MORSE INEQUALITY AND VON NEUMANN ALGEBRAS

S.P.NOVIKOV, M.A.SHUBIN

Let \bar{b}_p^{χ} denote the *p*-dimensional real Betti number (see [1]) of a compact not simply connected *n*-dimensional manifold X, assigned to a representation $\chi : \pi_1(X) \to \mathfrak{A}$ where \mathfrak{A} is a von Neumann algebra with finitely-normalized trace (tr_{\mathfrak{A}}I = 1).

Theorem 1. If f is a Morse function on X, m_p is the number of its index p critical points, then

(1)
$$\sum_{k=0}^{p} (-1)^{k} m_{p-k} \ge \sum_{k=0}^{p} (-1)^{k} \overline{b}_{p-k}^{\chi} \ (p=0,1,\ldots,n).$$

These inequalities, which generalize the classical Morse inequalities, eventually are more precise than their classical analogs, even in the simplest case of the regular representation χ . For instance, this is the case if p = 2 and X is homotopically equivalent to a manifold $Y \setminus y_0$ on the 3-skeleton, where Y is a compact 4-manifold, and also $H_1(X,\mathbb{Z}) = 0$, and the group $\pi_1(X)$ is infinite. Inequalities (1) imply that $\overline{b}_1^{\chi} \ge m_1 - m_2 - 1$ where m_1 is the number of generators of $\pi_1(X)$, m_2 is the number of defining relations. It follows that for the groups $\pi_1(X)$ close to free groups, there is an infinite-dimensional space of quadratically integrable harmonic 1-forms on the universal covering of X. If $X = M/\Gamma$ where M is a symmetric space, χ is the regular representation of $\Gamma = \pi_1(X)$, and the continuous spectrum of the Laplace operators in forms on M is separated from 0, then a von Neumann analog of the Ray–Singer torsion can be defined, such that $\ln R(X, \chi) = c(M) \operatorname{Vol} X$. The event of non-separateness of the spectrum to 0 does not depend on the metrics on X. Some new deep topological phenomena appear here.

References

 Singer I.M. Some remarks on operator theory and index theory//Lect. Notes in Math. 1977. V. 575. P. 128137.