
ANALYTICAL THEORY OF HOMOTOPY GROUPS

S.P.NOVIKOV

This article summarizes and developes some ideas initiated by the author in
the works [1, 2] and oriented to the future analytical applications of the homotopy
theory.

1. J.H.C.Whitehead’s Formula for the Hopf Invariant and its
Properties. Generalization of H-Property

Consider any smooth mapping F : S3 × R → S2 and some 2-form ω on S2,
ft(x) = F (x, t). Whitehead’s formula for the Hopf invariant is well-known (in fact,
this quantity originated from the classical hydrodynamics of XIX century)

(1)
H(ft, ω) =

∫
S3×t

vω̄ =
∫

(v, rot v)d3x,

ω̄ = F ∗ω = dv.

The quantity (1) has the important properties:
A. H-property (Homotopy property)

δH(f, ω)
δf

= 0 ↔ dH(ft, ω)
dt

= 0.

Proof. d(vω̄) = ω̄2 = F ∗(ω2) = 0 in Λ∗(S3 × R). �

B. R-property (Rigidity property)

δH/δω = 0,

∫
S2

ω = 0,

∫
S2

δω = 0.

Proof. If ω′ = ω + δω = ω + δτ , ω̄′ = ω̄ +dτ̄ we have dv = ω̄, dv′ = ω′, v′ = v + τ̄ =
v + F ∗τ

H(ft, ω
′) =

∫
v′ω̄′ =

∫
(v dτ̄ + τ̄ ω̄ + τ̄ dτ̄) + H(ft, ω).

After integrating by parts we obtain

H(ft, ω
′) = H(ft, ω)±

∫
S2

2ω̄τ̄ = H(ft, ω). �

C. V -property (Variational property).
Consider the space of all smooth mappings g : S2 → S2, deg g = 0. For any con-

tinuation f : D3 → S2, f |∂D3 = g, the integral (2) determines nonlocal multivalued
functional on the space

(2)
H+(g, ω) =

∫
D3

vω̄,

∫
S2

ω = 1,

ω̄ = f∗ω = dv, d∗v = (∗d∗)v = 0.

(The example pointed out to the author by Polyakov and Wiegman—see [1, 2]).
The first variation (δH+) s well-defined non-local closed 1-form nontrivial in the
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group H1(F, Z). All local examples were described by the author in [6]—“The
Maxwell–Weiss–Zumino terms”. The idea of generalization of (1) was introduced
briefly in [3], p. 312. Some partial results were obtained in [4]. These papers
discussed only the H-property of (1). The work [3] used unnaturally complicated
language. The elementary and general approach including all properties (above)
was developped in [1, 2]. Consider any d-algebra—i.e. skew commutative (“super”)
Z+-graded differential algebra A =

∑
i>0 Ai, AiAj = (−1)ijAjAi, d : Ai → Ai+1

over some field K = Q, R, C. Suppose H0(A) = K, H1(A) = 0. The main example
is either the algebra of differential forms A = Λ∗(M,K) for any smooth simply
connected manifold or some subalgebra A ⊂ Λ∗. We shall construct the minimal
d-extension CqA ⊃ A

CqA = A[. . . , vjα, . . . ], dim vjα = j,

such that all new generators vjα are free and the next properties holds:
a) 0 < dim vjα 6 q − 1,
b) Hj(CqA) = 0, j = 1, . . . , q.

Definition 1. The homotopy group of d-algebra is:

πq+1(A)⊗K = Hq+1(CqA)∗

(see [1, 2]).

For any smooth F : Sq+1 × R → M and A ⊂ Λ∗(M) we construct a natural
d-continuation F̂ of the map F ∗ : A → Λ∗(Sq+1 × R)

(3) F̂ : CqA → Λ∗(Sq+1 × R).

Theorem 1. Any element z ∈ CqA, dz = 0 determines the homotopy invariant
integral (4) correctly defined for a class [z] ∈ Hq+1(CqA) = πq+1(A)∗

(4) H(ft, z) =
∫

Sq+1×t

F̂ z, d(F̂ z) = F̂ dz = 0, dH/dt = 0.

Proof of the H-property dH/dt = 0 is obvious as above, by the Stoke’s formula.
For the constructing of F̂ we observe that there is a natural filtration on the set of
new free generators vjα ∈ CqA such that

(5)
A0 = A ⊂ A1 ⊂ A2 ⊂ · · · ⊂ CqA

Ap = Ap−1[. . . , vjα, . . . ], dvjα ∈ Ap−1, vjα ∈ Ap.

Beginning from A0 = F ∗Λ∗(M) ⊂ Λ∗(Sq+1 × R) we construct the d-map F̂ by
induction on the number p because the operation d−1 is well-defined on the spaces
Λj(Sq+1×R) for j 6 q. The isomorphism (6) for A = Λ∗(M) may be deduced from
the results of H. Cartan, J.-P. Serre and D. Sullivan:

(6) πq+1(A)⊗K = πq+1(M)⊗K.

The construction (4) of the homotopy integrals is absolutely elementary (as the
E. Cartan–de Rham’s definition of the homology groups). It uses only the simplest
properties of forms and may be useful in the field theory.



ANALYTICAL THEORY OF HOMOTOPY GROUPS 3

2. Minimal d-Algebras and Their Deformations

Definition 2 ([3]). The algebra A is minimal iff A is free and for any free generator
xjα ∈ Aj we have

(7)
dxjα = Pjα(. . . , xqβ , . . . ),

q = dim xqβ < j, A0 = K, A1 = 0.

For any minimal algebra A we shall construct its universal deformations. Con-
sider the free algebra B with set of free generators (xjα, wjα, vj−1,α) such that:
dvj−1,α = wjα.

The universal (infinitesimal) deformation fλ of subalgebra A ⊂ B has the next
properties

a) f0 = 1, A → A
b) fλ(xjα) = xjα + λ dvj−1,α if dxjα = 0
c) suppose fλxjα = xjα(λ) is well-defined for all j < p:

xjα(λ) = xjα + λyjα + O(λ2).

Lemma 1.

Ppβ(. . . , xjα(λ), . . . ) = Ppβ(. . . , xjα, . . . )+λ dQpβ(. . . , xjα, wjα, vj−1,α, . . . )+O(λ2)

for some polynomials Qpβ.

Definition 3. The universal deformation of minimal algebra is given by the formula
(8)

(8) fλ(xjα) = xjα + λQjα + λ dvj−1,α + O(λ2).

The deformation (infinitesimal) of any concrete map g : A → C is some contin-
uation G : B → C and completely determines by the elements G(vj−1,α) ∈ C.

For the minimal algebra A we have the obvious isomorphism

πq+1(A)∗ = Aq+1/(decomposable elements).

Any free generator xq+1,α ∈ Aq+1 determines the unique element zq+1,α ∈ Hq+1(CqA) =
πq+1(A)∗, represented by the cycle z̃:

(9) z̃q+1,α = xq+1,α + · · · ∈ Cq+1A, dz̃q+1,α = 0

(the difference z̃q+1,α − xq+1,α is decomposable element).

Lemma 2. The deformation (8) of minimal algebra A determines the extended
deformation of the algebras CqA for all q > 1 such that

(10) z̃q+1,α(λ) = z̃q+1,α + λ dujα + O(λ2) ∈ CqB.

Example 1. x2 = ω ∈ Λ2(S2 × RN ), ω2 = dx3,
A = Q[x2, x3], C2A = A[v1], dv1 = x2 = ω.

z3 = x3 − v1x2 ∈ π∗3(A) = k = Q, R, C.

For the deformation fλ we have
x2(λ) = x2 + λ dτ1 = ω + λ dτ1

x3(λ) = x3 + 2λωτ1 + λ dτ2 + O(λ2)

v1(λ) = v1 + λτ1

z̃3(λ) = x3(λ)− v1(λ)ω(λ) = z3 + λ[2ωτ1 − ωτ1 − v1 dτ1] + λ dτ2 + O(λ2)

= z3 + λ d(v1τ1 + τ2) + O(λ2)
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Example 2. M = R3 \
⋃m

α=1(∗α), K = M × RN

A = Q[x2,α;x3,(αβ);x4,(αβγ); . . . ],
d2,α = 0, dx3,(αβ) = x2αx2β , dx4,(αβγ) = · · · .

a) C2A = A[v11, v12], dv1α = x2α,

(9′)
k ⊗ π3M = S2km, k = Q, R, C,

z3(αβ) = z3(βα) = x3(αβ) − [v1αxαβ ].

b) C3A = C2A[. . . , v2(αβ), . . . ], d2(αβ) = z3(αβ)

(9′′) z4(αβγ) = x4(αβγ) = x4(αβγ) + · · · ± [v1αv1βx2γ ].

There is a natural map Ψ̄: A → Λ∗(M) such that

Ψ̄(x3(αβ)) = 0, Ψ̄(x4(αβγ)) = 0, . . .

For any map F : Sq+1 × R → M , q + 1 = 3, 4 the formula for F̂ z includes only the
last term in the brackets [. . . ] from (9′) and (9′′). There is a relation

z4(αβγ) + z4(βγα) − z4(αγβ) = 0
z3(αβ) = z3(βα).

3. Minimal Models in Λ∗(M). Moduli Space. R-Property. Complex
Structures

The Whitney’s ring of all semilinear forms for any simplicial complex K contains
all SL-forms over the field k = R, C. The SL-form ω is by definition the collection
of K-forms ω on each simplex σα ⊂ K such that their restrictions are completible.
The d-algebra Λ∗SL(K, k) determines real homotopy type (k-type). The Sullivan’s
subring Λ∗SL(K, Q) ⊂ Λ∗SL(K, R) contains all SL-forms ω such that all ωα have the
polynomial coefficients over Q in the standard coordinates of σα. For the smooth
triangulated manifold M we have

(11) Λ∗SL(M, Q)
iQ
⊂ Λ∗SL(M, R) ⊃ Λ∗(M, R).

Consider the “stable” manifold K = M×RN for N →∞. There is “N -embedding”
of the minimal algebra ϕ : A → Λ∗SL(K, Q) such that

a) ϕ is the monomorphism up to dim N/2;
b) ϕ∗ : H∗(A) → H∗(K, Q) is isomorphism.

There is a deformation Ψt of the map iQϕ = Ψ0 such that Ψ1(A) ⊂ Λ∗(K, R) ⊂
Λ∗SL(K, R). As a result we obtain the next

Theorem 2 (D.V. Millionšikov). There is N -embedding Ψ1 : A → Λ∗(M ×RN , R)
of the rational minimal model A over Q in the ring of ordinary C∞-forms.

Corollary. For any smooth manifold M there is a homomorphism Ψ: A → Λ∗(M, Q)
of the minimal Q-model A in the algebra of the ordinary C∞-forms Λ∗(M) such
that

(12) Ψ∗ : H∗(A, Q) → H∗(M, Q), Ψ(xnα) = 0, n > dim M,

is isomorphism (see discussion in [2]).
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The construction of Ψ1 and Ψ (above) is non-effective. More natural construction
[2] leads to nontrivial obstructions. Suppose by induction that the N -embedded
Q-subring Ψ(p) : A(p) ⊂ Λ∗(M × RN , R), N → ∞ is constructed, A(p) contains all
free generators xjα for j 6 p − 1, Hj(A(p), Q) = Hj(M, Q), j 6 p − 1. The ring
A(p) is minimal and free. Consider the homological embedding in the dimensions p
and p + 1:

Ψ(p)
∗,p : Hp(A(p), k) → Hp(M, C),(13)

Ψ(p)
∗,p+1 : Hp+1(A(p), k) → Hp+1(M, C), k = Q, R, C.(14)

Has the image Im Ψ(p)
∗,p ∩H(p)(M,k) ⊂ Hp(M, C) the same k-rank as the C-rank

of Im(Ψ(p)
∗,p ⊗ C)?

Has the kernel KerΨ(p)
∗,p+1 the same k-dimension as C-dimension of Ker(Ψ(p)

∗,p+1⊗
C) or R-dimension of Ker(Ψ(p)

∗,p+1 ⊗ R)?
If so, the p-obstruction to the k-continuation of N -embedding of the minimal

model is zero (k = Q). Suppose the p-obstruction is zero.
Choose the basis x̄p,1, . . . , x̄p,αp

∈ CokerΨ(p)
∗,p ∩Hp(M,k) and the basis yp,1, . . . ,

yp,βp
∈ KerΨ(p)

∗,p+1 ⊂ Hp+1(A(p), k). The representatives of the classes x̄pα are the
C∞-forms—elements x̄pα (α = 1, . . . , αp) in Λp(M × RN ). The representatives of
classes yp,τ are the polynomials (“structural polynomials”)

Pp,αp+τ (. . . , xjα, . . . ), xjα ∈ A(p), j < p.

By definition the algebra A(p+1) ⊃ A(p) has the new set of free generators (xp,1, . . . ,
xp,αp , xp,αp+1 , . . . , xp,αp+βp) and extended map

Ψ(p+1) : A(p+1) → Λ∗(M × RN , C)

such that Ψ(p+1) = Ψ(p) on A(p) ⊂ A(p+1) and

(15)

{
Ψ(p+1)(xpα) = x̃pα, α = 1, . . . , αp,

dΨ(p+1)(xp,αp+τ ) = dx̃p,αp+τ = Pp,αp+τ (. . . , x̃jα, . . . ).

The construction (15) is always possible for k = R, C. The resulting ring
⋃

p A(p) =
A is by definition the minimal k-model.

For p = 2, 3 the construction (15) is obviously possible also for k = Q (π1 = 0) .
But the continuation of Ψ(p) to higher dimensions is not unique:

(16) x̃′pα = x̃pα + upα, dupα = 0.

For the closed free generators we have a natural “integrality requirement”: the class
[x̃pα] should be integral

x̃pα ∈ Hp(M, Z), α = 1, . . . , αp.

For the nonclosed x̃pα (α > αp) all elements (16) are “a priori” equivalent. From
the Theorem 1 and its Corollary (above) we deduce the next

Proposition. There exist (noneffectively?) such collection of elements (xpα) for
all p > 3 and k = Q such that the construction (15) does not meet any obstructions
(above).

Problem. How to find the nonclosed Q-generators effectively without any trian-
gulation?
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Consider now the infinitesimal variations of the minimal k-subring Ψ(A) ⊂
Λ∗(M × RN , C) constructed by the procedure (15) and such that the cohomology
classes of all closed generators x̃pα (α = 1, . . . , αp) are fixed.

(17) δ[x̃pα] = 0, α = 1, . . . , αp, dx̃pα = 0.

For the variation of nonclosed generators x̃pα we shall use (16). As a result we
obtain

Lemma 3. There is an embedding of the set of homotopy classes (8) of all vari-
ations δΨ fixed on the set of closed generators (17) in the (pre)-moduli space
κ =

⋃
p κp of minimal k-models for k = R, C:

κp =
p−1∑
j>3

Kerh∗j ⊗Hj(M,k).

The proof may be easily deduced from (16), (17) and (8) because in the formula
(16) we use only xpα dual to Ker hp and [upα] ∈ Hp(M). Here hj : πj(M) → Hj(M)
is the Hurewitch homomorphism.

Corollary (R-property). Suppose κp = 0. In that case all homotopy integrals are
rigid for p = q + 1. They don’t depend on the map Ψ of the minimal Q-model A in
the algebra of C∞-forms, fixed on the set of the closed free generators.

Remark. For the N -embedding Ψ1 of the Theorem 2 (above) all homotopy inte-
grals are rational numbers. The proof may be easily deduced from the properties
of ring Λ∗SL(K, Q) ⊂ Λ∗SL(K, C) and deformation Ψt.

In fact, tangent space to the moduli space of all homotopy classes of minimal
k-models with fixed set of closed free generators is isomorphic to some factor-space
of the space κ =

∑
Kerh∗p ⊗Hp: Modk(M) = κ(M)/V (M). The space Modk(M)

contains some “Sullivan’s” point A0 and subspace Mod0
k(M) ⊂ Modk(M) of the

minimal models, isomorphic to A0 ⊗ k, Modk(M) = κ/V (M). The student of
author proved the next theorem.

Theorem 3 (D.V. Millionšikov). There is a spectral sequence Ep,q
r , r > 1, such

that
a) dr : Ep,q

r → Ep+r,q+r+1
r

b) Ep,q
1 = π∗p(M)⊗Hq(M,k) (π0 = π1 = 0, H0 = k, H1 = 0)

c) Im dr ∩ Ep,q
r ⊂ Kerh∗p ⊗Hp(M,k) = κ(M)

d)
∑

p>3 Ep,p
∞ ∩ κ = Mod0

k(M) ⊂ κ/V (M)
e)
∑

q−p=m Ep,q
∞ = Hm(D)

Here the Z-graded differential Lie superalgebra (D, d̃) contains all infinitesimal au-
tomorphisms of A0 ⊗ k, D =

∑
p∈Z Dp, d̃t(x) = dt(x) ± td(x), t ∈ D, dim t =

dim tx− dim x = p.

Algebra D has the filtration i > 2; · · · ⊃ Di ⊃ Di+1 ⊃ · · · such that t ∈ Di iff
tx = 0 for all x, dim x 6 i.

Example. Suppose a = [Mn] ∈ Hn(Mn, Z) and µ ∈ Hn(Mn, Z)—the fundamen-
tal classes (µ, a) = 1. For n = 4, π1 = 0, b2 6= 0 we have

a) π4(M4) = Ker h4;
b) Kerh∗4 ⊗H4(M4) ∼= π∗4(M4)⊗ R = κ;
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c) Modk(M4) = Mod0
k(M4) = 0 because:

d1 : E3,2
1 = π∗3 ⊗H2 → E4,4

1 = Kerh∗4 ⊗H4 = Im d1 = π∗4 ⊗H4.

Conjecture. For any closed simply connected manifold M with some nontrivial
Betti numbers bj 6= 0 for 1 < j < n all group Kerhn⊗Hn(Mn) = πn⊗R = En,n

1 is
covered by the image of differentials dr and En,n

∞ = 0. The moduli space Modk(Mn)
may be reduced to κn:

Modk(Mn) =

(
n−1∑
p=3

Kerh∗p ⊗Hp

)
/V ′(M).

Consider now closed simply connected complex manifold M2n, n = dimC M .
There are the standard operators ∂, ∂̄ and their real combinations

d = ∂ + ∂̄, dc = i(∂ − ∂̄), i2 = −1.

We shall use the subring B = Ker dc ⊂ Λ∗(M2n, C) as d-algebra. For the
Kählerian manifold the subalgebra (B, d) is homotopy equivalent to Λ∗ by ddc-
Lemma ([5]):

H∗(B, d) = H∗(B, dc) = H∗(M, C).

The natural projection

B = Ker dc → H∗(B, dc) = H∗(M, C)

is the main map of ([5]) which leads to formality of the R-homotopy type {M2n}.
There is a formula ([5])

(18) (Ker dc ∩Ker d)/ Im ddc = H∗(M).

The important for us corollary from (18) in the next

Proposition. (Im dc ∩ Ker d)/ Im ddc = 0. By the standard procedure (13)–(15)
for k = R, C we construct the map of minimal k-model

Ψ: A → (B, d) = (Ker dc, d) ⊂ Λ∗(M2n).

Lemma 4. There is a canonical construction Ψ whose homotopy class is deter-
mined completely by the complex structure on M2n.

Proof. By ddc-lemma we construct canonically d−1(y) ∈ Im dc in the subalgebra
B = Ker dc, dy = 0. The transformation (16) will have special form:

(16′)
x′ = x + dcu, dx′ = dx = y

d(dcu) = 0

so the class of [dcu] ∈ H∗(M) by Proposition (above) is zero. �

Theorem 4. There is a canonical homomorphism of the tangent space T to the
moduli space of all complex (Kählerian) structures in the moduli space ModC(M)
of the minimal R-models:

Φ: T → ModC(M) = κ/V (M)

κ =
2n−1∑
p=3

Kerh∗p ⊗Hp(M2n, R).
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Example. Consider the case n = 3 and Ricci-flat manifolds (Kummer–Calaby–Yau
type). We have π1 = 0, H1 = H5 = 0:

b2 = a, b3 = h2,0 + h1,1 + h0,2 = 2 + h1,1

for a > 1 the group Kerh3 is nonzero

Kerh∗3 ⊗H3(M6, R) 6= 0.

Problem. Calculate the deformation Φ of the minimal R-models in the moduli
space ModR the corresponding deformation of the homotopy integrals.

Conjecture. The minimal model constructed (above) by the ring B = (Ker dc, d) ⊂
Λ∗(M) represents Sullivan’s rational minimal model for the complex algebraic man-
ifolds M over the field Q.
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