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S. P. NOVIKOV

Suppose given a regular covering space over a closed manifold, with discrete
group Γ:

(1) π : M̂ → Mn, γ : M̂ → M̂, γ ∈ Γ.

The Generalized Morse Problem (Problem 1). Find effective lower bounds
on the number of critical points of a smooth function f on Mn, taking account of
the group Γ (see [1], where the question of existence of such bounds is examined,
but not effectively).

Problem 2 (the author [2, 3]). Find lower bounds on the number of critical points
of a closed 1-form ω on Mn.

Of particular interest in Problem 2 is the case Γ = Zk, where k is the number
of integrals of ω, over 1-cycles in Mn, that are linearly independent over Z. The
problem was solved by the author in [2] and [3] for the case k = 1, and it was shown
by Farber in [4] that the bounds in [2] are sharp. Here we shall examine only those
bounds that can theoretically be obtained from the properties of elliptic operators
on the manifold, by analogy with [5]. Every representation

(2) ρ : Γ → GL(N,C)

determines a complex of forms Λ∗ρ, where

(3) Ω ∈ Λ∗ρ ⊂ Λ∗(M̂, CN ), γ∗Ω = ρ(γ)Ω, γ ∈ Γ.

The cohomology of the complex (Λ∗ρ, d) coincides with the cohomology H∗
ρ (Mn, CN )

with local coefficients (see [6], p. 134). We have the obvious

Proposition 1. For any Morse function f on Mn,

(4) mj(f) > max
ρ

[bρ
j (M

n)/N ],

where bρ
j (M

n) is the rank Hj
ρ(Mn, CN ).

We denote by R(Γ, N) the space of all representations (2), given by certain alge-
braic equations (the relations of the group Γ) on the elements of the matrices that
are images of the generators of Γ. Obviously R(Γ, N) is a complex algebraic subvari-
ety of GL(N,C)s. We denote by RU (Γ, N) the subspace of unitary representations.
In the unitary case we have always bρ

j (M
n) = bρ

n−j(M
n).
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Problem. Determine the cases where the numbers [bρ
j (M

n)/N ], N = ∞, are de-
fined and yield inequalities of the type (4). For unitary ρ, this probably can happen
at least if the image of the group ring generates residually finite von Neumann fac-
tors (Π1,Π∞).

Proposition 2. There exist at most countably many complex algebraic subvari-
eties Wαj ⊂ R(Γ, N), N < ∞, of positive codimension that satisfy the following
conditions:

(a) bρ
j (M

n) is constant on R(Γ, N) outside all the Wαj.
(b) bρ

j (M
n) is constant on each Wαj outside all the intersections Wαj ∩ Wβj ;

more generally, bρ
j (M

n) is constant on each intersection
⋂m

q=1 Wαqj outside
all the intersections with the remaining Wαj, α 6= α1, . . . , αm.

(c) On each new intersection the rank can increase.
(d) If the ring C[Γ] is noetherian, then the number of subvarieties Wαj is finite.

Proposition 2 is proved in a straightforward fashion by regarding the complex
of chains on the covering space M̂ as a free finite complex of C[Γ]-modules and
analyzing the degeneracies that can arise under a representation ρ.

Important Example. Γ = Zk and N = 1. Here we have R(Γ, C) ⊂ Ck, where

(5) ρ(tq) = µq = exp(pq) 6= 0, ρ = (µ1, . . . , µk) ∈ Ck.

The subspace of unitary representations RU ⊂ R is then given by

(6) RU (Zk, C) = T k ⊂ Ck, |µq| = 1, q = 1, . . . , k.

The finite number of singular varieties Wαj , α = 1, . . . ,mj , is given by equations
with integer coefficients and includes the following set:

(7) j = 0, 1, n, n−1, W1j = {1 = µ1}, W2j = {1 = µ2}, . . . , Wkj = {1 = µk}.
Thus, we have always mj > k. From the exterior product

(8) Λ∗ρ ∧ Λ∗ρ′ ⊂ Λ∗ρ⊗ρ′ ,

and it follows, for Γ = Zk, N = 1, that

(9)
Λ∗ρ ∧ Λ∗ρ′ ⊂ Λ∗ρρ′ , Λ̄∗ρ = Λ∗ρ̄,

ρρ′ = (µ1µ
′
1, . . . , µkµ′k), ρ̄ = (µ̄1, . . . , µ̄k).

We obtain the inner product

(10) 〈Ωρ,Ωρ′〉 =
∫

Mn

Ωρ ∧ ∗Ω̄ρ′ ,

where ρρ̄′ = (1, . . . , 1), Ωρ ∈ Λ∗ρ, and Ωρ′ ∈ Λ∗ρ′ . Thus,

bρ
j (M

n) = bρ′

n−j(M
n), ρρ̄′ = (1, . . . , 1).

Definition 1. For Γ = Zk, the Λ∗φ, are called Bloch complexes, and their cohomol-
ogy Bloch cohomology (by analogy with the theory of linear operators with periodic
coefficients).

Let ω1, . . . , ωk be a set of closed 1-forms in Mn forming a basis of H1(Mn, Z),
i.e., there is a set of basis cycles a1, . . . , ak ∈ H1(Mn, Z) such that

(11)
∮

al

ωq = δql, k = b1(Mn).
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Consider the following operator dω for forms on Mn:

(12) dωΩ = dΩ + ω ∧ Ω, d2
ω = 0, ω =

∑
pqωq + df.

The cohomology of the complex Λ∗(Mn) with the operator (12) is canonically
isomorphic to the cohomology H∗

ρ (Mn, C), where ρ = (µ1, . . . , µk) and pq = ln µq.
We now define a sequence of “Massey operations”: for a 1-form class [ω] and a

class [a] ∈ Hq(Mn, C),

(13)

{ω, a}0 = [ω ∧ a],

{ω, a}1 = {ω ∧ v1}, dv1 = ω ∧ a, . . . ,

{ω, a}l = [ω ∧ vl], dvl = {ω, a}l−1.

The Massey operation of index l is defined for any pair of elements [w], [a] in the
kernel of every Massey operation of order s < l, and is multiple-valued for l > 1:

{w, a}l ∈
⋂
s<l

Ker{ω, ·}s

/⋃
s

Im{ω, ·}s.

Theorem 1. The cohomology of the operator dεω is isomorphic, except for certain
complex “root” values of ε, to the following linear space:

(14) H∗
ρ(ε)(M

n, C) =
⋂
l

Ker{ω, ·}
/⋃

l

Im{ω, ·}.

The number of root values of ε is finite for rational [ω], and for all [ω] ∈ H1(Mn, C)
is finite in any compact region in C \ 0.

Theorem 2. Let ρ and ρ1 be two representations of the group Γ = π1(Mn), where
ρ is unitary and ρ1 real and one-dimensional, with

ln ρ1(γ) =
∮

γ

ω, dω = 0.

Then for the real closed Morse form ω we have the inequalities

(15)
mq(ω) > lim−→ bρ(ε)

q /N, ε →∞,

ρ(ε) = ρρε
1 : Γ → U(N) ·R.

The proof of Theorem 2 follows from the arguments in [2] with some simple
additions: although a level surface of π∗ω on the covering space M̂ may not be
compact, any compact set moving “downwards” along the gradient either is snagged
at a critical point or passes through all values of g, where dg = π∗ω, and its size
increases no faster than linearly.

Idea of the proof of Theorem 1. Consider a form a(ε) = a0 +εa1 + · · ·+εmam + · · ·
such that dεωa(ε) = 0. It is easily verified that da0 = 0, da1 = ω ∧ a0, . . . ,
dam = ω ∧ am−1. This implies that the left-hand side of (14) is at most equal to
the right. The opposite direction is harder. Working with the nonuniqueness of the
choice of the ai in the cohomology classes, one must construct a(ε) as a convergent
series for small ε → 0. The root values of ε are the intersections of the complex
curve µq(ε) = exp(εpq) with the subvarieties Wαj of Proposition 2. For rational
classes (p1 : · · · : pk) ∈ O this curve is algebraic.
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Remark. For Γ = Z, k = 1 and ρ = 1, it has been pointed out to the author by
Pazhitnov that inequality (15) can be proved by the procedure in [5], and also that
the rank b

ρ(ε)
q coincides for large ε →∞ with the number bq(Mn, [ω])q introduced

by the author in [2].1

Proposition 3. For k = 1, there exists a singular point ε = ε0j ∈ C \ 0 for which
the rank b

ρ(ε0j)
j has the form of a “Morse–Smale number over K”:

b
ρ(ε0j)
j = bj(M̂, K) + qj(M̂, K) + qj−1(M̂, K),

where bj is the dimension of the K-free part of the module Hj(M̂, K) and qj is the
number of K-generators in the K-periodic part. Here K is the principal ideal ring
C[t, t−1]. It can happen that

|ρ(ε0j)| 6= 1 p(ε0j) /∈ RU (Z, C).

For unitary representations ρ the proofs of the generalized inequalities of Morse
and of the author (Proposition 1 and Theorem 2) are easily derived from the pro-
cedure in [5], applied to the operator d+π∗ω ·ε on the complexes Λ∗ρ, where ω = df
for the single-valued case.

The operators dω = d+ω, δω (the Hermitian adjoint), and ∆w = (dω+δω)2 can be
defined also for nonclosed forms ω. Let ω = ω0+iω1. Then ∆ω = ∇̃j∇̃j +(ω0, ω0)+
C; here the connection operators ∇̃ are defined on vector fields by the local formula
∇̃j = ∂j +Γs

kj +iδs
kω1

j , where Γs
kj is the usual Riemannian connection. The operator

C is of order 0 and depends linearly on ω0. In the Euclidean metric gij = δij we
have C = Ckj(a∗k − ak)(a∗j + aj), where ω0 = Ckjx

j dxk, Ckj = const ∈ R, the
operators a∗k are multiplication by dxk, and the ak are their adjoints:

a∗kaj + aja∗k = gkj , a∗ja∗k + a∗ka∗j = 0.

Suppose detCkj 6= 0. Denote by m±(Ckq) the number of zero modes of the
operator ∆εω, ω = Ckqx

q dxk, in the Euclidean metric on Rn, on the spaces Λ± of
even and odd forms, for ε → +∞. Suppose given a real 1-form Ω with nondegener-
ate critical points xj , Ω(xj) = 0, ∂kΩq(xj) = C

(j)
kq , and a unitary bundle ρ of zero

curvature. Then

(16) m±(Ω) =
∑

j

m±(C(j)
kq ) >

−→
lim bρ

±(εΩ)/N, ε →∞.

Here N is the dimension of ρ and bρ
±(Ω) is the kernel (the number of zero modes)

of the operator (dΩ + δΩ) on Λ±ρ . The right-hand side bρ
± is topologically invariant

for closed Ω. We have always m+(Ckq) − m−(Ckq) = sgn det C. Almost always,
m±(Ckq) = 1 or 0. The most important classes of matrices are (a) Ckq = Cqk, (b)
Ckq = −Cqk for isometries, and (c) [S, Λ] = 0, where S and Λ are the symmetric and
skewsymmetric parts of the tensor Ckq. This corresponds to holomorphic vector
fields on Kählerian manifolds. Here the numbers m±(Ckq) are easily computed.

Problem. Compute the number of zero modes m±(Ckq). Let M±(εΩ) be the
spaces of quasiclassical zero modes, for ε → ∞, of the operator ∆εΩ. Describe
geometrically, in the language of the dynamical system ẋi = Ωi = gijΩj , the
operator T = dεΩ + δεΩ : M+(Ω) 7→ M−(Ω) that picks out in order the “true” zero
modes from the quasiclassical ones as ε−1 → 0 (for Ωj = ∂jf we obtain the cell

1Translator’s note. More precisely, in [3].
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complex of the function f). The bounds (16) then take the form of the “Morse
inequalities for dynamical systems”, T ∼ e−ε.
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