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Abstract

We prove that any language without the empty word, generated by a
conjunctive grammar in Greibach normal form, is generated by a grammar
based on the Lambek calculus enriched with additive (“intersection” and
“union”) connectives.

1 Conjunctive Grammars

Let Σ be an arbitrary finite alphabet, Σ∗ is the set of all words, and Σ+ is the
set of all non-empty words over Σ.

We consider a generalisation of context-free grammars, introduced by Okhotin
[9] (and earlier by Szabari [14]).

A conjunctive grammar is a quadruple G = 〈Σ, N,P, S〉, where Σ and N
are two non-intersecting alphabets (Σ is the alphabet in which the language is
being defined, its elements are called terminal symbols, and N is an auxiliary
alphabet, consisting of nonterminal symbols), S ∈ N (the start symbol), and P
is a finite set of rules of the form

A→ β1& . . .&βm,

where A ∈ N , m > 1, β1, . . . , βm ∈ (Σ ∪N)∗.
We define the language generated by this grammar in terms of a formal

deduction system associated with the grammar [10]. This formal system derives
pairs of the form [X,w], where X ∈ Σ∪N and w ∈ Σ∗. Axioms are pairs [a, a],
for all a ∈ Σ, and for every rule A → B11 . . . B1m1

& . . .&Bk1 . . . Bkmk
∈ P,
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Bji ∈ Σ ∪N , and for all strings uji ∈ Σ∗, j ∈ {1, . . . , k}, i ∈ {1, . . . ,mj}, that
satisfy u11 . . . u1m1

= . . . = uk1 . . . ukmk
= w, there is a deduction rule

[B11, u11] . . . [Bkmk
, ukmk

]

[A,w] .

The formal system, associated with the grammar G, is also denoted by G. Define
LG(X) � {w | G ` [X,w]} and L(G) � LG(S) (“�” here and further means
“equals by definition”). L(G) is the language generated by G.
Example 1. Consider the following conjunctive grammar (here small letters
stand for terminal symbols, capital stand for nonterminal ones; S is the start
symbol):

S → aAB& aDC

A→ aA

A→ a

B → bBc

B → b

C → cC

C → c

D → aDb

D → b

This grammar generates the language {an+1bn+1cn | n ≥ 1} as an intersection
of two context-free languages. For example, the word aaabbbcc = a3b3c2 is
generated in the following way: first we derive [S, aaabbbcc] from [a, a], [A, aa],
[B, bbbcc], [a, a], [D, aabbb], and [C, cc]. The pair [a, a] is an axiom; the others
are derived as follows:

[a, a]

[a, a]

[A, a]

[A, aa]

[b, b]

[b, b]

[b, b]

[B, b] [c, c]

[B, bbc] [c, c]

[B, bbbcc]

[a, a]

[a, a]

[b, b]

[D, b] [b, b]

[D, abb] [b, b]

[D, aabbb]

[c, c]

[c, c]

[C, c]

[C, cc]

For technical reasons we also consider an enlarged version of this deduction
system, called Gcut. We allow nonterminal symbols to appear in the second
components of the pairs (derivable objects in it are of the form [X,ω], where
X ∈ Σ ∪ N and ω ∈ (Σ ∪ N)∗) and add new axioms [A,A] for all A ∈ N and
the cut rule:

[B, τ ] [A,ω1Bω2]

[A,ω1τω2] .

A trivial “cut elimination theorem” holds:
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Lemma 1. If A ∈ N ∪ Σ, w ∈ Σ∗, then Gcut ` [A,w] if and only if G ` [A,w].

Proof. The “if” part is obvious. For the “only if” part, we prove that every
pair, derivable in Gcut, is derivable without applying the cut rule (therefore, as
w does not contain nonterminal symbols, they do not occur in the derivation,
thus this derivation is valid in the original system). Let [B, τ ] and [A,ω1Bω2]
be derivable without applying the cut rule. Prove that [A,ω1τω2] also has a
cut-free proof. Proceed by induction on the derivation of [A,ω1Bω2]. If it is an
axiom, then ω1 and ω2 is empty, B = A, and our goal coincides with the left
premise, [B, τ ]. If [A,ω1Bω2] is derived using an inference rule, then we can
perform the substitution of τ for B in the premises of this rule, and apply the
induction hypothesis.

2 Greibach Normal Form

Consider only languages without the empty word.
A conjunctive grammar is in Greibach normal form (a generalisation of

Greibach normal form for context-free grammars [3]), if all the rules are of
the form A→ aβ1& . . .&aβk, a ∈ Σ, βj ∈ N+ or of the form A→ a, a ∈ Σ.

The question remains open, whether every conjunctive grammar can be
transformed into this form. However, it is true for languages over the one-letter
alphabet, as shown by Okhotin and Reitwießner [11]. Therefore, conjunctive
grammars in Greibach normal form can capture some languages that are not
context-free or even finite intersections of those, since the language {a4n | n ≥ 1}
is generated by a conjunctive grammar found by Jeż [4].

Example 2. The grammar from Example 1 can be easily transformed into
Greibach normal form:

S → aAB& aDC

A→ aA

A→ a

B → bBU

B → b

U → c

C → cC

C → c

D → aDV

D → b

V → b

3 Multiplicative-Additive Lambek Calculus

In this section we define an extension of the Lambek calculus (introduced in [7])
with two new connectives, additive conjunction and disjunction. The additive
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(intersective) conjunction was already introduced by Lambek [8], and the whole
calculus was considered by Kanazawa [5]. We shall call this calculus MALC,
as in [6], but use the Lambek-style notation for connectives.

A countable set Pr = {p1, p2, p3, . . .} is called the set of primitive types.
Types of MALC are built from primitive types with five binary connectives:
· (multiplication, product conjunction), \ (left division), / (right division), ∩
(intersection, additive conjunction), ∪ (union, additive disjunction). We de-
note types with capital Latin letters and their finite sequences (possibly empty)
with capital Greek ones; Λ stands for the empty sequence. Sequents (derivable
objects) of MALC are of the form Π→ C.

Axioms: A→ A.
Rules of inference:

AΠ→ B
Π→ A \B

(→ \), Π 6= Λ; Π→ A ΓB∆→ C
Γ Π (A \B) ∆→ C

(\ →);

ΠA→ B
Π→ B /A

(→ /), Π 6= Λ; Π→ A ΓB∆→ C
Γ (B /A) Π ∆→ C

(/→);

Γ→ A ∆→ B
Γ ∆→ A ·B (→ ·); ΓAB∆→ C

Γ (A ·B) ∆→ C
(· →);

Γ→ A1 Γ→ A2

Γ→ A1 ∩A2
(→ ∩);

ΓAi ∆→ C

Γ (A1 ∩A2) ∆→ C
(∩ →)i, i = 1, 2;

Γ→ Ai
Γ→ A1 ∪A2

(→ ∪)i, i = 1, 2;
ΓA1 ∆→ C ΓA2 ∆→ C

Γ (A1 ∪A2) ∆→ C
(∪ →);

Π→ A ΓA∆→ C
Γ Π ∆→ C

(cut).

The cut rule is eliminable using the standard technique [7].
The fragment without ∩ and ∪ is the ordinary (multiplicative) Lambek cal-

culus, called MLC or L. We also consider fragments of MALC with other
restrictions of the set of connectives: MALC(/,∩), MALC(/, ·,∩), MLC(/).

4 Categorial Grammars

A MALC-grammar is a triple G = 〈Σ, H,B〉, where Σ is a finite alphabet,
H ∈ Tp, and B is a finite correspondence between Tp and Σ (B ⊂ Tp × Σ).
The language generated by G is the set of all nonempty words a1 . . . an over Σ
for which there exist types B1, . . . , Bn such that MALC ` B1 . . . Bn → H and
Bi B ai for all i ∈ {1, . . . , n}. We denote this language by L(G ).

The notions of MALC(/,∩)-, MALC(/, ·,∩)-, MLC-, and MLC(/)-grammar
are defined similarly.

As shown by Gaifman [1] and Buszkowski [2], any context-free language with-
out the empty word is generated by an MLC(/)-grammar. On the other hand,
any language generated by an MLC-grammar is context-free (Pentus [12]).
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Kanazawa [5] proved that any finite intersection of context-free languages
is generated by a MALC(/,∩)-grammar (therefore such grammars go beyond
context-free). No generalisation of Pentus’ theorem for MALC is yet known.

Theorem 1. If a language without the empty word is generated by a conjunc-
tive grammar in Greibach normal form, then this language is generated by a
MALC(/, ·,∩)-grammar.

5 The Construction

Given a conjunctive grammar G = 〈N,Σ,P, S〉 in Greibach normal form, we
shall construct a MALC(/, ·,∩)-grammar G , such that L(G ) = L(G).

In order to avoid notation collisions, further we shall use the following nam-
ing convention (all these letters can also be decorated with numerical or other
indices):

Letter Range
A, B, S N (nonterminal symbols of G)

a Σ (terminal symbols)
x N ∪ Σ

w, u Σ∗ (strings of terminal symbols)
β N+ (strings of nonterminal symbols)
τ , ω (N ∪ Σ)∗

p Pr (primitive types of MALC)
E, F , G, P Tp (types of MALC)

Γ, Φ, Ψ Tp∗ (sequences of types)

With every A ∈ N we associate a distinguished primitive type pA. For
β = B1 . . . Bm let Pβ � pB1

· . . . · pBm
(multiplication is associative, so we can

omit the brackets).
Since intersection in MALC is commutative and associative, we can use

intersections of nonempty sets of types, not bothering about order and brackets:⋂k
j=1Ej stands for E1 ∩ . . . ∩ Ek, and if M = {E1, . . . , Ek}, then

⋂
M �

E1 ∩ . . . ∩ Ek. If M = {E}, then
⋂
M� E.

For every a ∈ Σ let

Ma � {pA /
( k⋂
j=1

Pβj

)
| (A→ aβ1& . . .&aβk) ∈ P} ∪ {pA | (A→ a) ∈ P}.

Let Ga �
⋂
Ma. For A ∈ N let GA � pA. The following holds due to the

(∩ →) rule:

Lemma 2. If E ∈ Ma and MALC ` ΦEΨ → F , then MALC ` ΦGa Ψ →
F .

For ω = x1 . . . xn ∈ (N ∪ Σ)+ let Γω � Gx1
. . . Gxn

.
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Lemma 3. If G ` [A,w], then MALC ` Γw → pA.

Proof. We proceed by induction on the length of w. The base case (w = a)
corresponds to an application of a rule of the form A → a to the [a, a] axiom
(this is the only way to derive [A, a]). In this case we have pA ∈Ma, therefore
by Lemma 2 we get MALC ` Ga → pA, and Γw = Ga.

Now let w contain at least two symbols and the last step of the derivation of
[A,w] be an application of the rule A→ aβ1& . . .&aβk. Then w = aw′, and for
every j ∈ {1, . . . , k}, if βj = Bj1 . . . Bjmj

, then w′ = uj1 . . . ujmj
and for every

i = {1, . . . ,mj} we have G ` [Bji, uji]. Therefore, by induction hypothesis,
MALC ` Γuji → pBji , whence MALC ` Γw′ → Pβj for every j. Applying the
(→ ∩) rule k times we get

MALC ` Γw′ →
k⋂
j=1

Pβj
,

and, finally, by (/→),

MALC ` pA /
( k⋂
j=1

Pβj

)
Γw′ → pA.

Since pA /(
⋂k
j=1 Pβj ) ∈Ma, by Lemma 2 we have MALC ` Ga Γw′ → pA, and

Ga Γw′ = Γw.

Before proving the inverse statement, we shall prove two technical lemmata:

Lemma 4. MALC ` Φ →
⋂k
j=1 Pβj

if and only if MALC ` Φ → Pβj
for

every j ∈ {1, . . . , k}.

Proof. The “if” part is just k applications of (→ ∩). The “only if” part is
proved using the cut rule (for every j0):

Γ→
⋂k
j=1 Pβj

⋂k
j=1 Pβj

→ Pβj0

Γ→ Pβj0

(cut)

Lemma 5. If ω ∈ (N ∪ Σ)+, β = B1 . . . Bm ∈ N+, and MALC ` Γω → Pβ,
then there exist such τ1, . . . , τm ∈ (N ∪ Σ)+, that ω = τ1 . . . τm and MALC `
Γτi → pBi

for every i ∈ {1, . . . ,m}.

Proof. We can rearrange the derivation, so that the applications of (→ ·) will
be in the bottom (they are interchangeable with (∩ →) and (/ →), and these
two are the only ones that can be applied below (→ ·)). Now the statement of
the lemma is obvious.

Lemma 6. If MALC ` Γω → pA, then Gcut ` [A,ω].
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Proof. Induction by the length of ω. If ω = a, then the only possible case is
pA ∈Ma. Then (A→ a) ∈ P, and Gcut ` [A, a].

Now let ω contain at least two letters. Consider the lowest application of
(/ →) in the derivation of Γω → pA. Beneath this application there are only
applications of (∩ →)—the ones that open the type to which (/→) is applied,
and the ones that deal with other types in Γω. We can transform the derivation
so that the latter will be applied before the application of (/→). Then we have

ω = ω1aτω2, pA′ /(
⋂k
j=1 Pβj

) ∈Ma, and the derivation step looks as follows:

Γτ →
⋂k
j=1 Pβj

Γω1
pA′ Γω2

→ pA

Γω1 pA′ /(
⋂k
j=1 Pβj ) Γτ Γω2 → pA

(/→)

Then, by Lemma 4, MALC ` Γτ → Pβj
for every j ∈ {1, . . . , k}. By Lemma 5,

if βj = Bj1 . . . Bjmj
, τ = τj1 . . . τjmj

, and MALC ` Γτji → pBji
(for every

j and i in the ranges). By induction hypothesis, Gcut ` [Bji, τji], and, adding
[a, a], we can apply the rule for A′ → aβ1& . . .&aβk, therefore Gcut ` [A′, aτ ].

By induction hypothesis for the right premise of the (/ →) rule, Gcut `
[A,ω1A

′ω2]. Finally, applying the cut rule to [A′, aτ ] and [A,ω1A
′ω2], we get

[A,ω1aτω2] = [A,ω].

Now we are ready to define G = 〈Σ,B, H〉. Let H = pS , and EBa if and only
if E = Ga. If w ∈ L(G), then G ` [S,w], and, by Lemma 3, MALC ` Γw → pS ,
whence w ∈ L(G ). Conversely, if w ∈ L(G ), then MALC ` Γw → pS . By
Lemma 6 we get Gcut ` [S,w], and by Lemma 1 G ` [S,w]. Hence, w ∈ L(G).

Note that in G every a ∈ Σ is associated with only one type (such grammars
are called grammars with single type assignment or deterministic grammars).
Having the intersection connective, it is usually easy to make our grammar
deterministic (cf. [5]); for the pure Lambek calculus the fact that any context-
free language is generated by a deterministic MLC-grammar is not obvious,
but still valid, as shown by Safiullin [13].

Example 3. This construction gives the following MALC-grammar equivalent
to the grammar from Example 2:

aB pA ∩ (pA / pA) ∩ (pD /(pD · pV )) ∩
(
pS /((pA · pB) ∩ (pD · pC))

)
bB pB ∩ pD ∩ pV ∩ (pB /(pB · pU ))

cB pC ∩ pU ∩ (pC / pC)

Acknowledgements

I am grateful to Prof. Mati Pentus and Alexey Sorokin for fruitful discussions.
I am also grateful to Ivan Zakharyashchev for bringing my attention to conjunc-
tive grammars.

This research was supported by the Russian Foundation for Basic Research
(grants 11-01-00281-a and 12-01-00888-a) and by the Presidential Council for
Support of Leading Scientific Schools (grant NŠ 5593.2012.1).
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[4] Jeż, A.: Conjunctive grammars can generate non-regular unary lan-
guages. International Journal of Foundations of Computer Science,
19(3), 597–615 (2008)

[5] Kanazawa, M.: The Lambek calculus enriched with additional connec-
tives. Journal of Logic, Language and Information, 1, 141–171 (1992)

[6] Kanazawa, M.: Lambek calculus: recognizing power and complexity.
In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK.
Essays Dedicated to Johan van Benthem on the Occasion of his 50th
Birthday. Vossiuspers, Amsterdam University Press (1999)

[7] Lambek, J.: The mathematics of sentence structure. American Math.
Monthly, 65(3), 154–170 (1958)

[8] Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.)
Structure of Language and its Mathematical Aspects. Amer. Math.
Soc. (1961)

[9] Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages
and Combinatorics, 6(4), 519–535 (2001)

[10] Okhotin, A.: The dual of concatenation. Theor. Comput. Sci., 345
(2–3), 425–447 (2005)

[11] Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted
disjunction. Theor. Comput. Sci., 411 (26–28), 2559–2571 (2010)

[12] Pentus, M.: Lambek grammars are context-free. In.: 8th Annual IEEE
Symposium on Logic in Computer Science, pp. 429–433. IEEE Com-
puter Society Press, Los Alamitos (1993)

[13] Safiullin, A. N.: Derivability of admissible rules with simple premises
in the Lambek calculus. Moscow University Math. Bull., 62(4), 72–76
(2007)
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