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1 The Lambek Calculus

The Lambek calculus L was introduced by J. Lambek [7]. Formulae (types)
of L are are built from a countable set of variables (primitive types) Var =
{p, q, r, . . . } using three binary connectives: \ (left division), / (right division),
and · (multiplication). The set of all types is denoted by Tp. The Lambek
calculus derives sequents of the form Π → A, where A is a type and Π is a
sequence of types. In L, Π is required to be non-empty. There exists a variant
of the Lambek calculus, L∗, without this restriction.

The axioms and rules of L are as follows: A → A

Π, A → B

Π → B / A
(→ /)

A,Π → B

Π → A \B
(→ \)

Π → A Γ, B, ∆ → C

Γ, (B / A),Π,∆ → C
(/ →)

Π → A Γ, B, ∆ → C

Γ,Π, (A \B),∆ → C
(\ →)

Γ, A, B,∆ → C

Γ, (A ·B),∆ → C
(· →) Π1 → A Π2 → B

Π1,Π2 → A ·B (→ ·)

Lambek syntactic types can be naturally interpreted as formal languages
over an alphabet Σ. For the interpretation w, the following should hold:

w(A ·B) = w(A) · w(B) = {uv | u ∈ w(A), v ∈ w(B)}
w(B / A) = w(B) / w(A) = {v | (∀u ∈ w(A)) vu ∈ w(B)}
w(A \B) = w(A) \w(B) = {v | (∀u ∈ w(A))uv ∈ w(B)}

Note that this definition works differently for L and L∗ (for L, the empty word
is not included in the languages). A sequent A1, . . . , An → B is true under
interpretation w, if w(A1) · . . . · w(An) ⊆ w(B). Both variants of the Lambek
calculus are sound and complete w.r.t. this interpretation:

Theorem 1 (M. Pentus). A sequent is derivable in L (resp., in L∗) iff it is true
under any interpretation w : Tp → P(Σ+) (resp., w : Tp → P(Σ∗)). [10]
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Lambek categorial grammars are finite correspondences between Lambek
types and letters of an alphabet. The word a1 . . . an belongs to the language
generated by such grammar if there exist types A1, . . . , An in the correspondence
with letters a1, . . . , an resp., such that A1, . . . , An → H is derivable in L or one
of its variants. Here H is a fixed type, usually primitive.

Theorem 2 (M. Pentus). Grammars based on L (resp., on L∗) generate pre-
cisely the class of context-free languages without the empty word (resp., the class
of all context-free languages). [9]

2 The Reversal Operation

The unary reversal operation is defined as follows: MR = {an . . . a1 | a1 . . . an ∈
M} for any formal language M . The extension of L with the unary (·)R con-
nective, LR, is obtained from L by adding the following rules (ΓR = AR

n , . . . , AR
1

for Γ = A1, . . . , An):

Γ → C

ΓR → CR
(R → R) Γ, ARR,∆ → C

Γ, A, ∆ → C
(RR →)E

Γ → CRR

Γ → C
(→ RR)E

The good properties of the Lambek calculus keep valid for its extension with
the reversal operation ([4] for L, [5] for L∗):

Theorem 3. The calculi LR and L∗R are sound and complete w.r.t. interpre-
tations of types as formal languages.

Theorem 4. LR-grammars (resp., L∗R-grammars) generate precisely the class
of context-free languages without the empty word (resp., the class of all context-
free languages).

3 The (Sub)exponential

The exponential modality, ! (called “bang”), is inherited from linear logic. It is
governed by the following rules. Here we consider only the L∗ case, since the L
one is much more subtle (see [1]).

Γ, A, ∆ → B

Γ, !A,∆ → B
(! →)

!A1, . . . , !An → B

!A1, . . . , !An → !B
(→ !)

Γ,∆ → B

Γ, !A,∆ → B
(weak)

Γ, !A, !A,∆ → B

Γ, !A,∆ → B
(contr)

Γ, !A,∆,Φ → B

Γ,∆, !A,Φ → B
(perm1)

Γ,∆, !A,Φ → B

Γ, !A,∆,Φ → B
(perm2)

We also consider a less powerful modality, for which we impose contrac-
tion and permutation, but not weakening. We also denote it by ! and call a
subexponential. This modality is motivated from the linguistic side [8].

Theorem 5. Grammars based on the extension of L∗ with ! (both with and
without (weak)) generate all recursively enumerable languages. [2]
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This is obtained by encoding finite theories over L∗ inside sequents using the
(sub)exponential modalities.

Corollary 6. The derivability problem for L∗ extended with ! is undecidable.

However, in linguistical practice ! is usually applied only to variables. For
this case, the derivability problem is decidable and belongs to NP [2].

4 The Kleene Star

Yet another important operation on formal languages is the Kleene star: A∗ =⋃∞
n=0 An. For the Kleene star, we propose the following rules extending L∗:

Γ1 → A . . . Γn → A

Γ1, . . . ,Γn → A∗
(→ ∗)

Γ,∆ → C Γ, A, A∗,∆ → C

Γ, A∗,∆ → C
(∗ →)L

Γ,∆ → C Γ, A∗, A, ∆ → C

Γ, A∗,∆ → C
(∗ →)R

In this system we allow infinite branches of proofs.
For the fragment without · and where ∗ is allowed only in subformulae of the

form A∗ \B or B / A∗, this calculus enjoys completeness w.r.t. interpretations
of types as formal languages [6].

There is an open question whether we could take only regular (cyclic) proofs,
like in [11]. However, if we take both ∗ and !, the answer is negative: using results
from [3] for theories over Kleene algebras and then encoding the theory into the
sequent using the construction from [2], one obtains Π0

2-hardness of the system.
Therefore, it is not equivalent to any system with finite proofs.
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