
QUANTIZATION OF FINITE-GAP POTENTIALS AND
NONLINEAR QUASICLASSICAL APPROXIMATION IN

NONPERTURBATIVE STRING THEORY

S. P. NOVIKOV

In recent articles [1]–[3], and ending with [4], there has been discovered a re-
markable circumstance resulting from the combinatorial Kazakov–Migdal–Rostov
approach in the continuous limit. In cases of nonperturbative conformal string
theories interacting with a “two-dimensional gravitation” according to Polyakov’s
scheme, as well as some other ones, when the central charge is c < 1, there appears
a simple system of equations for the renormgroup, i.e., a set of Laks type equations
with certain ordinary differential operators in x:

(1)
∂L

∂tk
= [L1Ak].

Equations (1) are studied for the following boundary conditions:

(2) [L,A] = ε · 1,
where ε is a quantum constant significant for our method.

Equations of type (1), (2) for ε = 0 have well-known finite-gap and multisoliton
solutions; they are completely integrable Hamiltonian systems and can be exactly
solved with θ-functions on Riemann surfaces (see [5]–[7]).

Definition. Equation (2) is called a quantization of finite-gap potentials.

The simplest case is where we have a second-order scalar operator L = −∂2
x +u,

and A is an operator of odd degree. All such operators A are well-known in the
theory of the Korteweg–de Vries (KdV) equation. In absolutely the simplest case

(3) L = −∂2
x + u, A = −4∂3

x + 6u ∂x + 3u′

the study of Eq. (2) is a rather complicated task, and from the naive point of view
it is unsolvable (it is a Painlevé type equation of the first kind). In this article,
for a smsll parameter ε, we describe a nonlinearly quasiclassical approach to the
construction of a (possibly exact) solution of Eq. (2) based on a continuation of
ideas of the theory of finite-gap integration. We first describe the entire method in
the simplest partial case (3); generalizations to other cases will become obvious.

Painlevé equation I has been studied earlier in [15]–[17]. Elliptic functions ap-
peared in the classic work [15] published in 1913, where asymptotics were studied as
|x| → ∞, x ∈ C, The study of asymptotics (as |x| → ∞) was significantly advanced
in [16]. Krichever in [17] obtained qualitative results on solutions of the Painlevé
equation I. It should be emphasized that our methods for studying asymptotics
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(as ε → 0) are not entirely rigorous in the “physical region” of interest and have
to agree with results in [15]–[17] for |x| → ∞. Of physical interest is a singular
solution which u(x) ∼

√
−εx/3 as x→ −∞ (only on the real axis). Our hypothesis

guarantees that the method described in the main part of this article has precisely
such solution. To avoid confusion, we emphasize that we use a term “quasiclassical
approximation” in its literal sense only on the real axis.

1. Some Results from the Theory of Solitons. General Relations

Equation (2) is a stationary equation for a Laks type system with an operator

(4) L̃ = L− (λ+ εt) · 1, ∂L̃/∂t = [L̃, A].

Using the method cited in [5], we replace the standard Laks representation (4) by a
representation of the following form, where according to (4) λ is replaced by λ+ εt:

(5)
[
∂

∂t
− Λ,

∂

∂x
−Q

]
= 0,

Furthermore, matrices Λ and Q for operators (3) have the following form:

(6) Λ =
(
a b
c −a

)
=
(

−u′ 2u+ 4λ
2u2 − u′′ + 2λu− 4λ2 u′

)
, Q =

(
0 1

u− λ 0

)
.

We obtain stationary equation (2) by substituting ∂t → ε∂λ, after which we
obtain the following Laks type pair for ordinary equations (2):

[ε∂λ − Λ, ∂x −Q] = 0, Λx = [Q,Λ] + ε

(
0 0
−1 0

)
,(7)

ε
∂Ψ
∂λ

= ΛΨ,
∂Ψ
∂x

= QΨ.(8)

Equation (7) is a condition of compatibility of system (8). Equation (4) implies
that it is impossible to find solutions of stationary system (2) with the usual bound-
ary conditions on classes of initial functions u(x) and a sensible spectral problem
for the Schrödinger operator L, since Eq. (4) shows that the eigenvalues of the op-
erator L (if they are well-defined) move with a constant velocity. Representations
of type (7) have been used for self-similar solutions in works by Flaschka, Newell,
Its, Novokshenov, and others, but the method described in this article is completely
different (it is possible that a combination of it with methods described by those
authors will also be beneficial in the theory of auto-modeling solutions).

We will try to explicitly use Riemann surfaces, taking into account the poly-
nomial nature of matrices Λ and Q with respect to λ and the smallness of the
parameter ε. We carry out a gauge transformation of Eqs. (8) by diagonalizing the
matrix Λ to the zeroth order of ε as follows. Let Ψ = U−1Ψ̃, where

(9)
U−1 =

(
1 1
δ χ

)
,

χ = −(a+
√
R)/b, δ = −(a−

√
R)/b, R = −det Λ = a2 + bc.
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Transformation (9) turns system (8) into

εΨ̃λ =
[
Λ0 + εΛd

1 + εΛ∗1 + εtλ

(
1 0
0 1

)]
Ψ̃ = [−εU(U−1)λ + UΛU−1]Ψ̃,(10)

ψ̃x =
[
Q0 + εQ∗1 + tx

(
1 0
0 1

)]
Ψ̃ = [−U(U−1)x + UQU−1]Ψ̃,(10′)

where

Λ0 = UΛU−1 = diag(
√
R,−

√
R), Q0 = diag(

√
R/b,−

√
R/b),

Λ∗1 =
(

0 χλ(χ− δ)
−δλ/(χ− δ) 0

)
, Q∗1 =

(
0 −b/(4R)

b/(4R) 0

)
,

Λd
1 = diag(2u′/(b ·

√
R),−2u′/(b ·

√
R)),

t = −1/2(χ− δ), detU−1 = χ− δ.

Equation (2) for operators (3) has the following form:

(11) u′′′ = 6uu′ + ε.

Defining a function D = 2uu′′ − 4u3 − (u′)2, C = u′′ − 3u2, Eqs. (11) imply that

(12) C = εx+ C0, C0 = const, D′ = 2εu, R′ = −εb,
where R = −det Λ has the form

(13) R(λ, x) = −16λ3 − 4λ(εx+ C0)−D.

Riemann surface Γ is defined by the following equation:

(14) det(Λ + µ · 1) = µ2 −R(λ, x) = 0.

We see that points of bifurcation on the surface Γ move “slowly” by virtue of
(11) and (12), which allows us to apply a nonlinear quasiclassical approximation
of Whitham type; however, we will derive more precise results. After a gauge
transformation, the condition that Eqs. (10′) are diagonal in x implies that functions
χ and δ for ε = 0 are independent solutions of the Riccati equation. If ε 6= 0 then
there are nondiagonal elements of the matrix Q∗2:

(15)
χ′ + χ2 − (u− λ) = −εb/(4R),

’. + δ2 − (u− λ) = εb/(4R).

It is useful to remember that representation (6) is obtained in a basis C(x, y, λ),
S(x, y, λ) of solutions of the Schrödinger equation (Ly − λ)Ψ = 0 in a variable y,
where the matrix of solutions is unitary at a point x:

Cyy = (u− λ)C, Syy = (u− λ)S,(
C S
C ′ S′

)
y=s

=
(

1 0
0 1

)
.

The Blokh basis has a form Ψ+ = C + χ(x)S, Ψ+ = C + δ(x)S for ε = 0.
The equation (Ly − λ)Ψ = 0 does not change under a change in basis in the

space of solutions independent of y.
Representation (9) corresponds to a change to a Blokh basis for ε = 0.
After gauge transformation (9) in variables (x, λ) which does not depend on y, the

function Ψ̃(x, y, λ) still satisfies the Schrödinger equation in y. As ε→ 0, it has to
become a Blokh function meromorphic on the surface Γ with an essentially singular
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point at λ = ∞. As usual, we also carry out the following gauge transformation
(defined and single-valued on a surface Γ̂ which is a four-sheeted covering of the
surface Γ, and in whose definition functions b1/2 and R1/4 are single-valued):

Ψ̃ = ˜̃Ψ/√χ− δ, 1/(χ− δ) = R1/5b1/2.

Then ˜̃Ψ satisfies an equation in which all matrices have nonzero traces:

(16) ε
˜̃Ψλ = (Λ0 + εΛd

1 + εΛ∗1)
˜̃Ψ, ˜̃Ψx = (Q0 + εQ∗1)

˜̃Ψ.
By our construction we should look for a matrix function ˜̃Ψ which is meromorphic

on the covering Γ̂ of the surface Γ with a singular point of exponential type for
λ→∞.

We use the quasiclassical approximation to determine the type of singularity.
From now on we assume that y = 0, and focus only on the x dependence.

2. Linear and Nonlinear Quasiclassical Approximations

Relations (12) and (18) for the deformation of Riemann surfaces can be used to
obtain an averaged equation of Whitman type. Let X = εx. Eq. (12) then implies
that

dD/dX = 2u.

Averaging this equation over the period of a one-gap potential for a small ε→ 0,
we obtain a “drift” of the Weierstrass function, where −g2 = εx+C0, −g3 = D/4:

(17) dD̄/dX = 2ū(X, D̄).

Equation (17) is the desired Whitham type equation for this case. Using the ho-
mogeneity of the function ū(X, D̄), we see that Eq. (17) can be easily integrated
(the function ū is defined, for example, in [8, 10]; in the Supplement we give more
details about this approximation).

We will later compare this result with a more precise method. Now we describe
a “linear” quasiclassical approximation for system (8) and use the fact that the
dependence on the variable λ is known for matrices Λ and Q. After applying gauge

transformations to obtain an equation of type (16), we first look for ˜̃Ψ as a series
of the perturbation theory using the rules of quantum mechanics (see, for example,

[9]). We look for ˜̃Ψ in the form of a series in ε by using a “naive quasiclassical
approximation”1 as follows:

(18) ˜̃Ψ = (1 + εA1 + ε2A2 + . . . ) exp{(B0 + εB1 + ε2B2 + . . . )/ε};

where matrices Bj are diagonal for all j > 0 and matrices Aq have zero diagonal
elements for all q > 1. Equation (16) is easily solvable in λ as a series in ε. The
solution has the following form (an operator adΛ0(H) = [Λ0,H] is invertible for

1I. A. Volovich showed us that in order to perform a substitution into the equation for x we

should look for
eeΨ in the form

eeΨ → eeΨ · V , where Vλ = 0, V = V (x) (see [14]). However, this does
not influence results in this article.
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matrices with zero diagonal elements):

(19)

B0λ = Λ0, B1λ = Λd
1, Bqλ = Λ∗1Aq−0, q > 2,

Aq = (ad Λ0)−1(Hq), H1 = −Λ∗1, H2 = A1λ + [A1,Λd
1],

Hq = Aq−1,λ + [Aq−1,Λd
1] +

q−2∑
j=1

AjΛ∗1Aq−j−1.

Equations (19) imply that all Aj , Bq,λ are algebraic on Γ. Furthermore, as λ→∞,
the quantity A1 has an order λ−5/2, and the quantity B1 has an order λ−3/2. This

order grows for quantities Bj and Aj as j grows. An initial approximation of ˜̃Ψ has
the following form:

(20) ˜̃Ψ0 = exp

{
1
ε

∫ λ√
Rdλ

}
, Ψ̃0 =

1√
χ− δ

˜̃Ψ0.

Let ik = λ1/2. Quantity (20) after an expansion into series as λ→∞ takes the
following form:

(21) ˜̃Ψ0 = exp{+8k5/(5ε) + k(x+ c0/ε)}(1 +D/(4ε) +O(k−2)).

The above statements about orders with respect to λ−1/2 imply that the remaining
quantities Aj and Bj for j > 1 have the same asymptotics. Therefore, as k → ∞,
we have

(22)
√
χ− δ Ψ̃ = ˜̃Ψ = exp{+8k5/(5ε) + k(x+ C0/ε)}(1 +Dk−1/(4ε) +O(k−2)).

Now we study “nonnaive classical approximation” for ˜̃Ψ. Equation (22) coincides
with the standard asymptotics of the Baker–Akhiezer function (the Blokh solution
of the one-gap operator L) when we recall relation (12), which relates the first term
of the asymptotics in k−1 with the potential u. Now recall that Eqs. (12) hold in
precisely this case, as seen from Eqs. (2) and (11). Furthermore, there is a new
term (+8k5/(5ε)) in the exponent. The main reason that the naive quasiclassical
approximation already deviates from the actual function in first approximation is
due to the fact that function (20) is not single-valued even at first approximation.
A “nonnaive” quasiclassical approximation in parameter ε on a Riemann surface
Γ consists of substituting Eq. (20) by a function ψ̃0 which is single-valued on Γ̂,

which is four-sheeted over Γ, and writing the series for ˜̃Ψ in ε as a summation such

that every sequence of ε-approximations of the function ˜̃Ψ consists of functions Φn

single-valued on Γ̂. To determine such first approximation of Φ1, we write a naive
quasiclassical function B using the following term in ε:

(23)
˜̃Ψ1 = exp

{
1
ε

∫ √
Rdλ+

εu′ dλ

(u+ 2λ)
√
R

(
1 0
0 −1

)}
,

R = −16λ3 − 4(εx+ C0)λ−D = −4(4λ3 − g2λ− g3).

Equation (23) shows that the second term in the exponent is an integral over
ε−1B = ε−1B0 +B1λ of a quantity which has two poles on the surface Γ at points
λ = −u/2 (on both sheets)

(24) γ+ = (−u/2,+), γ− = (−u/2,−)
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with residues of the form u′/(±
√
R(−u/2) · 2) = ±1/2 (see below). The quantity˜̃Ψ1 is single-valued on the Riemann surface Γ̂, which is a four-sheeted covering of

Γ (according to functions R1/4, b1/2). The first “nonnaive” quasiclassical approx-

imation of the function ˜̃Ψ has the form (24), where the exponent is replaced by
a Baker–Akhiezer type function Φ(x,P) defined on Γ with the following analytic
properties (where condition 2) is somewhat unusual:

1) Φ(x,P) is single-valued and meromorphic on Γ with one essentially singular
point at λ = ∞, where Φ has asymptotics (23), but squared, i.e.,

Φ = exp{2 · (+8k5/(5ε) + k(x+ C0/ε)(1 +Dk−1/(4ε) +O(k−2));

2) Ω = (lnΦ)λ has two simple poles with residues ±1 at points (24). Indeed, we
have

Res Ω = u′/
√
R(−u/2), λ = −u/2.

Since R(λ) = −det Λ = a2 + bc, condition λ = −u/2 is equivalent to b = 0 and
a = −u′, so therefore the residues are equal to ±1 on two sheets of the surface Γ.
Both poles move with x and are always located on the opposite sheets of Γ.

Proposition. In general, analytic conditions (1), (2) define a Baker–Akhiezer type
function Φ(x,P), which is single-valued on Γ, which in turn defines the first non-
naive quasiclassical approximation of the form (23) as follows:

(25) ˜̃Φ1 =
(

Φ1/2(P+) 0
0 Φ1/2(P−)

)
, P+ = (λ,+), P− = (λ,−),

where the exact value of the root is defined below. Quantity (25) satisfies an equation

ε
˜̃Φ1,λ = (Λ0 + εΛd

1 + εΛ∗1)
˜̃Φ1 +O(ε2).

The quantity ˜̃Φ1 is single-valued on a surface Γ̂ which corresponds to a four-sheeted
covering of Γ, which in turn corresponds to both factors of a function√

χ− δ = (−2
√
R/b)1/2,

i.e., to functions b1/2 and R1/4.

This statement has already been proven.
We now write the above analytic properties in a different way. Consider a func-

tion ˜̃Ψ1b
−1/2. We see that the main term in asymptotics (23) does not change.

As for poles (24), after a multiplication by b−1/2 one of them (either γ+ or γ−)
disappears, but a new one appears at λ = ∞:

(26) ˜̃Ψ1 · b−1/2 = exp
{

1
ε

∫ √
Rdλ+

2εu′ dλ
b
√
R

− εbλ du

2b

}
.

Lemma. A differential Ω′ = (
√
R/ε+ 2u′/(b

√
R)− bλ/(2b))dλ on a surface Γ has

two poles with residues ±1 (at points γ+ and λ = ∞).
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We have the following diagram of coverings:

Γ̂

~~~~
~~

~~
~~

��   @
@@

@@
@@

@

Γ1

  A
AA

AA
AA

A Γ0

��

Γ2

~~}}
}}

}}
}}

Γ

The function b−1/2 is single-valued on the surface Γ1, the function R1/4 is single-
valued on Γ2, and the function R1/4b−1/2 is single-valued on Γ0. Each factor is
separately single-valued on Γ̂. A function Ψ1b

−1/2 can be defined as a single-valued
one on Γ, since our Baker–Akhiezer type functions do not have zeros or poles at

points λj , R(λj) = 0 and λ4 = ∞. Furthermore, ˜̃Ψ1b
−1/2 has the usual analytic

properties:
1) it has asymptotics (26) as λ→∞ on Γ;
2) it is single-valued on Γ;
3) the poles of its logarithmic derivative are at points λ = −u/2 (on the same

sheet) and λ = ∞ with residues ±1.
This is the usual Baker–Akhiezer function on Γ. The different aspects of the

case where one of the poles of the logarithmic derivative is at a point λ = ∞ have
already been studied (see [11]).

3. Quasiclassical and (More) Exact Solution of the Main Equations
[L,A] = ε · 1

We “freeze” the Riemann surface Γ and apply the standard approach to obtain
the following equations [where the phase incorporates new terms as dictated by
asymptotics (26) and (22)]:

(27) usc = −2∂2
x log θ(Āx+ B̄ | g2, ḡ3) + k = 2℘(x+ 8/(5ε) · U6/U2 | g2, ḡ3)

where ḡ3 is the average of g3 over the period of variable x and ḡ3 = ḡ3(X) (the
subscript “sc” indicates that the function usc is “quasiclassical”). We have the
following equation

(28) D/(4ε) = −ζ(x+ 8/(5ε) · U6/U2 | g2, g3).

We now regard (28) to be an equation for a quantity D(x,X), where x = εx [since
constants g2 and g3 and Weierstrass functions, i.e., coefficients R/4, are equal to
εx and D according to Eqs. (12) and (13)], ω2j ∼ dk2j−1), λ→∞,

A = A(g2, g3, ε), B = B(g2, g3, ε),

Ā = (g2, ḡ3, ε), B̄ = B(g2, ḡ3, ε),

k = k(g2, ḡ3), U2j =
∮

b

ω2j ,

∮
a

ω2j = 0.

After obtaining D(x,X) from (28), we define an “exact,” or “more exact” solu-
tion uex(x) as follows:

(29) 2εuex(x) =
dD

dx
=
∂D

∂x
+ ε

∂D

∂X
.
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It can also be checked that ḡ3 = −D̄/4 can be obtained from (17).

Proposition. Eq. (29) gives uex(x) as the exact solution of an equation [L,A] = ε·1
for any ε, uex(x) ∼

√
−εx/3.

The above statement is proven as follows.
The above corrections do not influence either the position of poles Ω′ or the

terms appearing in the asymptotics for λ → ∞, including the term D/(16ε) of
k−1. Equations (12) are exact. Therefore, the first quasiclassical approximation

for ˜̃Ψ which is single-valued on Γ can give an exact equation for u(x). The above
arguments are intuitive; a rigorous proof follows.

Physically interesting solutions have asymptotics

(30) u ∼
(
−εx

3

)1/2

, x→ −∞.

Solutions with asymptotics (30) satisfy

(31) u ∼ u0 =
(
−εx

3

)1/2

, D ∼ D0 = −4u3
0, x→ −∞.

We rewrite initial equation (11) in a form which explicitly contains the Riemann
surface Γ. Choosing D as the unknown function, we easily obtain a general identity,
or Eq. (11) in a new form:
(32)(

D′′

2ε

)2

= R(−u/2) = R̃(u) = 2
(
D′

2ε

)3

+ 2(εx+ C0)
(
D′

2ε

)
−D, u = D′/2ε,

where R̃(λ) = 2λ3 + 2(εx+ C0)λ−D.
Thus, we have (letting λ = −D′/4ε)(

D′′

2ε

)2

= R

(
−D

′

4ε

)
By applying a translation x→ x+C0/ε we can get rid of the constant C0. The

roots of the polynomial R0 = R(λ, x,D0) have the following form:

(33) λ0 = u0, λ1 = −u0/2, λ2 = u0/2.

Defining variables D̃ = D/D0, ũ = u/u0, we obtain the following equation:

(34)

dD̃

dx
=

3
2x

(ũ− D̃),

dũ

dx
= − u

2x
+ u

1/2
0

√
2ũ3 − 6ũ+ 4D̃.

A solution u(x), D(x) which asymptotically tends to (u0, D0) as x→ −∞ satis-
fies ũ→ 1, D̃ → 1. Let ũ = 1 + q, D̃ = 1 + p. Since q → 0 and p→ 0 as x→ −∞,
a simple qualitative analysis of Eq. (34) leads to

(35)

p =
1

16x2u0
(1 +O(τ−1)), q = − 1

24x2u0
(1 +O(τ−1));

τ = x2u0, p =
∑
n>1

pnτ
−n +O(τ−∞), q =

∑
n>1

qnτ
−n +O(τ−∞);

∆D = D −D0 ≈ ε/(12x); ∆u = u− u0 ≈ −1/(24x2).
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Figure 1

We see that p > 0 for large |x|. Therefore, the graph of the Riemann sur-
face has the form illustrated in Fig. 1 [the dashed line shows a polynomial R0 =
R(εx, λ,D0)]. The two roots of a polynomial R(εx, λ,D) are complex, since p > 0.
The local minimum of the polynomial R(εx, λ,D) with respect to λ is at a point
−u0/2 for each given x. If we know quantities ∆D and ∆u, we can easily compare
this situation with one appearing in exact analytic method of the soliton theory
described above.

Conclusion. To obtain a physically meaningful solution u(x) with a root asymp-
totic for x → −∞, we have to fix a real Riemann surface with two complex roots
near −u0/2 and a real root near u0 with corrections cited above. The root −u/2 of
the Baker–Akhiezer function should be positioned to the left of the point −u0/2,
where ∆u ∼ −x2

0/24. The minimum of the curve R(λ) for x = x0 should be at the
point −u0/2 (where x0 is large and negative) and at a height −∆D ∼ −ε/(12x0),
according to Eq. (35). The pole of the Baker–Akhiezer function should be at λ = ∞.

Remark. The method cited in this article can be applied without changes to
equations of the form

[L,A] = ε · 1, A =
n∑

j=0

cjAn−j ,

where An−j are operators of odd order known in soliton theory, L = −∂2
x + u, and

cj are arbitrary constants.

This study can also be carried out for operators L and A of any order by using
certain aspects of the method described in [7]. If the orders of operators L and A
are not mutually prime then the problem becomes more difficult (see [12, 13]).
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Supplement (by B. A. Dubrovin and S. P. Novikov)

4. Nonlinear Quasiclassical Approximation for Equation [L,A] = ε · 1

Proposition. The main term of a formal asymptotic expansion of an equation
u′′′ = 6uu′ + ε has the form u = u0 + εu1 + . . . , where

(S.1)

u0 = 2℘

(
4g2
5ε

+
i(ω − ω′)

πε
+
δ0(ω + ω′)

πε

∣∣∣∣
g2,g3

)
,

−g2 = εx+ g0
2 , 3g3 = 2g2f − 5c/(2(ω + ω′)), g3

2 − 27g2
3 < 0,

−k = π(ω + ω′), f = (η + η′)/(ω + ω′),

and g0
2 , c, S0 are real constants. Here w + w′ is a real period of a real surface Γ of

type 1, η = ζ(ω), η′ = ζ(ω′), ζ ′(z) = ℘(z). Averaged equation (17) takes the form

(S.2) dg2/dg3 = f(g2, g3).

If ω → αω, w′ → αω′, then g2 → α−4g2, g3 → α−6g3, η → α−1η, f → α−2f .

We sketch the proof. We choose solutions (11) for ε = 0 of the form

u = ϕ(k(x− x0); g2, g3),

where the function ϕ(τ ; g2, g3) is periodic with a period 2π in τ ,

(S.3) ϕ(τ ; g2, g3) = 2℘
(
ω + ω′

π
τ
∣∣∣ g2, g3) .

As usual [18], we look for the main term of the asymptotic expansion in the form

(S.4) u0(x) = ϕ

(
S(X)
ε

; g2(X), g3(X)
)
.

The averaged equations have the form

(S.5) dg3/dX = −1, dg3/dX = −f(g2, g3).

The phase S(X) is determined by an equation

(S.6)
dS

dX
= k = − π

ω + ω′
.

Lemma. The averaged equations can be written in the “Flaschka–MacLaughlin–
Krichever form”2

(S.7) − ∂w
∂X

=
∂p

∂λ
, X = εx,

where

w =
√
R(λ), g2 = −εx+ g0

2 , −4g3 = D,

−ip(z) = ζ(z)− fz, λ = ℘(z), w = 2i℘(z),
(S.8) ∮

a

dp(λ) = 0, R(λ) = −4(4λ3 − g2λ− g) = −16λ3 − 4(εx+ C0)λ−D.(S.9)

2Results of this theory are cited in [18].
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Figure 2

The proof follows the standard scheme. The lemma implies the following results.
1. A quantity

(S.10) 2ic =
∮

a

w dλ = 2i
∫ 2(ω+ω′)

0

(℘′(z))2 dz

is an integral of averaged equations (S.5), since
∮

a
dp(λ) = 0 (c is real).

The following calculation gives result (S.1):

(S.11)
∮

a

w dλ =
∫ 2(ω−ω′)

0

w dλ =
8πg2

5(ω + ω′)
+

2i(ω − ω′)
ω + ω′

c.

2. The solution of Eq. (S.6) has the following form:

(S.12) S =
1
2

∮
b

w dλ+ S0,

since

(S.13) i

∮
b

dp(λ) =
π

ω + ω′
= −k.

We calculate integral (S.12) as in (S.11), obtaining the phase of the solution (S.1).
We choose a- and b-cycles on Γ according to the desired class of curves (see Fig. 1).
The bifurcation points in the complex λ-plane are indicated in Fig. 2.

The basis a-cycle is a preimage in Γ of a half-line [−∞, λ0] = a ∈ H1(Γ). The
basis b-cycle connects the bifurcation points λ1 and λ2.

All the necessary phase properties of (S.12) and (S.1) follow from the requirement
that the solution u0 is real.
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Uravn., 24, No. 10, 1684–1695 (1988).
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