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Abstract

We introduce an infinitary extension of the Lambek calculus with the Kleene star and
the linear logic exponential modality. For this system we establish cut elimination and some
other properties and also prove that, due to complexity reasons, it cannot be replaced by a
system with finite proofs.
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1 The Lambek Calculus

The Lambek calculus was introduced in 1958 by J. Lambek [5] for formal description of natural
language syntax. Nowadays it is considered as part of linear and substructural logic frame-
work [1]. In this paper we consider L1, the variant of the Lambek calculus that includes the
unit constant and allows empty left-hand sides of sequents.

Formulae of L1 are built from a countable set of variables Var = {p, q, r, . . . } and the unit
constant 1 using three binary connectives: \ (left division), / (right division), and · (product).
Formulae are denoted by capital Latin letters; capital Greek letters denote finite (possibly
empty) ordered sequences of formulae. Sequents of L1 are of the form Π → A. Π and A are
called the left-hand side and right-hand side (also the antecedent and the succedent) of this
sequent.

Axioms of L1 are sequents of the form A → A and additionally the sequent → 1 (with an
empty left-hand side). The rules of L1 are as follows:

Π→ A Γ, B,∆→ C

Γ, (B /A),Π,∆→ C
(/→)

Π, A→ B

Π→ B /A
(→ /)

Π→ A Γ, B,∆→ C

Γ,Π, (A \B),∆→ C
(\ →)

A,Π→ B

Π→ A \B (→ \)

Γ, A,B,∆→ C

Γ, (A ·B),∆→ C
(· →) Γ→ A ∆→ B

Γ,∆→ A ·B (→ ·) Γ,∆→ C

Γ,1,∆→ C
(1→)

The (cut) rule is eliminable. Due to the linear nature of L1, the cut-elimination procedure
is very simple and goes exactly as for the original Lambek calculus [5].

∗Research supported by the Russian Science Foundation under grant No. 16-11-10252.



2 Extending L1 with Two Unary Connectives

We consider the extension of L1 with two unary connectives.
The first one is the exponential, denoted by !. This connective follows the spirit of the

exponential in linear logic, the weakening rule, however, is not suitable for linguistic applications
of ! [7], therefore we consider both variants with and without the weakening rule.

The rules for ! are as follows:

Γ, A,∆→ C

Γ, !A,∆→ C
(!→)

!A1, . . . , !An → B

!A1, . . . , !An → !B
(→ !)

Γ, !A, !A,∆→ C

Γ, !A,∆→ C
(contr)

Γ, !A,∆,Φ→ C

Γ,∆, !A,Φ→ C
(perm)

Γ,∆, !A,Φ→ C

Γ, !A,∆,Φ→ C
(perm)

Γ,∆→ C

Γ, !A,∆→ C
(weak)

As said above, the (weak) rule is optional. We consider both variants.
The second connective we consider in this paper is the Kleene star, ∗, written in the postfix

form (A∗). The rules introducing the Kleene star to the succedent are quite straightforward:

Γ1 → A . . . Γn → A

Γ1, . . . ,Γn → A∗
(→∗)n for all n ≥ 0

(In particular, for n = 0 we have axioms of the form → A∗.)
For the right-hand side, the situation is more interesting:

Γ, An,∆→ C for all n ≥ 0

Γ, A∗,∆→ C
(∗→)ω

This is an ω-rule, i.e., it has an infinite number of premises. Therefore the proofs in this
system, involving this rule, would be trees with infinite branching (but every particular branch
has finite length). Later we show that this is inevitable: proof systems with finite derivations
(that make use of some form of induction) are necessarily weaker than the system presented
above.

This infinitary axiomatization of the Kleene star are essentially the same as that in infinitary
action logic [2]. However, the essential difference of our presentation from [2] is that here we do
not have additive connectives, ∧ and ∨, but include the exponential modality, !, instead. The
choice of these connectives is motivated linguistically (see [7] for more details: in the calculus
Db!? in that paper ! is the exponential without the weakening rule, and ? is a restricted version
of the Kleene star). For this system we get a stronger lower bound for complexity (Π0

2-hard,
whereas in [2] the system is Π0

1-hard). The complexity question for the system with neither ∧
and ∨, nor ! (i.e., the infinitary Lambek calculus with the Kleene star) remains open.

We denote the variants of our system with and without (weak) by ∗ω!wL1 and ∗ω!L1

respectively.

3 Cut Elimination

Theorem 1. Any sequent derivable in ∗ω!L1 or ∗ω!wL1 can be derived without using the cut
rule.

To prove this, we use the standard linear logic technique [6, Appendix A], but, thanks to
the ω-rule, the induction becomes transfinite. This transfinite part here generally follows the
cut elimination strategy for a fragment of the Lambek calculus with iteration in [8] and the
unpublished paper [9].

For every formula we define an ordinal that we shall call the size of the formula, ‖A‖. It
is defined recursively: ‖p‖ = 1 for p ∈ Var, ‖A \B‖ = ‖B /A‖ = ‖A · B‖ = ‖A‖ ⊕ ‖B‖ + 1,
‖!A‖ = ‖A‖ + 1, ‖A∗‖ = ω‖A‖. Here α ⊕ β for two ordinals α, β < ωω is defined as follows: if



α = ωkck + . . . + ωc1 + c0 and β = ωmdm + · · · + ωd1 + d0, then α ⊕ β = ωn(cn + dn) + · · · +
ω(c1 + d1) + c0 + d0, where n = max{k,m} (for i > k and j > m let ci = dj = 0).

Next, the depth of a derivation is also measured by an ordinal (on the ω-rule step we take
the supremum plus one).

Now the schema of the cut elimination procedure is as follows. As in [6] (and actually
following Gentzen’s ideas with his “mix” rule), we eliminate two rules, (cut) itself and the rule

Π→ !A Γ0, !A,Γ1, !A, . . . ,Γi−1, !A,Γi, . . . , !A,Γn → C

Γ0,Γ1, . . . ,Γi−1,Π,Γi, . . . ,Γn → C
(cut!)

that is a combination of (cut) and (contr).
Now we proceed by nested induction. The outer induction parameter is ‖A‖, where A is the

formula being cut. The inner one goes on the pair of the depthes of the premises of cut (at least
one of them should become smaller, while the other doesn’t grow). Finally, every branch of
the derivation is finite (though the derivation in whole could be infinite, and include an infinite
number of cuts), therefore one can remove all the cuts on a branch one-by-one, and doing so
for all branches leaves the tree cut-free.

As we see, the cut-elimination procedure for our system combines two ideas, first from [8][9],
second from [6].

In the presence of (cut) the infinite series of (→∗)n rules can be replaced by the→ A∗axioms
and two rules:

Γ→ A
Γ→ A∗

Γ→ A∗ ∆→ A∗

Γ,∆→ A∗

These rules coincide with the rules for the “existential exponential” (denoted by ?) from [7].

4 Cyclic Proofs

Here we introduce yet another variant of ∗ω!L1 (or ∗ω!wL1), namely, we replace (→∗)ω with
two rules:

Γ,∆→ C Γ, A,A∗,∆→ C

Γ, A∗,∆→ C
(∗→)L

Γ,∆→ C Γ, A∗, A,∆→ C

Γ, A∗,∆→ C
(∗→)R

These two rules look finite, but, as a trade-off, we allow infinite branches in the derivation
tree. For the cut-free version, all such trees are legal; when we have cut in the system, we impose
the restriction that any branch must contain at least one (actually infinitely many) application
of (→∗)L or (→∗)R for every formula of the form A∗ in the antecedent.

We denote these systems by ∗∞!L1 and ∗∞!wL1.

Lemma 1. ∗∞!L1 and ∗∞!wL1 are equivalent to ∗ω!L1 and ∗ω!wL1 respectively. This holds
both for the versions with and without cut.

Consider one example:

p→ p

(p / p)∗, p→ p

(p / p)∗, (p / p), p→ p
(/→)

(p / p)∗, p→ p
(∗→)R

(p / p)∗ → p / p
(→ /)

Note that we actually don’t have to develop the derivation tree further, since the sequent
(p / p)∗, p → p on top already appears lower in the derivation, and now this tree can be built
up to an infinite one in a regular fashion. Such situations are called cyclic proofs [10].

As we show below, however, the system with cyclic proofs is strictly weaker than the whole
infinitary calculus.



5 Complexity

In this section we sketch a proof that the derivability problems in ∗ω!L1 and ∗ω!wL1 are at least
Π0

2-hard. Thus any system with finite proofs (including systems with cyclic proofs discussed in
the previous section) is strictly weaker then the systems with the ω-rule (or infinite derivations).

Let K be a Kleene algebra. K is called *-continuous if it satisfies the infinitary condition
pq∗r = supn≥0 pq

nr for arbitrary elements p, q, r of the algebra. A mapping ι : Var → K is
called an interpretation. An interpretation can be uniquely propagated to formulae built from
variables and the unit constant using · and ∗.

Let E be a finite set of equivalences of the form A↔ B, where A and B are formulae built
from variables and the unit constant using only the · connective. In other words, they represent
finite sequences of variables; for the empty sequence we use 1. Now let U and V be formulae
built from variables and 1 using · and ∗. We say that the Horn clause E ⇒ (U → V ) is true in
K under the interpretation ι if either ι(A) 6= ι(B) for some (A↔ B) ∈ E or ι(U) ≤ ι(V ) in K.

Let ∗ωL1 + E be the calculus ∗ωL1 extended with additional axioms A → B and B → A
for every (A↔ B) ∈ E. In ∗ωL1 +E, cut is included as an official rule of the system and is not
completely eliminable. However, the conservativity statement still holds: if we want to derive
a sequent without / and \, we can do it without using these connectives inside the derivation.

Lemma 2. The Horn clause E ⇒ (U → V ) is true in all *-continuous Kleene algebras under
all interpretations iff ∗ωL1 + E ` U → V .

This lemma is proved using the standard canonical model construction (Lindenbaum algebra
for the fragment of ∗ωL1 + E where we have only two connectives, · and ∗).

Theorem 2 (D. Kozen). The problem of deciding whether a given Horn clause E ⇒ (U → V )
is true in all *-continuous Kleene algebras under all interpretations is Π0

2-hard [4].

Note that formally in [4] U and V are also allowed to include the disjunction (+) connective.
However, it doesn’t appear in the construction.

Now we embed E into U → V using !. Here we generally follow [6] and [3]. Let GE =
{(A/B) | (A↔ B) ∈ E} ∪ {(B /A) | (A↔ B) ∈ E}. If GE = {C1, . . . , Cm} (the ordering here
is arbitrary, since these formulae will undergo ! that allows permutation), let !ΓE = !C1, . . . , !Cm

and !ΦE = !(1 / !C1), . . . , !(1 / !Cm).

Theorem 3. The following are equivalent:

1. ∗ωL1 + E ` Π→ C;

2. ∗ω!wL1 ` !ΓE ,Π→ C;

3. ∗ω!L1 ` !ΦE , !ΓE ,Π→ C.

Proof. The (i) ⇒ (ii) part is easy: extra axioms from E transform into derivable sequents
!(A/B), B → A, and by weakening we add the rest of !ΓE ; then !ΓE is propagated along the
derivation, applying permutation and contraction.

For the (ii) ⇒ (i) part, we first notice that all formulae from !ΓE are derivable in ∗ωL1 +E,
and then apply the cut rule, we get ∗ω!wL1 + E ` Π → C, and then by conservativity this
sequent is also derivable without using !.

Statement (iii) is handled in the same way as (ii). Here we don’t have weakening as a rule
of our calculus, but the combination !(1 / !Ci), !Ci can weaken itself: Γ, !(1 / !Ci), !Ci,∆→ C is
derivable from Γ,∆ → C. For the backwards direction, notice that all formulae from !ΦE are
derivable in ∗ω!wL1 (here we use weakening, but we end up with a sequent without !).

Corollary 1. The derivability problems for ∗ω!L1 and ∗ω!wL1 are Π0
2-hard, and, therefore, the

sets of derivable sequents in these calculi are not recursively enumerable.
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