
Categorial Grammars Based on Variants
of the Lambek Calculus

Candidate of Science (Ph. D.) Thesis
(translated from Russian)

by Stepan Lvovich Kuznetsov,

Department of Mathematical Logic and Theory of Algorithms,
Faculty of Mathematics and Mechanics, Moscow State University

Moscow, 2012

Area: 01.01.06 — Mathematical Logic, Algebra, and Number Theory.
Defended on June 8, 2012 at Moscow State University (dissertation council No. D 501.001.84).
Confirmed by the Ministry of Education and Science of Russia on March 11, 2013 (order No.
130/nk).
Supervisor: Prof., Dr. Sc. M. R. Pentus.
Official opponents:

Dr. Sc. I. G. Lysionok (Steklov Mathematical Institute, RAS);
C. Sc. (Ph. D.) A. V. Kudinov (Institute for Information Transmission Problems, RAS);

Tver State University.

1

Contents

Introduction 3

1 The Lambek Calculus and Categorial Grammars 5
1.1 The Calculus L and Its Fragments . 5
1.2 The Calculi L∗ and L1 . 6
1.3 Conservativity. Substitution and Equivalence 6
1.4 Lambek Categorial Grammars . 7
1.5 Complexity Results for the Lambek Calculus and its Fragments 9
1.6 Multiplicative Cyclic Linear Logic . 10
1.7 Proof Nets . 11
1.8 L∗(\)-grammars for Context-Free Languages with the Empty Word 14

2 The Lambek Calculus with the Unit 16
2.1 An Alternative Axiomatisation of L1 . 16
2.2 Reduction of L1 to L∗. L1-grammars . 16
2.3 Reduction of L1(\) to L∗(\). A Polynomial Algorithm for the Derivability

Problem in L1(\) . 18

3 The Lambek Calculus with One Primitive Type 21
3.1 Reduction of L(\; p1, . . . , pN) to L(\; p) 21
3.2 Faithfullness of the Substitution (Proof) 22
3.3 L(\; p)-grammars and L∗(\; p)-grammars 25
3.4 NP-completeness of Derivability Problems for L(·, \; p), L(\, /; p), and

L∗(\, /; p) . 25
3.5 The Uniform Substitution . 26

4 The Lambek Calculus with the Reversal Operation 28
4.1 L-models for L . 28
4.2 The LR Calculus . 28
4.3 Normal Form for LR types . 29
4.4 L-completeness of LR (Proof) . 30
4.5 LR: Grammars and Complexity . 34

36

2

Introduction

Historical Background

The Lambek calculus L was introduced by J. Lambek [16] for defining natural language
syntax using categorial grammars [22][21]. This calculus uses syntactic types built from
primitive ones using three binary connectives: multiplication, left and right division.

Chomsky [7] suggested another family of grammars, called the Chomsky hierar-
chy. The most well-known class grammars from this hierarchy is the class of context-free
grammars. Context-free grammars are widely used for parsing artificial languages (e.g.,
programming languages [1]), but for natural languages categorial grammars have signifi-
cant advantages. In particular, they enjoy the lexicalisation property: all the information
about syntax is kept in the categorial dictionary, and the analyser needs only that part
of the dictionary, which is relevant to the text being parsed. Categorial grammars also
allow to do semantic analysis, e.g., using Montague semantics [6].

We focus on comparing classes of languages generated by different classes of gram-
mars just as sets of words, without syntactic structure. In this (so called weak) sense
Lambek grammars are equivalent to context-free ones: the class of languages generated
by grammars, based on L, coincides with the class of all context-free languages without
the empty word [30]. Similar questions can be posed for grammars based on variants of
the Lambek calculus (its fragments and extensions). It is known [5] that all context-free
languages without the empty word can be generated by grammars based on the fragment
of the Lambek calculus with only one division. Kanazawa [15] considered languages
generated by grammars based on the Lambek calculus with additive conjunction and
disjunction. This class of languages strictly contains finite intersections of context-free
languages and lies inside the class of all context-sensitive languages. Moortgat [20] en-
riched the Lambek calculus with two modalities; as shown by Jäger [14], this extension
does not enlarge the class of languages. Dikovsky and Dekhtyar [8] considered catego-
rial dependency grammars (CDGs) based on a fragment of the Lambek calculus without
multiplication, but with additional connectives for nonlocal dependencies, with a restric-
tion: all the denominators are primitive types. Languages generated by CDGs form a
special class that strictly contains the class context-free languages and is closed under
finite unions, intersections with regular languages, and taking image or preimage of a
homomorphism. As shown by Buszkowski [4], any recursively enumerable language can
be generated by a grammar based on an extension of the Lambek calculus with a finite
set of axioms.

The Lambek calculus is complete with respect to models interpreting Lambek types
as formal languages over an alphabet (connectives of L correspond to multiplication, left
and right divisions of languages) [31]. Such models are called L-models.

Derivability problems for L and its fragments L(\, /) and L(·, \) are NP-complete
as shown by Pentus [25] for L and by Savateev [32] for L(\, /) and L(·, \). On the other
hand, if the complexity of types is bounded (this is the usual case in practice), then there

3

are polynomial (O(n5)) time algorithms. These algorithms were independently presented
by Pentus [26] and Fowler [9]. Fowler used such algorithms for parsing English sentences
from CCGBank [10]. Derivability problem for L(\) is decideable in polynomial time [32].

Main Results
1. The class of languages generated by L1-grammars coincides with the class of all

context-free languages.
2. The derivability problem for L1(\) is decidable in polynomial time.
3. The class of languages generated by L(\; p1)-grammars coincides with the class of

all context-free languages without the empty word.
4. The derivability problem for L(·, \; p1) is NP-complete.
5. We present a calculus LR for the unary operation of language reversal and prove

its completeness with respect to models on subsets of free semigroups (language
models); the class of languages generated by LR-grammars coincides with the class
of all context-free languages without the empty word.

Acknowledgments

The author thanks Prof. Mati Pentus for guiding him into the subject and constant atten-
tion to his work. He is also grateful to the members of the Department of Mathematical
Logic and Theory of Algorithms, Moscow State University for the friendly atmosphere
and constructive discussions.

4

Chapter 1

The Lambek Calculus and
Categorial Grammars

1.1 The Calculus L and Its Fragments

We consider the Lambek calculus L, introduced in [16]. The countable set Pr �
{p1, p2, p3, . . . } is called the set of primitive types (here and further “�” means “equals
by definition”). Types of the Lambek calculus are built from primitive types using three
binary connectives: \ (left division), / (right division), and · (multiplication); we shall
denote the set of all types by Tp. Formally Tp is defined as the smallest (by inclusion)
set that satisfies the following two conditions:

1. Pr ⊂ Tp;
2. if A,B ∈ Tp, then (A \B), (B /A), (A ·B) ∈ Tp.

Capital letters (A,B, . . .) range over types. Capital Greek letters range over finite
(possibly empty) sequences of types; Λ stands for the empty sequence; Ak stands for a
sequence of A written k times. Expressions of the form Γ→ C are called sequents of the
Lambek calculus; Γ is the antecedent and C succedent of Γ → C. Sequents with empty
antecedents are written as → C.

The calculus L is defined by axioms pi → pi (called (ax)) for every i and the
following rules of inference:

AΠ→ B
Π→ A \B (→ \), where Π 6= Λ; Π→ A ΓB∆→ C

Γ Π (A \B) ∆→ C
(\ →);

ΠA→ B
Π→ B /A

(→ /), where Π 6= Λ; Π→ A ΓB∆→ C
Γ (B /A) Π ∆→ C

(/→);

Γ→ A ∆→ B
Γ ∆→ A ·B (→ ·); ΓAB∆→ C

Γ (A ·B) ∆→ C
(· →);

Π→ A ΓA∆→ C
Γ Π ∆→ C

(cut).

Example 1.1. L ` (p1 \ p2) ((p3 \ p2) \ p4)→ ((p3 \ p1) \ p4):

p3 → p3

p1 → p1 p2 → p2

p1 (p1 \ p2)→ p2

p3 (p3 \ p1) (p1 \ p2)→ p2

(p3 \ p1) (p1 \ p2)→ (p3 \ p2) p4 → p4

(p3 \ p1) (p1 \ p2) ((p3 \ p2) \ p4)→ p4

(p1 \ p2) ((p3 \ p2) \ p4)→ ((p3 \ p1) \ p4)

5

It is easy to see that sequents with empty antecedents cannot be derivable in L.
The (cut) rule is eliminable:

Theorem 1 (J. Lambek, 1958). If a sequent is derivable in L, then it is derivable without
using the (cut) rule. [16]

By Tp(\) we denote the set of types not containing · and /. The calculus defined
by axioms (ax) and rules (\ →) and (→ \) is called L(\). (One can dually consider /
instead of \; we shall always use \.) The calculi L(·, \) and L(\, /) are defined in a similar
way.

By Tp(p1, . . . , pN) we denote the set of types containing only primitive types from
the set {p1, . . . , pN}. The corresponding fragment of the Lambek calculus is denoted by
L(p1, . . . , pN); its fragments with restricted sets of connectives are called L(\; p1, . . . , pN),
L(·, \; p1, . . . , pN), L(\, /; p1, . . . , pN). The most interesting case for us is N = 1. For
convenience we sometime write simply p instead of p1.

1.2 The Calculi L∗ and L1

The calculus L∗ (the Lambek calculus allowing empty antecedents) is obtained from L by
dropping the restriction Π 6= Λ on the rules (→ \) and (→ /).

By Tp1 we denote the set of types generated from primitive types and the constant
1 (unit) using the connectives \, /, and ·. The calculus L1 (the Lambek calculus with the
unit, introduced in [17]) is obtained from L∗ by adding an extra axiom → 1 (denoted by
(→ 1)) and an extra rule

Γ∆→ C
Γ1∆→ C

(1→)
.

Fragments of L1 and L∗ with restricted sets of primitive types and/or connectives
are defined exactly for L.

The cut elimination theorem [17] is true for L1 and L∗.

1.3 Conservativity. Substitution and Equivalence

Here and further L stands for one of the variants of the Lambek calculus: L, L∗, L(\),
L∗(\), L(\; p1, . . . , pN), L∗(\; p1, . . . , pN), L1, or LR (defined in Chapter 4). We denote the
corresponding set of types (Tp for L and L∗, Tp(\) for L(\) etc) by TpL .

Definition. A calculus L1 is called a fragment of a calculus L2 if TpL1
⊆ TpL2

and any
sequent built from types from TpL1

is derivable in L1 if and only if it is derivable in L2.
In this case L2 is called a conservative extension of L1.

Due to the cut elimination theorem L(\) is a fragment of L, L(\; p1, . . . , pN) is a
fragment of L(\) etc. On the other hand, L∗ is not a fragment of L. For example, the
sequent (p1 \ p1) \ p2 → p2 is derivable in L∗, but not in L.

By L (p1, . . . , pN) we denote the fragment of L with a restricted set of primitive
types (e. g., L(·, \; p1, p2, p3) = L(·, \)(p1, p2, p3)).

The substitution of type A for z (z ∈ Pr∪{1}) into A is denoted by A [z := A].
Here A can be any syntactic object: a type, a sequence of types, a sequent, or (see
further) a categorial grammar. The expression A [z1 := A1, z2 := A2, . . .] (or A [zi := Ai])
means that all substitutions are performed simultaneously. In all calculi considered the
substitution rule is admissible:

6

Proposition 1.1. If L ` Π → C, then L ` (Π → C)[q1 := A1, q2 := A2, . . .], where
qi ∈ Pr.

Proof. All of the rules of our calculi are given by schemata, therefore they keep valid after
substituting arbitrary types for primitive types (here it is essential, that qi is a primitive
type, but not 1). It is sufficient to check that the axioms become derivable sequents,
in other words, to derive A → A for every A ∈ TpL . This is done by induction on
the length of type A. The base case is trivial, and induction step is established by the
following derivations:

A1 → A1 A2 → A2

A1A2 → A1 · A2

A1 · A2 → A1 · A2

A1 → A1 A2 → A2

A1 (A1 \A2)→ A2

A1 \A2 → A1 \A2

A1 → A1 A2 → A2

(A2 /A1)A1 → A2

A2 /A1 → A2 /A1

If for every Π → C the inverse implication also holds, the substitution is called
faithful.

Definition. Types A and B are called equivalent in L (A ↔L B or just A ↔ B) if
L ` A→ B and L ` B → A.

The relation ↔L is an equivalence relation. Moreover, it is a congruence w. r. t.
the Lambek calculus connectives:

Proposition 1.2. The relation ↔L is reflexive, symmetric and transitive. If A1 ↔ A2

and B1 ↔ B2, then A1 ·B1 ↔ A2 ·B2, A1 \B1 ↔ A2 \B2, B1 /A1 ↔ B2 /A2.

Proof. Reflexivity follows from the derivability of A → A, transitivity is due to (cut),
symmetricity is obvious.

The remaining statements are proved using, respectively, the rules (· →) and (→ ·),
(→ \) and (\ →), (→ /) and (/→).

Using (cut) we prove that if replacing a subtype with an equivalent one does not
affect derivability.

1.4 Lambek Categorial Grammars

We call an alphabet an arbitrary nonempty finite set. The set of all finite sequences
(including the empty one) of elements of an alphabet Σ (words over Σ) is denoted by
Σ∗. The empty word is denoted by ε. The set of all nonempty word is denoted by Σ+.
Subsets of Σ∗ are called formal languages (or simply languages) over Σ.

Languages are usually infinite as sets. Various types of formal grammars are used
to define some of them in a finite way. The Lambek calculus and its variants are the base
for Lambek categorial grammars.

Definition. A grammar based on the calculus L (an L -grammar) is a triple G =
〈Σ, H,B〉, where Σ is an alphabet, H ∈ TpL , and B ⊂ TpL × Σ is a finite bi-
nary correspondence. The language generated by G is L(G) � {a1 . . . ak ∈ Σ∗ |
∃B1, . . . , Bk : Bi B ai L ` B1 . . . Bk → H}. Such languages are called L -languages.

7

The notion of substitution into L -grammar is defined in a natural way: if G =
〈Σ, H,B〉 is an L -grammar, z ∈ Pr∪{1} and A ∈ TpL , then G[z := A] � 〈Σ, H[z :=
A],B[z := A]〉, where B[z := A]� {〈B[z := A], a〉 | B B a}.

Proposition 1.3. If L is a fragment of L ′, then any L -language is an L ′-language.

Proof. Any L -grammar can be considered as L ′-grammar. The language will remain
the same due to conservativity.

Vice versa, if an L ′-grammar contains only types from TpL , it can be considered
as an L -grammar generating the same language.

Besides categorial grammars, based on the Lambek calculus and its variants, lan-
guages can be also defined by a family of formalisms called the Chomsky hierarchy [7].
We consider Chomsky grammars of type 2, also called context-free grammars.

Definition. A context-free grammar is a quadruple G = 〈N,Σ, P, S〉, where N and Σ
are two disjoint alphabets, P ⊂ N× (N ∪Σ)∗, P is finite, and S ∈ N . We define a binary
relation ⇒G as follows: for all ω, ψ ∈ (N ∪ Σ)∗ we have ω ⇒G ψ if and only if ω = ηAθ,
ψ = ηβθ, and 〈A, β〉 ∈ P for some A ∈ N , β, η, θ ∈ (N ∪Σ)∗. The binary relation ⇒∗G is
the reflexive transitive closure of ⇒G. The language L(G) = {w ∈ Σ∗ | S ⇒∗G w} is the
language generated by G. Such languages are called context-free.

We study the relations between classes of languages generated, on one hand, by
context-free grammars, and, on the other hand, by L -grammars for various L . The
answers for L = L and L = L(\) are given by the following theorems:

Theorem 2 (C. Gaifman, 1960; W. Buszkowski, 1985). Every context-free language
without the empty word is an L(\)-language. [2, 5]

Theorem 3 (M. Pentus, 1993). Every L-language is context-free and does not contain
the empty word. [30]

Proposition 1.3 now yields that the following three classes of languages coincide:
L-languages, L(\)-languages, and context-free languages without the empty word.

These theorems have variants for the calculi allowing empty antecedents. Theorem 3
remains true:

Theorem 4 (M. Pentus, 1993). Every L∗-language is context-free. [30]

To prove the inverse statement we shall need a refinement of Theorem 2. Essentially,
it follows from the Greibach normal form theorem for context-free grammars.

Definition. Let us call a type a G-type (after Greibach and Gaifman) if it is of the form
pi, pj \ pi, or pk \(pj \ pi), and k, j 6= 1. Let us call a sequent Π → C a G-sequent if all
types in Π are G-types and C = p1.

Theorem 5. Any context-free language without the empty word is generated by some
L(\)-grammar G = 〈Σ, H,B〉, where H = p1 and all types used in B are G-types.

Evidently, when we check whether a word is in a language generated by such sort
of grammar, all sequents we try to derive are G-sequents.

Proposition 1.4. If Π→ p1 is a G-sequent, then

L∗ ` Π→ p1 ⇐⇒ L ` Π→ p1.

8

Proof. The succedents of all sequents in a derivation of a G-sequent (both in L and in
L∗) are primitive types. Therefore, the rules (→ \) and (→ /) cannot be applied, and
other rules and axioms are the same in L and L∗.

Now let M be a context-free language. If ε /∈ M , then let G be the L(\)-grammar
for M given by Theorem 5. Due to Proposition 1.4 the language L(G) will not change if
we consider G as an L∗(\)-grammar. The case when ε ∈M is handled in Section 1.8.

Definition. Categorial grammars in which C is a partial function from Σ to TpL (in
other words, for every a ∈ Σ there exists not more than one type B ∈ TpL , such
that B B a), are called grammars with single type assignment. (The term “determin-
istic grammars”, used in in [33], is not as appropriate, since these grammars still have
some nondeterminicity: the sequent B1 . . . Bn → H can have several essentially different
derivations in L .)

Theorem 6 (A. Safiullin, 2007). Every context-free language without the empty word can
be generated by an L-grammar with single type assignment. [33]

In [33] it is also stated that this theorem remains true for L(\, /). The question for
other fragments of L (namely, for L(\) or even for L(·, \)) and for L1 and its fragments
remains open.

1.5 Complexity Results for the Lambek Calculus and

its Fragments

In this section we give a brief survey of known results concerning complexity of derivation
problems for the Lambek calculus and its fragments. A more substantial discussion can
be found in [27].

Due to the cut elimination theorem every derivable sequent has a derivation of
polynomial (w. r. t. the length of the sequent) size. Therefore, derivability problems for
L, L1 and their fragments are in the NP class.

Theorem 7 (M. Pentus, 2003). Derivability problems for L and L∗ (and, therefore, also
for L1) are NP-complete. [25]

A stronger result was obtained by Savateev:

Theorem 8 (Yu. Savateev, 2008–2009). Derivability problems for L(\, /), L∗(\, /),
L(·, \), and L∗(·, \) are NP-complete.

The case of only one connective is different:

Theorem 9 (Yu. Savateev, 2006). There exists an algorithm that checks derivability of
a sequent in L(\) (L∗(\)) in O(n3) steps, where n is the length of the sequent (the number
of connective and primitive type occurrences).

Moreover, there eixsts (Yu. Savateev, 2008) an algorithm that checks whether a
word belongs to the language generated by a given L(\)-grammar (L∗(\)-grammar) in
polynomial time: the number of steps is not greater than a polynom of the sum of the
length of the word and the size of the grammar.

Savateev’s results can be found in his C. Sc. (Ph. D.) thesis [32].

9

1.6 Multiplicative Cyclic Linear Logic

We consider an auxiliary calculus MCLL1,⊥, the multiplicative linear logic. MCLL1,⊥ is
a fragment of Girard’s [11] linear logic and was first mentioned in [28]. Its connection
with the Lambek calculus is established in [23].

Elements of a countable set Var = {p1, p2, p3, . . . } are called variables ; At� Var ∪
{q̄ | q ∈ Var} ∪ {1,⊥} is the set of atoms. Formulae of MCLL1,⊥ are built from atoms
using two binary connectives: O (multiplicative disjunction, “par”) and ⊗ (multiplicative
conjunction, “tensor”). We denote the set of all formulae by Fm1,⊥. Capital Latin letters
range over formulae. Capital Greek letters denote finite sequences of formulae; Λ stands
for the empty sequence. Sequents of MCLL1,⊥ are of the form → Γ.

Definition. The linear negation is introduced externally as an inductively defined map-
ping (·)⊥ : Fm→ Fm: p⊥i � p̄i, p̄

⊥
i � pi, (AOB)⊥ � B⊥⊗A⊥, (A⊗B)⊥ � B⊥OA⊥.

Axioms of MCLL1,⊥ are sequents of the form → pi p̄i and the sequent → 1. Rules
of inference:

→ ΓAB∆
→ Γ (AOB) ∆

(→ O); → ΓA → B∆
→ Γ (A⊗B) ∆

(→ ⊗);

→ Γ ∆
→ Γ⊥∆

(→ ⊥); → Γ ∆
→ ∆ Γ

(rot).

We also consider two-sided MCLL1,⊥-sequents: A1A2 . . . An → B1 . . . Bm means
→ A⊥n . . . A

⊥
2 A
⊥
1 B1 . . . Bm.

The fragment of MCLL1,⊥ without constants (defined by axioms → pip̄i and rules
(→ O), (→ ⊗), and (rot)) is called MCLL.

Definition. The standard translation Â ∈ Fm of A ∈ Tp1 is defined as follows:

1. p̂i � pi (pi ∈ Pr);

2. 1̂� 1;

3. Â ·B � Â⊗ B̂;

4. Â \B � Â⊥O B̂;

5. B̂ /A� B̂O Â⊥.

If Π = B1 . . . Bm, then Π̂� B̂1 . . . B̂m. The standard translation of a sequent Π→ C is
the sequent Π̂→ Ĉ, in other notation, → B̂⊥m . . . B̂

⊥
1 C.

In terms of this translation MCLL1,⊥ is a conservative extension of L1:

Theorem 10. Let Π = B1 . . . Bm and B1, . . . , Bm, C ∈ Tp1. Then

L1 ` Π→ C ⇐⇒ MCLL1,⊥ ` Π̂→ Ĉ.

Due to conservativity of MCLL1,⊥ over MCLL and L1 over L∗ we get a similar
theorem for L∗:

Theorem 11. Let Π = B1 . . . Bm B1, . . . , Bm, C ∈ Tp. Then

L∗ ` Π→ C ⇐⇒ MCLL ` Π̂→ Ĉ.

The calculus L corresponds to a modified version of MCLL, called MCLL′. It is
obtained from MCLL by adding the restriction Γ∆ 6= Λ on the (→ O) rule.

10

Theorem 12. Let Π = B1 . . . Bm B1, . . . , Bm, C ∈ Tp. Then

L ` Π→ C ⇐⇒ MCLL′ ` Π̂→ Ĉ.

Theorems 10 and 12 are proved in [23].

Example 1.2. In this example we write Â instead of Â. By definition
(
(p3 \ p1) \ p4

)̂=

(p̄1⊗ p3) O p4,
(
(p3 \ p2) \ p4

)̂⊥ = p̄4⊗(p̄3 O p2), and
(
p1 \ p2

)̂⊥ = p̄2⊗ p1. Therefore, by
Example 1.1 and Theorem 12 we get MCLL′ `→ (p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) ((p̄1⊗ p3) O p4).
Here is the explicit derivation:

→ p4 p̄4

→ p2 p̄2 → p1 p̄1

→ p2 (p̄2⊗ p1) p̄1 → p3 p̄3

→ p2 (p̄2⊗ p1) (p̄1⊗ p3) p̄3

→ p̄3 p2 (p̄2⊗ p1) (p̄1⊗ p3)

→ (p̄3 O p2) (p̄2⊗ p1) (p̄1⊗ p3)

→ p4 (p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) (p̄1⊗ p3)

→ (p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) (p̄1⊗ p3) p4

→ (p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) ((p̄1⊗ p3) O p4)

Substitution → Γ[z := A], where z ∈ Var∪ {1}, is defined, respecting the negation,
in the following way: if z = pi, then for every pi we substitute A and for every p̄i
we substitute A⊥. If z = 1, then A is substituted for each occurrence of 1, and A⊥

is substituted for each occurrence of ⊥. The substitution rule is admissible in both
MCLL1,⊥ and MCLL′:

Proposition 1.5. If → Γ is derivable in MCLL1,⊥ (resp., in MCLL′), then → Γ[q1 :=
A1, q2 := A2, . . .], where qi ∈ Var, Ai ∈ Fm, is also derivable in MCLL1,⊥ (resp., MCLL′).

The proof is similar as for the Lambek calculus (Proposition 1.1).

1.7 Proof Nets

We introduce proof nets (graph-theoretical criteria of derivability) for MCLL and MCLL′.
The idea of proof nets belongs to mathematical folklore. We consider the variant of proof
nets by Pentus [24] and its adaptation for MCLL′. This variant of proof nets is also close
to the one proposed by de Groote [12]. Due to Theorems 11 and 12 these criteria can
also be used to study derivability in L∗ and L (and this is our goal).

Let → Γ be a sequent of MCLL or MCLL′. First we build a relation structure
ΩΓ = 〈ΩΓ, <Γ,≺Γ〉. Let Γ = B1 . . . Bm. We put � signs before B1 and between Bi and
Bi+1 (i = 1, . . . ,m− 1) (� is a new formal symbol, � /∈ Fm): �B1 �B2 � · · · �Bm. In this
string we number all symbols except brackets (an atom is considered one symbol) and
denote the set of pairs 〈symbol, number〉 by ΩΓ. Elements of ΩΓ are called occurrences of
the corresponding symbols in Γ and denoted by lowercase Greek letters. For α = 〈s1, k1〉,
β = 〈s2, k2〉 ∈ ΩΓ we define α <Γ β ⇐⇒ k1 < k2.

For a subformula of Γ the corresponding subset of ΩΓ is called the occurrence of
this subformula (B1, B2, . . . , Bm are also considered subformulae). If X is a subformula
occurrence, then we denote by l(X) the occurrence of a connective or � immediately to
the left of X and by r(X) the occurrence of a connective or � immediately to the right

11

of X (if there is no such occurrence, r(X) is defined cyclically as the leftmost occurrence
of �).

The transitive closure of the union of parse trees of the formulae B1, . . . , Bm (where
the vertices are occurrences, that is, elements of ΩΓ) is denoted by ≺Γ. In other words,
α ≺Γ β if and only if α and β are the occurrences of main connectives of two formulae
(or atoms), such that the first one is a subformula of the second one.

We denote the set of all occurrences of O by ΩO
Γ , of ⊗ by Ω⊗Γ , of � by Ω�Γ, of p1, p2, . . .

by ΩAt+

Γ , of p̄1, p̄2, . . . by ΩAt−

Γ ; ΩO�
Γ � ΩO

Γ ∪Ω�Γ, Ω⊗O�
Γ � Ω⊗Γ ∪ΩO�

Γ , ΩAt
Γ � ΩAt+

Γ ∪ΩAt−

Γ .
For X ⊆ ΩΓ we define the count check #(X)� |X ∩ ΩAt+

Γ | − |X ∩ ΩAt−

Γ |.
For α, β ∈ ΩΓ we define (α, β)� {γ | α <Γ γ <Γ β}, In(α, β)� (α, β)∪(β, α), and

Out(α, β)� ΩΓ−(In(α, β)∪{α, β}) (the minus sign here means set-theoretic difference).

Definition. An oriented graph 〈ΩΓ, C〉, where C ⊆ ΩΓ×ΩΓ, is called <Γ-planar if for any
〈α, β〉 ∈ C and 〈γ, δ〉 ∈ C such that {α, β} ∩ {γ, δ} = ∅ we have γ ∈ In(α, β) ⇐⇒ δ ∈
In(α, β). Geometrically this means that the graph can be drawn in the upper semiplane
without intersections if its vertices lie on the semiplane’s border in the <Γ order.

Definition. A proof net is a triple N = 〈ΩΓ,A, E〉, where A ⊂ ΩΓ×ΩΓ and E ⊂ ΩΓ×ΩΓ,
that satisfies the following axioms:

1. |ΩO�
Γ | − |Ω

⊗
Γ | = 2;

2. A is a total function from Ω⊗Γ to ΩO�
Γ ;

3. E is a bijective function from ΩAt+

Γ to ΩAt−

Γ , and if α is an occurrence of pi then E(α)
is an occurrence of p̄i;

4. the graph 〈ΩΓ,A ∪ E〉 is <Γ-planar;
5. the graph 〈ΩΓ,A ∪≺Γ〉 is acyclic.

Definition. A strong proof net is a proof net that additionally satisfies the following
axiom:

6. for any subformula occurrence X ⊂ ΩΓ we have Ã(l(X)) 6= Ã(r(X)), where the

mapping Ã : Ω⊗O�
Γ → ΩO�

Γ is defined as follows:

Ã(α)�

{
α if α ∈ ΩO�

Γ ,

A(α) if α ∈ Ω⊗Γ .

Theorem 13 (M. Pentus, 1996). A sequent → Γ is derivable in MCLL if and only if
there exists a proof net for Γ.

Theorem 14. A sequent → Γ is derivable in MCLL′ if and only if there exists a strong
proof net for Γ.

Theorem 13 is proved in [24]. Here we modify this proof in order to prove Theo-
rem 14.

Example 1.3. The following figure shows a proof net for the sequent Example 1.2:

� p̄4 ⊗
��

p̄3 O[[p2 � p̄2 ⊗
��

p1 � p̄1 ⊗ CC

��
p3 O p4

Here (and further in the figures illustrating fragments of strong proof nets) the
graphs A and E are drawn in the upper semiplane, and the relation ≺Γ (restricted to
Ω⊗O�

Γ) is drawn in the lower semiplane.

12

In this example ΩΓ = {〈�, 1〉, 〈p̄4, 2〉, 〈⊗, 3〉, 〈p̄3, 4〉, 〈O, 5〉, 〈p2, 6〉, 〈�, 7〉, 〈p̄2, 8〉,
〈⊗, 9〉, 〈p1, 10〉, 〈�, 11〉, 〈p̄1, 12〉, 〈⊗, 13〉, 〈p3, 14〉, 〈O, 15〉, 〈p4, 16〉}.

Example 1.4. The sequent→
(
p̄2⊗(p̄1 O p1)

)
p2 (which is the translation of (p1 \ p1) \ p2 →

p2, and the latter is derivable in L∗, but not in L) is derivable in MCLL, but not in MCLL′.
The proof net below is not strong:

� p̄2 ⊗
��

p̄1 O[[p1 � p2

Indeed, let X be the occurrence of the subformula p̄1 O p1. Then l(X) = 〈⊗, 3〉,
r(X) = 〈�, 7〉 and Ã(l(X)) = Ã(r(X)) = 〈�, 7〉, and this violates Axiom 6.

Example 1.5. There also exist sequents that have both a strong proof net and a proof
net that is not strong. One example is the sequent

(
p /(p \ p)

)
(p \ p)→ p. Its standard

translation is → (p̄⊗ p)
(
(p̄O p)⊗ p̄

)
p, and this sequent has two proof nets:

� p̄ ⊗
��

p � p̄ O AAp ⊗
��

p̄ � p and � p̄ ⊗
��

p � p̄ O AAp ⊗
��

p̄ � p

The first one is strong, and the second one is not. These two proof nets correspond
to two Lambek derivations of the original sequent:

(
p /(p \ p)

)
(p \ p)→ p:

p→ p p→ p

p (p \ p)→ p

p \ p→ p \ p p→ p(
p /(p \ p)

)
(p \ p)→ p and

p→ p

→ p \ p
p→ p p→ p

p (p \ p)→ p(
p /(p \ p)

)
(p \ p)→ p

The second derivation is valid only in L∗.

Lemma 1.6. If there exists a strong proof net N = 〈ΩΓ,A, E〉, then Γ contains at least
two formulae.

Proof. Suppose the contrary: Γ = A1. Let X be the occurrence of A1 (as a subformula

of Γ). We have l(X) = r(X) = 〈�, 0〉, whence Ã(l(X)) = l(X) = r(X) = Ã(r(X)).
Contradiction with axiom 6.

Proof of Theorem 14. The “only if” part is proved by constructing the strong proof net
inductively from the derivation of → Γ (exactly as in the proof of Theorem 13 [24]).

To prove the “if” part we proceed by induction on the number of connective occur-
rences in ΩΓ.

The induction base is trivial: in the case ΩO
Γ ∪ Ω⊗Γ = ∅ our sequent can be either

→ pip̄i (axiom) or → p̄ipi (derivable from → pip̄i by one application of (rot)).
Induction step. We define a new binary relation � as the restriction of ≺Γ ∪ A to

ΩO
Γ ∪ Ω⊗Γ . Due to the acyclicity of ≺Γ ∪ A there exists an element γ ∈ ΩO

Γ ∪ Ω⊗Γ that is
maximal with respect to �. If γ ∈ ΩO

Γ , then we replace it by � (thus getting a strong
proof net with fewer connective occurrences), use the induction hypothesis, and apply
the rule (→ O). The restriction of this rule is satisfied due to Lemma 1.6.

13

Now let γ ∈ Ω⊗Γ , β = A(γ). We have β ∈ Ω�Γ, because γ is maximal with respect
to �. We can assume that β = 〈�, 1〉 (that is, β is the leftmost occurrence of �): in the
other case we apply (rot) and do a cyclic transformation of the net.

We have Γ = Φ (A⊗B) Ψ, and the arc 〈γ, β〉 ∈ A leads from the occurrence of ⊗
to the leftmost occurrence of �. This arc divides the upper semiplane into two parts. We
take the upper part as the strong proof net for → BΨ and the lower part for → ΦA.
Axioms 2, 3, 4, 5, and 6 are checked trivially. Axiom 1 is proved in [24], Lemma 7.10.

Now, using the induction hypothesis for → ΦA and → BΨ, we conclude that these
sequents are derivable in MCLL′. Therefore MCLL′ `→ Φ (A⊗B) Ψ by application of
(→ ⊗).

We shall consider E a non-oriented graph on ΩΓ; the edges of E will be called
links. Intuitively, links connect occurrences of atoms that come from one axiom leaf in
the derivation tree. For a link C with vertices α and β we define In(C) � In(α, β) and
Out(C)� Out(α, β). The graph 〈ΩΓ, E〉 is<Γ-planar, whence #(In(C)) = #(Out(C)) =
0. Links divide the upper semiplane into regions. For each link C we define its inner
and outer regions as the regions that have C as a part of their borders and intersect
with In(C) and Out(C) respectively. Evidently, each region must contain at least one
occurrence of O or � (because A ∪ E is <Γ-planar). On the other hand, it is easy to see
that |ΩO�

Γ | is equal to the number of regions, so each region contains only one occurrence
of O or �.

Let X and Y be two subformula occurrences such that X ∩ Y = ∅. We define the
fragment from X to Y as {α ∈ ΩΓ | X <Γ {α} <Γ Y } if X <Γ Y and as {α ∈ ΩΓ |
{α} <Γ Y or X <Γ {α}} if Y <Γ X (other cases are impossible).

If C is a link and K is a subset of ΩΓ, we define D(C,K) = In(C), if K ⊆ In(C)
and D(C,K) = Out(C) otherwise (if K is a fragment from one subformula occurrence
to another, and it doesn’t contain vertices of C, then in this case we have K ⊆ Out(C),
thus getting K ⊆ D(C,K) always). It is easy to see that #(D(C,K)) = 0.

Further we shall sometimes omit the word “occurrence”.

1.8 L∗(\)-grammars for Context-Free Languages with

the Empty Word

Theorem 15. Every context-free language is generated by some L∗(\)-grammar.

To finish the proof of this theorem (see Section 1.4) is is sufficient to handle the
case when the language contains the empty word. Let M be context-free and ε ∈ M .
Using Theorem 5, we build an L(\)-grammar G for the language M − {ε}.

Consider the type D �
(
(r \ r) \

(
(s \ s) \ q

))
\ q, where q, r, and s are primitive

types not occurring in grammar G.

Lemma 1.7.

1. L∗(\) ` → D.
2. If a sequent Γ → p1, where Π 6= Λ, is a G-sequent and does not contain primitive

types q, r, s, then the following equivalence holds:

L(\) ` Π→ p1 ⇐⇒ L∗(\) ` Π[p1 := D]→ D.

14

Proof. The first statement is established by the following derivation:

r → r
→ r \ r

s→ s
→ s \ s q → q

(s \ s) \ q → q

(r \ r) \
(
(s \ s) \ q

)
→ q

→
(
(r \ r) \

(
(s \ s) \ q

))
\ q

The left-to-right implication in the second statement follows from the fact that any
L(\)-derivable sequent is L∗(\)-derivable and the substitution rule.

The non-trivial part is the right-to-left implication in the second statement. We
have L∗(\) ` Π[p1 := D] → D and we need to prove that L(\) ` Π → p1. Due to
Proposition 1.4, since Π→ p1 is a G-sequent, it is sufficient to prove that L∗(\) ` Π→ p1.

Consider the translation to MCLL. It is easy to see that

D̂ =
(
q̄⊗(s̄O s)⊗(r̄O r)

)
O q and D̂⊥ = q̄⊗

(
(r̄⊗ r) O(s̄⊗ s) O q

)
.

Let Π = B1 . . . Bn and let Π̃ = B̂n

⊥
. . . B̂1

⊥
. Now we have MCLL `→ Π̃[p1 := D̂] D̂ and

we need to prove that MCLL `→ Π̃ p1.
In the sequent → Π̃[p1 := D̂] D̂ variables q, r, and s appear only in the substituted

D̂ and D̂⊥ subformulae.
Consider the proof net for → Π̃[p1 := D̂] D̂. The occurrence of s̄ from D̂⊥ cannot

be connected to an occurrence of s from some D̂⊥ (neither the same, nor some other),
since in this case there would be two Os in one area:

. . . q̄⊗ r̄⊗rO s̄⊗sOq . . . q̄⊗ r̄⊗rO s̄⊗sOq . . .

. . . q̄⊗ r̄⊗rO s̄⊗sOq . . . q̄⊗ r̄⊗rO s̄⊗sOq . . .

. . . q̄⊗ r̄⊗rO s̄⊗sOq . . .

Hence this occurrence of s̄ is connected to an s from a D̂ occurrence.
The sequent Π → p1 is a G-sequent, whence there is only one positive occurrence

of p1. Therefore → Π̃[p1 := D̂] D̂ contains only one occurrence of D̂ (namely, the last

formula) and, due to the previous argument, at most one occurrence of D̂⊥. Consider
two cases.

Case 1: there are no occurrences of D̂⊥. Then q and q̄ from D̂ are connected, and
Π̃ = Λ (in the other case there would be two �s in one area). Contradiction: Π 6= Λ.

Case 2: there is one occurrence of D̂⊥. Then occurrences of q, r, s, q̄, r̄, and s̄
from D̂ and D̂⊥ are connected pairwise, and we can replace D̂ and D̂⊥ by p1 and p̄1, thus
getting a proof net for → Π̃ p1.

From this lemma it easily follows that substituting D for p1 in G yields an L∗(\)-
grammar generating the language L(G) ∪ {ε} = M .

15

Chapter 2

The Lambek Calculus with the Unit

2.1 An Alternative Axiomatisation of L1

We shall use an alternative axiomatisation of L1, equivalent to the original one. The rule
(1→) can be considered a special case of the weakening rule. Every L1-derivation can be
rebuilt in such a way that all applications of this rule will immediately follow the axioms.
Formally this is done in the following way. Consider the calculus obtained from L1 by
removing (1→) and adding two new series of axioms: 1k → 1 (k > 0) and 1kpi1

m → pi
(k,m > 0, i > 1); denote them by (→ 1)w and (ax)w respectively. The new calculus will

be temporarily called L̃1.

Proposition 2.1. For any sequent Π → B, where Π = A1 . . . An, A1, . . . , An, B ∈ Tp1,
the following holds:

L1 ` Π→ B ⇐⇒ L̃1 ` Π→ B.

Proof. To prove the right-to-left implication it is sufficient to establish derivability of the
new axioms (→ 1)w (ax)w in L1. This is done by induction on k and k+m respectively:
the base case (k = 0 and k + m = 0) corresponds to the axioms (→ 1) and (ax) of L1,
and the induction step is an application of (1→).

The left-to-right implication is established by induction on the length of the L1-
derivation: if the rule (1→) was applied (possibly, several times) after an application of
another rule, then the derivation can be rebuilt in such a way that the applications of
(1 →) go, vice versa, before the application of the other rule. Applying (1 →) (several
times) to the axioms (ax) and (→ 1) yields (ax)w and (→ 1)w respectively.

Further we shall use this new axiomatisation for L1.

2.2 Reduction of L1 to L∗. L1-grammars

We present a substitution that reduces derivability in L1 to derivability in L∗.

Theorem 16. For any sequent Π → C built from types that belong to Tp1 and for any
primitive type q not occurring in Π→ C, the following equivalence holds:

L1 ` Π→ C ⇐⇒ L∗ `
(
Π→ C

)
[pi := (1 · pi) · 1][1 := q \ q].

Here and further the shorthand “pi := (1 · pi) · pi” means that the substitution is
performed for every i.

16

Lemma 2.2. For every k > 0 the following holds: L∗(\) ` (q \ q)k → q \ q.

Proof.

q → q

q → q

q → q

q → q q → q

q (q \ q)→ q
...

q (q \ q) . . . (q \ q)→ q

q (q \ q) (q \ q) . . . (q \ q)→ q

q (q \ q) (q \ q) (q \ q) . . . (q \ q)→ q

(q \ q) (q \ q) (q \ q) . . . (q \ q)→ q \ q

Consider an auxiliary calculus L−1, which is obtained from L∗ by adding axioms
(→ 1)w. It is clear that every L−1-derivable sequent is L1-derivable.

Lemma 2.3. For every sequent Π→ C built from types that belong to Tp1 the following
equivalences hold:

L1 ` Π→ C ⇐⇒ L1 `
(
Π→ C

)
[pi := (1 · pi) · 1] ⇐⇒

⇐⇒ L−1 `
(
Π→ C

)
[pi := (1 · pi) · 1].

Proof. The first equivalence follows from the fact that pi ↔L1 (1 · pi) · 1.
In the second equivalence the right-to-left implication is obvious. Let us prove the

other one: we shall deduce the third statement from the first one (which is equivalent to
the second one). We substitute (1 · pi) · 1 in the L1-derivation of Π → C. It is easy to
see that this substitution conserves the (→ 1)w axioms and all rules. Now it is sufficient
to check that the result of such a substitution in (ax)w is derivable in L−1:

1k+1 → 1 pi → pi
1k+1 pi → 1 · pi 1m+1 → 1

1k 1 pi 1
m+1 → (1 · pi) · 1

1k (1 · pi) 1 1m → (1 · pi) · 1
1k
(
(1 · pi) · 1

)
1m → (1 · pi) · 1

The next two lemmas essentially repeat the argument from [19] about the closed
(without variables but with constants) fragment of multiplicative cyclic linear logic.

Lemma 2.4. If L−1 ` Π→ C q ∈ Pr, then L∗ `
(
Π→ C

)
[1 := q \ q].

Proof. Perform the substitution in the L−1-derivation of Π → C. Axioms (ax)w and
rules of inference will remain untouched. Axioms (→ 1)w will transform into sequents
(q \ q)k → q \ q, which are derivable in L∗ by Lemma 2.2.

Lemma 2.5. If L∗ `
(
Π → C

)
[1 := q \ q] and q is a primitive type that does not occur

in Π→ C, then L1 ` Π→ C.

17

Proof. Let L∗ `
(
Π → C

)
[1 := q \ q]. Consider the sequent

(
Π → C

)
[1 := q \ q][q := 1].

On the one hand, it is derivable in L1, since
(
Π→ C

)
[1 := q \ q] is derivable in L1 (due

to the conservativity of L1 over L∗) and the substitution rule is valid in L1. On the other
hand, the sequent involved is actually (Π→ C)[1 := 1 \1], because occurrences of q could
appear only inside the types q \ q that are substituted for 1. Therefore the derivability
of this sequent in L1 is equivalent to the derivability of Π→ C (since 1↔ 1 \1).

Proof of Theorem 16.

L1 ` Π→ C =⇒ L−1 `
(
Π→ C

)
[pi := (1 · pi) · 1] =⇒

=⇒ L∗ `
(
Π→ C

)
[pi := (1 · pi) · 1][1 := q \ q] =⇒

=⇒ L1 `
(
Π→ C

)
[p1 := (1 · pi) · 1] =⇒ L1 ` Π→ C.

Here the first and the fourth implications hold due to Lemma 2.3, the second one holds
due to Lemma 2.4, and the third one holds due to Lemma 2.5.

Theorem 16 easily yields a corollary concerning L1-grammars. (In [30] it is stated
that the theorem below can be proved by the same means as for L∗, but this is not true.)

Theorem 17. The class of languages generated by L1-grammars coincides with the class
of all context-free languages.

Proof. Let G be an L1-grammar. Then, due to Theorem 16, the L∗-grammar G[pi :=
(1 ·pi) ·1][1 := q \ q] generates the same language as G. On the other hand, this language
is context-free by Theorem 4.

The inverse inclusion is due to conservativity of L1 over L∗ and Theorem 15.

2.3 Reduction of L1(\) to L∗(\). A Polynomial Algo-

rithm for the Derivability Problem in L1(\)
Now we shall need a refinement of Theorem 16, a substitution with only one division.

Theorem 18. For any sequent Π→ C built from types belonging to Tp1(\) and for any
primitive type q not occurring in Π→ C, the following equivalence holds:

L1(\) ` Π→ C ⇐⇒ L∗(\) `
(
Π→ C

)
[1 := q \ q, pi := (q \ q) \(pi \ q)].

This theorem yields polynomial decidability of the derivability problem in L1(\)
(derivability problems for L1, L1(\, /), and L1(·, \) are NP-complete due to conservativity
and Theorem 8):

Theorem 19. There exists an algorithm that checks derivability of a sequent in L1(\) in
O(n3) steps, where n is the length of the sequent.

Proof. The algorithm is as follows: first we build the sequent
(
Π → C

)
[1 := q \ q, pi :=

(q \ q) \(pi \ q)], where q is a new primitive type. The length of the sequent grows not more
than seven times. Then we use Savateev’s algorithm (Theorem 9) to check derivability
of this sequent in L∗(\).

Before proving Theorem 18, we prove several lemmas.

18

Lemma 2.6. For any k,m > 0, pi ∈ Pr the following holds:

L∗(\) ` (q \ q)k
(
(q \ q) \(pi \ q)

)
(q \ q)m → (q \ q) \(pi \ q).

Proof.

(q \ q)k+1 → q \ q

pi → pi q (q \ q)m → q

pi (pi \ q) (q \ q)m → q

(pi \ q) (q \ q)m → pi \ q
(q \ q)k+1

(
(q \ q) \(pi \ q)

)
(q \ q)m → pi \ q

(q \ q)k
(
(q \ q) \(pi \ q)

)
(q \ q)m → (q \ q) \(pi \ q)

Sequents (q \ q)k+1 → q \ q and q (q \ q)m → q were derived in the proof of Lemma 2.2.

Lemma 2.7. If MCLL1,⊥ ` → Γ[pi := p̄i], then MCLL1,⊥ ` → Γ.

Proof. After substituting p̄i for pi in the MCLL1,⊥-derivation of a sequent, the rules of
inference and axiom → 1 remain valid, and axioms → pi p̄i become sequents → p̄i pi,
derivable by one application of (rot). Finally, notice that Γ[pi := p̄i][pi := p̄i] = Γ.

Lemma 2.8. The following equivalences hold in MCLL1,⊥: 1 O⊥ ↔ 1 and (1⊗⊥) O(p̄i O⊥)↔
p̄i.

Proof. Since A ↔MCLL1,⊥ B means that MCLL1,⊥ ` → A⊥B MCLL1,⊥ ` → B⊥A,

and (1 O⊥)⊥ = 1⊗⊥, 1⊥ = ⊥, p̄⊥i = pi,
(
(1⊗⊥) O(p̄i O⊥)

)⊥
= (1⊗ pi)⊗(1 O⊥),

we need to derive the following sequents in MCLL1,⊥: → (1⊗⊥) 1, → ⊥ (1 O⊥), →(
(1⊗ pi)⊗(1 O⊥)

)
p̄i → pi

(
(1⊗⊥) O(p̄i O⊥)

)
. The derivations are as follows:

→ 1
→ 1
→ ⊥1

→ (1⊗⊥) 1

→ 1
→ 1⊥
→ ⊥1⊥
→ ⊥ (1 O⊥)

→ 1 → pi p̄i
→ (1⊗ pi) p̄i
→ p̄i (1⊗ pi)

→ 1
→ 1⊥
→ 1 O⊥

→ p̄i
(
(1⊗ pi)⊗(1 O⊥)

)
→
(
(1⊗ pi)⊗(1 O⊥)

)
p̄i

→ 1

→ pi p̄i
→ p̄i pi
→ ⊥ p̄i pi

→ (1⊗⊥) p̄i pi
→ pi (1⊗⊥) p̄i
→ pi (1⊗⊥) p̄i⊥
→ pi (1⊗⊥) (p̄i O⊥)

→ pi
(
(1⊗⊥) O(p̄i O⊥)

)
Proof of Theorem 18. Prove the left-to-right implication. Consider an L1(\)-derivation
of Π → C. Perform the substitution 1 := q \ q, pi := (q \ q) \(pi \ q) in this derivation.
The rules of inference remain valid, axioms (→ 1)w transform to sequents (q \ q)k →
q \ q, derivable by Lemma 2.2, and axioms (ax)w transform to sequents (q \ q)k → q \ q,
derivable by Lemma 2.6. Therefore, the sequent

(
Π→ C

)
[1 := q \ q, pi := (q \ q) \(pi \ q)]

is derivable in L∗(\).
Now prove the right-to-left implication. Let L∗(\) `

(
Π → C

)
[1 := q \ q, pi :=

(q \ q) \(pi \ q)]. Then MCLL1,⊥ `
(
Π̂ → Ĉ

)
[1 := q̄O q, pi := (q̄⊗ q) O(p̄i O q)]. Substi-

tute ⊥ for q. This yields to a sequent derivable in MCLL1,⊥, and, since q does not occur

19

in Π̂→ Ĉ, this sequent is actually
(
Π̂→ Ĉ

)
[1 := 1 O⊥, pi := (1⊗⊥) O(p̄i O⊥)]. Due to

Lemma 2.8, MCLL1,⊥ `
(
Π̂→ Ĉ

)
[pi := p̄i]. Finally, by Lemma 2.7 MCLL1,⊥ ` Π̂→ Ĉ,

whence L1(\) ` Π→ C. Q. E. D.

20

Chapter 3

The Lambek Calculus with One
Primitive Type

3.1 Reduction of L(\; p1, . . . , pN) to L(\; p)
Let N be an arbitrary natural number. We build a faithful substitution that reduces
derivability in L(\; p1, . . . , pN) to derivability in L(\; p).

Let pm � p · . . . · p︸ ︷︷ ︸
m times

.

Now construct the types A1, . . . , AN :

Ak �
(
pk+1 ·

(
((p · p) \ p) \ p

)
· pN−k+1

)
\ p, k = 1, . . . , N.

Note that in L(\) there is no multiplication; the · connective here (multiplication in the
denominator) is just a shortcut used to minimise the number of brackets: (D1 · . . . ·
Dm) \C � Dm \(Dm−1 \(Dm−2 \ . . . \(D1 \C) . . .)). This notation is consistent with the
“real” multiplication: (D1 · . . . ·Dm) \C ↔L(·,\) Dm \(Dm−1 \(Dm−2 \ . . . \(D1 \C) . . .)).

Theorem 20. For any sequent Π → C, where Π = B1 . . . Bm, m > 1, and
B1, . . . , Bm, C ∈ Tp(\; p1, . . . , pN), the following holds:

L(\; p1, . . . , pN) ` Π→ C ⇐⇒ L(\; p) ` (Π→ C)[p1 := A1, . . . , pN := AN].

Theorem 21. For every sequent Π → C, where Π = B1 . . . Bm, m > 0, and
B1, . . . , Bm, C ∈ Tp(\; p1, . . . , pN), the following holds:

L∗(\; p1, . . . , pN) ` Π→ C ⇐⇒ L∗(\; p) ` (Π→ C)[p1 := A1, . . . , pN := AN].

Due to conservativity of MCLL′ over L(\) (and, resp., MCLL′(p) over L(\; p) and
MCLL′(p1, . . . , pN) over L(\; p1, . . . , pN)) and MCLL over L∗(\) (resp., MCLL(p) over
L∗(\; p) and MCLL(p1, . . . , pN) over L∗(\; p1, . . . , pN)) these two theorems are corollaries
from the following two stronger statements, which we are going to prove in the next
section:

Theorem 22. For any sequent → Γ, where Γ = B1 . . . Bm, m > 2, and B1, . . . , Bm ∈
Fm(p1, . . . , pN), the following holds:

MCLL′(p1, . . . , pN) `→ Γ ⇐⇒ MCLL′(p) `→ Γ[p1 := Â1, . . . , pN := ÂN].

21

Theorem 23. For every sequent → Γ, where Γ = B1 . . . Bm, m > 1, and B1, . . . , Bm ∈
Fm(p1, . . . , pN), the following holds:

MCLL(p1, . . . , pN) `→ Γ ⇐⇒ MCLL(p) `→ Γ[p1 := Â1, . . . , pN := ÂN].

A faithful substitution that reduces derivability in MCLL(p1, . . . , pN) to derivability
in MCLL(p) was earlier presented by Métayer [19]. The construction of Métayer can be
easily modified to obtain a substitution that reduces derivability in L∗(\, /; p1, . . . , pN)
to derivability in L∗(\, /; p) (we substitute Ak � pk \ p / pN+1−k for pk; here we use both
divisions); a similar result can be obtained for L using strong proof nets.

Yet another substitution reducing derivability in L(\) to derivability in L(\; p) was
independently presented by Hendriks in [13]. Hendriks’ construction uses only one divi-
sion, but the types used in it have exponential size w. r. t. N . Therefore this construction
cannot be used to prove NP-completeness of L(·, \; p), L(\, /; p) and their variants allow-
ing empty antecedents. Also, in our opinion, Hendriks’ proof is more complicated then
the proof presented here.

3.2 Faithfullness of the Substitution (Proof)

We prove Theorems 20 and 21 in parallel. The left-to-right implications are trivial.
Let Rk � Âk. It is easy to see that

Rk = p̄O . . .O p̄︸ ︷︷ ︸
N−k+1

O
(
p̄⊗(p̄O p̄O p∗)

)
O p̄O . . .O p̄︸ ︷︷ ︸

k+1

O p+;

R⊥k = p̄+⊗ p⊗ . . .⊗ p︸ ︷︷ ︸
k+1

⊗
(
(p̄∗⊗ p⊗ p) O p

)
⊗ p⊗ . . .⊗ p︸ ︷︷ ︸

N−k+1

.

(We assume that Os associate to the right and ⊗s associate to the left.) The subscripts
∗ and + here mark concrete occurrences of p and p̄ for further reference. Let us call Rk

a positive formula and R⊥k a negative formula.
If X is an occurrence of Rk, then #(X) = −(N + 3), and if Y is an occurrence of

R⊥k , then #(Y) = N + 3. We shall use these count checks later.
The sequent → Γ[p1 := R1, . . . , pN := RN] is derivable in MCLL′(p) (resp., in

MCLL(p)). Hence there exists a strong proof net (resp., just a proof net) N for this
sequent. We shall modify N to get a proof net N′ for → Γ. If the original proof net were
strong, N′ will also be strong.

First we shall prove some lemmata about N.

Lemma 3.1. The number of positive formula occurrences is equal to the number of neg-
ative formula occurrences.

Proof. Suppose there are m1 positive formula occurrences and m2 negative formula oc-
currences. Then we have 0 = #(ΩΓ) = (m2 −m1)(N + 3), whence m2 = m1.

Lemma 3.2. Any occurrence of p∗ from Rk is connected to an occurrence of p̄∗ from
some R⊥k′ (possibly, k 6= k′).

Proof. Suppose the contrary. Let C be a link from some p∗ that does not lead to p̄∗. We
consider 3 cases:

22

Case 1: C leads to an occurrence of p̄ from the same Rk. Since #(In(C)) = 0,
this is the neighbour occurrence of p̄. But then there are two O in the outer region of C.
Contradiction.

Case 2: C leads to an occurrence of p̄ from another Rk′ . There are O connectives
on both sides of p∗ and on at least one side of any p̄ from Rk′ , therefore either in the
inner or in the outer region of C there are two O connectives. Contradiction.

Case 3: C leads to p̄+ (from some R⊥k′):

p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄︸ ︷︷ ︸
k+1

Op+ K p̄+⊗p⊗. . .⊗p⊗p̄∗⊗p⊗pOp⊗p⊗. . .⊗p

Let K be the fragment from Rk to R⊥k′ . The fragment K consists of several occurrences
of positive and negative formulae and connectives between them. Let m1 be the number
of positive formulae there and m2 be the number of the negative ones. Then we get
0 = #(D(C,K)) = 1 − (k + 1) + #(K) = −k + (m2 − m1)(N + 3), therefore k =
(m2 −m1)(N + 3). This is absurd, because 1 ≤ k ≤ N .

Lemma 3.3. Any occurrence of p̄∗ from R⊥k is connected to an occurrence of p∗ from
some Rk′.

Proof. Any occurrence of p∗ is connected to an occurrence of p̄∗, and the numbers of p∗
and p̄∗ occurrences coincide.

Lemma 3.4. If an occurrence of p∗ from Rk is connected to an occurrence of p̄∗ from
R⊥k′, then k = k′.

Proof.

p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄︸ ︷︷ ︸
k+1

Op+ K p̄+⊗p⊗. . .⊗p︸ ︷︷ ︸
k′+1

⊗p̄∗⊗p⊗pOp⊗p⊗. . .⊗p

Let K be the fragment from Rk to R⊥k′ . Occurrences of positive formulae inside K are
in one-to-one correspondence with occurrences of negative formulae there (by the links
connecting p∗ and p̄∗), thus #(K) = 0. Therefore 0 = #(D(C,K)) = k′ − k + #(K).
Hence k = k′.

Lemma 3.5. Any occurrence of p+ from Rk is connected to an occurrence of p̄+ from
some R⊥k′ (possibly, k 6= k′).

Proof. We consider several cases:
Case 1: the occurrence of p+ is connected to an occurrence of p̄ from the same Rk

by a link C. Since #(In(C)) = 0, it is the rightmost occurrence of p̄:

p̄O . . .O p̄O p̄⊗ p̄O p̄Op∗O p̄O . . .O LLp̄Op+⊗
��

But then immediately to the right of Rk there is an occurrence τ of ⊗ (otherwise
there would be two occurrences of O in one region) connected by an A-arc with the
occurrence π of O on the left side of C (due to <Γ-planarity of A ∪ E). On the other
hand, π ≺Γ τ (since τ is situated immediately next to Rk, and therefore Rk is a subformula

23

of the formula where τ is the occurrence of the main connective). Contradiction with the
acyclicity of A ∪≺Γ.

Case 2: p+ is connected to the occurrence of p̄ in Rk′ , which is the third to the left
from p∗, by a link C:

p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄Op+ K p̄O. . .Op̄︸ ︷︷ ︸
N−k′+1

Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄Op+

Let K be the fragment from Rk to Rk′ . The same argument as in Lemma 3.4 shows
that #(K) = 0. But then #(D(C,K)) = −(N − k′ + 1) + #(K) 6= 0. Contradiction.

Case 3: p+ is connected by a link C to an occurrence of p̄ from another Rk′ , but
not the third to the left from p∗. In this case either in the inner (if Rk′ lies to the left
from Rk) or in the outer region of C there are two occurrences of O. Contradiction.

Case 4: p+ is connected to p̄∗ from some R⊥k′ . Contradiction with Lemma 3.3: p̄∗
is connected to an occurrence of p∗, but not p+.

So the only possible situation is the 5th case: p+ is connected to an occurrence of
p̄+ from some R⊥k′ .

Lemma 3.6. Any occurrence of p̄+ from R⊥k is connected to an occurrence of p+ from
some Rk′.

Proof. The same argument as in Lemma 3.3.

Let us call an occurrence of a connective old if it is not inside an occurrence of a
positive or negative formula (thus this occurrence comes from the original sequent→ Γ).

Lemma 3.7. If an occurrence τ of ⊗ is old, then A(τ) is also old.

Proof. Suppose the contrary. Let A(τ) be not old and let A(τ) <Γ τ (in the other case
we proceed symmetrically with respect to the arc 〈τ,A(τ)〉). Consider several cases:

Case 1: A(τ) lies inside some R⊥k :

p̄+⊗p⊗ . . .⊗p⊗ p̄∗⊗p⊗pOp⊗p⊗ . . .⊗p K ⊗
��

Let D = In(τ,A(τ)) and K be the fragment of ΩΓ between R⊥k and τ . We have
#(K) = 0 and #(D) = 0. Contradiction.

Case 2: A(τ) is an occurrence of O inside Rk, but not the second from the right
side. From the two sets In(τ,A(τ)) and Out(τ,A(τ)) we take the one not containing p∗
from this Rk and call it D . For K we take the subset of ΩΓ containing all elements of
D , except those from Rk. Now we proceed exactly as in case 1.

Case 3: A(τ) is the second from the right side occurrence of O in Rk:

p̄O . . .O p̄O p̄⊗ p̄O p̄Op∗O p̄O . . .O p̄Op+ K ⊗
��

We define D and K as in case 1. The numbers of p∗ and p̄∗ in K are equal.
Therefore, the number of p+ and p̄+ in K are also equal. On the other hand, the same is
true for D . Contradiction: the number of p̄+ in D is the same as in K , but the number
of p+ is greater by one.

24

Now we construct a proof net N′ for the original sequent → Γ: N′ � 〈ΩΓ,A′, E ′〉.
Here A′ contains the arcs of A that start at old ⊗ occurrences, and edges of E ′ connect
those occurrences of pk and p̄k for which the occurrences of p∗ and p̄∗ from the corre-
sponding Rk and R⊥k are connected by edges of E . It easily follows from the lemmata
above that N′ is a proof net for→ Γ, therefore MCLL `→ Γ. Moreover, if N were strong,
then N′ is also strong, and → Γ is derivable in MCLL′.

3.3 L(\; p)-grammars and L∗(\; p)-grammars

Theorem 24. Any context-free language without the empty word is generated by an
L(\; p1)-grammar. Any context-free language is generated by an L∗(\; p1)-grammar.

Proof. Due to Theorems 2 and 15 it is sufficient to show that any L(\)-language (resp.,
L∗(\)-language) is generated by an L(\; p1)-grammar (resp., L∗(\; p1)-grammar). Let M
be a language generated by an L(\)-grammar (resp., an L∗(\)-grammar) G. The grammar
is finite; let N be the maximal subscript of a primitive type used in G. Then G is an
L(\; p1, . . . , pN)-grammar (an L∗(\; p1, . . . , pN)-grammar). Consider the grammar G[p1 :=
A1, . . . , pN := AN]. Due to Theorem 20 (resp., Theorem 21) this grammar generates the
same language M .

Thus, the class of L(\; p1)-languages coincides with the class of context-free lan-
guages without the empty words and the class of L∗(\; p1)-languages coincides with the
class of all context-free languages.

This construction (or the less complicated Métayer’s one) and Theorem 6 yield that
any context-free language without the empty word is generated by an L(\, /; p1)-grammar
with single type assignment.

3.4 NP-completeness of Derivability Problems for

L(·, \; p), L(\, /; p), and L∗(\, /; p)
Theorem 25. Derivability problems for L(·, \; p), L∗(·, \; p), L(\, /; p), and L∗(\, /; p)
(and, therefore, in their conservative extensions L(p), L∗(p), L1(·, \; p), L1(\, /; p), and
L1(p)) are NP-complete.

Proof. Let L be one of the calculi L(·, \), L∗(·, \), L(\, /), or L∗(\, /). We construct
a polynomially computable function φ that reduces derivability in L to derivability in
L (p). Let Π → C be an arbitrary sequent and let NΠ→C be the maximal subscript of
a primitive type occurring in Π → C. For N = NΠ→C build the types A1, A2, . . . , AN

as shown in Section 3.1. Let φ(Π → C) �
(
Π → C

)
[p1 := A1, p2 := A2, . . . , pN := AN].

Due to conservativity Theorems 22 and 23 yield L ` Π → C ⇐⇒ L (p) ` φ(Π → C).
Thus, φ is indeed the reducing function and, since the derivability problem for L is
NP-complete (Theorem 8), so is the derivability problem for L (p).

For calculi with two divisions one can also use the Métayer construction.

Derivability problems for L(\; p), L∗(\; p), and L1(\; p) are, of course, decidable in
polynomial time due to conservativity and Theorems 9 and 19.

25

3.5 The Uniform Substitution

Though for Theorems 24 and 25 it was sufficient to have a faithful substitution acting on
a finite set of primitive types, it is interesting whether there exists a uniform substitu-
tion, that reduces derivability in L(\) to derivability in L(\; p1) (resp., L∗(\) to L∗(\; p1))
independently from the number of primitive types used in the sequent. We build such a
substitution using the existing construction. First note that the proof allows parameters
to be added to the sequent. Namely, the following statement is true: for any sequent
Π → C, where Π = B1 . . . Bm B1, . . . , Bm, C ∈ Tp(\; p1, . . . , pN , pN+1, . . . , pN+M), we
have

L(\) ` Π→ C ⇐⇒ L(\) `
(
Π→ C

)
[p1 := A1, . . . , pN := AN];

L∗(\) ` Π→ C ⇐⇒ L∗(\) `
(
Π→ C

)
[p1 := A1, . . . , pN := AN].

Here pN+1, . . . , pN+M are parameters, that are not affected by the substitution. During
the transformation of the (strong) proof net links, connecting their occurrences, are just
copied from N to N′.

Consider N = 2. Our construction gives the following types A1 and A2 (we continue
using the notation “multiplication in the denominator”):

A1 =
(
p · p ·

(
((p · p) \ p) \ p

)
· p · p

)
\ p,

A2 =
(
p · p · p ·

(
((p · p) \ p) \ p

)
· p
)
\ p.

Define two functions from Tp(\) to Tp(\): L : E 7→ A1[p1 := E] and R : E 7→ A2[p1 :=
E]. By renaming primitive types, we get the following:

Lemma 3.8. For any sequent Π → C, where Π = B1 . . . Bm, and B1, . . . , Bm, C ∈
Tp(\; p1, . . . , pn−1, pn, pn+1), we have

L(\) ` Π→ C ⇐⇒ L(\) `
(
Π→ C

)
[pn = L(pn), pn+1 := R(pn)];

L∗(\) ` Π→ C ⇐⇒ L∗(\) `
(
Π→ C

)
[pn = L(pn), pn+1 := R(pn)].

(Here p1, . . . , pn−1 act as parameters.)
Now by induction we get the following statement:

Lemma 3.9. For any n > 1 and for any sequent Π → C, where Π = B1 . . . Bm

B1, . . . , Bm, C ∈ Tp(\; p1, . . . , pn), the following holds:

L(\) ` Π→ C ⇐⇒ L(\; p1) `
(
Π→ C

)
[p1 := L(p1),

p2 := L(R(p1)), . . . , pn−1 := L(Rn−2(p1)), pn := Rn−1(p1)];

L∗(\) ` Π→ C ⇐⇒ L∗(\; p1) `
(
Π→ C

)
[p1 := L(p1),

p2 := L(R(p1)), . . . , pn−1 := L(Rn−2(p1)), pn := Rn−1(p1)].

Proof. Proceed by induction on n. The induction base is trivial. Suppose our lemma is
true for n and prove it for n+ 1. By Lemma 3.8 we have

L(\) ` Π→ C ⇐⇒ L(\) `
(
Π→ C

)
[pn := L(pn), pn+1 := R(pn)].

26

The sequent from the right side contains only primitive types p1, . . . , pn−1, pn.
Therefore, by induction hypothesis its derivability is equivalent to

L(\) `
(
Π→ C

)
[pn := L(pn), pn+1 := R(pn)][p1 := L(p1),

p2 = L(R(p)), . . . , pn−1 := L(Rn−2(p)), pn := Rn−1(p)],

and the latter sequent is graphically equal to
(
Π→ C

)
[p1 := L(p), p2 = L(R(p)), . . . , pn−1 :=

L(Rn−2(p)), pn := L(Rn−1(p)), pn+1 := Rn(p)].
The L∗(\) is handled in the same way.

Theorem 26. For any sequent Π → C, where Π = B1 . . . Bm, B1, . . . , Bm, C ∈ Tp(\),
the following equivalences hold:

L(\) ` Π→ C ⇐⇒ L(\; p1) `
(
Π→ C

)
[p1 := L(p), p2 := L(R(p)),

p3 := L(R(R(p))), . . . , pk := L(Rk−1(p)), . . .];

L∗(\) ` Π→ C ⇐⇒ L∗(\; p1) `
(
Π→ C

)
[p1 := L(p), p2 := L(R(p)),

p3 := L(R(R(p))), . . . , pk := L(Rk−1(p)), . . .].

Proof. Use the previous lemma with n = N + 1, where N is the greatest subscript of a
primitive type occurring in Π→ C.

A disadvantage of this construction is the fact that the sequent length grows ex-
ponentially: for pk we substitute the type L(Rk−1(p)) that contains 9k occurrences of
p. Hence this substitution cannot be used to prove NP-completeness of fragments of the
Lambek calculus with one primitive type and at least two connectives.

27

Chapter 4

The Lambek Calculus with the
Reversal Operation

4.1 L-models for L

In this section and the following three sections the alphabet Σ can be finite or countable.
Three connectives of the Lambek calculus naturally correspond to three operations on
languages without the empty word (M,N ⊆ Σ+): M · N � {uv | u ∈ M, v ∈ N},
M \N � {u ∈ Σ+ | (∀v ∈M) vu ∈ N}, N/M � {u ∈ Σ+ | (∀v ∈M)uv ∈ N}.

Definition. An L-model is a pair M = 〈Σ, w〉, where Σ is an alphabet, and w is a
mapping of Lambek types into formal languages over Σ without the empty word, such that
for any A,B ∈ Tp the following holds: w(A ·B) = w(A) ·w(B), w(A \B) = w(A) \w(B)
w(B /A) = w(B) /w(A).

This mapping can be defined on primitive types in an arbitrary way, and then it is
uniquely propagated to all types.

Since Σ+ with the concatenation operation is the free semigroup generated by Σ,
L-models are also called models on subsets of free semigroups.

Definition. A sequent F → G is considered true in a modelM = 〈Σ, w〉 (M � F → G)
if w(F) ⊆ w(G).

L-models give sound and complete semantics for L, due to the following theorem:

Theorem 27 (M. Pentus, 1995). A sequent F → G is provable in L if and only if it is
true in all L-models.

This theorem is proved in [31]; its special case for the product-free fragment (where
we keep only types without multiplication) is much easier and appears in [3]. (The notion
of truth in an L-model and this theorem can be easily generalized to sequents with more
than one type on the left, since L ` F1F2 . . . Fn → G if and only if L ` F1·F2·. . .·Fn → G.)

4.2 The LR Calculus

Now let us consider an extra operation on languages, the reversal. For u = a1a2 . . . an
(a1, . . . , an ∈ Σ, n ≥ 1) let uR � an . . . a2a1, and for M ⊆ Σ+ let MR � {uR | u ∈
M}. Let us enrich the language of the Lambek calculus with a new unary connective R

28

(written in the postfix form, AR). We shall denote the extended set of types by TpR. If
Γ = A1A2 . . . An, then ΓR � AR

n . . . A
R
2 A

R
1 .

The notion of L-model is also easily adapted to the new language by adding an
additional constraint on w: w(AR) = w(A)R.

The calculus LR is obtained from L by adding three new rules for R:

Γ→ C
ΓR → CR

(R → R) ΓARR∆→ C
ΓA∆→ C

(RR →)E
Γ→ CRR

Γ→ C
(→ RR)E

It is easy to see that LR is sound with respect to L-models.

Proposition 4.1. The calculus LR is a conservative extension of L.

Proof. The “if” part is obvious. The “only if” part follows from L-completeness of L
and L-soundness of LR: if F → G is provable in LR, then it is true in all L-models, and,
therefore, is provable in L.

L-completeness for the product-free fragment of LR is proved in [29] by a modifica-
tion of Buszkowski’s argument [3] (in [29] the reversal connective is called involution and
denoted by ˘ instead of R; the calculus is formulated in a different, but equivalent way).
In [29] one can also find a proof of L-completeness of the division-free fragment (where
only · and R connectives are kept). We shall prove L-completeness of the whole calculus.

Theorem 28. A sequent F → G (F,G ∈ TpR) is provable in LR if and only if it is true
in all L-models.

A variant of this calculus that allows empty antecedents (an extension with the R

connective of L∗, the variant of L without the restriction Π 6= Λ on the (→ \) and (→ /)
rules) is presented in [17]. The calculus L∗ itself is complete with respect to L-models
allowing empty words in the languages (free monoid models) [24], but L-completeness of
its extension with the R connective is still an open problem.

4.3 Normal Form for LR types

The relation ↔LR is an equivalence relation. Moreover, it is a congruence relation with
respect to all connectives (due to the (R → R) rule for R and Proposition 1.2 for others).
The following lemma is checked explicitly by presenting the corresponding derivations in
LR:

Lemma 4.2. The following equivalences hold in LR:

1. (A ·B)R ↔ BR · AR;
2. (A \B)R ↔ BR /AR;
3. (B /A)R ↔ AR \BR;
4. ARR ↔ A.

Definition. For A ∈ TpR we define tr(A) by induction on the number of connectives in
A:

1. tr(pi)� pi;
2. tr(pR

i)� pR
i ;

3. tr(A ·B)� tr(A) · tr(B);
4. tr(A \B)� tr(A) \ tr(B);

29

5. tr(B /A)� tr(B) / tr(A);
6. tr((A ·B)R)� tr(BR) · tr(AR);
7. tr((A \B)R)� tr(BR) / tr(AR);
8. tr((B /A)R)� tr(AR) \ tr(BR);
9. tr(ARR)� tr(A).

The following statement is proved by induction using Lemma 4.2:

Proposition 4.3. Any A ∈ TpR is equivalent to tr(A).

We call tr(A) the normal form of A. In the normal form, the R connective can
appear only on occurrences of primitive types.

4.4 L-completeness of LR (Proof)

Now we are going to prove Theorem 28 (the “if” part) by contraposition. Let LR 6` F0 →
G0. We need to construct a countermodel for F0 → G0, i.e., a model in which this sequent
is not true.

Let Pr′ � Pr∪{pR | p ∈ Pr}, and let L′ be the Lambek calculus with Pr′ taken as
the set of primitive types instead of Pr. Here R is not a connective, and pR is considered
just a new primitive type, independent from p. Obviously, if L′ ` F → G, then LR `
F → G.

Let F � tr(F0), G � tr(G0). Then LR 6` F → G, whence L′ 6` F → G. The
calculus L′ is essentially the same as L, therefore Theorem 27 gives us a structure M =
〈Σ, w〉 such that w(F) 6⊆ w(G). The structure M indeed falsifies F → G, but it is not a
model in the sense of our new language: some of the conditions w(pR

i) = w(pi)
R might

be not satisfied.
Let Φ be the set of all subtypes of F → G (including F and G themselves; the

notion of subtype is understood in the sense of LR). The construction of M (see [31])
guarantees that w(A) 6= ∅ for all A ∈ Φ. This is the only specific property ofM we shall
need.

We introduce an inductively defined counter f(A), A ∈ Φ: f(pi) � 1, f(pR
i) � 1,

f(A ·B)� f(A)+f(B)+10, f(A \B)� f(B), f(B /A)� f(B). Let K � max{f(A) |
A ∈ Φ}, N � 2K + 25 (N should be odd, greater then K, and big enough itself).

Let Σ1 � Σ × {1, . . . , N}. We shall denote the pair 〈a, j〉 ∈ Σ1 by a(j). Elements
of Σ and Σ1 will be called letters and symbols respectively. A symbol can be even or odd
depending on the parity of the superscript. Consider a homomorphism h : Σ+ → Σ+

1 ,
defined as follows: h(a) � a(1)a(2) . . . a(N) (a ∈ Σ), h(a1 . . . an) � h(a1) . . . h(an). Let

P � h(Σ+) = {a(1)
1 . . . a

(N)
1 . . . a

(1)
n . . . a

(N)
n | n ≥ 1, ai ∈ Σ}. Note that h is a bijection

between Σ+ and P .

Lemma 4.4. For all M,N ⊆ Σ+ we have

1. h(M ·N) = h(M) · h(N);
2. if M 6= ∅, then h(M \N) = h(M) \h(N) and h(N/M) = h(N) / h(M).

Proof.

1. By the definition of a homomorphism.

30

2. ⊆ Let u ∈ h(M \N). Then u = h(u′) for some u′ ∈ M \N . For all v′ ∈ M
we have v′u′ ∈ N . Take an arbitrary v ∈ h(M), v = h(v′) for some v′ ∈ M .
Since u′ ∈ M \N , v′u′ ∈ N , whence vu = h(v′)h(u′) = h(v′u′) ∈ h(N). Therefore
u ∈ h(M) \h(N).
⊇ Let u ∈ h(M) \h(N). First we claim that u ∈ P . Suppose the contrary: u /∈ P .

Take v′ ∈ M (M is nonempty by assumption). Since v = h(v′) ∈ P , vu /∈ P . On
the other hand, vu ∈ h(N) ⊆ P . Contradiction. Now, since u ∈ P , u = h(u′) for
some u′ ∈ Σ+. For an arbitrary v′ ∈M and v � h(v′) we have h(v′u′) = vu ∈ h(N),
whence v′u′ ∈ N , whence u′ ∈M \N . Therefore, u = h(u′) ∈ h(M \N).
The / case is handled symmetrically.

We construct a new model M1 = 〈Σ1, w1〉, where w1(z)� h(w(z)) (z ∈ Pr′). Due
to Lemma 4.4, w1(A) = h(w1(A)) for all A ∈ Φ, whence w1(F) = h(w(F)) 6⊆ h(w(G)) =
w1(G) (M1 is also a countermodel in the language without R).

Now we introduce several auxiliary subsets of Σ+
1 (by Subw(M) we denote the set

of all nonempty subwords of words from M , i.e. Subw(M) � {u ∈ Σ+
1 | (∃v1, v2 ∈

Σ∗1) v1uv2 ∈M}):
T1 � {u ∈ Σ+

1 | u /∈ Subw(P ∪ PR)};
T2 � {u ∈ Subw(P ∪ PR) | the first or the last symbol of u is even};
E � {u ∈ Subw(P ∪ PR) − (P ∪ PR) | both the first symbol and the last symbol of u
are odd}.

The sets P , PR, T1, T2, and E form a partition of Σ+
1 into nonintersecting parts.

For example, a(1)b(10)a(2) ∈ T1, a(N)b(1) . . . b(N−1) ∈ T2, a(7)a(6)a(5) ∈ E (a, b ∈ Σ).
Let T � T1 ∪ T2, Ti(k) � {u ∈ Ti | |u| ≥ k} (i = 1, 2, |u| is the length of u),

T (k)� T1(k) ∪ T2(k) = {u ∈ T | |u| ≥ k}.
Note that if the first or the last symbol of u is even, then it belongs to T , no matter

whether it belongs to Subw(P ∪ PR).
The index k (possibly with subscripts) here and further ranges from 1 to K. For

all k we have T (k) ⊇ T (K).

Lemma 4.5.

1. P · P ⊆ P , PR · PR ⊆ PR;
2. TR = T , T (k)R = T (k);
3. P · PR ⊆ T (K), PR · P ⊆ T (K);
4. P · T ⊆ T (K), T · P ⊆ T (K);
5. PR · T ⊆ T (K), T · PR ⊆ T (K);
6. T · T ⊆ T ;

Proof.

1. Obvious.
2. Directly follows from our definitions.
3. Any element of P · PR or PR · P does not belong to Subw(P ∪ PR) and its length

is at least 2N > K. Therefore it belongs to T1(K) ⊆ T (K).
4. Let u ∈ P and v ∈ T . If v ∈ T1, then uv is also in T1. Let v ∈ T2. If the last symbol

of v is even, then uv ∈ T . If the last symbol of v is odd, then uv /∈ Subw(P ∪ PR),
whence uv ∈ T1 ⊆ T . Since |uv| > |u| ≥ N > K, uv ∈ T (K).
The claim T · P ⊆ T is handled symmetrically.

5. PR · T = PR · TR = (T · P)R ⊆ T (K)R = T (K). T · PR = TR · PR = (P · T)R ⊆
T (K)R = T (K).

31

6. Let u, v ∈ T . If at least one of these two words belongs to T1, then uv ∈ T1. Let
u, v ∈ T2. If the first symbol of u or the last symbol of v is even, then uv ∈ T . In
the other case u ends with an even symbol, and v starts with an even symbol. But
then we have two consecutive even symbols in uv, therefore uv ∈ T1.

Let us call words of the form a(i)a(i+1)a(i+2), a(N−1)a(N)b(1), and a(N)b(1)b(2) (a, b ∈
Σ, 1 ≤ i ≤ N − 2) valid triples of type I and their reversals (namely, a(i+2)a(i+1)a(i),
b(1)a(N)a(N−1), and b(2)b(1)a(N)) valid triples of type II. Note that valid triples of type I
(resp., of type II) are the only possible three-symbol subwords of words from P (resp.,
PR).

Lemma 4.6. A word u of length at least three is a subword of a word from P ∪ PR if
and only if any three-symbol subword of u is a valid triple of type I or II.

Proof. The nontrivial part is “if”. We proceed by induction on |u|. Induction base
(|u| = 3) is trivial. Let u be a word of length m + 1 satisfying the condition and let
u = u′x (x ∈ Σ1). By induction hypothesis (|u′| = m), u′ ∈ Subw(P ∪ PR). Let
u′ ∈ Subw(P) (the other case is handled symmetrically); u′ is a subword of some word
v ∈ P . Consider the last three symbols of u. Since the first two of them also belong
to u′, this three-symbol word is a valid triple of type I, not type II. If it is of the form
a(i)a(i+1)a(i+2) or a(N)b(1)b(2), then x coincides with the symbol next to the occurrence of u′

in v, and therefore u = u′x is also a subword of v. If it is of the form a(N−1)a(N)b(1), then,
provided v = v1u

′v2, v1u
′ is also an element of P , and so is the word v1u

′b(1)b(2) . . . b(N),
which contains u = u′b(1) as a subword. Thus, in all cases u ∈ Subw(P).

Now we construct one more model M2 = 〈Σ1, w2〉, where w2(pi) � w1(pi) ∪
w1(pR

i)R ∪ T , w2(pR
i) � w1(pi)

R ∪ w1(pR
i) ∪ T . This model is a model even in the sense

of the enriched language. To finish the proof, we need to check that M2 6� F → G.

Lemma 4.7. For any A ∈ Φ the following holds:

1. w2(A) ⊆ P ∪ PR ∪ T ;
2. w2(A) ⊇ T (f(A));
3. w2(A) ∩ P = w1(A) (in particular, w2(A) ∩ P 6= ∅);
4. w2(A) ∩ PR = w1(tr(AR))R (in particular, w2(A) ∩ PR 6= ∅).

Proof. We prove all the statements simultaneously by induction on type A. The induction
base is trivial. Further we shall refer to the i-th statement of the induction hypothesis
(i = 1, 2, 3, 4) as “IH-i”.

1. Consider three possible cases.
a) A = B ·C. Then w2(A) = w2(B)·w2(C) ⊆ (P∪PR∪T)·(P∪PR∪T) ⊆ P∪PR∪T

(Lemma 4.5).
b) A = B \C. Suppose the contrary: in w2(A) there exists an element u ∈ E.

Then vu ∈ w2(C) for any v ∈ w2(B). We consider several subcases and show that each
of those leads to a contradiction.

i) u ∈ Subw(P), and the superscript of the first symbol of u is not 1. Let the first
symbol of u be a(i). Note that i is odd and i > 2. Take v = a(3) . . . a(N)a(1) . . . a(i−1). The
word v has length at least N ≥ K and ends with an even symbol, therefore v ∈ T (K) ⊆
T (f(B)) ⊆ w2(B) (IH-2). On the other hand, vu ∈ Subw(P) and the first symbol and
the last symbol of vu are odd. Therefore, vu ∈ E and vu ∈ w2(C), but w2(C) ∩ E = ∅
(IH-1). Contradiction.

32

ii) u ∈ Subw(P), and the first symbol of u is a(1) (then the superscript of the last
symbol of u is not N , because otherwise u ∈ P). Take v ∈ w2(B)∩P (this set is nonempty
due to IH-3). The first and the last symbol of vu is odd, and vu ∈ Subw(P)−P , therefore
vu ∈ E. Contradiction.

iii) u ∈ Subw(PR), and the superscript of the first symbol of u is not N (the first
symbol of u is a(i), i is odd). Take v = a(N−2) . . . a(1)a(N) . . . a(i+1) ∈ T (K) ⊆ w2(B).
Again, vu ∈ E.

iv) u ∈ Subw(PR), and the first symbol of u is a(N). Take v ∈ w2(B)∩PR (nonempty
due to IH-4). vu ∈ E.

c) A = C /B. Proceed symmetrically.

2. Consider three possible cases.
a) A = B · C. Let k1 � f(B), k2 � f(C), k � k1 + k2 + 10 = f(A). Due to IH-2,

w2(B) ⊇ T (k1) and w2(C) ⊇ T (k2). Take u ∈ T (k). We have to prove that u ∈ w2(A).
Consider several subcases.

i) u ∈ T1(k). By Lemma 4.6 (|u| ≥ k > 3 and u /∈ Subw(P ∪ PR)) in u there
is a three-symbol subword xyz that is not a valid triple of type I or II. Divide the
word u into two parts, u = u1u2, such that |u1| ≥ k1 + 5, |u2| ≥ k2 + 5. If needed,
shift the border between parts by one symbol to the left or to the right, so that the
subword xyz lies entirely in one part. Let this part be u2 (the other case is handled
symmetrically). Then u2 ∈ T1(k2). If u1 is also in T1, then the proof is finished. Consider
the other case. Note that in any word from Subw(P ∪ PR) among any three consecutive
symbols at least one is even. Shift the border to the left by at most 2 symbols to
make the last symbol of u1 even. Then u1 ∈ T (k1), and u2 remains in T1(k2). Thus
u = u1u2 ∈ T (k1) · T (k2) ⊆ w2(B) · w2(C) = w2(A).

ii) u ∈ T2(k). Let u end with an even symbol (the other case is symmetric). Divide
the word u into two parts, u = u1u2, |u1| ≥ k1 + 5, u2 ≥ k2 + 5, and shift the border (if
needed), so that the last symbol of u1 is even. Then both u1 and u2 end with an even
symbol, and therefore u1 ∈ T (k1) and u2 ∈ T (k2).

b) A = B \C. Let k � f(C) = f(A). By IH-2, w2(C) ⊇ T (k). Take u ∈ T (k)
and an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ T . By Lemma 4.5, statements 4–6, vu ∈
(P ∪ PR ∪ T) · T ⊆ T , and since |vu| > |u| ≥ k, vu ∈ T (k) ⊆ w2(C). Thus u ∈ w2(A).

c) A = C /B. Symmetrically.

3. Consider three possible cases.
a) A = B · C.
⊇ u ∈ w1(A) = w1(B) · w1(C) ⊆ w2(B) · w2(C) = w2(A) (IH-3); u ∈ P .

⊆ Suppose u ∈ P and u ∈ w2(A) = w2(B) · w2(C). Then u = u1u2, where u1 ∈
w2(B) and u2 ∈ w2(C). First we claim that u1 ∈ P . Suppose the contrary, u1 /∈ P . By IH-
1, u1 ∈ PR∪T , u2 ∈ P∪PR∪T , and therefore u = u1u2 ∈ (PR∪T)·(P∪PR∪T) ⊆ PR∪T
(Lemma 4.5, statements 1, 3–6). Hence u /∈ P . Contradiction. Thus, u1 ∈ P . Similarly,
u2 ∈ P , and by IH-3 we obtain u1 ∈ w1(B) and u2 ∈ w1(C), whence u = u1u2 ∈ w1(A).

b) A = B \C.
⊇ Take u ∈ w1(B \C). For any v ∈ w1(B) we have vu ∈ w1(C). We claim that

u ∈ w2(B \C). Take v ∈ w2(B) ⊆ P ∪ PR ∪ T (IH-1). If v ∈ P , then v ∈ w1(B) (IH-3),
and vu ∈ w1(C) ⊆ w2(C) (IH-3). If v ∈ PR∪T , then vu ∈ (PR∪T) ·P ⊆ T (K) ⊆ w2(C)
(Lemma 4.5, statements 3 and 4, and IH-2). Therefore, u ∈ w2(B) \w2(C) = w2(B \C);
also we have u ∈ P , since w1(B \C) ⊆ P .

⊆ If u ∈ w2(B \C) and u ∈ P , then for any v ∈ w1(B) ⊆ w2(B) we have
vu ∈ w2(C). Since v, u ∈ P , vu ∈ P . By IH-3, vu ∈ w1(C). Thus u ∈ w1(B \C).

33

c) A = C /B. Symmetrically.

4. Consider three cases.
a) A = B · C. Then tr(AR) = tr(CR) · tr(BR).

⊇ u ∈ w1(tr(AR))R = w1(tr(CR) · tr(BR))R =
(
w1(tr(CR)) · w1(tr(BR))

)R
=

w1(tr(BR))R · w1(tr(CR))R ⊆ w2(B) · w2(C) = w2(A) (IH-4); u ∈ PR.
⊆ Let u ∈ PR and u ∈ w2(A) = w2(B) ·w2(C). Then u = u1u2, where u1 ∈ w2(B),

u2 ∈ w2(C). We claim that u1, u2 ∈ PR. Suppose the contrary: u1 /∈ PR. Then
u1 ∈ P ∪T (IH-1), u2 ∈ P ∪PR ∪T , whence u = u1u2 ∈ (P ∪T) · (P ∪PR ∪T) ⊆ P ∪T .
Contradiction (u ∈ PR). Thus, u1 ∈ PR, and therefore u2 ∈ PR, and, using IH-4,
we obtain u1 ∈ w1(tr(BR))R, u2 ∈ w1(tr(CR))R. Hence u = u1u2 ∈ w1(tr(BR))R ·
w1(tr(CR))R =

(
w1(tr(CR)) · w1(tr(BR))

)R
= w1(tr(CR) · tr(BR))R = w1(tr(AR))R.

b) A = B \C. Then tr(AR) = tr(CR) / tr(BR).
⊇ Let u ∈ w1(tr(CR) / tr(BR))R = w1(tr(BR))R \w1(tr(CR))R, so for every v ∈

w1(tr(BR))R we have vu ∈ w1(tr(CR))R. We claim that u ∈ w2(B \C). Take an arbitrary
v ∈ w2(B) ⊆ P ∪ PR ∪ T (IH-1). If v ∈ PR, then v ∈ w1(tr(BR))R (IH-4), whence
vu ∈ w1(tr(CR))R ⊆ w2(C).
If v ∈ P ∪T , then (since u ∈ PR) we have vu ∈ (P ∪T)·PR ⊆ T (K) ⊆ w2(C) (Lemma 4.5
and IH-2).

⊆ If u ∈ w2(B \C) and u ∈ PR, then for any v ∈ w1(tr(BR))R ⊆ w2(B) we

have vu ∈ w2(C). Since v, u ∈ PR, vu ∈ PR, therefore vu ∈ w1(tr(CR))R (IH-4). Thus
u ∈ w1(tr(BR))R \w1(tr(CR))R = w1(AR)R.

c) A = C /B. Symmetrically.

This completes the proof of Lemma 4.7.

Since w1(F) 6⊆ w1(G), there exists an element u0 such that u0 ∈ w1(F) and u0 /∈
w1(G). Since u0 ∈ P , u0 ∈ w2(F) and u0 /∈ w2(G). Therefore, w2(F) 6⊆ w2(G). Since
F0 ↔ F , G0 ↔ G, and LR is L-sound, we see that w2(F0) = w2(F), w2(G0) = w2(G), and
M2 is a countermodel for F0 → G0. This completes the proof of Theorem 28.

Note that we have constructed a countermodel (in the sense of the extended lan-
guage) for any sequent F → G that is not provable in L′ (this could be potentially weaker
than LR 6` F → G). Thus we get the following statement:

Proposition 4.8. LR ` A1 . . . An → B if and only if L′ ` tr(A1) . . . tr(An)→ tr(B).

4.5 LR: Grammars and Complexity

Theorem 29. The class of all LR-languages coincides with the class of all context-free
languages without the empty word.

Proof. Every context-free language is an LR-language due to Theorem 2 and conservativ-
ity of LR over L(\).

The other inclusion follows from Propositon 4.8: if we replace every type C with
tr(C) in an LR-grammar, we obtain an L-grammar (since L′ and L differ only in the set
of primitive types) generating the same language, and this language is now context-free
by Theorem 3.

Fragments of LR with restricted sets of connectives and/or primitive types are de-
fined in the same way as for L.

34

Theorem 30. Derivability problems for LR(\; p1), LR, and all the calculi between them
(fragments of LR and conservative extensions of LR(\; p1)) are NP-complete.

Proof. The derivability problem for LR is in the NP class due to Proposition 4.8 and the
fact that the derivability problem for L is in NP.

NP-completeness of the derivability problem for LR(\; p1) follows from the equiv-
alence B /A ↔LR (AR \BR)R, that reduces derivability in L(\, /; p1) to derivability in
LR(\; p1). The derivability problem for L(\, /; p1) is NP-complete (Theorem 25).

35

Bibliography

[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: principles, techniques and tools. —
Reading, Mass.: Addison-Wesley, 1985.

[2] Y. Bar-Hillel, C. Gaifman, E. Shamir. On the categorial and phrase-structure gram-
mars. Bulletin of the Research Council of Israel, Section F. 9F, 1960. — P. 1–16.

[3] W. Buszkowski. Compatibility of a categorial grammar with an associated category
system. Zeitschrift für mathematische Logik und Grundlagen der Mathematik. 28,
1982. — P. 229–238.

[4] W. Buszkowski. Some decision problems in the theory of syntactic categories.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik. 28, 1982. —
P. 539–548.

[5] W. Buszkowski. The equivalence of unidirectional Lambek categorial grammars and
context-free grammars. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik. 31, 1985. — P. 369–384.

[6] B. Carpenter. Type-logical semantics. — Cambridge, Mass.: The MIT Press, 1997.
[7] N. Chomsky. Three models for the description of language. IRE Transactions on

Information Theory. I T-2, No. 3, 1956. — P. 113–124.
[8] M. Dekhtyar, A. Dikovsky. Generalized categorial dependency grammars. Trakht-

enbrot/Festschrift, ed. by A. Avron et al. Lecture Notes in Computer Science,
Vol. 4800. Berlin etc.: Springer, 2008. — P. 230–255.

[9] T. A. D. Fowler. A polynomial time algorithm for parsing with the bounded order
Lambek grammars. The Mathematics of Language: proceedings of the 10-th and 11-
th Biennial Conference, MOL 2010 and MOL 2011, ed. by Ch. Ebert, G. Jäger and
J. Michaelis. Lecture Notes in Computer Science, Vol. 6149. Berlin etc.: Springer,
2009. — P. 36–43.

[10] T. A. D. Fowler. Parsing CCGBank with the Lambek calculus. Parsing with Cate-
gorial Grammar Workshop, ESSLLI 2009. Bordeaux, 2009. — P. 38–42.

[11] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50, No. 1, 1987. — P. 1–
102.

[12] Ph. de Groote. A dynamic programming approach to categorial deduction. Pro-
ceedings of the 16th International Conference on Automated Deduction, ed. by H.
Ganzinger. Lecture Notes in Artificial Intelligence, Vol. 1632. Berlin etc.: Springer,
1999. — P. 1–15.

[13] H. Hendriks. Studied flexibility. ILLC Dissertation Series, DS-1993-05, Amsterdam,
1993.

[14] G. Jäger. On the generative capacity of multi-modal categorial grammars. Research
on Language and Computation, 1, No. 1–2, 2003. — P. 105–125.

[15] M. Kanazawa. The Lambek calculus enriched with additional connectives. Journal
of Logic, Language and Information, 1, 1992. — P. 141–171.

36

[16] J. Lambek. The mathematics of sentence structure. American Mathematical Monthly.
65, No. 3, 1958. — P. 154–170.

[17] J. Lambek. Deductive systems and categories II: Standard constructions and closed
categories. Category Theory, Homology Theory and Their Applications I, ed. by P.
Hilton. Lecture Notes in Mathematics, Vol. 86. Berlin: Springer, 1969. — P. 76–122.

[18] J. Lambek. From categorial grammar to bilinear logic. Substructural Logics, ed. by K.
Došen and P. Schroeder-Heister. Studies in Logic and Computation, Vol. 2. Oxford:
Clarendon Press, 1993. — P. 128–139.

[19] F. Métayer. Polynomial equivalence among systems LLNC, LLNCa and LLNC0.
Theoretical Computer Science. 227, No. 1, 1999. — P. 221–229.

[20] M. Moortgat. Multimodal linguistic inference. Journal of Logic, Language and In-
formation, 5, No. 3–4, 1996. — P. 349–385.

[21] M. Moortgat. Categorial type logic. Handbook of Logic and Language, ed. by J. van
Benthem and A. ter Meulen. Elsevier, 1997.

[22] G. Morrill. Categorial grammar: logical syntax, semantics and processing. Oxford:
Oxford University Press, 2011.

[23] M. Pentus. Equivalent types in Lambek calculus and linear logic. Preprint No. 2 of
the Department of Mathematical Logic, Steklov Mathematical Institute, Series Logic
and Computer Science, Moscow, 1992.

[24] M. Pentus. Free monoid completeness of the Lambek calculus allowing empty
premises. Proceedings of Logic Colloquium ’96, ed. by J. M. Larrazabal, D. Las-
car and G. Mints. Lecture Notes in Logic, Vol. 12. Berlin etc.: Springer, 1998. — P.
171–209.

[25] M. Pentus. Lambek calculus is NP-complete. Theoretical Computer Science, 357,
No. 1–3, 2006. — P. 186–201.

[26] M. Pentus. A polynomial-time algorithm for Lambek grammars of bounded order.
Linguistic Analysis. 36, No. 1–4, 2010. — P. 441–471.

[27] M. Pentus. Complexity of the Lambek calculus and its fragments. Advances in Modal
Logic, Vol. 8, ed. by L. Beklemishev, V. Goranko and V. Shehtman. — London:
College Publications, 2010. — P. 310–329.

[28] D. N. Yetter. Quantales and noncommutative linear logic. Journal of Symbolic Logic,
55, No. 1, 1990. — P. 41–64.

[29] V. A. Minina. Completeness of the Lambek syntactic calculus with the involution
operation (in Russian). Diploma paper, Dept. of Math. Logic and Theory of Algo-
rithms, Moscow State University, 2001.

[30] M. R. Pentus. Lambek calculus and formal grammars (in Russian). Fundamental
and Applied Mathematics, 1, No. 3, 1995. — P. 729–751.

[31] M. R. Pentus. Completeness of the Lambek syntactic calculus (in Russian). Funda-
mental and Applied Mathematics, 5, No. 1, 1999. — P. 193–219.

[32] Yu. V. Savateev. Algorithmic complexity of fragments of the Lambek calculus (in
Russian). C. Sc. (Ph. D.) Thesis, Moscow State University, 2009.

[33] A. N. Safiullin. Derivability of admissible rules with simple premises in the Lambek
calculus. Moscow University Math. Bulletin. 62, No. 4, 2007. — P. 168–171.

Author’s Papers
[34] S. L. Kuznetsov. Lambek calculus with one division and one primitive type per-

mitting empty antecedents. Moscow University Math. Bulletin. 64, No. 2, 2009. —
P. 76–79.

37

[35] S. Kuznetsov. Lambek grammars with one division and one primitive type. Logic
Journal of the IGPL. 20, No. 1, 2012. — P. 207–221.

[36] S. L. Kuznetsov. Lambek calculus with a unit and one division. Moscow University
Math. Bulletin. 66, No. 4, 2011. — P. 173–175.

[37] S. L. Kuznetsov. Lambek calculus with the reversal operation (in Russian). VINITI
preprint No. 152-V2012, 17.04.2012.
Revised English version: S. Kuznetsov. Lambek calculus with the reversal operation.
Logical Aspects of Computational Linguistics, ed. by D. Béchet and A. Dikovsky.
Lecture Notes in Computer Science 7351, 2012. — P. 151–160.

38

