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Effect of viscosity. We consider the Korteweg–de Vries–Burgers (KdVB) equa-
tion with low viscosity µ > 0

(1) ut + uxxx + uux + µuxx = 0, |µuxx| � |uxxx|, |uxx|.
Under the conditions of (1) the evolution of an oscillatory zone is described in the
framework of the Bogolyubov–Whitham averaging method using a set of cnoidal
travelling waves of the KdV equation. The averaging of the viscous term over that
set leads additionally to a right-hand side

∂rα

∂t
+ vα(r)

∂rα

∂x
= µgα(r), α = 1, 2, 3;(2)

gα(r) = −4(r2 − r1)2Q(s)
3Φα

, Φ1 = E−K , Φ2 = E − (1− s2)K, Φ3 = E,

0 < Q =
4
15

[
E −K

s4
+
−E + 3K/2

s2
+ E − K

2

]
,

s2 = (r2 − r1)/(r3 − r1),(3)

where E(s) and K(s) are complete elliptical integrals (see [2]), in the equation for
vα (see [1], p. 264). We note the properties

g1 6 0, g2 > 0, g3 > 0, g(λr) = λ2g(r)(4)

v1 6 v2 6 v3, r1 6 r2 6 r3, v(λr) = λv(r).(5)

The present paper is devoted to a numerical study of the evolution of an oscilla-
tory zone in the “step decay” when there is a low viscosity present. The boundary
conditions for the KdVB Eq. (1) are the following:

u → A±, x → ±∞.

According to ideas worked out in [3] and [4], this process is for µ = 0 described by
means of the Whitham equation inside the oscillatory zone, ∆(t) = [x−(t), x+(t)],
which is joined to the trivial Hopf equation ut + uux = 0 at its boundaries x±. In
particular, we have [see also (12) and (13) below]

(6)
u(x−, t) = r3(x−, t), u(x+, t) = r1(x+, t),

r1(x−, t) = r2(x−, t), r3(x+, t) = r2(x+, t).

The process was thus for µ = 0 described by the evolution of a multiple-valued
function r(x, t), where r = u is outside ∆ and r = {rα} is inside ∆. This dis-
tinguishes the class of problems arising from dispersive hydrodynamics from the
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classical case. Equation (1) possesses a stationary solution u(η) = u(x − V t, µ)
such that

(7) u → A±, x → ±∞

if the viscosity is low, the solution u(x − V t, µ) in this case oscillates, according
to (1), infinitely with a damped amplitude as x → −∞ and tends to a soliton
at the leading edge, x > x+. When µ = 0, the equation for u(x − V t) has the
form u′′(η) = . . . . Its right side has in the (u, u′) phase plane two singularities
(a center and a saddle-point) corresponding to the constants A±. The separatrix
of the saddle-point is closed and corresponds to a soliton; it contains the center
inside itself. For fixed A± we have for µ = 0 a set of periodic solutions inside the
separatrix

(8) u(x, t) =
2a

s2
dn2

[( a

6s2

)1/2

(x− V t), s
]

+ γ,

where a = r2 − r1, and γ = r2 + r1 − r3,

(9) 3A+A− = 4r1r2 − (r3 − r2 − r1)2, A− + A+ =
2
3
(r1 + r2 + r3) = 2V.

For small µ > 0, there is a solution u(x − V t, µ) with asymptotic behavior (7),
which is described by a spiral in the same phase plane going from the center to the
saddle-point; the parameters rα change slowly when x changes; the quantities A±
are constant in that sense along this solution:

(10)
dA±
dx

= 0.

Averaging the solution u(x−V t, µ) over the cycle (8), we obtain an exact stationary
solution rα(x− V t, µ) of Eq. (2), where the following quantities are constants:

(11) 3V =
∑
α

rα =
3
2
(A+ + A−) = const, A+A− = const.

The solution with the properties (11) is found by a single quadrature. Its graph is
shown in Fig. 1 (dashed curve). If A± = ∓1, we have V = 0, and the leading edge
r2(x+) = r3(x+) is situated at the end point x+, where r+

2 = r+
3 = 1/2, and the

trailing edge r1 = r2 is at x = −∞, where r1 − r2 = −1/2. The general case can
be reduced to this situation by a change in scales and a Galilean transformation:
x → x + Ct, rα → rα + 0, and vα → vα + C.

It is rather obvious that in the presence of viscosity µ > 0, the evolutionary
process of the multiple-valued function r(x, t), if it is at all correctly defined for
the given initial condition (in particular, one does not encounter a hydrodynamic
type of inversion), after a sufficiently long time t →∞ develops from the boundary
conditions (7) to the stationary solution described above by (11).

An exact determination of multiple-valued initial conditions r(x, t) for µ = 0 was
given in [4], including the evolution of the region ∆(t), and a numerical realization
of that process was given. Here we develop the approach of [4] to the case µ 6= 0.
As in [4], the multiple-valued function r(x, t) with the conditions (6) must be once
smooth (class C1), including at the points x±, r±. Near the end points x±, r± of
the interval ∆(t), an asymptotic behavior, similar to the asymptotic behavior (10),
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(11) in [4], must hold:

x′′ = (a+ + b+(r − r+))f(1− s2) + O((r − r+)3),

x′′ = x− x+ 6 0, f(y) = y2[ln(16/y) + 1/2]
(12)

x′ = a−(r − r−)2 + b−(r − r−)3 = o((r − r−)3), x′ = x− x− > 0.(13)

The following equations follow from (12) and (13) for the quantities r±(t) and
x±(t):

ṙ+ = −(r+ − r+
1 )2[(12a+)−1 + 16/45], ẋ+ = v+ = (r+

1 + 2r+)/3;(14)

ṙ− = −1/(2a−), ẋ− = 2r− = r−3 .(15)

A comparison with (12) and (13) from [4] shows that the presence of viscosity
changes only the equation for r+. As t → ∞, the quantity a+ has a finite limit
a+
∞ 6= ∞, in contrast with the case µ = 0. Inside the interval ∆(t) Eq. (2) holds,

outside it, the equation ut + uux = 0 for u = 4 holds. The geometry of the three
sets of characteristics for the quantities rα(x, t) is the same as in [4], including
the region close to the zone boundaries [x±(t), t] in the (x, t) plane. However,
the value of rα is not conserved along the characteristics, which leads to certain
numerical complications. The choice of the initial condition for t = t0 > 0 is the
following: we use in the region ∆(t0) the self-similar Gurevich–Pitaevskii (GP)
solution ([1], pp. 275–284) for the inversion of the front of a dispersive shock wave
under the conditions r−3 < A−, r+

1 > A+. Outside the zone ∆(t0) we use the
function r(x, t0) = u(x), which reaches the values A± smoothly and monotonically
as x → ±∞, with the conditions (12), (13), and (6).

We now discuss the limitations on the initial conditions following from our
scheme. Up to the “inversion of the front” (t < 0), when there is no oscillatory
zone, the condition for the applicability of the Hopf equation,

(16) |uxxx| � |uux|, |µux| � |uux|,
is satisfied. Let its solution x = ut + P (u) be such that P (u) changes over charac-
teristic distances A. We denote the scale of the characteristic changes of x by B.
At the time t0 the oscillatory zone which is formed at t ∼ 0 manages to develop
locally to the self-similar GP asymptotic form. As time elapses t0, one could ignore
the viscous term because of (1)

(17) |µuxx| � |uxxx|, |uux|.
At t = t0 we must have inside ∆(t0)

(18) ∆r/t0 = (r−3 − r+
1 )/t0 � µ|gα(r)| ∼ µ(∆r)2,

where the quantities gα(r) are of the order (∆r)2 by virtue of their homogeneity
(4). It is also necessary that

(19) ∆r � A

in the zone where P (u) can be approximated by a cubic parabola ([1], p. 275). In
the zone ∆(t0) we must fit a large number of periods of the function (8)

(20) k = T−1 ∼ π

K(s)

( a

6s2

)1/2

, T � ∆(t0).

Outside ∆(t0) we must check the conditions of applicability of the Hopf equation.
Apart from (16), we must ensure that the dropped terms do not turn out to be
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effective outside ∆, when that process takes place. Using the total group of scale
transformations of the Hopf equation and of (2), we render them dimensionless in
the usual way:

(21) x = Bx′, u = Au′, t = BA−1t′, µ = B−1µ′.

In the dimensionless variables we have

(22) ∆′(t′0) ∼ (t′0)
3/2, ∆r′ ∼ (t′0)

1/2

in the GP regime. Hence it follows that all the conditions (16)–(20) reduce to the
inequalities

(23) t′0 � 1, (µ′)−2/3 � t0 � (A1/2B)−7/4.

At this point we drop the prime on the letters and we drop the quantities A and
B [they deal with the derivation and drop out of the Hopf equations and (2)]. The
new quantity µ is now no longer small. In the new variables, after the Galilean
transformation, we have A+ = −1, A− = 1. Outside ∆(t0) we choose in the
numerical examples the function x = tu + 3[u− arctanh(u)]. The GP solution and
the segment ∆ have, at time t0, the form (see [1], p. 283 for z±):1

(24)
rα(x, t0) = (t0 − t1)1/2lα(r) + r0,

z− 6 z 6 z+, z = (x− x1)λ(t0 − t1)−3/2.

The parameters t1, λ, x, and r0 are arbitrary. We must choose them from the four
matching conditions (see above) for the values u(x±) and u1(x±). The oscillatory
zone is thus at the initial time t0 determined by the function u(x, t0).

The results of the numerical simulation are illustrated in Figs. 1–4. As tests for
the closeness of the given reglme to the final and intermediate asymptotic behavior
we took the following quantities:

1) V (r) and −A+A−(r) for µ = 0.1 and µ = 1 at large t; one should have V = 0
and −A+A− = 1 in the exact stationary regime (11).

2) the quantity v2(x/t) for µ = 0.1 and t = 0.03; 2.7; 11. At the time t = 2.7 the
quantity r+(t) has a maximum; the quantity v2 is close to the linear v2 ' xt−1 at
that time. This affects the realization of the intermediate asymptotic behavior: for
µ = 0 such a regime was described by the asymptotic behavior as t →∞ in the step
decay problem according to [1] (p. 268). When µ = 1, this regime is not realized
as an intermediate regime (we note that in the original variables a low viscosity
corresponds to the dimensionless µ = 1).

Therefore, if the evolutionary process in this description is determined over an
infinite time, it reaches uniquely the stationary regime (11) as t →∞. The nature
of the intermediate stages of the evolution depends on the initial conditions and on
the parameter µ. We used here the as assumption that oscillations indeed occur.
The way these oscillations reach the GP asymptotic behavior at the time t = t0 is
studied in [4]. Here we assume this time to be the initial time.

Problem. Study the general features of the way in which the oscillatory zone
arises from the KdV theory (the viscosity becomes important later on), where all

1We know from Ref. 3 that z− ' −1.41, z+ ' +0.117; more precise numerical calcula-

tions show that with an accuracy of 4 decimal places z− ' −
√

2. Using a method developed
by I.M. Krichever, one can find that solution analytically exactly, as the “averaged finite-zone
solution” in the terminology of [5].
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Figure 1. Evolution of the multiple-valued function r(x, t) for
µ = 0.1. The dashed curve indicates the stationary solution. Here
and in Figs. 2 and 4 the numbers of the curves indicate the time.

Figure 2. Evolution of r(x, t) for µ = 1.

Figure 3. Quantities characterizing the approach to the station-
ary solution: curve 1: V (x), 2: (−A+A−) as a function of µx for
µ = 0.1 and t = 11.9. The dashed curves are the corresponding
curves for µ = 1 and t = 1.45.

Whitham type equations become effective for the first time. It is so far not clear
which classes of initial conditions are realizable for the Whitham equation.

L. P. Pitaevskii has informed us that very recently he and A. V. Gurevich have
independently obtained Eq. (2) and the stationary regime (11).
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Figure 4. Evolution of v2(x, t) for µ = 0.1. The time t = 2.7
corresponds to the maximum of r+(t) (the arrow in Fig. 1).
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