
L-completeness of the Lambek Calculus with the

Reversal Operation Allowing Empty Antecedents

Stepan Kuznetsov

Moscow State University

Abstract

In this paper we prove that the Lambek calculus allowing empty an-
tecedents and enriched with a unary connective corresponding to language
reversal is complete with respect to the class of models on subsets of free
monoids (L-models).

1 The Lambek Calculus with the Reversal Op-
eration

We consider the calculus L, introduced in [4]. The set Pr = {p1, p2, p3, . . . } is
called the set of primitive types. Types of L are built from primitive types using
three binary connectives: \ (left division), / (right division), and · (multipli-
cation); we shall denote the set of all types by Tp. Capital letters (A,B, . . .)
range over types. Capital Greek letters (except Σ) range over finite (possibly
empty) sequences of types; Λ stands for the empty sequence. Expressions of the
form Γ→ C, where Γ 6= Λ, are called sequents of L.

Axioms: A→ A.
Rules:

AΠ→ B
Π→ A \B

(→ \), Π 6= Λ Π→ A ΓB∆→ C
ΓΠ(A \B)∆→ C

(\ →)

ΠA→ B
Π→ B /A

(→ /), Π 6= Λ Π→ A ΓB∆→ C
Γ(B /A)Π∆→ C

(/→)

Π→ A ∆→ B
Π∆→ A ·B (→ ·) ΓAB∆→ C

Γ(A ·B)∆→ C
(· →)

Published in Categories and types in logic, language, and physics: Essays dedicated to
Jim Lambek on the occasion of his 90th birthday, LNCS vol. 8222, 2014, pp. 268–278.

The final publication is available at link.springer.com:
http://link.springer.com/chapter/10.1007/978-3-642-54789-8 15

1

Π→ A ΓA∆→ C
ΓΠ∆→ C

(cut)

The (cut) rule is eliminable [4].
We also consider an extra unary connective R (written in the postfix form,

AR). The extended set of types is denoted by TpR. For a sequence of types
Γ = A1A2 . . . An let ΓR � AR

n . . . A
R
2 A

R
1 (“�” here and further means “equal

by definition”).
The calculus LR is obtained from L by adding three rules for R:

Γ→ C

ΓR → CR
(R → R) ΓARR∆→ C

ΓA∆→ C
(RR →)E

Γ→ CRR

Γ→ C
(→ RR)E

Dropping the Π 6= Λ restriction on the (→ \) and (→ /) rules of L leads
to the Lambek calculus allowing empty antecedents called L∗. The calculus L∗R

is obtained from L∗ by changing the type set from Tp to TpR and adding the
(R → R), (RR →)E, and (→ RR)E rules.

Unfortunately, there is no subformula property known for LR and L∗R. Nev-
ertheless, LR is a conservative extension of L, and L∗R is a conservative extension
of L∗:

Lemma 1. A sequent formed of types from Tp is provable in LR (L∗R) if and
only if it is provable in L (resp., L∗).

This lemma will be proved later via a semantic argument.

2 Normal Form for Types

The R connective in the Lambek calculus and linear logic was first considered
in [5] (there it is denoted by)̆. In [5], this connective is axiomatised using
Hilbert-style axioms:

ARR ↔ A and (A ·B)R ↔ BR ·AR.

Here F ↔ G (“F is equivalent to G”) is a shortcut for two sequents: F → G
and G→ F . The relation ↔ is reflexive, symmetric, and transitive (due to the
rule (cut)). Using (cut) one can prove that if LR ` F1 → G1, F1 ↔ F2, and
G1 ↔ G2, then LR ` F2 → G2. Also,↔ is a congruence relation, in the following
sense: if A1 ↔ A2 and B1 ↔ B2, then A1 · B1 ↔ A2 · B2, A1 \B1 ↔ A2 \B2,
B1 /A1 ↔ B2 /A2, AR

1 ↔ AR
2 .

These axioms are provable in LR and, vice versa, adding them to L yields a
calculus equivalent to LR. The same is true for L∗R and L∗ respectively.

Furthermore, the following two equivalences hold in LR and L∗R:

(A \B)R ↔ BR /AR and (B /A)R ↔ AR \BR.

Using the four equivalences above one can prove by induction that any type
A ∈ TpR is equivalent to its normal form tr(A), defined as follows:

2

1. tr(pi)� pi;

2. tr(pRi)� pRi ;

3. tr(A ·B)� tr(A) · tr(B);

4. tr(A \B)� tr(A) \ tr(B);

5. tr(B /A)� tr(B) / tr(A);

6. tr((A ·B)R)� tr(BR) · tr(AR);

7. tr((A \B)R)� tr(BR) / tr(AR);

8. tr((B /A)R)� tr(AR) \ tr(BR);

9. tr(ARR)� tr(A).

In the normal form, the R connective can appear only on occurrences of
primitive types. Obviously, tr(tr(A)) = tr(A) for every type A.

We also consider variants of L and L∗ with Tp∪{pR | p ∈ Tp} instead of Tp
as the set of primitive types. These calculi will be called L′ and L∗′ respectively.
Obviously, if a sequent is provable in L′, then all its types are in normal form
and this sequent is provable in LR (and the same for L∗′ and L∗R). Later we
shall prove the converse statement:

Lemma 2. A sequent F1 . . . Fn → G is provable in LR (resp., L∗R) if and only
if the sequent tr(F1) . . . tr(Fn)→ tr(G) is provable in L′ (resp., L∗′).

3 L-models

Now let Σ be an alphabet (an arbitrary nonempty set, finite or countable). By
Σ+ we denote the set of all nonempty words over Σ; the set of all words over
Σ, including the empty word, is denoted by Σ∗. The set Σ∗ with the operation
of word concatenation is the free monoid generated by Σ; the empty word ε is
the unit of this monoid. Subsets of Σ∗ are called languages over Σ. The set Σ+

with the same operation is the free semigroup generated by Σ. Its subsets are
languages without the empty word.

The set P(Σ∗) of all languages is also a monoid: if M,N ⊆ Σ∗, then let
M ·N be {uv | u ∈ M, v ∈ N}; the singleton {ε} is the unit. Likewise, the set
P(Σ+) is a semigroup with the same multiplication operation.

On these two structures one can also define two division operations: M \N �
{u ∈ Σ∗ | (∀v ∈M) vu ∈ N}, N/M � {u ∈ Σ∗ | (∀v ∈M)uv ∈ N} for P(Σ∗),
and M \N � {u ∈ Σ+ | (∀v ∈ M) vu ∈ N}, N/M � {u ∈ Σ+ | (∀v ∈
M)uv ∈ N} for P(Σ+). Note that, unlike multiplication, the P(Σ∗) version of
division operations does not coincide with the P(Σ+) one even for languages
without the empty word. For example, if M = N = {a} (a ∈ Σ), then M \N is
{ε} in P(Σ∗) and empty in P(Σ+).

3

These three operations on languages naturally correspond to three connec-
tives of the Lambek calculus, thus giving an interpretation for Lambek types
and sequents. An L-model is a pairM = 〈Σ, w〉, where Σ is an alphabet and w
is a function that maps Lambek calculus types to languages over Σ, such that
w(A ·B) = w(A) ·w(B), w(A \B) = w(A) \w(B), and w(B /A) = w(B) /w(A)
for all A,B ∈ Tp. One can consider models either with or without the empty
word, depending on what set of languages (P(Σ∗) or P(Σ+)), and, more impor-
tantly, what version of the division operations is used. Models with and without
the empty word are similar but different (in particular, models with the empty
word are not a generalisation of models without it). Obviously, w can be defined
on primitive types in an arbitrary way, and then it is uniquely propagated to
all types.

A sequent F1 . . . Fn → G is considered true in a modelM (M � F1 . . . Fn →
G) if w(F1)·. . .·w(Fn) ⊆ w(G). If the sequent has an empty antecedent (n = 0),
i. e., is of the form→ G, then it is considered true if ε ∈ w(G). This implies that
such sequents are never true in L-models without the empty word. L-models
give sound and complete semantics for L and L∗, due to the following theorem:

Theorem 1. A sequent is provable in L if and only if it is true in all L-models
without the empty word. A sequent is provable in L∗ if and only if it is true in
all L-models with the empty word.

This theorem is proved in [8] for L and in [9] for L∗; its special case for
the product-free fragment (where we keep only types without multiplication) is
much easier and appears in [1].

Note that for L and L-models without the empty word it is sufficient to
consider only sequents with one type in the antecedent, since L ` F1F2 . . . Fn →
G if and only if L ` F1 · F2 · . . . · Fn → G. For L∗ and L-models with the empty
word it is sufficient to consider only sequents with empty antecedent, since
L∗ ` F1 . . . Fn−1Fn → G if and only if L∗ ` → Fn \(Fn−1 \ . . . \(F1 \G) . . .)).

4 L-models with the Reversal Operation

The new R connective corresponds to the language reversal operation. For
u = a1a2 . . . an (a1, . . . , an ∈ Σ, n ≥ 1) let uR � an . . . a2a1; εR � ε. For
a language M let MR � {uR | u ∈ M}. The notion of L-model is easily
modified to deal with the new connective by adding additional constraints on
w: w(AR) = w(A)R for every type A.

One can easily show that the calculi LR and L∗R are sound with respect
to L-models with the reversal operation (without and with the empty word
respectively). Now, using this soundness statement and Pentus’ completeness
theorem (Theorem 1), we can prove Lemma 1 (conservativity of LR over L and
L∗R over L∗): if a sequent is provable in LR (resp., L∗R) and does not contain the
R connective, then it is true in all L-models without the empty word (resp., with
the empty word). Moreover, in these L-models the language reversal operation

4

is never used. Therefore, the sequent involved is provable in L (resp., L∗) due
to the completeness theorem.

The completeness theorem for LR is proved in [3] (the product-free case is
again easy and is handled in [6] using Buszkowski’s argument [1]):

Theorem 2. A sequent is provable in LR if and only if it is true in all L-models
with the reversal operation and without the empty word.

In this paper we present a proof for the L∗R version of this theorem:

Theorem 3. A sequent is provable in L∗R if and only if it is true in all L-models
with the reversal operation and with the empty word.

The proof basically duplicates the proof of Theorem 2 from [3]; changes are
made to handle the empty word cases.

The main idea is as follows: if a sequent in normal form is not provable in
L∗R, then it is not provable in L∗′. Therefore, by Theorem 1, there exists a model
in which this sequent is not true, but this model does not necessarily satisfy all
of the conditions w(AR) = w(A)R. We want to modify our model by adding
w(AR)R to w(A). For LR [3], we can first make the sets w(AR)R and w(A)
disjoint by replacing every letter a ∈ Σ by a long word a(1) . . . a(N) (a(i) are
symbols from a new alphabet); then the new interpretation for A is going to be
w(A)∪w(AR)R∪T with an appropriate “trash heap” set T . For L∗R, we cannot
do this directly, because ε will still remain the same word after the substitution
of long words for letters. Fortunately, the model given by Theorem 1 enjoys a
sort of weak universal property: if a type A is a subtype of our sequent, then
ε ∈ w(A) if and only if L∗′ ` → A. Hence, if ε ∈ w(A), then ε ∈ w(AR), and
vice versa, so the empty word does not do any harm here.

Note that essentially here we need only the fact that our sequent is not
derivable in L∗′, but not L∗R, and from this assumption we prove the existence
of a model falsifying it. Hence, the sequent is not provable in L∗R. Therefore,
we have proved Lemma 2.

5 L-completeness of L∗R (Proof)

Let L∗R 6` → G (as mentioned earlier, it is sufficient to consider sequents with
empty antecedent). Also let G be in normal form (otherwise replace it by tr(G)).

Since L∗R 6` → G, L∗′ 6` → G. The calculus L∗′ is essentially the same as L∗,
therefore Theorem 1 gives us a structure M = 〈Σ, w〉 such that ε /∈ w(G). The
structure M indeed falsifies → G, but it is not a model in the sense of our new
language: some of the conditions w(pRi) = w(pi)

R might be not satisfied.
Let Φ be the set of all subtypes of G (including G itself; the notion of subtype

is understood in the sense of LR).
The construction ofM (see [9]) guarantees that the following two statements

hold for every A ∈ Φ:

1. w(A) 6= ∅;

5

2. ε ∈ w(A) ⇐⇒ L∗′ ` → A.

We introduce an inductively defined counter f(A), A ∈ Φ: f(pi) � 1,
f(pRi)� 1, f(A ·B)� f(A) + f(B) + 10, f(A \B)� f(B), f(B /A)� f(B).
Let K � max{f(A) | A ∈ Φ}, N � 2K + 25 (N should be odd, greater than
K, and big enough itself).

Let Σ1 � Σ × {1, . . . , N}. We shall denote the pair 〈a, j〉 ∈ Σ1 by a(j).
Elements of Σ and Σ1 will be called letters and symbols respectively. A symbol
can be even or odd depending on the parity of the superscript. Consider a
homomorphism h : Σ∗ → Σ∗1, defined as follows: h(a) � a(1)a(2) . . . a(N) (a ∈
Σ), h(a1 . . . an) � h(a1) . . . h(an), h(ε) = ε. Let P � h(Σ+). Note that h is a
bijection between Σ∗ and P ∪ {ε} and between Σ+ and P .

Lemma 3. For all M,N ⊆ Σ∗ we have

1. h(M ·N) = h(M) · h(N);

2. if M 6= ∅, then h(M \N) = h(M) \h(N) and h(N/M) = h(N) / h(M).

Proof.

1. By the definition of a homomorphism.

2. ⊆ Let u ∈ h(M \N). Then u = h(u′) for some u′ ∈ M \N . For all

v′ ∈ M we have v′u′ ∈ N . Take an arbitrary v ∈ h(M), v = h(v′) for
some v′ ∈ M . Since u′ ∈ M \N , v′u′ ∈ N , whence vu = h(v′)h(u′) =
h(v′u′) ∈ h(N). Therefore u ∈ h(M) \h(N).

⊇ Let u ∈ h(M) \h(N). First we claim that u ∈ P ∪ {ε}. Suppose the

contrary: u /∈ P ∪ {ε}. Take v′ ∈ M (M is nonempty by assumption).
Since v = h(v′) ∈ P ∪{ε}, vu /∈ P ∪{ε}. On the other hand, vu ∈ h(N) ⊆
P∪{ε}. Contradiction. Now, since u ∈ P∪{ε}, u = h(u′) for some u′ ∈ Σ∗.
For an arbitrary v′ ∈ M and v � h(v′) we have h(v′u′) = vu ∈ h(N),
whence v′u′ ∈ N , whence u′ ∈M \N . Therefore, u = h(u′) ∈ h(M \N).

The / case is handled symmetrically.

We construct a new model M1 = 〈Σ1, w1〉, where w1(z) � h(w(z)) (z ∈
Pr′). Due to Lemma 3, w1(A) = h(w(A)) for all A ∈ Φ, and, since ε /∈ w(G),
we obtain ε /∈ w1(G) = h(w(G)). (M1 is also a countermodel in the language
without R). Note that w1(A) ⊆ P ∪ {ε} for any type A; moreover, if A ∈ Φ,
then ε ∈ w1(A) if and only if L∗′ ` → A.

Now we introduce several auxiliary subsets of Σ+
1 (by Subw(M) we denote

the set of all nonempty subwords of words from M , i.e. Subw(M)� {u ∈ Σ+
1 |

(∃v1, v2 ∈ Σ∗1) v1uv2 ∈M}):
T1 � {u ∈ Σ+

1 | u /∈ Subw(P ∪ PR)};
T2 � {u ∈ Subw(P ∪ PR) | the first or the last symbol of u is even};

6

E � {u ∈ Subw(P ∪PR)− (P ∪PR) | both the first symbol and the last symbol
of u are odd}.

The sets P , PR, T1, T2, and E form a partition of Σ+
1 into nonintersecting

parts. The set Σ∗1 is now split into six disjoint subsets: P , PR, T1, T2, E, and
{ε}. For example, a(1)b(10)a(2) ∈ T1, a(N)b(1) . . . b(N−1) ∈ T2, a(7)a(6)a(5) ∈ E
(a, b ∈ Σ). Let T � T1 ∪ T2, Ti(k) � {u ∈ Ti | |u| ≥ k} (i = 1, 2, |u| is the
length of u), T (k) � T1(k) ∪ T2(k) = {u ∈ T | |u| ≥ k}. Note that if the first
or the last symbol of u is even, then u ∈ T , no matter whether it belongs to
Subw(P ∪ PR). The index k (possibly with subscripts) here and further ranges
from 1 to K. For all k we have T (k) ⊇ T (K).

Lemma 4.

1. P · P ⊆ P , PR · PR ⊆ PR;

2. TR = T , T (k)R = T (k);

3. P · PR ⊆ T (K), PR · P ⊆ T (K);

4. P · T ⊆ T (K), T · P ⊆ T (K);

5. PR · T ⊆ T (K), T · PR ⊆ T (K);

6. T · T ⊆ T .

Proof.

1. Obvious.

2. Directly follows from our definitions.

3. Any element of P · PR or PR · P does not belong to Subw(P ∪ PR) and
its length is at least 2N > K. Therefore it belongs to T1(K) ⊆ T (K).

4. Let u ∈ P and v ∈ T . If v ∈ T1, then uv is also in T1. Let v ∈ T2. If the
last symbol of v is even, then uv ∈ T . If the last symbol of v is odd, then
uv /∈ Subw(P ∪ PR), whence uv ∈ T1 ⊆ T . Since |uv| > |u| ≥ N > K,
uv ∈ T (K).

The claim T · P ⊆ T is handled symmetrically.

5. PR · T = PR · TR = (T · P)R ⊆ T (K)R = T (K). T · PR = TR · PR =
(P · T)R ⊆ T (K)R = T (K).

6. Let u, v ∈ T . If at least one of these two words belongs to T1, then uv ∈ T1.
Let u, v ∈ T2. If the first symbol of u or the last symbol of v is even, then
uv ∈ T . In the other case u ends with an even symbol, and v starts with
an even symbol. But then we have two consecutive even symbols in uv,
therefore uv ∈ T1.

7

Let us call words of the form a(i)a(i+1)a(i+2), a(N−1)a(N)b(1), and a(N)b(1)b(2)

(a, b ∈ Σ, 1 ≤ i ≤ N − 2) valid triples of type I and their reversals (namely,
a(i+2)a(i+1)a(i), b(1)a(N)a(N−1), and b(2)b(1)a(N)) valid triples of type II. Note
that valid triples of type I (resp., of type II) are the only possible three-symbol
subwords of words from P (resp., PR).

Lemma 5. A word u of length at least three is a subword of a word from P ∪PR

if and only if any three-symbol subword of u is a valid triple of type I or II.

Proof. The nontrivial part is “if”. We proceed by induction on |u|. Induction
base (|u| = 3) is trivial. Let u be a word of length m+1 satisfying the condition
and let u = u′x (x ∈ Σ1). By induction hypothesis (|u′| = m), u′ ∈ Subw(P ∪
PR). Let u′ ∈ Subw(P) (the other case is handled symmetrically); u′ is a
subword of some word v ∈ P . Consider the last three symbols of u. Since the
first two of them also belong to u′, this three-symbol word is a valid triple of type
I, not type II. If it is of the form a(i)a(i+1)a(i+2) or a(N)b(1)b(2), then x coincides
with the symbol next to the occurrence of u′ in v, and therefore u = u′x is also a
subword of v. If it is of the form a(N−1)a(N)b(1), then, provided v = v1u

′v2, v1u
′

is also an element of P , and so is the word v1u
′b(1)b(2) . . . b(N), which contains

u = u′b(1) as a subword. Thus, in all cases u ∈ Subw(P).

Now we construct one more modelM2 = 〈Σ1, w2〉, where w2(pi)� w1(pi)∪
w1(pRi)R ∪ T , w2(pRi) � w1(pi)

R ∪ w1(pRi) ∪ T . This model is a model even in
the sense of the enriched language. To finish the proof, we need to check that
M2 6� → G, e.g. w2(G) 63 ε.

Lemma 6. For any A ∈ Φ the following holds:

1. w2(A) ⊆ P ∪ PR ∪ {ε} ∪ T ;

2. w2(A) ⊇ T (f(A));

3. w2(A) ∩ (P ∪ {ε}) = w1(A) (in particular, w2(A) ∩ (P ∪ {ε}) 6= ∅);

4. w2(A)∩(PR∪{ε}) = w1(tr(AR))R (in particular, w2(A)∩(PR∪{ε}) 6= ∅);

5. ε ∈ w2(A) ⇐⇒ L∗′ ` → A.

Proof. We prove statements 1–4 simultaneously by induction on type A.
The induction base is trivial. Further we shall refer to the i-th statement of

the induction hypothesis (i = 1, 2, 3, 4) as “IH-i”.
1. Consider three possible cases.
a) A = B · C. Then w2(A) = w2(B) · w2(C) ⊆ (P ∪ PR ∪ {ε} ∪ T) · (P ∪

PR ∪ {ε} ∪ T) ⊆ P ∪ PR ∪ {ε} ∪ T (Lemma 4).
b) A = B \C. Suppose the contrary: in w2(A) there exists an element

u ∈ E. Then vu ∈ w2(C) for any v ∈ w2(B). We consider several subcases and
show that each of those leads to a contradiction.

i) u ∈ Subw(P), and the superscript of the first symbol of u (as ε /∈ E, u
contains at least one symbol) is not 1. Let the first symbol of u be a(i). Note

8

that i is odd and i > 2. Take v = a(3) . . . a(N)a(1) . . . a(i−1). The word v has
length at least N ≥ K and ends with an even symbol, therefore v ∈ T (K) ⊆
T (f(B)) ⊆ w2(B) (IH-2). On the other hand, vu ∈ Subw(P) and the first
symbol and the last symbol of vu are odd. Therefore, vu ∈ E and vu ∈ w2(C),
but w2(C) ∩ E = ∅ (IH-1). Contradiction.

ii) u ∈ Subw(P), and the first symbol of u is a(1) (then the superscript of the
last symbol of u is not N , because otherwise u ∈ P). Take v ∈ w2(B)∩(P ∪{ε})
(this set is nonempty due to IH-3). If v = ε, then vu = u ∈ E. Otherwise the
first and the last symbol of vu are odd, and vu ∈ Subw(P) − P , and again we
have vu ∈ E. Contradiction.

iii) u ∈ Subw(PR), and the superscript of the first symbol of u is not N
(the first symbol of u is a(i), i is odd). Take v = a(N−2) . . . a(1)a(N) . . . a(i+1) ∈
T (K) ⊆ w2(B). Again, vu ∈ E.

iv) u ∈ Subw(PR), and the first symbol of u is a(N). Take v ∈ w2(B) ∩
(PR ∪ {ε}) (nonempty due to IH-4). vu ∈ E.

c) A = C /B. Proceed symmetrically.

2. Consider three possible cases.
a) A = B · C. Let k1 � f(B), k2 � f(C), k � k1 + k2 + 10 = f(A). Due

to IH-2, w2(B) ⊇ T (k1) and w2(C) ⊇ T (k2). Take u ∈ T (k). We have to prove
that u ∈ w2(A). Consider several subcases.

i) u ∈ T1(k). By Lemma 5 (|u| ≥ k > 3 and u /∈ Subw(P ∪ PR)) in
u there is a three-symbol subword xyz that is not a valid triple of type I or
II. Divide the word u into two parts, u = u1u2, such that |u1| ≥ k1 + 5,
|u2| ≥ k2 + 5. If needed, shift the border between parts by one symbol to the
left or to the right, so that the subword xyz lies entirely in one part. Let this
part be u2 (the other case is handled symmetrically). Then u2 ∈ T1(k2). If u1
is also in T1, then the proof is finished. Consider the other case. Note that in
any word from Subw(P ∪ PR) among any three consecutive symbols at least
one is even. Shift the border to the left by at most 2 symbols to make the
last symbol of u1 even. Then u1 ∈ T (k1), and u2 remains in T1(k2). Thus
u = u1u2 ∈ T (k1) · T (k2) ⊆ w2(B) · w2(C) = w2(A).

ii) u ∈ T2(k). Let u end with an even symbol (the other case is symmetric).
Divide the word u into two parts, u = u1u2, |u1| ≥ k1 + 5, u2 ≥ k2 + 5, and
shift the border (if needed), so that the last symbol of u1 is even. Then both
u1 and u2 end with an even symbol, and therefore u1 ∈ T (k1) and u2 ∈ T (k2).

b) A = B \C. Let k � f(C) = f(A). By IH-2, w2(C) ⊇ T (k). Take
u ∈ T (k) and an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ {ε} ∪ T . By Lemma 4,
statements 4–6, vu ∈ (P ∪ PR ∪ {ε} ∪ T) · T ⊆ T , and since |vu| ≥ |u| ≥ k,
vu ∈ T (k) ⊆ w2(C). Thus u ∈ w2(A).

c) A = C /B. Symmetrically.

3. Consider three possible cases.
a) A = B · C.

⊇ u ∈ w1(A) = w1(B)·w1(C) ⊆ w2(B)·w2(C) = w2(A) (IH-3); u ∈ P∪{ε}.
⊆ Suppose u ∈ P ∪ {ε} and u ∈ w2(A) = w2(B) · w2(C). Then u = u1u2,

9

where u1 ∈ w2(B) and u2 ∈ w2(C). First we claim that u1 ∈ P ∪ {ε}. Suppose
the contrary. By IH-1, u1 ∈ PR ∪ T , u2 ∈ P ∪ PR ∪ {ε} ∪ T , and therefore
u = u1u2 ∈ (PR ∪ T) · (P ∪ PR ∪ {ε} ∪ T) ⊆ PR ∪ T (Lemma 4, statements
1, 3–6). Hence u /∈ P ∪ {ε}. Contradiction. Thus, u1 ∈ P ∪ {ε}. Similarly,
u2 ∈ P ∪ {ε}, and by IH-3 we obtain u1 ∈ w1(B) and u2 ∈ w1(C), whence
u = u1u2 ∈ w1(A).

b) A = B \C.

⊇ Take u ∈ w1(B \C) ⊆ P ∪ {ε}. First we consider the case where u = ε.

Then we have L∗′ ` → B \C, whence u = ε ∈ w2(B \C). Now let u ∈ P .
For any v ∈ w1(B) we have vu ∈ w1(C). We claim that u ∈ w2(B \C). Take
v ∈ w2(B) ⊆ P ∪ PR ∪ {ε} ∪ T (IH-1). If v ∈ P ∪ {ε}, then v ∈ w1(B) (IH-
3), and vu ∈ w1(C) ⊆ w2(C) (IH-3). If v ∈ PR ∪ T , then vu ∈ (PR ∪ T) ·
P ⊆ T (K) ⊆ w2(C) (Lemma 4, statements 3 and 4, and IH-2). Therefore,
u ∈ w2(B) \w2(C) = w2(B \C).

⊆ If u ∈ w2(B \C) and u ∈ P ∪ {ε}, then for any v ∈ w1(B) ⊆ w2(B) we

have vu ∈ w2(C). Since v, u ∈ P ∪ {ε}, vu ∈ P ∪ {ε}. By IH-3, vu ∈ w1(C).
Thus u ∈ w1(B \C).

c) A = C /B. Symmetrically.

4. Consider three cases.
a) A = B · C. Then tr(AR) = tr(CR) · tr(BR).

⊇ u ∈ w1(tr(AR))R = w1(tr(CR)·tr(BR))R =
(
w1(tr(CR))·w1(tr(BR))

)R
=

w1(tr(BR))R · w1(tr(CR))R ⊆ w2(B) · w2(C) = w2(A) (IH-4); u ∈ PR ∪ {ε}.
⊆ Let u ∈ PR∪{ε} and u ∈ w2(A) = w2(B)·w2(C). Then u = u1u2, where

u1 ∈ w2(B), u2 ∈ w2(C). We claim that u1 ∈ PR ∪ {ε}. Suppose the contrary.
By IH-1, u1 ∈ P ∪ T , u2 ∈ P ∪ PR ∪ {ε} ∪ T , whence u = u1u2 ∈ (P ∪ T) · (P ∪
PR ∪ {ε} ∪ T) ⊆ P ∪ T . Contradiction. Thus, u1 ∈ PR ∪ {ε}, and therefore
u2 ∈ PR∪{ε}, and, using IH-4, we obtain u1 ∈ w1(tr(BR))R, u2 ∈ w1(tr(CR))R.

Hence u = u1u2 ∈ w1(tr(BR))R ·w1(tr(CR))R =
(
w1(tr(CR)) ·w1(tr(BR))

)R
=

w1(tr(CR) · tr(BR))R = w1(tr(AR))R.
b) A = B \C. Then tr(AR) = tr(CR) / tr(BR).

⊇ Let u ∈ w1(tr(CR) / tr(BR))R = w1(tr(BR))R \w1(tr(CR))R, First we

consider the case where u = ε. Then L∗′ ` → tr(CR) / tr(BR), whence ε ∈
w2(tr(CR) / tr(BR)) = w2(tr(AR)). Therefore, u ∈ w2(tr(AR))R. Now let
u ∈ PR. For every v ∈ w1(tr(BR))R we have vu ∈ w1(tr(CR))R. We claim that
u ∈ w2(B \C). Take an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ {ε} ∪ T (IH-1). If
v ∈ PR∪{ε}, then v ∈ w1(tr(BR))R (IH-4), whence vu ∈ w1(tr(CR))R ⊆ w2(C).
If v ∈ P ∪ T , then (since u ∈ PR) we have vu ∈ (P ∪ T) · PR ⊆ T (K) ⊆ w2(C)
(Lemma 4 and IH-2).

⊆ If u ∈ w2(B \C) and u ∈ PR ∪ {ε}, then for any v ∈ w1(tr(BR))R ⊆
w2(B) we have vu ∈ w2(C). Since v, u ∈ PR ∪ {ε}, vu ∈ PR ∪ {ε}, therefore
vu ∈ w1(tr(CR))R (IH-4). Thus u ∈ w1(tr(BR))R \w1(tr(CR))R = w1(AR)R.

c) A = C /B. Symmetrically.

This completes the proof of statements 1–4 of Lemma 6. Statement 5 follows

10

from statement 3 and immediately yields Theorem 3 (L∗′ 6` → G, whence ε /∈
w2(G)).

6 Grammars and Complexity

The Lambek calculus and its variants are used for describing formal languages
via Lambek categorial grammars. An L∗-grammar is a triple G = 〈Σ, H,B〉,
where Σ is a finite alphabet, H ∈ Tp, and B is a finite correspondence between
Tp and Σ (B ⊂ Tp×Σ). The language generated by G is the set of all nonempty
words a1 . . . an over Σ for which there exist types B1, . . . , Bn such that L∗ `
B1 . . . Bn → H and BiBai for all i ≤ n. We denote this language by L(G). The
notion of L-grammar is defined in a similar way. These classes of grammars
are weakly equivalent to the classes of context-free grammars with and without
ε-rules in the following sense:

Theorem 4. A formal language is context-free if and only if it is generated by
some L∗-grammar. A formal language without the empty word is context-free if
and only if it is generated by some L-grammar. [7] [2]

By modifying our definition in a natural way one can introduce the notion
of L∗R-grammar and LR-grammar. These grammars also generate precisely all
context-free languages (resp., context-free languages without the empty word):

Theorem 5. A formal language is context-free if and only if it is generated by
some L∗R-grammar. A formal language without the empty word is context-free
if and only if it is generated by some LR-grammar.

Proof. The “only if” part follows directly from Theorem 4 due to the conserva-
tivity of L∗R over L∗ and LR over L (Lemma 1).

The “if” part is proved by replacing all types in an L∗R-grammar (L∗-
grammar) by their normal forms and applying Lemma 2.

Since A/B is equivalent in LR and L∗R to (BR \AR)R, and the derivability
problem in Lambek calculus with two division operators is NP-complete [10]
(this holds both for L and L∗), the derivability problem is NP-complete even for
the fragment of LR (L∗R) with one division.

Acknowledgments

I am grateful to Prof. Mati Pentus for fruitful discussions and constant attention
to my work. I am also grateful to Prof. Sergei Adian for inspiring techniques of
working with words over an alphabet given in his lectures and papers.

This research was supported by the Russian Foundation for Basic Research
(grants 11-01-00281-a and 12-01-00888-a), by the Presidential Council for Sup-
port of Leading Research Schools (grant NŠ 5593.2012.1) and by the Scientific
and Technological Cooperation Programme Switzerland–Russia (STCP-CH-RU,
project “Computational Proof Theory”).

11

References

[1] Buszkowski, W.: Compatibility of categorial grammar with an associated
category system. Zeitschr. für Math. Logik und Grundl. der Math. 28, 229–
238 (1982)

[2] Kuznetsov, S.: Lambek grammars with one division and one primitive type.
Logic Journal of the IGPL, Vol. 20, No. 1, 207–221 (2012)

[3] Kuznetsov, S.: L-completeness of the Lambek calculus with the reversal
operation. In: Béchet, D., Dikovsky, A. (eds.) Logical Aspects of Compu-
tational Linguistics 2012. LNCS vol. 7351, pp. 151–160. Springer-Verlag,
Berlin, Heidelberg (2012)

[4] Lambek, J.: The mathematics of sentence structure. American Math.
Monthly 65(3), 154–170 (1958)

[5] Lambek, J.: From categorial grammar to bilinear logic. In: Došen, K.,
Schroeder-Heister, P. (eds.) Substructural Logics. Studies in Logic and Com-
putation, vol. 2, pp. 128–139. Clarendon Press, Oxford (1993)

[6] Minina, V. A.: Completeness of the Lambek syntactic calculus with the
involution operation (in Russian). Diploma paper, Dept. of Math. Logic and
Theory of Algorithms, Moscow State University (2001)

[7] Pentus, M.: Lambek grammars are context free. In: 8th Annual IEEE Sym-
posium on Logic in Computer Science, pp. 429–433. IEEE Computer Society
Press, Los Alamitos, California (1993)

[8] Pentus, M.: Models for the Lambek calculus. Annals of Pure and Applied
Logic 75(1–2), 179–213 (1995)

[9] Pentus, M.: Free monoid completeness of the Lambek calculus allowing
empty premises. In: Larrazabal, J. M., Lascar, D., Mints, G. (eds.) Logic
Colloquium ’96. LNL vol. 12, pp. 171–209. Springer, Berlin etc. (1998)

[10] Savateev, Y.: Product-free Lambek calculus is NP-complete. In: Artemov,
S. N., Nerode, A. (eds.) Logical Foundations of Computer Science. LNCS
vol. 5407, pp. 380–394. Springer, Berlin etc. (2009)

12

