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Abstract. In his recent papers “Parsing/theorem-proving for logical
grammar CatLog3” and “A note on movement in logical grammar,” Glyn
Morrill proposes a new substructural calculus to be used as the basis for
the categorial grammar parser CatLog3. In this paper we prove that the
derivability problem for a fragment of this calculus is algorithmically
undecidable.
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1 Introduction

In his recent paper [32, 31], Glyn Morrill proposes a new substructural calculus,
to be used as the basis for the categorial grammar parser CatLog3. As the first
step on the road of investigating algorithmic properties of the new Morrill’s
system, in this paper we shall prove that the derivability problem for a fragment
of this calculus is algorithmically undecidable.

The source of undecidability is the contraction rule. In Morrill’s systems,
however, contraction appears in a very non-standard form. Moreover, the con-
traction rule presented in Morrill’s new papers significantly differs from other
ones, therefore, earlier undecidability proofs [23, 12, 14] do not work for this new
version of contraction rule. Thus, a new technique should be invented, and we
do that in the present paper.

The idea of categorial grammars goes back to Ajdukiewicz [2] and Bar-
Hillel [3]. The version of categorial grammars used by Morrill is an extension
of Lambek categorial grammars [22]. In a categorial grammar, each word (lex-
eme) of the language is given one or several syntactic categories (types), which
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are formulae of a specific logical system, an extension of the Lambek calculus.
Parsing with categorial grammars, that is, checking whether a sentence is con-
sidered correct according to the grammar, reduces to checking derivability in
the logical system involved. Namely, a sequence of words a1 . . . an is accepted by
the grammar if and only if there exist such formulae A1, . . . , An that, for each
i, Ai is one of the syntactic categories for ai, and the sequent A1, . . . , An ⇒ S
is derivable. Here S is a designated syntactic category for grammatically correct
sentences.

The Lambek calculus, which is used as the basis for categorial grammars,
is a substructural logic and is closely related to Girard’s linear logic [7, 1]. In
linear logic, formulae are treated as resources, thus, each formula should be used
exactly once. This motivates the absence of the structural rules of contraction
and weakening. Moreover, the Lambek calculus is also non-commutative, i.e.,
does not include the rule of permutation (word order matters).

Sometimes, however, structural rules are allowed to be restored, in a re-
stricted and controlled way, in order to treat subtle syntactic phenomena. One
of such phenomena is parasitic extraction, which happens in phrases like “the
paper that John signed without reading.” Here the dependent clause has two
gaps, which we denote by []: “John signed [] without reading [],” which should
both be filled by the same “the paper” in order to obtain a complete sentence.
In the logic, this is handled by the contraction rule in its non-local form:

Γ1, !A,Γ2, !A,Γ3 ⇒ C

Γ1, !A,Γ2, Γ3 ⇒ C

Here ! is the (sub)exponential modality, and the contraction rule is allowed to
be applied to formulae of the form !A, and only to them.

Extension of the Lambek calculus with a subexponential modality which
allows the non-local contraction rule formulated as presented above are unde-
cidable [16]. In Morrill’s systems, however, the contraction rule is presented in a
rather non-standard form. The reason is in the usage of brackets which introduce
controlled non-associativity. Brackets prevent the calculus from overgeneration,
that is, from justifying grammatically incorrect sentences as correct ones. The
contraction rule, as shown below, also essentially interacts with brackets. This
makes standard undecidability proofs unapplicable to Morrill’s systems, so new
undecidability proofs are needed.

In order to make our examples more formal, we assign syntactic type N
to noun phrases, like “John” or “the paper,” and S to grammatically correct
sentences. Our dependent clause “John signed without reading” receives type
S / !N , meaning a syntactic object which lacks a noun phrase in order to become
a complete sentence (“John signed the paper without reading the paper”). The
subexponential modality ! applied to N means that our noun phrase should be
commutative (in order to find its place inside the sentence) and allow contraction
(in order to fill both gaps).

Overgeneration is exhibited by the following example: *“the paper that John
signed and Pete ate a pie” (the asterisk marks the sentence as ungrammatical).
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On one hand, this phrase is clearly ungrammatical, because of the irrelevant
fragment “Pete ate a pie” in the dependent clause. On the other hand, being
a sentence with one gap, “John signed [] and Pete ate a pie” receives the same
type S / !N , which makes it equivalent to correct dependent clauses like “John
signed [] yesterday.” In order to address this issue, Morrill [26] and Moortgat [25]
introduce brackets which embrace so-called islands, which, within our setting,
cannot be penetrated by !N . In particular, and-coordination of sentences makes
the result a bracketed island. Since phrases like *“the paper that John left the
office without reading” are also ungrammatical, a without-clause also forms an
island and should be embraced in brackets. This leads to Morrill’s idea of han-
dling parasitic extraction [27, Sect. 5.5]: in the dependent clause, there is one
principal, or host gap, which should not be inside an island, and parasitic gaps,
which reside in islands. Moreover, a parasitic gap can also be a host for its own
“second-order” parasitic gaps.

Thus, the contraction rule should take one !A from a bracket-embraced island
and remove it, in the presence of another !A outside the island. However, after
that the bracketing should be somehow changed, in order to avoid another usage
of the same island for parasitic gapping. This general idea, however, has different
realisations in a number of works of Morrill and his co-authors [27–29, 31, 32].
In the next section we show the most recent approach [32, 31], which essentially
resembles the original construction from Morrill’s 2011 book [27].

2 The Calculus

Morrill’s calculus for CatLog3 [32] is quite involved, including up to 45 connec-
tives. The metasyntax of sequents in this calculus is also rather non-standard,
involving brackets and meta-operations for discontinuity. In this paper we con-
sider its simpler fragment, involving only the multiplicative Lambek operations:
left and right divisions (\, /), multiplication (•), and the unit (I), brackets and
bracket modalities (〈〉, []−1), and the subexponential modality, and already for
this fragment we show undecidability.

Notice that Morrill’s system also includes Kleene star, axiomatised by means
of an ω-rule. In Morrill’s system, it is called “existential exponential” and de-
noted by “?”. In the presence of the Kleene star the Lambek calculus is known
to be at least Π0

1 -hard [5, 20] and thus undecidable. Moreover, in the view of
Kozen’s [18] results on complexity of Horn theories of Kleene algebras, the com-
plexity of the system including both Kleene star and the subexponential could
potentially rise even higher, up to Π1

1 -completeness. Morrill, however, empha-
sizes the fact that in formulae used in categorial grammars designed for real
languages the Kleene star never occurs with positive polarity. Thus, the ω-rule
is never used, and the Kleene star does not incur problems with decidability.
Thus, the only possible source of undecidability is the specific contraction rule
for the subexponential. We consider a fragment of Morrill’s system with this
rule, which is sufficient to show undecidability.
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Let us define the syntax of our fragment. Formulae will be built from vari-
ables (primitive types) p, q, . . . and the multiplicative unit constant I using three
binary operations: \ (left division), / (right division), • (product), and three
unary operation: 〈〉 and []−1 (bracket modalities) and ! (subexponential). Se-
quents (in Morrill’s terminology, h-sequents) of !sb1/2L

∗b are expressions of the
form Ξ ⇒ A, where A is a formula and Ξ is a complex metasyntactic structure
which we call meta-formula (Morrill calls them zones). Meta-formulae are built
from formulae using comma and brackets; also formulae which are intended to
be marked by the subexponential !, which allows permutation, are placed into
special commutative areas called stoups (cf. [8, 9, 17]). Following Morrill [32], we
define the notion of meta-formula along with two auxiliary notions, stoup and
tree term, simultaneously.

– A stoup is a multiset of formulae: ζ = {A1, . . . , An}. A stoup could be empty,
the empty stoup is denoted by ∅.

– A tree term is either a formula or a bracketed expression of the form [Ξ],
where Ξ is a meta-formula.

– A meta-formula is an expression of the form ζ;Γ , where ζ is a stoup and Γ
is a linearly ordered sequence of tree terms. Here Γ could also be empty; the
empty sequence is denoted by Λ.

We use comma both for concatenation of tree term sequences and for multiset
union of stoups (Morrill uses ] for the latter). Moreover, for adding one formula
into a stoup we write ζ,A instead of ζ, {A}.

Axioms and rules of !sb1/2L
∗b are as follows.

∅;A⇒ A
id

ζ1;Γ ⇒ B Ξ(ζ2;∆1, C,∆2)⇒ D

Ξ(ζ1, ζ2;∆1, C /B, Γ,∆2)⇒ D
/L

ζ;Γ,B ⇒ C

ζ;Γ ⇒ C /B
/R

ζ1;Γ ⇒ A Ξ(ζ2;∆1, C,∆2)⇒ D

Ξ(ζ1, ζ2;∆1, Γ, A \C,∆2)⇒ D
\L

ζ;A,Γ ⇒ C

ζ;Γ ⇒ A \C
\R

Ξ(ζ;∆1, A,B,∆2)⇒ D

Ξ(ζ;∆1, A •B,∆2)⇒ D
•L

ζ1;∆⇒ A ζ2;Γ ⇒ B

ζ1, ζ2;∆,Γ ⇒ A •B •R

Ξ(ζ;∆1, ∆2)⇒ A

Ξ(ζ;∆1, I, ∆2)⇒ A
IL ∅;Λ⇒ I

IR

Ξ(ζ;∆1, A,∆2)⇒ B

Ξ(ζ;∆1, [∅; []−1A], ∆2)⇒ B
[]−1L

∅; [Ξ]⇒ A

Ξ ⇒ []−1A
[]−1R

Ξ(ζ;∆1, [∅;A], ∆2)⇒ B

Ξ(ζ;∆1, 〈〉A,∆2)⇒ B
〈〉L Ξ ⇒ A

∅; [Ξ]⇒ 〈〉A
〈〉R
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Ξ(ζ,A;Γ1, Γ2)⇒ B

Ξ(ζ;Γ1, !A,Γ2)⇒ B
!L

∅; !A⇒ B

∅; !A⇒ !B
!R

Ξ(ζ;Γ1, A, Γ2)⇒ B

Ξ(ζ,A;Γ1, Γ2)⇒ B
!P

Ξ(ζ,A;Γ1, [A;Γ2], Γ3)⇒ B

Ξ(ζ,A;Γ1, [∅; [∅;Γ2]], Γ3)⇒ B
!C

Morrill [32, 31] does not give any particular name to its calculus. In this
paper, we denote our fragment by !sb1/2L

∗b. Here “b” stands for “bracketed,”
and the decorations of ! mean the following. The superscript “s” means that the
right rule for ! is in the style of soft and light linear logic [10, 21, 15], allowing, in
particular, only one !A in the left-hand side. The subscript “b1/2” means that
contraction operates brackets, using single bracketing in the premise and double
bracketing in the conclusion.

In his older paper [29], Morrill uses another form of contraction rule, which
in our notation looks like

Ξ(ζ,A;Γ1, [A;Γ2], Γ3)⇒ B

Ξ(ζ,A;Γ1, Γ2, Γ3)⇒ B

Thus, this system could be called !sb1/0L
∗b, in our notations. For the system

with this sort of contraction, undecidability was established in [14]. The new
contraction rule of Morrill [32, 31], however, significantly differs from the old
contraction rule, and the undecidability proof from [14] does not work for Mor-
rill’s new system. Thus, undecidability becomes a separate issue and we address
it in this paper.

For convenience, we use the following derivable dereliction rule

Ξ(ζ;Γ1, A, Γ2)⇒ B

Ξ(ζ;Γ1, !A,Γ2)⇒ B
!D

which is actually consecutive application of !P and !L:

Ξ(ζ;Γ1, A, Γ2)⇒ B

Ξ(ζ,A;Γ1, Γ2)⇒ B
!P

Ξ(ζ;Γ1, !A,Γ2)⇒ B
!L

Notice that in Morrill’s calculus [32, 31] there is no cut rule. Thus, the ques-
tion of cut-elimination is transformed into the question of admissibility of cut,
proving which is marked in [32] as an ongoing work by O. Valent́ın. Since the cal-
culus considered in [32, 31] does not include cut, our fragment, which uses only
a restricted set of connectives and consists of the corresponding inference rules,
is a conservative fragment of the complete system [32]. Namely, for sequents in
the restricted language, derivability in the fragment is equivalent to derivability
in the big system. Therefore, undecidability for !sb1/2L

∗b (Theorem 3 below)
yields undecidability for the whole system also.
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Using !sb1/2L
∗b, one can analyze our example “the paper that John signed

without reading” in the following way, simplyfing Morrill’s analysis [32]. Assign
the following syntactic types to words:

the . N /CN likes, signed . (〈〉N \S) /N

man, paper . CN without . ([]−1((〈〉N \S) \(〈〉N \S))) /(〈〉N \S)

reading . (〈〉N \S) /N who, that . ([]−1[]−1(CN \CN)) /(S/ !N)

John . 〈〉N

Here N stands for “noun phrase,” CN states for “common noun” (without an
article), and S stands for “sentence.”

In order to parse this sentence in this grammar, one first needs to impose the
bracketing structure on it. This is done in the following way:

the paper [[that [John] signed [[without reading]] ]].

Indeed, in Morrill’s CatLog categorial grammar the subject group and the with-
out-clause form islands, and the that-clause forms a strong island, embraced by
double brackets. Moreover, we also have to double-bracket our without-clause
(make it a “strong island”), since it will be used for parasitic extraction. Each
pair of brackets has its own stoup, which is originally empty. Unfortunately, in
CatLog the bracketed structure is required as an input from the user (while it is
of course not part of the original sentence). Morrill et al. [30], however, provide
an algorithm for automated induction (guessing) of the bracketed structure, for a
small fragment of the CatLog grammar (in particular, without subexponential).

With the bracketing shown above, the corresponding sequent is derived in
!sb1/2L

∗b as shown in Fig. 1.

At the request of one of the referees, we discuss the following example, which
is used by Morrill [31] to motivate the changes made in the contraction rule from
b1/0 to b1/2 (see above). This example features an incorrect noun phrase, *“the
man who likes,” analysed with two gaps in the dependent clause: *“the man who
[] likes [].” (Asterisks denote ungrammaticality.) The intended semantics (and the
correct version of the phrase) here is “the man who likes himself.” In !sb1/0L

∗b,
however, *“the man who [] likes [],” with brackets imposed as “the man [[who
likes]],” is parsed as follows. First one derives the sequent ∅; (〈〉N \S) /N ⇒
S / !N , which (ungrammatically) treats “likes” as a dependent clause with two
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Fig. 1. Derivation for “the paper that John signed without reading” (cf. [32, Fig. 24])
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gaps, a host one for the object and a parasitic one for the subject:

∅;N ⇒ N

∅;N ⇒ N

[∅;N ]⇒ 〈〉N ∅;S ⇒ S

∅; [∅;N ], 〈〉N \S ⇒ S

∅; [∅;N ], (〈〉N \S) /N,N ⇒ S

∅; [N ;Λ], (〈〉N \S) /N,N ⇒ S

N ; [N ;Λ], (〈〉N \S) /N ⇒ S

N ; (〈〉N \S) /N ⇒ S

∅; (〈〉N \S) /N, !N ⇒ S

∅; (〈〉N \S) /N ⇒ S/ !N

Here the whole subject island is introduced by !C (in its b1/0 version, with
Γ2 = Λ) as a parasitic extraction site. Next, one finishes the derivation as it is
done in Fig. 1 and obtains

∅;N/CN,CN, [∅; [∅; ([]−1[]−1(CN \CN) /(S / !N), (〈〉N \S) /N ]]⇒ N.

With the new, b1/2 contraction rule, this derivation of *“the man [[who
likes]]” becomes impossible. However, there still exists a way to derive *“the man
who likes,” if the user imposes the following weird bracketing: “the man [[who
[[ ]] likes]].” This bracketing explicitly creates an empty strong, double-bracketed
island as the subject of the dependent clause, and the !C rule transforms it into
a single-bracketed one. (In other parts, the derivation is similar to the one pre-
sented above.) In one of the reviews, the referee asks whether one can consider
a system where empty brackets are explicitly disallowed, and whether our unde-
cidability proof is still valid for this system. This constraint, however, is tightly
connected with the Lambek’s antecedent non-emptiness restriction. It appears
that reconciling this constraint with (sub)exponential modalities raises certain
issues with keeping good proof-theoretic properties of the system, such as cut
elimination and substitution [11, 13]. We accurately formulate these questions in
the “Future Work” section and leave them as open problems for future research.

3 The Bracket-Free System and the π Projection

In this section we define !L∗, a system without brackets and with a full-power ex-
ponential modality. This is a more well-known system, and it is simpler from the
logical point of view. We shall need !L∗ inside our undecidability proof in Sec-
tion 4. In this section we define a projection that maps derivability in !sb1/2L

∗b
to derivability in !L∗. This projection is similar to the bracket-forgetting pro-
jection in [14].

Formulae of !L∗ are defined similary to the ones of !sb1/2L
∗b, but without

bracket modalities (〈〉 and []−1). Sequents of !L∗ have a simpler structure, and
are expressions of the form Γ ⇒ A, where A is a formula and Γ is a linearly
ordered sequence of formulae. Axioms and inference rules of !L∗ are as follows.

A⇒ A
id
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Γ ⇒ B ∆1, C,∆2 ⇒ D

∆1, C /B, Γ,∆2 ⇒ D
/L

Γ,B ⇒ C

Γ ⇒ C \B
/R

Γ ⇒ A ∆1, C,∆2 ⇒ D

∆1, Γ, A \B,∆2 ⇒ D
\L

A, Γ ⇒ C

Γ ⇒ A \C
/R

∆1, A,B,∆2 ⇒ D

∆1, A •B,∆2 ⇒ D
•L ∆⇒ A Γ ⇒ B

∆,Γ ⇒ A •B •R

∆1, ∆2 ⇒ A

∆1, I, ∆2 ⇒ A
IL

Λ⇒ I
IR

Γ1, A, Γ2 ⇒ B

Γ1, !A,Γ2 ⇒ B
!L

!A1, . . . , !An ⇒ B

!A1, . . . , !An ⇒ !B
!R

Γ1, Γ2 ⇒ B

Γ1, !A,Γ2 ⇒ B
!W

Γ1, !A,Γ2, !A,Γ3 ⇒ B

Γ1, !A,Γ2, Γ3 ⇒ B
!C1

Γ1, !A,Γ2, !A,Γ3 ⇒ B

Γ1, Γ2, !A,Γ3 ⇒ B
!C2

Γ ⇒ A ∆1, A,∆2 ⇒ D

∆1, Γ,∆2 ⇒ D
cut

Notice that, unlike !sb1/2L
∗b, here cut is included as an official rule of the

system. However, here the cut rule is eliminable by a standard technique by
using the mix rule.

Proposition 1 Any sequent derivable in !L∗ is derivable without using the cut
rule.

This proof of cut elimination is explained, for example, in [16], where !L∗

acts as a specific case of SMALCΣ , an extension of the multiplicative-additive
Lambek calculus with a family of subexponential modalities.

In our version of !L∗, contraction rules (!C1 and !C2) are non-local (cf. [16]),
and permutation rules of the following form

Γ1, Γ2, !A,Γ3 ⇒ B

Γ1, !A,Γ2, Γ3 ⇒ B
!P1

Γ1, !A,Γ2, Γ3 ⇒ B

Γ1, Γ2, !A,Γ3 ⇒ B
!P2

are derivable using non-local contraction and weakening:

Γ1, Γ2, !A,Γ3 ⇒ B

Γ1, !A,Γ2, !A,Γ3 ⇒ B
!W

Γ1, !A,Γ2, Γ3 ⇒ B
!C1

Γ1, !A,Γ2, Γ3 ⇒ B

Γ1, !A,Γ2, !A,Γ3 ⇒ B
!W

Γ1, Γ2, !A,Γ3 ⇒ B
!C2

Next, we define a translation from !sb1/2L
∗b to !L∗, which is actually a forget-

ting projection, erasing all brackets and bracket modalities, and also translating
stoups into plain sequences of !-formulae. We denote this projection by π and
define it in the following recursive way.
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– For a formula A, its projection π(A) is defined as follows:

π(p) = p for any variable p; π(I) = I;

π(A \B) = π(A) \π(B); π(B /A) = π(B) / π(A);

π(A •B) = π(A) •π(B); π(!A) = !π(A);

π(〈〉A) = π([]−1A) = π(A).

– For a stoup ζ = {A1, . . . , An}, its π-projection is the sequence of formulae
!π(A1), . . . , !π(An). Since in !L∗ we have permutation rules for !-formulae,
the order does not matter. The π-projection of an empty stoup is the empty
sequence Λ.

– For a tree term there are two cases. If it is a formula, A, then its π-projection
is π(A). If the tree term is of the form [Ξ], where Ξ is a meta-formula then
its π-projection is π(Ξ) (as defined below).

– For a meta-formula of the form ζ;Υ1, . . . , Υk, where Υi are tree terms, its
π-projection is π(ζ), π(Υ1), . . . , π(Υk).

Proposition 2 If Ξ ⇒ A is derivable in !sb1/2L
∗b, then π(Ξ)⇒ π(A) is deriv-

able in !L∗.

Proof. Proceed by induction on derivation; recall that it is cut-free by definition.
Axioms id and IR and rules /R, •L, and IL of !sb1/2L

∗b, translate exactly to

the corresponding rules of !L∗. The rules for bracket modalities (〈〉L, 〈〉R, []−1L,
[]−1R) become trivial: after applying the π-projection, the conclusion of such a
rule coincides with its premise. For the rules \R, •R, /L, and \L are translated
to the corresponding rules in !L∗, together with necessary permutations (!P1,2)
for !-formulae coming from the stoups. Finally, the !-rules of !sb1/2L

∗b translate
to the corresponding rules of !L∗: !L becomes !P2, !R maps to !R, !P becomes
!L together with !P1, and !C maps to !C1.

Notice that the reverse implication does not hold, which can be shown by
analysis of our examples for brackets, like *“the paper that John signed and Pete
ate a pie.”

4 Undecidability Proof

In this section we prove undecidability of the derivability problem in !sb1/2L
∗b.

Theorem 3. The derivability problem in !sb1/2L
∗b is undecidable, more pre-

cisely, Σ0
1 -complete.

The general outline of our proof is rather standard, following the ideas of
Lincoln et al. [23]: encoding of semi-Thue systems in !sb1/2L

∗b. Maintaining
the correct bracket structure, however, makes the encoding more involved and
requires some technical tricks.
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A semi-Thue system [34] over an alphabet Σ is a set of pairs of words
over Σ, called rewriting rules and written as x1 . . . xm → y1 . . . yk (k,m ≥ 0,
xi, yi ∈ Σ). A rewriting sequence in a semi-Thue system S is a sequence of
words w1, w2, . . . , wN , in which each word w`, starting from the second one, is
obtained from the previous word w`−1 by applying a rewriting rule as follows:

w`−1 = ux1 . . . xmv → uy1 . . . ykv = w`,

where x1 . . . xm → y1 . . . yk is a rewriting rule of S and u, v are arbitrary words.
If there exists a rewriting sequence w1 → w2 → . . .→ wN in S, we say that wN
is derivable from w1 in S.

A famous result by Markov [24] and Post [33] shows that the derivability
problem for semi-Thue systems is undecidable; more precisely, it is Σ0

1 -complete
(that is, the membership problem for any recursively enumerable language can be
reduced to the derivability problem in semi-Thue systems). Moreover, the prob-
lem of derivability of a word w from a one-letter word s, like in Chomsky’s [6]
type-0 grammars, is also undecidable. This can be shown by the following re-
duction: for arbitrary words w1 and wN , checking derivability of wN from w
in a semi-Thue system S is equivalent to checking derivability of wN from the
one-letter word s in the semi-Thue system S extended by a new symbol s and a
new rewriting rule s→ w1.

Let us proceed with our encoding of semi-Thue systems in !sb1/2L
∗b. Let

AS = {(x1 • . . . •xm) /(y1 • . . . • yk) |
x1 . . . xm → y1 . . . yk is a rewriting rule of S}.

If the word x1 . . . xm is empty, then x1 • . . . •xm is replaced by I; the same for
y1 . . . yk.

Let AS = {A1, . . . , An} (the order does not matter). For each Ai let

Zi = []−1(!Ai •〈〉〈〉I)

and define the following two sets of formulae (further they will be considered as
multisets and used in the stoup):

ZS = {!Z1, . . . , !Zn};
XS = {I / !Z1, . . . , I / !Zn, I /(〈〉〈〉I)}.

Finally, consider the following linearly ordered sequence of formulae:

ΓS = !A1, . . . , !An.

The intuition behind Zi is as follows and is best understood when reading
simultaneously with the formal proof of the 1 ⇒ 2 implication in Theorem 4
below. In the sequent, we keep a special empty tree-term with double bracketing,
[∅; [∅;Λ]], which is used as the “landing zone” for Zi. Double brackets, with
empty stoups, allow the usage of Morrill’s contraction rule, !C. Applying this
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rule (we trace the derivation tree from bottom to top) destroys one pair of
brackets and puts !Zi, taken from the stoup, inside. Dereliction removes the !,
and the bracket modality inside Zi destroys the second pair of brackets around
it. Now we have !Ai and 〈〉〈〉I. The former, by !L and !P , is put to an arbitrary
place of the antecedent, allowing application of a rewriting rule of the semi-
Thue system S. The latter restores the landing zone which was destroyed by
contraction, and leaves a configuration which is ready for the next reduction
step. Finally, formulae from XS are used for garbage collection on the top of the
derivation.

This gives a translation of semi-Thue derivations to !sb1/2L
∗b ones. The

backwards translation, from !sb1/2L
∗b derivations back to S, is performed via

the π-projection. This projection trivialises everything connected to brackets,
and the resulting sequent, derivable in !L∗ by Proposition 2, happens to be !L∗-
equivalent to the standard encoding as in [23]. Thus, the fact that its derivability
yields the corresponding derivability in S is proved by the good old argument.
Notice that in our reasoning we never use the cut rule: semi-Thue derivations
are encoded by cut-free derivations in !sb1/2L

∗b, the π-projection maps them
onto cut-free derivations in !L∗, and they are mapped back onto semi-Thue
derivations.

The idea described above is formalised by the following theorem, which serves
as the principal technical lemma for Theorem 3.

Theorem 4. The following three statements are equivalent:

1. the word a1 . . . an is derivable from s in the semi-Thue system S;
2. the sequent XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an ⇒ s is derivable in !sb1/2L

∗b;
3. the sequent ΓS , a1, . . . , an ⇒ s is derivable in !L∗.

Proof. We establish the equivalence by proving round-robin implications: 1 ⇒
2⇒ 3⇒ 1.

1⇒ 2 This part of the proof formalises the idea we explained just be-
fore formulating Theorem 4. Proceed by induction on the length of the rewrit-
ing sequence. Induction base is n = 1, a1 = s, and the necessary sequent,
XS ,ZS ; [∅; [∅;Λ]], s⇒ s, is derived as follows:

∅;Λ⇒ I

∅; [∅;Λ]⇒ 〈〉I
〈〉R

∅; [∅; [∅;Λ]]⇒ 〈〉〈〉I
〈〉R

∅; !Z1 ⇒ !Z1 . . . ∅; !Zn ⇒ !Zn

∅; s⇒ s

∅; I, . . . , I, s⇒ s
IL (n times)

∅; I / !Z1, !Z1, . . . , I / !Zn, !Zn, s⇒ s
/L (n times)

I / !Z1, . . . , I / !Zn, !Z1, . . . , !Zn; s⇒ s
!P (2n times)

I / !Z1, . . . , I / !Zn, !Z1, . . . , !Zn; I, s⇒ s
IL

I / !Z1, . . . , I / !Zn, !Z1, . . . , !Zn; I /(〈〉〈〉I), [∅; [∅;Λ]], s⇒ s
/L

I / !Z1, . . . , I / !Zn, I /(〈〉〈〉I), !Z1, . . . , !Zn; [∅; [∅;Λ]], s⇒ s
!P

For the induction step, we first establish derivability of the following “land-
ing” rule:

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, Aj , ai+1, . . . , an ⇒ s

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, ai+1, . . . , an ⇒ s
land
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for any Aj ∈ AS . This rule is derived as follows:

XS ,ZS ; [∅; [∅;Λ]], a1, . . . ai, Aj , ai+1, . . . , an ⇒ s

XS ,ZS , Aj ; [∅; [∅;Λ]], a1, . . . ai, ai+1, . . . , an ⇒ s
!P

XS ,ZS ; !Aj , [∅; [∅;Λ]], a1, . . . ai, ai+1, . . . , an ⇒ s
!L

XS ,ZS ; !Aj , [∅; [∅; I]], a1, . . . ai, ai+1, . . . , an ⇒ s
IL

XS ,ZS ; !Aj , [∅; 〈〉I], a1, . . . ai, ai+1, . . . , an ⇒ s
〈〉L

XS ,ZS ; !Aj , 〈〉〈〉I, a1, . . . ai, ai+1, . . . , an ⇒ s
〈〉L

XS ,ZS ; !Aj •〈〉〈〉I, a1, . . . ai, ai+1, . . . , an ⇒ s
•L

XS ,ZS ; [∅; []−1(!Aj •〈〉〈〉I)], a1, . . . , ai, ai+1, . . . , an ⇒ s
[]−1L

XS ,ZS ; [∅; ![]−1(!Aj •〈〉〈〉I)], a1, . . . , ai, ai+1, . . . , an ⇒ s
!D

XS ,ZS ; [![]−1(!Aj •〈〉〈〉I);Λ], a1, . . . , ai, ai+1, . . . , an ⇒ s
!P

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, ai+1, . . . , an ⇒ s
!C (![]−1(!Aj •〈〉〈〉I) = !Zi ∈ ZS)

Using the land rule, the last rewriting step, from a1 . . . aix1 . . . xmar . . . an
to a1 . . . aiy1 . . . ykar . . . an is simulated as follows. Since x1 . . . xm → y1 . . . yk is
a rewriting rule of S, the formula Aj = (x1 • . . . •xm) /(y1 • . . . • yk) belongs to
AS . Thus, the land rule is applicable.

∅; y1 ⇒ y1 . . . ∅; yk ⇒ yk

∅; y1, . . . , yk ⇒ y1 • . . . • yk
•R

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1, . . . , xm, ar, . . . , an ⇒ s

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1 • . . . • xm, ar, . . . , an ⇒ s
•L

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, (x1 • . . . • xm) /(y1 • . . . • yk), y1, . . . , yk, ar, . . . , an ⇒ s
/L

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, y1, . . . , yk, ar, . . . , an ⇒ s
land

For the case of empty x1 . . . xm or y1 . . . ym the derivations are a bit different:

∅; y1 ⇒ y1 . . . ∅; yk ⇒ yk

∅; y1, . . . , yk ⇒ y1 • . . . • yk
•R

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, ar, . . . , an ⇒ s

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, I, ar, . . . , an ⇒ s
IL

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, I /(y1 • . . . • yk), y1, . . . , yk, ar, . . . , an ⇒ s
/L

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, y1, . . . , yk, ar, . . . , an ⇒ s
land

∅;Λ⇒ I
IR

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1, . . . , xm, ar, . . . , an ⇒ s

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1 • . . . • xm, ar, . . . , an ⇒ s
•L

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, (x1 • . . . • xm) / I, ar, . . . , an ⇒ s
/L

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, ar, . . . , an ⇒ s
land

2⇒ 3 By Proposition 2, since XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an ⇒ s is derivable
in !sb1/2L

∗b, π(XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an) ⇒ s is derivable in !L∗. The π-
projection of Zi is !Ai • I and the π-projection of I /(〈〉〈〉I) is I / I. Thus, by
definition of π,

π(XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an) =

!(I / !(!A1 • I)), . . . , !(I / !(!An • I)), !(I / I), !!(!A1 • I), . . . , !!(!An • I), a1, . . . , an,

and the sequent

!(I / !(!A1 • I)), . . . , !(I / !(!An • I)), !(I / I), !!(!A1 • I), . . . , !!(!An • I), a1, . . . , an ⇒ s
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is derivable in !L∗. Next, Λ⇒ !(I / !(!Ai • I)), Λ⇒ !(I / I), and !Ai ⇒ !!(!Ai • I)
are derivable in !L∗:

Λ⇒ I
!(!Ai • I)⇒ I

!W

Λ⇒ I / !(!Ai • I)
/R

Λ⇒ !(I / !(!Ai • I)
!R

I⇒ I
Λ⇒ I / I

/R

Λ⇒ !(I / I)
!R

!Ai ⇒ !Ai Λ⇒ I

!Ai ⇒ !Ai • I
•R

!Ai ⇒ !(!Ai • I)
!R

!Ai ⇒ !!(!Ai • I)
!R

Using cut in !L∗, we obtain

!A1, . . . , !An, a1, . . . , an ⇒ s,

which is exactly the necessary ΓS , a1, . . . , an ⇒ s.
Next, we can eliminate applications of cut in the !L∗ derivation by Proposi-

tion 1.
3⇒ 1 This part comes directly from the standard undecidability proof for

!L∗, see [16]. Consider the derivation of ΓS , a1, . . . , an ⇒ s in !L∗. Recall that
the cut rule can be eliminated by Proposition 1, so we can suppose that this
derivation is cut-free. All formulae in this derivation are subformulae of the goal
sequent, and the only applicable rules are •L, •R, /L, and rules operating ! in
the antecedent: !L, !C1,2, !W .

Now let us hide all the formulae which include /. Since all formulae with ! in
our sequent included /, this trivialises all !-operating rules. Next, let us replace
all •’s in the antecedents with commas, and remove unnecessary I’s there. This,
in its turn, trivialises •L and IL. All sequents in our derivation are now of the
form b1, . . . , bs ⇒ C, where s ≥ 0 and C = c1 • . . . • cr (r ≥ 1) or C = I. For the
sake of uniformity, we also write C = I as C = c1 • . . . • cr with r = 0. Inference
rules reduce to

bi+1, . . . , bj ⇒ y1 • . . . • yk b1, . . . , bi, x1, . . . , xm, bj+1, . . . , bs ⇒ C

b1, . . . , bi, bi+1, . . . , bj , bj+1, . . . , bs ⇒ C

where x1, . . . , xm → y1, . . . yk is a rewriting rule of S;

b1, . . . , bi ⇒ c1 • . . . • cj bi+1, . . . , bs ⇒ cj+1 • . . . • cr
b1, . . . , bi, bi+1, . . . , bs ⇒ c1 • . . . • cj • cj+1 • . . . • cr

and, finally, we have axioms of the form a⇒ a and Λ⇒ I.
Now straightforward induction on derivation establishes the following fact: if

b1, . . . , bs ⇒ c1 • . . . • cr is derivable in the simplified calculus presented above,
then b1 . . . bs is derivable from c1 . . . cr in the semi-Thue system S. This finishes
our proof.

5 Conclusion

In this paper, we have discussed a new version of interaction between brack-
ets and exponential, recently proposed by Glyn Morrill [32, 31]. This system is
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intended to be the basis for the categorial grammar parser CatLog3. For a frag-
ment of this system, we have proved undecidability of the derivability problem.
Undecidability for the corresponding fragment of a previous version [28] of Mor-
rill’s system was shown in [14]. The new contraction rule introduced by Morrill,
however, significantly differs from the earlier ones, and, unfortunately, existing
undecidability proofs [23, 12, 14] do not directly extend to the new version. The
necessary new technique for proving undecidability with the new form of the
contraction rule [32, 31] was developed in the present paper.

Future Work

One of the referees pointed out the following interesting question. The calcu-
lus !sb1/2L

∗b, considered in this paper, can generate ungrammatical sentences
(see end of Section 2), since it allows the user to put brackets on empty sub-
strings of the sentence being parsed. The question is whether the undecidability
proof presented in this paper is still valid for the variant of !sb1/2L

∗b where such
bracketing is disallowed. Furthermore, for the sake of cut-elimination, this non-
emptiness restriction should possibly be propagated to all bracketed expressions
and generally all meta-formulae inside the derivation. In particular, this condi-
tion would require excluding the product unit, I. The product unit is essentially
used in our undecidability proof, but potentially could be replaced by a unit-
free formula (cf. [19]). We leave this problem open for future research. There
are also issues with reconciling non-emptiness restrictions, cut-elimination, the
substitution property, and the full-power exponential modality [11, 13]. Settling
these issues for !sb1/2L

∗b, the calculus with brackets and non-standard rules for
!, requires further investigation.

There are several other problems which are still open. One open problem
is whether syntactic condition could be imposed on the formulae under ! (like
the so-called bracket non-negative condition [28, 14]), under which the system
becomes decidable. There is also an issue of extending the bracket-inducing algo-
rithm from [30] to the system with the subexponential discussed in the present
paper. Finally, it is interesting whether our result could be strengthened to the
undecidability of the one-division fragment of !sb1/2L

∗b, as it was done in [12]
using Buszkowski’s technique [4] of encoding semi-Thue derivations in the one-
divison Lambek calculus.
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