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1 The Lambek Calculus

The Lambek calculus L was introduced by J. Lambek [7]. Formulae (types)
of L are are built from a countable set of variables (primitive types) Var =
{p,q,r,...} using three binary connectives: \ (left division), / (right division),
and - (multiplication). The set of all types is denoted by Tp. The Lambek
calculus derives sequents of the form IT — A, where A is a type and II is a
sequence of types. In L, II is required to be non-empty. There exists a variant
of the Lambek calculus, L*, without this restriction.
The axioms and rules of L are as follows: A— A
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Lambek syntactic types can be naturally interpreted as formal languages
over an alphabet Y. For the interpretation w, the following should hold:

w(A-B) =w(A) - w(B) ={uwv |uew(d),vewB)}
w(B/A)=w(B)/wA) ={v| (Vu € w(A))vu € w(B)}
w(A\ B) = w(A)\w(B) ={v| (Vu € w(A))uv € w(B)}

Note that this definition works differently for L and L (for L, the empty word
is not included in the languages). A sequent Aj,..., A, — B is true under
interpretation w, if w(A4;) - ... w(A4,) C w(B). Both variants of the Lambek
calculus are sound and complete w.r.t. this interpretation:

Theorem 1 (M. Pentus). A sequent is derivable in L (resp., in LF) iff it is true
under any interpretation w: Tp — P(XT) (resp., w: Tp — P(X*)). [10]



Lambek categorial grammars are finite correspondences between Lambek
types and letters of an alphabet. The word a; ...a, belongs to the language
generated by such grammar if there exist types Ay, ..., A, in the correspondence
with letters a1, ..., a, resp., such that Ay,..., A, — H is derivable in L or one
of its variants. Here H is a fixed type, usually primitive.

Theorem 2 (M. Pentus). Grammars based on L (resp., on L) generate pre-
cisely the class of context-free languages without the empty word (resp., the class
of all context-free languages). 9]

2 The Reversal Operation

The unary reversal operation is defined as follows: MR = {an...a1]a1...a, €
M} for any formal language M. The extension of L with the unary (-)® con-
nective, LR, is obtained from L by adding the following rules (I'® = AR ... AR
forT'=Ay,...,A,):
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The good properties of the Lambek calculus keep valid for its extension with
the reversal operation ([4] for L, [5] for L¥):

Theorem 3. The calculi LR and L} are sound and complete w.r.t. interpre-
tations of types as formal languages.

Theorem 4. LR-grammars (resp., L'™-grammars) generate precisely the class
of context-free languages without the empty word (resp., the class of all context-
free languages).

3 The (Sub)exponential

The exponential modality, ! (called “bang”), is inherited from linear logic. It is
governed by the following rules. Here we consider only the L case, since the L
one is much more subtle (see [1]).
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We also consider a less powerful modality, for which we impose contrac-
tion and permutation, but not weakening. We also denote it by ! and call a
subexponential. This modality is motivated from the linguistic side [8].

Theorem 5. Grammars based on the extension of L with ! (both with and
without (weak) ) generate all recursively enumerable languages. [2]



This is obtained by encoding finite theories over L* inside sequents using the
(sub)exponential modalities.

Corollary 6. The derivability problem for L* extended with ! is undecidable.

However, in linguistical practice ! is usually applied only to variables. For
this case, the derivability problem is decidable and belongs to NP [2].

4 The Kleene Star

Yet another important operation on formal languages is the Kleene star: A* =
U.—, A™. For the Kleene star, we propose the following rules extending L*:

rh—-A4 ... FnﬂA(H*)
ry,..., I, — A*

A—-C TAAA-C INA—-C T,AAA-C
T,A"A—C = T,A"A—C (" =)r

In this system we allow infinite branches of proofs.

For the fragment without - and where * is allowed only in subformulae of the
form A*\ B or B/ A*, this calculus enjoys completeness w.r.t. interpretations
of types as formal languages [6].

There is an open question whether we could take only regular (cyclic) proofs,
like in [11]. However, if we take both * and !, the answer is negative: using results
from [3] for theories over Kleene algebras and then encoding the theory into the
sequent using the construction from [2], one obtains I13-hardness of the system.
Therefore, it is not equivalent to any system with finite proofs.
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