldots \Box p$.
- Sahlqvist antecedent: built from ⊥, ⊤, and boxed atoms using ◊ and ∧.
- ► Positive formula: built from variables and ⊤ using ∨, ∧, □, ◊ (no negation or implication).
- Simple Sahlqvist formula: A → B, where B is positive and A is a Sahlqvist antecedent.
- Sahlqvist formula: built from simple Sahlqvist formulae using □ and ∨.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A syntactic condition to guarantee canonicity.

- Boxed atoms: $\Box \ldots \Box p$.
- Sahlqvist antecedent: built from ⊥, ⊤, and boxed atoms using ◊ and ∧.
- Positive formula: built from variables and ⊤ using ∨, ∧, □, ◊ (no negation or implication).
- Simple Sahlqvist formula: A → B, where B is positive and A is a Sahlqvist antecedent.
- Sahlqvist formula: built from simple Sahlqvist formulae using □ and ∨.

Sahlqvist's statements:

- the class of frames of a Sahlqvist formula is first-order definable;
- every Sahlqvist formula is canonical.

A syntactic condition to guarantee canonicity.

- Boxed atoms: $\Box \ldots \Box p$.
- Sahlqvist antecedent: built from ⊥, ⊤, and boxed atoms using ◊ and ∧.
- Positive formula: built from variables and ⊤ using ∨, ∧, □, ◊ (no negation or implication).
- Simple Sahlqvist formula: A → B, where B is positive and A is a Sahlqvist antecedent.
- Sahlqvist formula: built from simple Sahlqvist formulae using □ and ∨.

Sahlqvist's statements:

- the class of frames of a Sahlqvist formula is first-order definable;
- every Sahlqvist formula is canonical.

Corollary. A normal modal logic axiomatised by Sahlqvist formulae and/or formulae without variables is Kripke complete.

Sahlqvist Formulae: Examples

$\Box p ightarrow p$	reflexivity
$\Box p ightarrow \Box \Box p$	transitivity
$\Diamond \Box p ightarrow p$	symmetry
$\Box\Box p ightarrow \Box p$	density
$\Diamond \Box p ightarrow \Box \Diamond p$	Church – Rosser

Sahlqvist Formulae: Examples

$\Box p ightarrow p$	reflexivity
$\Box p ightarrow \Box \Box p$	transitivity
$\Diamond \Box ho o ho$	symmetry
$\Box\Box p ightarrow \Box p$	density
$\Diamond \Box p \rightarrow \Box \Diamond p$	Church – Rosser

The **GL** axiom, $\Box(\Box p \rightarrow p) \rightarrow \Box p$, is **not** a Sahlqvist formula.

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sahlqvist Formulae: Examples

$\Box ho o ho$	reflexivity
$\Box p ightarrow \Box \Box p$	transitivity
$\Diamond \Box ho o ho$	symmetry
$\Box\Box p ightarrow \Box p$	density
$\Diamond \Box p ightarrow \Box \Diamond p$	Church – Rosser

The **GL** axiom, $\Box(\Box p \rightarrow p) \rightarrow \Box p$, is **not** a Sahlqvist formula. It is also not canonical and doesn't correspond to a first-order condition on frames.

Topological Semantics for ${\bf S4}$

▶ S4 = K + transitivity + reflexivity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- S4 = K + transitivity + reflexivity
- ► Topological model: (X, v), where X = (X, τ) is a topological space, v: Fm → P(X).

- S4 = K + transitivity + reflexivity
- ► Topological model: (X, v), where X = (X, τ) is a topological space, v: Fm → P(X).

v(□A) = Int(v(A)); Boolean connectives are interpreted classically, as set-theoretic operations.

- S4 = K + transitivity + reflexivity
- ► Topological model: (X, v), where X = (X, τ) is a topological space, v: Fm → P(X).

- v(□A) = Int(v(A)); Boolean connectives are interpreted classically, as set-theoretic operations.
- Dually, $v(\Diamond A) = \operatorname{Cl}(v(A))$.

- S4 = K + transitivity + reflexivity
- ► Topological model: (X, v), where X = (X, τ) is a topological space, v: Fm → P(X).
- v(□A) = Int(v(A)); Boolean connectives are interpreted classically, as set-theoretic operations.
- Dually, $v(\Diamond A) = \operatorname{Cl}(v(A))$.
- Completeness follows from Kripke completeness: a Kripke frame *F* = ⟨*W*, *R*⟩ can be converted into a topological space with *X* = *W*, and open sets are those that are closed under *R*.

- S4 = K + transitivity + reflexivity
- ► Topological model: (X, v), where X = (X, τ) is a topological space, v: Fm → P(X).
- v(□A) = Int(v(A)); Boolean connectives are interpreted classically, as set-theoretic operations.

• Dually,
$$v(\Diamond A) = \operatorname{Cl}(v(A))$$
.

Completeness follows from Kripke completeness: a Kripke frame *F* = ⟨*W*, *R*⟩ can be converted into a topological space with *X* = *W*, and open sets are those that are closed under *R*.

▶ Then
$$v_{\text{Kripke}}(\Box A) = \text{Int}(v(A)) = v_{\text{topological}}(\Box A).$$

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

 $x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

 $x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$

• Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

 $x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$

- Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.
- Scattered spaces: every nonempty S ⊆ X has an isolated point.

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

$$x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$$

- Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.
- Scattered spaces: every nonempty S ⊆ X has an isolated point.
- For scattered spaces, $d_{\tau}(S) = d_{\tau}(S d_{\tau}(S))$.

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

$$x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$$

- Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.
- Scattered spaces: every nonempty S ⊆ X has an isolated point.
- For scattered spaces, $d_{\tau}(S) = d_{\tau}(S d_{\tau}(S))$.
- Interpret \Diamond as d_{τ} ; Booleans are interpreted classically.

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

$$x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$$

- Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.
- Scattered spaces: every nonempty S ⊆ X has an isolated point.
- For scattered spaces, $d_{\tau}(S) = d_{\tau}(S d_{\tau}(S))$.
- Interpret \Diamond as d_{τ} ; Booleans are interpreted classically.
- **GL** is sound w.r.t. this interpretation:

 $\Diamond A \leftrightarrow \Diamond (A \land \neg \Diamond A)$

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

$$x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$$

- Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.
- Scattered spaces: every nonempty S ⊆ X has an isolated point.
- For scattered spaces, $d_{\tau}(S) = d_{\tau}(S d_{\tau}(S))$.
- Interpret \Diamond as d_{τ} ; Booleans are interpreted classically.
- GL is sound w.r.t. this interpretation:

$$\Diamond A \leftrightarrow \Diamond (A \land \neg \Diamond A)$$

• Corollary: in all scattered spaces, $d_{\tau}(d_{\tau}(S)) \subseteq d_{\tau}(S)$.

• Topological derivative, $d_{\tau}(S)$, is the set of all limit points of S:

$$x \in d_{\tau}(S) \iff \forall U \in \tau \ (x \in U \Rightarrow \exists y \neq x, y \in U \cap A).$$

- Monotonicity: if $S_1 \subseteq S_2$, then $d_{\tau}(S_1) \subseteq d_{\tau}(S_2)$.
- Scattered spaces: every nonempty S ⊆ X has an isolated point.
- For scattered spaces, $d_{\tau}(S) = d_{\tau}(S d_{\tau}(S))$.
- Interpret \Diamond as d_{τ} ; Booleans are interpreted classically.
- GL is sound w.r.t. this interpretation:

$$\Diamond A \leftrightarrow \Diamond (A \land \neg \Diamond A)$$

- Corollary: in all scattered spaces, $d_{\tau}(d_{\tau}(S)) \subseteq d_{\tau}(S)$.
- Completeness follows from Kripke completeness by considering the upset topology (x ∈ U and xRy ⇒ y ∈ U) on a finite irreflexive Kripke frame (isolated points are maximal elements):

$$x \Vdash \Diamond A \iff \exists y \in R(x) \ y \Vdash A \iff x \in d(v(A)).$$