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Introduction

The two-dimensional inverse problem of reconstructing the general (without the
hypothesis of continuous symemetry) Schrödinger operator L = −

∑
α(∂α−iAα)2+

u on the basis of data, “collected” from the family of eigenfunctions of one energy
level LΨ = ε0Ψ, was first considered in 1976 in [1] for the periodic case. From [2]
the idea arose of a profound connection of this problem with integrable problems of
the theory of solitons in dimension 2 + 1. [3]–[5] are devoted to the development of
this approach in the periodic case and later [6, 7] in the rapidly decreasing one. The
contemporary stage of research began with [3, 4] in 1984, where, in the periodic
case, the group of reductions Z2×Z2 was explicitly found, singling out those data of
the inverse problem from which one gets purely potential self-adjoint operators (1)

(1) n = 2, L = −∆ + u, u = ū, LΨ = ε0Ψ, Aα = 0.

The analog of these results, it is true only for rapidly decreasing potentials of
sufficiently small norm (of type

∫
|u(z)|1+ε1(1+ |z|)ε2dz dz̄, ε2 > 2ε1), was found in

[4] together with the group of reductions Z2×Z2, singling out operators of the form
(1), where u(x, y) → x2+y2 →∞. Here [6, 7] used a number of important technical
considerations from [8]. In both problems, the periodic and the rapidly decreasing,
at the base lie the manifolds F and DKN of eigenfunctions of the following form:

(2)
LΨ = εΨ, Ψ(~x,~k) = ei(k,x)(1 + O(r−αn)).

~k = (k1, . . . , kn) = ~kR + i~kI , ~kI > 0, αn =
n− 1

2
(in the rapidly decreasing case, the manifold of Faddeev functions, “the family F”
of [8])

(3) LΨ = εΨ, Ψ = (. . . , xj + Tj , . . . ) = eipjTj Ψ(~x).

(in the periodic case, the complete complex collection of functions of Bloch–Floquet
type, first studied in [1], “the family DKN” of Dubrovin–Krichever–Novikov).

The family F is nonanalytic in the variable kj for n > 1. Only the one relation

(4) kIα
∂Ψ(~x,~k)

∂~kα

≡ 0
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holds, from which the analyticity in the family of one-dimensional directions follows.
Most recently the characterization of analytic properties of the family F Ψ(~x,~k) is
finished [9, 20], but only using large energies ε = k2 for all n > 2 (cf. also [15, 16]).

The family DKN is holomorphic in all variables pj , but multivalued: the complete
collection of these functions is formed of a single function Ψ(~x,P), meromorphic
on a complex n-dimensional “manifold of quasi-impulses” P ∈ W first introduced
in [1] [locally P = (p1, . . . , pn)] together with a “scattering law,” a meromorphic
function

(5) ε : W → C.

Some theorems (however insufficient for inverse problems), justifying the existence
of the manifold W , were proved in [19]. The analytic properties with respect
to ~k or P of complete n-dimensional complex families of functions F and DKN
contain strongly redundant information about the operator L for n > 2; a detailed
description of this information would be quite useful.

Problem. How can one single out a minimal collection of information about the
analytic properties of the families F and DKN, independent and sufficient for re-
constructing the operator L with the help of an effective procedure?

For n = 2 this problem, as already said above, can be solved by collecting data
from one energy level ε = ε0 for both families F and DKN in a large class of
operators L; apparently this class is dense among all potential operators L with
smooth periodic real potential, according to a conjecture of Novikov.

The present paper is devoted to the solution of the following problem.

Problem. How can one characterize the collection of data of the inverse problem
for one energy level ε = ε0, in order that the value of ε0 be below the ground state
(lower boundary of the spectrum εmin), ε0 < εmin? We do not assume the norm is
small.

For the periodic case in the admissible class of “algebrogeometric” or “finite-
zoned for one energy” operators L a sufficient test for the inequality ε0 < εmin was
found in [3], but the idea of the proof (still unpublished) was unclear and has nothing
in common with the idea of this paper (below), which is general for the periodic
and rapidly decreasing cases. In the rapidly-decreasing case εmin 6 0 always; [7]
concentrated only on “physical” energies ε0 > 0 for potentials of sufficiently small
norm. The only paper [6] devoted to the case ε0 < 0, only discussed a collection of
special examples of potentials, where always ε0 = εmin and the rate of decrease is
sluggish (∼ r−1).

1. Formulation of Results. Data of the Inverse Problem

In what follows let n = 2 and ε = ε0. We denote by Γ the collection of functions
of the families F or DKN of one energy ε = ε0. The data of the inverse problem
are the following:

A. Periodic Case. Let the genus g(Γ) be finite and Γ be nonsingular. Then the
surface Γ has two distinguished “infinite” points ∞1 and ∞2 with local parameters
w1 = k−1

1 and w2 = k−1
2 , group of reductions Z2 × Z2 with generators: σ (holo-

morphic) and τ (antiholomorphic) and collection of poles, a divisor D of degree g,
D = Q1 + · · ·+ Qg, Qj ∈ Γ.
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The collection (Γ,∞1,∞2, w1, w2,D, σ, τ) is called the “data of the inverse prob-
lem.” It satisfies the requirements

(6)
g = 2h, σ(∞β) = ∞β , σ(kα) = −kα, τ(∞1) = ∞2,

τ(k1) = k̄2, τ(D) = D, σD + ∆ ∼ K +∞1 +∞2, α, β = 1, 2,

where the symbol ∼ means linear equivalence of divisors, K is the divisor of zeros
of holomorphic 1-forms. The function Ψ(x, y,P) is normalized by the condition
Ψ(0,P) ≡ 1, it has D as the divisor of its poles, and asymptotics at the points ∞α

(7)
Ψ = ek1z(1 + O(w1)), P →∞1, z = x + iy,

Ψ = e(−1)α+1k2z̄(1 + O(w2)), P →∞2, z = x− iy.

A collection of data satisfying (6) and (7) defines exactly two real potentials −α =
1, 2

(8)

LΨ = ε0Ψ, L = −∂∂̄ + uα, ε0 = ε0(Γ, σ).

u1 = −2∂∂̄ ln θ(uz + ūz̄ + ξ0(D)),

u2 = −2∂∂̄ ln θ(uz − ūz̄ + iξ0(D)),

here θ(η) is the Prym function without characteristics, depending on h = g/2
variables (cf. [3, 5]). The most useful formulas for ε0(Γ, σ) are found in [10], using
nonlinear equations with respect to a scheme of the type of [11]. In [3, 4] only one
potential u2(z, z̄) is given explicitly. Taimanov and Natanzon gave a refinement.
Necessary and sufficient conditions for the smoothness of the potentials u1, u2 have
not yet been found (they can have a pole).

For the distinguished case ε0 < εmin, i.e., for ϕ ∈ L2(R2)

((L− ε0)ϕ, ϕ) > C|ϕ|2,
it is necessary to take the data [4]: the antiholomorphic involution τ : Γ → Γ has
exactly g +1 = 2h+1 fixed ovals a1, . . . , ah, . . . , a2h, b, τ/aj = 1, τ/b = 1 such that

(9) σ(aj) = aj+h, j = 1, . . . , h, σ(b) = b.

Here the divisor of poles D = Q1 + · · · + Q2h is such that (9) lies on the oval aj ,
j = 1, . . . , 2h.

Theorem 1 ([4]). If the collection of data satisfies (6), (7), and (9), then the
potential u2 is smooth (without poles) and ε0 < εmin.

Probably these conditions are also necessary. The proof which the authors of
[3, 4] had in mind was unclear and based on the connection of this family for given
g; one can get the rest by deformation with respect to the parameters from finite-
zoned potentials of the form u(x) + v(y). A simple explicit proof will be given
below.

B. Rapidly Decreasing Potentials. Let ε = ε0 < 0 and suppose given a family
F of functions Ψ(z, z̄, k), k2 = ε0 = −4κ2. We introduce the parameter λ by the
formula k = (k1, k2), z = x + iy

(10) k1 = iκ(λ + 1/λ), k2 = −κ(λ− 1/λ).

χ(z, z̄, λ, λ̄) = e−i(~k~x)Ψ is bounded as |z| → ∞. We introduce

(11) U(λ, λ̄) =
i

2

∫∫
eκ[(1/λ̄−λ)z+(λ̄−1/λ)z̄]u(z, z̄)χ(z, z̄, λ, λ̄) dz dz̄,
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where L = −∂∂̄ + u(z, z̄), LΨ = ε0Ψ.
Suppose further κ2 = 1, ε0 = −4. The quantities (Ψ, T, χ) have the properties

(cf. [7] for ε0 > 0; passage to negative ε0 does not change the arguments of [7] in
this point)

(12)
∂Ψ(z, z̄, λ, λ̄)

∂λ̄
= T (λ, λ̄)Ψ(z, z̄, 1/λ̄, 1/λ),

where

T (λ, λ̄) =
sgn(|λ|2 − 1

πλ̄
U(λ, λ̄).

The group of reductions is as follows

(13) U(1/λ̄, 1/λ) = Ū(λ, λ̄), U(−1/λ̄,−1/λ) = U(λ, λ̄).

One of the reductions differs in sign from [7], since ε0 < 0. Obviously we have

(14) χ(z, z̄, 1/λ̄, 1/λ) = χ̄(z, z̄, λ, λ̄), χ → 1 as λ → 0,∞.

Let
T̃ (λ, λ̄, z, z̄) = T (λ, λ̄) exp[(λ− 1/λ̄)z + (1/λ− λ̄)z̄].

The equation of generalized analyticity for χ on the sphere CP 1

(15)
∂χ(z, z̄, λ, λ̄)

∂λ̄
= T̃ (λ, λ̄, z, z̄)χ̄(z, z̄, λ, λ̄)

follows from (12) and (14). Following [7], one can justify (12)–(15) for potentials
of small norm.

The function Ψ has asymptotics at the points (∞1,∞2) = (0,∞) completely
analogous to the periodic case (7) for the choice of local parameters λ = k−1

1 , 1/λ =
k−1
2 .

The relations of (13) are the analog of the group of reductions Z2 × Z2 of [3].
The family F is nonanalytic with respect to λ ∈ CP 1: instead of analyticity on the
surface for DKN-families we have (12) on the Riemann sphere. (T is something like
continuous “density of handles.”)

Definition. The function T (λ, λ̄) or U(λ, λ̄) is called “the collection of data of the
inverse problem” for ε0 < 0.

Theorem 2. Suppose given a continuous function U(λ, λ̄) on CP 1 such that
1)

(16)
1
λ

T (λ, λ̄) ∈ Lp(D), p > 2,

D here is the unit disc |λ| 6 1;
2) U(λ, λ̄) has the properties of reduction (13).
Then there exists a unique function Ψ(z, z̄, λ, λ̄), satisfying (12) with the condi-

tions (14), and an operator L = −∂∂̄ + u(z, z̄) such that

(a) LΨ = ε0Ψ, ε0 < εmin 6 0;
(b) u(z, z̄) is a continuous potential, while u(z, z) → 0 as |z| → ∞;
(c) if U(λ, λ̄) decreases faster than any power of λ as λ → 0, then the potential

u(z, z̄) is infinitely differentiable;



TWO-DIMENSIONAL “INVERSE SCATTERING PROBLEM”... 5

(d) if the potential u(z, z̄) found by solving the inverse scattering problem ac-
cording to the scheme indicated, decreases as r = |z| → ∞ faster than
r−2−ε, then the following relation holds on the unit circle

(17) U(λ, λ̄)− h1(λ, λ̄) = C = const,

where |λ| = 1,

h1(λ, λ̄) =
1

2πi

∫∫
Ū(µ, µ̄)T (µ, µ̄)(µ− λ)−1dµ dµ̄.

Theorem 2 does not assume any smallness of the norm.

Remark 1. If u(z, z̄) decreases faster than r−2−n−ε as r → ∞, then n more
relations appear for |λ| = 1. These relations are found by the same scheme as (17)
(cf. below). For example, for n = 1 we have

(18) −λ2 ∂

∂λ
U(λ, λ̄)− h2(λ, λ̄) = A + Bλ2, |λ| = 1,

where A and B are constants, |λ| = 1, for h2 one has the formula [the difference on
the right side of (18) is continuous for |λ| = 1]

h2(λ, λ̄) =

1
2πi

∫∫
[−µ2∂µT (µ, µ̄)]U(1/µ̄, 1/µ) + T (µ, µ̄)T (1/µ̄, 1/µ)(h1(µ, µ̄) + C)

µ− λ
dµ dµ̄.

Problem. Study the singularities of T (λ, λ̄) for ε0 > εmin. What do they look
like upon motion with respect to the energy e upon passage through a point of the
discrete spectrum? What are the special properties of the singular level ε0 = 0?

The answers to these questions will be given in a following paper. Some formu-
lations are given at the end of this paper.

2. Proofs of the Basic Theorems

The idea of the proof of both Theorems 1 and 2 is quite transparent: the main
point in it is the observation that that the eigenfunctions of both families F and
DKN, Ψ(z, z̄,P), for points P on the contour b ⊂ Γ (Theorem 1) and the function
Ψ(z, z̄, λ, λ̄) for points λ on the contour |λ| = 1 (Theorem 2) are real and strictly
positive (below)

(19) Ψ ∈ R, Ψ > 0, x, y ∈ R2.

Using (19), one can extract the proof of the theorems from the following lemmas,
reproducing some elementary arguments from the famous book of Courant and
Hilbert [12], although the lemmas in [12] are not formulated in this form.

Lemma 1. Let u(x1, . . . , xn) be a smooth real potential in Rn such that u > const
for |x|2 > r0 and one can find a smooth real positive solution Ψ of the equation

LΨ = −∆Ψ + uΨ = ε0Ψ, Ψ > 0.

Then for εmin one has (21) and ε0 6 εmin, always, where εmin is the level of the
ground state of the operator L in L2(Rn).
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Proof. Let S be a domain in Rn, containing a ball of large radius r → ∞. The
energy εmin is defined as the limit of the minima of the functionals

min
S,ϕ

∫
· · ·

∫
S

(|∇ϕ|2 + uϕ2)dnx = min
S

εmin(S),∫
· · ·

∫
S

ϕ2 dnx = 1, ϕ|∂S = 0, ϕ > 0

as r → ∞. Let ϕ = ηΨ, where η = 0 on the boundary ∂S, η > 0. We have the
chain of equalities

(20)
∫
· · ·

∫
S

(|∇ϕ|2 + uϕ2)dnx =
∫
· · ·

∫
S

(−ϕ∇ϕ + uϕ2)dnx =

=
∫
· · ·

∫
S

[−ηΨ∆(ηΨ) + η2Ψ2u] dnx =

=
∫
· · ·

∫
S

[η∆ηΨ2 − 2(η∇ηΨ∇Ψ)− η2Ψ∆Ψ + uη2Ψ2] dnx =

=
∫
· · ·

∫
S

[−η∇(∇ηΨ2) + η2Ψ(−∆Ψ = uΨ)] dnx =

=
∫
· · ·

∫
S

|∇η|2Ψ2 dnx + ε0

∫
· · ·

∫
S

η2Ψ2 dnx.

From this we get

(21) εmin(S) =
∫
· · ·

∫
S

∣∣∣∇ϕ

Ψ

∣∣∣ Ψ2 dnx + ε0

where ϕ is an eigenfunction of the ground state of the domain S. Lemma 1 is
proved. �

Lemma 2. Suppose under the hypotheses of Lemma 1 the potential u is rapidly
decreasing in Rn and Ψ does not coincide with an eigenfunction of the ground state
in Rn. Then ε0 < εmin.

Proof. Under these conditions one can take S = Rn; let ϕ be an eigenfunction of
the ground state Lϕ = εminϕ. We know that ϕ > 0 and ϕ ∈ L2(Rn). From the
chain of equalities (20) we get (21)

(Lϕ,ϕ) = εmin(ϕ, ϕ) = εmin = ε0 +
∫
· · ·

∫
S

Ψ2∇
( ϕ

Ψ

)2

dnx.

Lemma 2 follows from this. �

Lemma 3. Under the hypotheses of Lemma 1 let the potential u be periodic in Rn

and Ψ be a smooth positive eigenfunction LΨ = ε0Ψ, which is not a ground state.
Then ε0 < εmin.

Proof. Let Sm be a parallelogram in Rn with sides which are multiples of the basis
vectors of the lattice T1, . . . , Tn with multiplicities m1, . . . ,mn, min(m1, . . . ,mn) →
∞. A function ϕ of the ground state in Rn is periodic with periods T1, . . . , Tn,
ϕ > 0 and Lϕ = εminϕ. Let S1 be an elementary cell; for the area Sm we have
|S| = m1 · · ·mn|S1|.
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The ground state is common for all the domains Sm and coincides with ϕ, while
it is a ground state in Rn. Since ϕ is periodic, in the chain of equalities (20) there
are also no boundary terms for the domains Sm. From this we have for S1

εmin = ε0 +
∫
· · ·

∫
S1

Ψ2
(
∇

( ϕ

Ψ

))2

dnx > ε0.

Here ϕ is normalized in the domain S1.
Lemma 3 is proved. �

Lemma 4. Let the potential u be real, smooth, and quasiperiodic, and ϕ be a ground
state of the operator L with the same group of periods as u. If there exists a smooth
positive solution Ψ > 0 of the equation LΨ = ε0Ψ, where Ψ does not coincide with
ϕ, then ε0 < εmin.

The proof also follows quickly from the chain of equalities (20), (21), where
instead of the integral over the cell S1 one takes the Bohr mean.

Now we proceed to the proof of Theorems 1 and 2. One has the following

Basic Lemma. If the hypotheses of Theorems 1 and 2 hold for the data of the
inverse problem, eigenfunctions Ψ(z, z̄,P) and Ψ(z, z̄, λ, λ̄) of both families F and
DKN always exist, have no zeros and poles for all P outside the ovals aj and all λ;
for P ∈ b and |λ| = 1 these functions are real and of fixed sign.

Proof. Under the hypotheses of Theorem 1 (periodic and quasiperiodic case) the
function Ψ is given by an explicit formula of [3], and under these conditions the
divisors D are nonspecial; in complete analogy with n = 1, for real (x, y) the
function Ψ has zero and poles only for P ∈ aj (for n = 1 the ovals aj correspond
to finite gaps and the oval b to an infinite gap for L = −∂2

x + u). The function Ψ
is real for all P ∈ aj or P ∈ b, as follows from the reductions Z2 × Z2. The zeros
of Ψ have the form γj(x, y) and run through the ovals aj for all x, y, if Ψ(0, 0,P).
The situation here is identical to the one-dimensional case (cf. [13]).

The proof in the rapidly decreasing case, where there are no obvious one-dimen-
sional analogs, is more original. The equations of the ∂̄-problem (12), (15) in our
case, by virtue of the reductions (13), (14) are local in λ without translations of
a point and coincide precisely with the Beltrami equation for generalized analytic
functions on CP 1. The problem (15), as follows from the theory of generalized an-
alytic functions [14], has a unique smooth solution χ, for all z = x + iy. Moreover,
the function χ has no singularities on CP 1. It follows from this by the argument
principle for the number of zeros of analytic functions without singularities, that χ
has no zeros on CP 1 with respect to λ. By the uniqueness of the solution, χ satisfies
the reduction (14). Consequently, χ,Ψ are real for |λ| = 1. The basic lemma is
proved. �

Remark. The functions
∮

b
Ψ(z, z̄,P)|dP| and

∮
|λ|=1

Ψ(z, z̄, λ, λ̄)|dλ| grow in all
directions |x|2 + |y|2 →∞.

The proof of Theorem 1 follows quickly from the basic lemma with Lemmas 1–4.
From the basic lemma together with Lemma 2 all the points of Theorem 2 except

the smoothness and rate of decrease of the potential u(z, z̄) also follow.

Proof of Point c) of Theorem 2. We see that all the derivatives of χ(z, z̄, λ, λ̄) with
respect to z and z̄ are continuous and bounded functions of the variable λ. We shall
verify this fact by induction on the order of the derivative.
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The function χ satisfies the integral equation

(22) χ(z, z̄, λ, λ̄) = 1 + ∂̄−1
λ T̃ (λ, λ̄, z, z̄)χ(z, z̄, 1/λ̄, 1/λ),

where

(23) (∂̄−1
λ f)(λ) =

1
2πi

∫∫
f(µ, µ̄)dµ dµ̄

µ− λ
.

We differentiate (22) n1 times with respect to z and n2 times with respect to z̄.
As a result we get

(24) ∂n1
z ∂n2

z̄ χ(z, z̄, λ, λ̄) =

= ∂̄−1
λ T̃ (λ, λ̄, z, z̄)∂n1

z ∂n2
z̄ χ

(
z, z̄,

1
λ̄

,
1
λ

)
+ Fn1n2(z, z̄, λ, λ̄),

(25) Fn1n2(z, z̄, λ, λ̄) =

=
∑
k1,k2

k1+k2 6=0

∂̄−1
λ T̃ (λ, λ̄, z, z̄)(λ− 1/λ̄)k1(1/λ− λ̄)k2∂n1−k1

z ∂n2−k2
z̄ χ(z, z̄, 1/λ̄, 1/λ).

All the derivatives of χ which appear in (25) have lower order. Since T̃ (λ, λ̄, z, z̄)
decreases rapidly as λ → 0,∞, the operator ∂̄−1

λ T̃ (λ, λ̄, z, z̄)(λ−1/λ̄)k1(1/λ−λ̄)k2 is
compact for all k1, k2 in the space of continuous functions of λ. Thus, the function
Fn1n2(z, z̄, λ, λ̄) is continuous and bounded in λ. Using the absence of nontrivial
solutions of the homogeneous equation, we get the continuity and boundedness in
λ of ∂n1

z ∂n2
z̄ χ.

Thus we have proved that χ(z, z̄, λ, λ̄) is a smooth function of z. Using the
absence of zeros of χ, proved earlier, we get the smoothness of u(z, z̄). �

Proof of Point d). Now we give the proof of point d). Let the assumptions of point
a) hold. Then χ(z, z̄, λ, λ̄) is bounded on the whole space of z, λ and for large z,
tends to 1 uniformly in λ. We introduce the additional function

(26) h(l, l̄, λ, λ̄) =
i

2

∫∫
e−[lz−l̄z̄]u(z, z̄)χ(z, z̄, λ, λ̄)dz dz̄.

The function h(l, l̄, λ, λ̄) is continuous, bounded, and even Lipschitz in l, λ with
exponents ε1, ε2, where ε1 < ε, ε2 < 1. For l = λ− 1/λ̄ we get the function U(λ, λ̄)

(27) U(λ, λ̄) = h(λ− 1/λ̄, λ̄− 1/λ, λ, λ̄).

The following equation for h follows from (12):

(28)
∂h(l, l̄, λ, λ̄)

∂λ̄
= T (λ, λ̄)h

(
l +

1
λ̄
− λ, l̄ +

1
λ
− λ,

1
λ̄

,
1
λ

)
(the analogs of (28) for the multidimensional case were actively used in [9, 15, 16]).

In particular, for the function h̃1(λ, λ̄) = h(0, 0, λ, λ̄) we get

(29)
∂h̃1(λ, λ̄)

∂λ̄
= T (λ, λ̄)U(1/λ̄, 1/λ).

On the other hand, for |λ| = 1 U(λ, λ̄) = h̃1(λ, λ̄). Integrating (29), we get

(30) U(λ, λ̄)− 1
2πi

∫∫
T (µ, µ̄)U(1/µ̄, 1/µ)dµ dµ̄

µ− λ
= const, |λ| = 1.

The proof of Theorem 2 is finished. �
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Remark 3. Suppose the data of a rapidly decreasing inverse problem T (λ, λ̄)
depend on an infinite collection of additional variables t1, . . . , tn, . . . , where the
dependence is given by the formula

(31) T (λ, λ̄, t1, . . . , tn, . . . )

= T (λ, λ̄) exp

 n∑
j=1

(2κ)2j+1

(
λ2j+1 +

1
λ2j+1

− λ̄2j+1 − 1
λ̄2j+1

)
tj

 .

Then the function v(z, z̄, t1, . . . , tn, . . . ) = u(z, z̄, t1, . . . , tn, . . . ) − ε0 satisfies a
hierarchy of (2 + 1)-dimensional nonlinear equations found by Veselov and one of
the authors (cf. [5]). In particular, the first of these equations has the form

(32)

{
vt = ∂3v + ∂̄3v + ∂(vw) + ∂̄(vw̄),

∂̄w = −3∂v, v = v̄.

We note that the reductions (13) and relations (17) are invariant with respect
to transformation (31).

Supplement 1. Two limiting cases of the scheme recounted are of interest.
I. Scattering Data for Zero Energy. Let ε0 → 0, µ+ = κλ, µ− = 1/(κλ),

ε0 = −4κ2. As ε0 → 0 the contour |λ| = 1 contracts to a point, which we denote
by B0, and the Riemann sphere of the spectral parameter splits into two S+ and
S− with coordinates µ+ and µ−, respectively, which intersect at the point B0,
µ+ = µ− = 0. The reductions (13) become the relations U(−µ) = Ū(µ) and
U(µ+) = Ū(µ−). The equations of the inverse problem acquire the form

(33)
∂Ψ(z, z̄, µ±, µ̄±)

∂µ̄±
= T (µ±, µ̄±)Ψ(z, z̄, µ̄∓, µ∓),

where

(34)
T (µ±, µ̄±) = ±U(µ±, µ̄±)/(πµ̄±),

Ψ(z, z̄, µ±, µ̄±) = e∓µ±z± , µ± →∞, z− = z̄, z+ = z.

If one requires the Lp-integrability of the function T (µ, µ̄) with p > 2 in a
neighborhood of 0 along with sufficiently rapid decrease at infinity, then the proofs
of the nonsingularity of the potential and the absence of a discrete spectrum proceed
exactly like the corresponding arguments in Theorem 2. However here we get
potentials which are not in general position.

II. Limit Passage to a Parabolic Operator. Let ε0 = −4κ2 → ∞, the function
T (λ, λ̄) be concentrated in a neighborhood of the points λ = ±i of size of order
1/κ, X = κ, Y = y/κ, µ = κ(λ+i). Then as κ →∞ the function Ψ1(X, Y, µ, µ̄) =
e2κ2

Ψ(x, y, λ, λ̄) goes to an eigenfunction of the parabolic operator

L1 = −∂2
X + 4∂Y + u(X, Y ),(35)

L1Ψ1(X, Y, µ, µ̄) = 0.(36)

The inverse scattering problem for the operator L1 was actively studied in con-
nection with the theory of the KP II equation (cf. [17, 18], etc.]. The function Ψ1

satisfies the ∂̄-equation

(37)
∂Ψ1(X, Y, µ, µ̄)

∂µ̄
= T1(µ, µ̄)Ψ1(X, Y, µ̄, µ).
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The reduction U(1/λ̄, 1/λ) = Ū(λ, λ̄) goes to the reduction T1(µ, µ̄) = −T1(µ̄, µ),
which corresponds to the reality of the potential u(X, Y ), the reduction U(−1/λ̄,−1/λ) =
U(λ, λ̄) goes to a relation connecting the scattering data of the operator L1 and its
adjoint. Relations of this type in the theory of KP II were discussed in [18].

Just as in the theory of the Schrödinger operator, application of the theory of
generalized-analytic functions lets one prove the nonsingularity of the potential
u(X, Y ) without assumptions about the smallness of the norm T1(µ, µ̄). This fact
was not previously noted in the literature although the local form of Eq. (37) of
type (15) was used in [18].

If the potential u(X, Y ) decreases sufficiently rapidly at infinity, then there arise
relations of the type of (17), (18) on the data of the inverse problem. These relations
for KP are now being investigated by V. Bakurov in the L. D. Landau Institute of
Theoretical Physics (ITF).

Supplement 2. Negative energies of higher ground state. For energies of higher
ground state the situation is more complicated. Let the energy ε0 not be a level of
the discrete spectrum of the operator L = −∆+u. The eigenfunctions Ψ(z, z̄, λ, λ̄)
defined above of the family F for ε = ε0 < 0 and “data of the inverse problem”
T (λ, λ) are introduced as before and have group of reductions (13), (14), however
both functions T and Ψ are no longer smooth in the whole λ-plane. As compari-
son with [9, 20] shows, these functions in the situation of general position have a
collection of poles along the curves Γj :

(38) fj(λ, λ̄) = 0, T = T−1/fj(λ, λ̄) + T0, fj = f̄j , Ψ = Ψ−1/fj(λ, λ̄) + Ψ0,

where T−1, T0,Ψ−1,Ψ0 are smooth functions.
As before, wherever T is smooth, the function Ψ satisfies (15), i.e., is generalized

analytic

(39) ∂Ψ/∂λ̄ = T Ψ̄.

The collection of curves Γj in the λ-plane is invariant with respect to the group
of reductions (13). In the case of general position we have

(40) |∂fj/∂λ̄| 6= 0, if fj = 0.

For ε > εmin, by virtue of Sec. 2 of this paper, the function Ψ(z, z̄, λ, λ̄) neces-
sarily has zeros for |λ| = 1 and some values of z. For all z the zeros of Ψ(z, z̄, λ, λ̄)
lie in a compact part of the λ-plane. It is easy to see that the manifold of poles
Γ =

⋃
Γj is compact and independent of z.

It follows from (15) that all the zeros of Ψ, situated outside the manifold of poles
Γ, have positive multiplicity. Hence, for those z for which Ψ has zero outside of Γ,
the function Ψ−1 necessarily has zeros on curves of Γ of positive multiplicity. As z →
∞ the zeros of Ψ of positive multiplicity go to zeros of Ψ−1 of negative multiplicity.
We denote the zeros by γ±j (z, z̄) (their dependence on z will be investigated in later
papers):

Ψ−1 = 0 for λ = γj(z, z̄), fj = 0.

From (15) and the expansion (38) the following equation T1 follows easily:

1
T−1

∂fj

∂λ̄
= − Ψ̄−1

Ψ−1
= −e−2ig(λ,λ̄).
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It follows from this in particular that one has the restriction

(41) |T−1| = ∂fj/∂λ̄ 6= 0, fj = 0.

The most natural position is a “nest”

[0 ⊂ Γ−N ⊂ Γ−N+1 ⊂ · · · ⊂ Γ−1 ⊂ S1 ⊂ Γ1 ⊂ · · · ⊂ ΓN ],

where S1 is the unit circle |λ| = 1, all the Γj are invariant with respect to the
transformation λ → λ, Γ−j is obtained from Γj by the transformation λ → 1/λ̄.
Apparently the rotation number of the function T−1 6= 0 along the contour Γj is
equal to 1. In a following paper we publish the results of investigation of the inverse
problem, based on the solvability of (15) under the conditions (38), (41), and the
supplementary condition (43).

One has the following

Lemma 5. In order that (15), in a neighborhood of each point of the contour Γj

have a collection of solutions locally, depending on two real valued functions of one
variable (a point of the contour), it is necessary and sufficient that in addition to
(41) the following relations (43) hold.

Suppose given in a neighborhood of the curve Γj a semigeodesic coordinate
system (α, β), where α is the distance to Γj , β is the natural parameter on Γj , the
lines β = const are line segments perpendicular to Γj . Considering (38) and (41)
we get

(42)

Ψ = exp[ig(β)][ϕ−1(β)/α + ϕ0(β) + ϕ1(β)α + O(α2)],

T = exp[i(2g(β) + h(β))][−1/2α + τ0(β) + τ1(β)α + O(α2)],

dλ = exp[ih(β)] · (dα + i dβ) for α = 0,

where g(β), h(β), and ϕ−1(β) are real functions. Then in order that an arbitrary
solution of (15) in a neighborhood of each point of the contour Γj depend on two
real functions of one variable, it is necessary to require that one have

(43)
Re τ0(β) = K(β)/4, K(β) = −(∂eβ/∂β, eα),

Im τ1(β) =
1
2

∂2g(β)
∂β2

+
1
4

∂K(β)
∂β

,

eβ being a tangent vector to Γj , eα a normal vector, eα × eβ = 1. Arbitrary
functions on which a local solution depends are ϕ−1(β) and Im ϕ1(β). If (43) does
not hold then a local solution of (15) depends on only one real-valued function.

It is apparently necessary that (43) hold for a solution of the inverse problem.
If (43) does not hold, then the inverse problem will generally not be solvable for
energy levels outside the discrete spectrum.
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