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As it was shown in a recent paper by Adams [1] for a number of problems
in modern algebraic topology the problem of computing the cohomology
H∗(A) =

∑
Hs,t(A) of the Steenrod algebra A corresponding to a prime

p is of a great importance. Using the knowledge of the structure of the
Steenrod algebra A Adams obtained some information about the structure
of the algebra H∗(A) ([1], Theorem 2.4) which allowed him, for example,
to move forward in the problem of existence of mappings with odd Hopf
invariant. In particular, Adams showed that for p = 2 the group H1(A) =∑

t H
1,t(A) has a basis which consists of elements hi ∈ H1,2i

(A), i = 0, 1, 2, ...
that satisfy the following relations:

hihi+1 = 0, h2
i hi+2 = h3

i+1, hih
2
i+2 = 0. (1)

Moreover all relations between polynomials which depend on h′
is and have

degree ≤ 3 are consequences of the relations from (1).
It turns out that the previous result of Adams admits the following gen-

eralization:

Theorem 1. Besides the relations from (1) the elements hi also satisfy the
following relations

h2
i h

2
i+3 = 0, h2k

0 h2
k+2 = 0, h2k+1

0 hk+2 = 0, k = 1, 2, ..., (2)

and, possibly, the relations

hih
2
i+khi+k+3 = 0, h2

i h
2
i+k+1hi+k+4 = 0, i = 0, 1, 2, ..., k = 3, 4, 5, ... (3)

All relations between polynomials which depend on hi’s and have degree ≤ 5
follow from the relations (1),(2) and (3). The group H2(A) is generated by
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monomials hihj. The group H3(A) is generated by monomials hihjhk and

certain elements mi ∈ H3,11·2i
(A), λi,k ∈ H3,2i(1+2k−1+2k+1)(A). Here the

elements mi and λi,4 are non-trivial, whereas the elements λi,k for k 6= 4
might be trivial. The elements

mihj, j 6= i− 1, i, i + 2, i + 3;

λi,4hj, j 6= i, i + 2, i + 3, i + 4, (4)

of the group H4(A) are linearly independent, and the subgroup of H4(A) gen-
erated by these elements has trivial intersection with the subgroup generated
by the elements hihjhkhl. The group H4(A) contains non-trivial elements

βi ∈ H4,3·2i+2
(A), i = 1, 2, ... which do not belong to the subgroup generated

by the elements from (4) and the monomials hihjhkhl. The groups H5,14(A)
and H5,16(A) are non-trivial.

The proof of the theorem above, as well as the proof of the theorem
of Adams, relies on certain Serre-Hochschild spectral sequences. It is well-
known that when working with spectral sequences it is very useful to use
cohomological operations which commute with transgression (the Steenrod
squares and the Steenrod reduced powers). It turns out that in the coho-
mology algebra of the Steenrod algebra modulo 2 it is also possible to define
”cohomological operations” Sqi which posses certain formal properties anal-
ogous to the properties of the Steenrod squares. These operations can be
defined not only for the Steenrod algebra but also for any Hopf algebra with
a certain endomorphism α which reduces dimension in two. In particular,
such an endomorphism was constructed by Adams for the algebra A and
defined by him algebras Ai//Aj (see [1], Theorems 5.1-5.12). The main dif-
ference between the ”algebraic” operations Sqi and the ”topological” ones
is that the ”algebraic” operation Sq0 is not the identity map but coincides
with the endomorphism α∗ which is induced by the endomorphism α. There
is the following relation which connects the Steenrod operations and the bi-
graduation of the algebra H∗(A):

Sqi(Hk,l(A)) ⊂ Hk+i,2l(A).

Starting with the elements

gn,i ∈ H2,2i(2n+1−1)(A1//An+1), i ≥ 0, n ≥ 2,
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which were defined by Adams (see [1], p. 210), we define the elements

g
(k)
n,i ∈ H2k+1,2i+k(2n+1−1)(A1//An+1)

by the following inductive formula:

g
(0)
n,i = gn,i, g

(k+1)
n,i = Sq2k

(g
(k)
n,i ).

It turns out that one has the following lemma:

Lemma 1. Non of the elements g
(k)
n,i belongs to the ideal in H∗(A1//An+1)

generated by the elements g
(l)
n,j for j < k and j ≥ 0.

Theorem 1 which was formulated above is a pretty straightforward corol-
lary of the previous lemma.

Analogously one can study the case p > 2. It turns out that in this case
one has the following theorem:

Theorem 2. The group H1(A) has a basis which consists of elements h0 ∈
H1,1(A) and hi ∈ h1,2pi−1(p−1)(A), i ≥ 1. The group H2(A) is generated by
monomials hihj and some non-trivial elements

h̄i ∈ H2,2pi(p−1)(A), κi ∈ H2,2pi−1(p−1)(1+p+p2)(A), i ≥ 1,

wi ∈ H2,2pi−1(p−1)(p+2)(A), vi ∈ H2,2pi−1(p−1)(p+2p)(A), i ≥ 1, (5)

v0 ∈ H2,4p−3(A), κ0 ∈ H2,2p2+2p+3(A). (6)

The elements hi and the elements from (5) and (6) satisfy the following
relations:

hihi+1 = 0, hpi

0 hi+1 = 0, h
pi(p−1)
0 hi+1 = 0, i ≥ 0,

h̄pk

i hi+k+2 = hi+k+1h̄
pk

i+1, i ≥ 1, k ≥ 0, (7)

h̄pk+1

i h̄i+k+2 = h̄i+k+1h̄
pk+1
i+1 , i ≥ 1, k ≥ 0;

vi+1hi+1 = wi+1hi+2, v0ho = 0, vihi+2 = wi+1hi, i ≥ 0, (8)

and, possibly, the following relations:

h
pi(p−1)
0 h̄i+2 = 0, i ≥ 0. (9)

All relations between polynomials depending on hi’s of degree ≤ 3 and
polynomials depending on hi’s and h̄i’s of degree ≤ 2 follow from the relations
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(7) and skew-commutativity. All linear relations between monomials vihj,
κihi and wihk, where j 6= i − 1, i + 1; k 6= i, i + 2 and |i − l| > 3, follow
from the relations (8). The subgroup of H3(A) generated by these elements
has trivial intersection with the subgroup generated by hi’s and h̄i’s. The
groups H3,2pi(p−1)(p+2)(A), H3,2pi(p−1)(1+2p)(A) and H3,2pi(p−1)(1+2p+p2)(A) are
non-trivial for all i = 1, 2, ....

The proof of the theorem above is analogous to the proof of Theorem 1.
Only instead of operations Sqi one has to use the operations Stip (Steenrod
reduced powers). Unlike in the ”topological” case the operations Stip are
trivial when i 6= 0, 1(mod p− 1).

Using Theorems 1 and 2 and a result of Adams which establishes a connec-
tion between cohomology of the Steenrod algebra and the stable homotopy
groups of spheres one can prove the following two theorems:

Theorem 3. For any r there exist elements α ∈ πq(S
3) and β ∈ πm+q(S

q),
where q > 3, m > 0, such that

Erm+lβ ◦ E(r−1)m+lβ ◦ ... ◦ Elβ ◦ Elα 6= 0

for any l ≥ 0.

In other words there exist arbitrary ”long” compositions of mappings of
spheres which are essential.

Theorem 4. For q ≤ 14 the 2-primary components of the stable homotopy
groups of spheres are as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Z2 Z2 Z8 0 0 Z2 Z16 Z2 ⊕ Z2 Z2 ⊕ Z2 ⊕ Z2 Z2 Z8 0 0 Z2 ⊕ Z2

Moreover, one can choose a basis

α1, α2, α3, α6, α7, α8, β8, α9, β9, γ9, α10, α11, α14, β14,

of these 2-primary components such that

Eα1 ◦ α1 = α2, E2α1 ◦ α2 = 4α3, E3α3 ◦ α3 = α6, Eα7 ◦ α1 = α8,

Eβ8 ◦ α1 = α9, E6α3 ◦ α6 = β9, Eγ9 ◦ α1 = α10, Eα10 ◦ α1 = 4α11,

E7α7 ◦ α7 = α14, E3α11 ◦ α3 = β14.

Theorem 4 by different methods was proved by Toda [2].
I would like to express my gratitude to M.M. Postnikov for his interest

in this work.
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