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Introduction

I am going to discuss here some results in the soliton theory of a Moscow group
during the last years. The group of people who worked here include B.A. Dubrovin
I.M. Krichever, S.P. T̂sarev (and the present author). More details may be found
in the survey article [1]. Modern needs in the large new classes of hydrodynamic
type systems appear in connection with very interesting asymptotic method—so
called “nonlinear analog of WKB-method”, method of the slow modulations of
parameters or “Whitham method” in the theory of solitons (see for example the
book [2], chapter 4). This method is based on the large family of exact solutions
ϕ0(x, t;u) periodic or quasiperiodic in x and t, of the form which we call “soliton
lattice”:

(0.1) ϕ0(x, t;u) = F (η0 + Ux+ V t;u1, . . . , uN ).

Here F (η1, . . . , ηm;u1, . . . , uN ) is the function , which is 2π-periodic in each variable
ηj and depends on the N parameters up. All quantities (aj , bk, u

p) are constants
and ϕ0(x, t;u) satisfies some nonlinear P.D. equation

(0.2) ϕt(x, t) = K(ϕ,ϕx, . . . ϕ
(s)),

describing the propagation of solitons or some other nonlinear waves.
We have to have therefore some N -parametric family of invariant m-tori in the

functional space of quasiperiodic functions. There are many such classical examples
for m = 1. For example in the case (0.2) is exactly the famous KDV-equation and
for m = 1 everybody knows the family of “knoidal waves” in elliptic functions

ϕ0(x, t;u1, u2, u3) = −2∂2
x log Θ(kx+ ωt+ η0) + c.

Here we have u1 = c, u2 = k, u3 = ω. We write KDV in the form (0.3)

(0.3) ϕt − 6ϕϕx + ϕxxx = 0.

The algebro-geometric solutions (or finite-gap solutions) of KDV discovered in [3]
and investigated by many authors present us the analogous families for any m > 1,
N = 2m+ 1 (see details in [2, 4]) The analogs of these solutions are known for all
systems, integrable by the famous “Inverse scattering transform”(IST): SG (Sine-
Gordon), NS (Nonlinear Schrödinger), KP (Kadomtsev–Petviashvili) and others.
Consider now the function

(0.4) ϕ0

(
S(X,T )

ε
;u(X,T )

)
.

Here X = εx, T = εt, SX = U , ST = V . In 1965 Whitham observed (in some
cases—m = 1, the system (0.2) is a nondegenerate Lagrangian system or it is
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exactly the KDV)—that the function (0.4) satisfies equation (0.2J) plus something
small (ε → 0) if the “slow functions” up(X,T ) satisfy some “hydrodynamic type”
equation:

(0.5) up
T = vp

q(u)uq
X .

A lot of authors developed this idea since 1965 (see the papers [5]–[10]; more com-
plete list of references may be found in [1]). Serious investigations for m > 1 started
after the discovery of “finite-gap solutions” (1974–1975)—see the papers [11]–[13].

The activity of our group in this area started in 1982–1983. Its investigations
were mainly concentrated on the next problems:

Problem 1: Suppose the original system (0.2) is hamiltonian corresponding to
some local field-theoretical hamiltonian formalism. Is the associated hydrodynamic
type system (or the “averaged system”) (0.5) also hamiltonian? How to construct
explicitly its coefficients using the hamiltonian formalism of the original system
(0.2)?

Problem 2: Which kind of boundary problems for the equations of hydrodynamic
type (0.5) appear from the “Nonlinear WKB” method? Is it possible to investi-
gate them directly inside of the theory of the 1st order systems as a new kind of
hydrodynamics?

Problem 3: Suppose the original system (0.2) is completely integrable by the IST-
method (Inv. Scatt. Transform). Is the averaged system (0.5) completely integrable?
How to construct its solutions explicitly?

Problem 1 was solved by the present author and B.A. Dubrovin ([14]). This
solution leads to the discovery of some deep and natural differentially-geometric
structure for the hamiltonian hydrodynamic type equations (0.5), which does not
exist for the generic hydrodynamic type equations (0.5) and was not observed dur-
ing the 100 years of their investigations starting from Riemann. After that the
Problem 3 (on the level of local differential geometry) was solved by S.P. Tsarev
in his thesis (see [15, 16]). The effective global algebro-geometric construction of
some important solutions was found later by Krichever [17].

Problem 2 was investigated numerically by Avilov, Krichever and the present
author ([18, 19]), form = 1 only. Very interesting classes of “multivalued functions”
appear in the hydrodynamics of soliton lattices, but nothing rigorous was proven
here.

In Appendix we discuss some beautiful restrictions on the initial data for the
KDV-hierarchy which lead to rapidly oscillating functions and therefore to the
“Nonlinear WKB”. They have appeared recently in the so-called matrix models in
the form of the “string equation”.

We shall use the notation H.T. and P.B.H.T. for hydrodynamic type and Poisson
brackets of hydrodynamic type respectively. Also P.B. denotes Poisson brackets,
SH denotes semi-Hamiltonian, AFG denotes averaged finite gap solutions.

1. Differential Geometry and Hydrodynamic Type Poisson Brackets

1.1. Basic definitions. It will be most convenient to explain these ideas starting
from the general geometric definitions. Let X = (x1, . . . , xn), n = “dimension of
the space” and x1 = x for n = 1. Let M be some N -dimensional manifold, where
N is the “number of components” and u = (u1, . . . , uN ) are some local coordinates
on M . The “hydrodynamic structure” on M is by definition some collection of
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tensor fields numerated by the same indices as the X-space coordinates vp,α
q (u).

Definitions D1–D4 give us the base of geometric theory.
D1: The H.T. system is defined by the tensor fields vp,α

q in the form

(1.1) up
t = vp,α

q (u)uq
α,

for the fields u(x) belonging to some functional space of mappings X →M .
D2: The Riemann invariants for the system (1.1) are such coordinates u1, . . . uN

(if they exist) that all matrix fields vp,α
q (u) are diagonal

(1.2) vp,α
q = vp,αδp

q .

For (N = 2, n = 1) the Riemann invariants always exist for hyperbolic systems
(i.e. all individual matrices vp,α

q (u0) are equivalent to diagonal ones).
D3: The hydrodynamic quantities are such local functional on the space of fields

u(x), whose densities do not depend of the derivatives:

(1.3) J =
∫
j(u(x)) dx.

The most important new definition of the paper [14] is the next one.
D4: The local homogeneous hydrodynamic type Poisson bracket is defined by

the formula:

(1.4) {up(x), uq(y)} = gpq,α(u(x))∂αδ(x− y) + bpq,α
r (u(x))∂αu

r(x)δ(x− y)

for some functions gpq,α(u), bpq,α
r (u) in the local coordinates (u).

The H.T. hamiltonian (1.3) generates the H.T. system (1.1) using the Poisson
bracket (1.4). If H =

∫
h(x) dx we have

(1.5)
up

t = gpkul
xh;k;l,

vp
q = gpk∇k(∂qh).

The P.B. operation (1.3) has to be bilinear and skew symmetric; it has to satisfy
Leibnitz and Jacobi identities. As a consequence of these requirements our quan-
tities gpq,α(u) should transform as symmetric tensors on M for each α and bpq,α

k

should transform as gpr,αΓq,α
rk (u) for some Christoffell symbols Γ on M under the

local changes of coordinates u(w). The connections Γq,α
rk are compatible with the

“metric” gpq,α (for det(gpq,α) 6= 0), if torsion and curvature are equal to zero.
There exist therefore some new coordinates (w) such that

(1.6)
gpq,α = const,

Γq,α
rk = 0

(for one value of α only!). For n = 1 it gives us the complete invariant for the local
classification of P.B.T.H. with (det g 6= 0)-signature of the metric g.

So the canonical form of the nondegenerate P.B.H.T. is the generalized Gardner–
Zakharov–Faddeev’s δ′-bracket for n = 1.

For n > 1 we may kill Christoffell symbols for one value of α = 1 only; after that
(as the present author, Dubrovin and Mokhov proved in [20, 21]) all other “metrics”
will be linear (may be nonhomogencous) functions in that variables (u1, . . . , uN ),
all other bpq,α

r will be equal to const for α 6= 1. Here we should have det gpq,1 6= 0.
Such structures are invariant under the affine transformations of coordinates

u = Aw + u0.
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1.2. Special P.B.H.T. Lie algebras. In the case when all metrics may be linear
in u we have

(1.7)

gpq,α = gpq,α
0 + Cpq,α

k uk,

bpq,α
k = const, gpq,α

0 = const,

Cpq,α
k = bpq,α

k + bqp,α
k .

The linear (homogeneous) part of such P.B.H.T. determines some very interest-
ing class of infinite-dimensional Lie algebras (“hydrodynamic algebras”): for two
vector-functions f(x) and g(x) with N components fp, gq we may define the com-
mutator in the “local translation-invariant first-order Lie algebra” or hydrodynamic
algebra

(1.8) [f, g]r = [(∂αfp)gq − (∂agp)fq]bpq,α
r .

For n = 1 these algebras were investigated in [22]. The hamiltonian formalism of
classical liquid (including the magnetohydrodynamics and superfluid systems ad the
references to surveys of Khalatnikov, Dzyaloshinsky and other physicists especially
from Landau Institute) in connection with some special Lie algebras was discussed
in [23].

It is useful to introduce new algebra B as a multiplication in the N -space M
with basis e1, . . . , eN

(1.9) ep ◦ eq = bpq
k e

k.

For the functions f(x) = fp(x)ep and g(x) = gqe
q we write (1.8) in the form

f ′ ◦ g − g′ ◦ f

using the multiplication ◦ in algebra B—see (1.9). In that case (n = 1) our formula
(1.8) determines correctly the Lie algebra LB if and only if for any three elements
of the algebra B the next identities are true: if La(b) = a ◦ b, Rb(a) = a ◦ b we
should have

[La, Lb] = 0,

[Rb, Rc] = Rb◦c−c◦b.

The constant part of P.B. (1.7) gpq,α
0 determines some 2-cocycle on the Lie alge-

bra LB for n = 1

(1.10) γ[f, g] =
∫
f ′pg

pq
0 gq(x) dx.

In general, local translational-invariant 2-cocycles of the type τ = 0, 1, 2, 3, on
the algebra LB may be defined by the formula

(1.11) γ[f, g] = −γ[g, f ] =
∫
γpq
0 f (τ)

p (x)gq(x) dx.

We have τ = 1 in the case (1.10). We may have nontrivial cocycles for (τ =
0, 1, 2, 3) only. The classical Gelfand–Fuchs cocycle for B = R, τ = 3 generates the
well-known Virasoro algebra—extension of the algebra of vector fields on the circle
LR). Formula (1.11) determines some cocycles of the type τ = 3 for commutative
algebra B if the symmetric form γpq

0 determines scalar product 〈 , 〉 on B with the
next properties

(1.12) 〈ab, c〉 = 〈a, cb〉
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If 1 ∈ B and the form is nondegenerate we come to the classical Frobenius
algebras. In that case we always have

(1.13) γpq
0 = Cpq

k uk
0

for some point u0. The case τ = 1 is also very important. Symmetric form in that
case is such that (1.12) is also true but the algebra B may be noncommutative.

The corresponding cocycle of the type (τ = 1) is cohomologous to zero if (1.13) is
true. Interesting examples presents us P.B.H.T. for the classical gas dynamics (for
n = 1). We have here N = 3—the densities of momenta, of mass and of entropy
are our basic fields. Let f(x) = p(x)e1 + ρ(x)e2 + s(x)e3, e1 = e, e2 = a, e3 = b.
For the multiplication in algebra B we have (we omit the symbol ◦)

(1.14) e2 = e, ea = a, eb = b, be = ae = a2 = b2 = ab = ba = 0.

The “metric” gpq(u) here has the rank 2. This P.B.H.T. does not satisfy the
nondegeneracy condition

det gpq = 0

But there are nontrivial cocycles for τ = 1; gpq
0 should be such that

〈e,B〉 = 0

Therefore gpq
0 is some arbitrary two-by-two symmetric matrix concentrated on the

subspace (2, 3). The perturbed P.B.H.T. has nondegenerate metric

gpq(u) = gpq
0 + Cpq

r ur

which has zero curvature.
The case τ = 2 may also be interesting. The form here and the corresponding

scalar product should be such that

〈a, b〉 = −〈b, a〉,
〈ac, b〉 = −〈a, bc〉,

Any cocycle of the type τ generates the extension of P.B. where the extended
P.B. is equal to original P.B.H.T. plus (gpq

0 δ(τ)(x− y)).
The theory of extensions for Lie algebras LB was constructed in [22, 23]. As

Zelmanov proved in [24] the algebra B (over C) with N > 1 contains some ideal
I ⊂ B such that I2 = 0. Therefore all our algebras B may be constructed from the
factor-algebras A of B by I and the A-modules I using the cocycles of the work
[22]. There was some nice example of the algebra B in the paper [25]; some of their
algebraic properties were discussed by S. Gelfand.

1.3. Liouville structures. Suppose n = 1.
D.6: The coordinates u1, . . . , uN are Liouville for the P.B.H.T. (1.7) if there exist

some tensor fields γpq,α(u) such that

gpq,α = γpq,α + γqp,α,(1.15)

bpq,α
r =

∂γpq,α

∂ur
.(1.16)

Example: for the brackets (1.6) linear in u the same coordinates u are Liouville

(1.17) γpq,α = bpq,α
r ur + const.

The Liouville structure is covariant under the affine transformations only.
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D7: We call the coordinates strongly Liouville for P.B.H.T. if its restriction to
any group (ui1 , . . . , uik) of coordinates (after affine transformation) correctly deter-
mines some P.B.H.T. with Liouville structure. As the present author and Dubrovin
observed in [1] they appear from the “Nonlinear WKB” for the hydrodynamic of
soliton lattices. For n = 2 any Liouville structure is strong, but for N > 2 it is not
so. The P.B. of the classical gas dynamic is strongly Liouville in the coordinates
(p, ρ, s). A nice example comes from a relativistic liquid. Its energy-momentum
tensor ((tij) = T ; i, j = 0, 1) is symmetric and

t00 = ε, t01 = p, trT = t00 − t11 = q.

The H.T. equations have the form

(1.18) ∂iT
i
j = 0.

The eigenvalues of T in the Minkovsky metric are the density of inner energy ε0
and pressure P . We have q = ε0 − P . With state equation F (ε0, P ) = 0 we obtain
the complete system. The P.B.H.T. for it is such that H =

∫
t00 dx and

γij =
(
t01 t00
t11 t10

)
.

There is discussion in [1] about some interesting generalizations of P.B.H.T.:
higher order analogs, nonhomogeneous brackets, discrete analog (which leads to
the linearized Yang–Baxter equations with very interesting additional structure).

2. Weakly Deformed Soliton Lattices and Their Hamiltonian
Hydrodynamics

Suppose the original system (0.2) is hamiltonian corresponding to some local
field-theoretical P.B. { , }0 and hamiltonian H

H =
∫
h(ϕ,ϕx, . . . ) dx,(2.1)

{ϕ(x), ϕ(y)}0 =
L∑

k=0

Bk(ϕ(x), . . . ϕ(nk)(x)),(2.2)

ϕt = {ϕ(x),H}0.(2.3)

Consider any family of the “soliton lattices” (0.1) which is nondegenerate

(2.4) U = (k1, . . . , km), rk
(
∂ki

∂uj

)
= m.

It means that the first m parameters may be kp and N > m. Suppose also that
there are at least N independent local commuting integrals

(2.5)
Ip =

∫
Pp(ϕ,ϕx, . . . , ϕ

(lp)) dx,

{Ip, Iq}0 = 0.

For the densities we have some finite sum

(2.6) {Pp, Pq}0 =
∑

k

Apq
k (ϕ(x), . . . , ϕ(lk)(x))δ(k)(x− y).
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From the commutativity (2.5) we deduce that
∫
Apq

0 = 0 for any field ϕ. It mean
that

(2.7) Apq
0 (ϕ, . . . ) = ∂xQ

pq(ϕ, . . . ).

Let us introduce the physical coordinates u, metric and Christoffel symbols by
the formulas:

gpq(u) = Āpq
1 = (2π)−m

∫
T m

Apq
1 (F, F ′, . . . ) dmη,(2.8)

γpq(u) = Q̄pq = (2π)−m

∫
T m

Qpq(F, F ′, . . . ) dmη,(2.9)

bpq
r =

∂γpq

∂ur
, uq = P̄q.(2.10)

Here we have

F ′ = kj
∂F

∂ηj
, . . .

and F is from (0.1)
Our theorem states that that the metric (2.9) has zero curvature and the cor-

responding P.B.H.T. in physical coordinates (2.8) has the strongly Liouville form
(2.10). The averaged H.T. equation is the hamiltonian H.T. system in the bracket
(2.8)–(2.10). Its hamiltonian is H.T. quantity whose density exactly coincides with
the averaged density of energy

(2.11)
ε = h̄(u),

H =
∫
ε dx.

All averaged densities P̄q = uq determine the H.T. conservative quantities

Ip =
∫
up dx

The averaged P.B.H.T. of them are equal to zero. This procedure may be consid-
ered as an alternative definition of the averaged system. Our works were dedicated
to the studying of that procedure. Some other people investigated this question—in
which cases this equations lead to the nonlinear WKB-type approximation (see for
example [11])? Our goal was to investigate the formal properties of the resulting
H.T. systems (including their hamiltonian formalism, exact integrability and also
the boundary conditions for them natural in the physical problems).

The special case of nondegenerate Lagrangian system was investigated by Whitham
in 1965 for m = 1. The formal properties for any m > 1 are the same here. In
that case we don’t need the local integrals as above. For example it is important
for some nonintegrable systems like the perturbed NS

iψt = ψxx + V (|ψ|2)ψ.

Here m = 2, N = 4; but we have generically here only three conservative quan-
tities. In the integrable case we have more, of course.
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The Lagrangian averaging leads to the H.T. systems in the form (2.12):

(2.12)
vj

t = ∂x

(
δH

δwj(x)

)
,

wj
t = ∂x

(
δH

δvj(x)

)
.

Here we have j = 1, . . . ,m, N = 2m, (u) = (v, w). In that case the metric has a
constant form

(2.13) gpq =
(

0 1
1 0

)
.

Its signature is (m,m). In the variables (v, y), y =
∫
w dx the system (2.12) will

be Lagrangian. This form exactly corresponds to the classical “Clebsch variables”
in hydrodynamics. A lot of people considered the hamiltonian formalism of H.T.
systems in the form (2.12) only (see for example [26]).

It is natural to suppose that for the hamiltonian system (0.1) the subspace (0.1)
presents some finite-dimensional system, integrable in the strict sense of Liouville
or some family of such systems depending from N − 2m parameters. Suppose
J1, . . . , Jm are the action variables. In [14] we formulated a theorem that the
quantities

uj = kj , um+j = Jj , j = 1, . . . ,m,

have the averaged P.B. of the form (2.13). This observation for m = 1 was made
in the work of Hayes [9]. Up to now this theorem was proven for the integrable
systems only.

Motivated by the last applications of the action variables the present author,
Veselov and Dubrovin investigated them and constructed a theory of “algebro-
geometric” finite dimensional P.B. for the systems, integrable by the method of
Riemann surfaces (see [27, 28]; these ideas were initiated in some calculations of
the papers [29, 30]).

3. Integrability of the Hamiltomian H.T. Systems

3.1. Riemann Invariants for the Hamiltonian H.T. systems. Integrability
and Differential Geometry. The Riemann invariants are known for some clas-
sical systems of gas dynamics more than 100 years. Their existence for N > 2 is
the true sign for some degeneracy in the system. For (N = 2, n = 1) they always
exist. The transformation to the inverse functions x(u1, u2), t(u1, u2) linearizes the
H.T. system. This is well-known “hodograph transformation”. Is there any gener-
alization of the “hodograph” for N > 2? This problem was solved by Tsarev in his
thesis [12] in the process of investigating the diagonal hamiltonian H.T. systems.
The conjecture about the integrability of that class was formulated by the present
author and posed to Tsarev as a problem.

Tsarev’s main theorem states that such systems are integrable in the strict sense
of Liouville at least in the class of monotonic functions. He found also a natural
analog of the “hodograph” method for the construction of exact solutions.

Let us consider the diagonal hamiltonian H.T. system

(3.1) up
t = vp(u)up

x, vp 6= vq
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corresponding to some hamiltonian

H =
∫
h(u) dx

and P.B.H.T. (1.4) for n = 1 with nondegenerate metric gpq(u). It is easy to prove
that the metric will be also diagonal

(3.2) gpq = gp(u)δp
q

in the same coordinates (but not constant).
The classification of the orthogonal coordinates in the euclidean space is the

classical problem. E. Cartan proved that they depend on the N(N−1) independent
functions of 2 variables.

As Tsarev observed, all diagonal H.T. systems which are hamiltonian in the same
P.B.H.T. commute with each other. We have:

(3.3)

up
t = wp(u)up

x, H2 =
∫
h2(u) dx,

Γk
ki =

(
∂iw

k

wi − wk

)
=

(
∂iv

k

vi − vk

)
m

2Γk
ki = ∂i log |gk|.

All collections of the systems (3.3) depend on N functions of 1 variable. They may
be found “in principle” from the equation (3.3) on the level of local differential
geometry. The next consequence will be important:

(3.4) ∂i

(
∂jw

k

wj − wk

)
= ∂j

(
∂iw

k

wi − wk

)
.

Definition. We shall call the diagonal H.T. system a semihamiltonian (SH) one if
(3.4) is valid for its coefficients.

The class of SH systems is larger than the class of the diagonal hamiltonian
ones. For (N = 2) all H.T. systems are diagonalizable but the hamiltonian subclass
depends on 3 functions only. SH systems have the most important property of the
hamiltonian H.T. systems: They are deeply connected with some diagonal metric,
determined from the equation (3.3), but may have nonzero curvature if the SH
system is really nonhamiltonian).

The integration process works for all SH systems: We have a large collection of
commuting SH systems from (3.3). Each system of that class generates some exact
solution. Consider the functions up(x, t) obtained from the equation (3.5):

(3.5) vp(u(x, t))t+ x = wp(u).

They satisfy to the original equation (3.1). It gives locally the complete solution of
(3.1).

There is also a construction of a large family of conserved quantities for the SH
systems. It was known for N = 2 many years. For the hamiltonian systems the
commuting flows and the conserved quantities are in a natural one-to-one corre-
spondence. It is unclear now—is there any hamiltonian explanation for the SH
class?



10 S.P. NOVIKOV

3.2. Soliton lattices for the integrable systems. The applications of these
methods to any concrete integrable system is nontrivial problem. Consider for
example KDV in the form (0.3). Even the simplest case m = 1, N = 3 leads to
the highly nontrivial “Whitham system” after averaging. Whitham observed that
it admits the Riemann invariants (rj). Its analytical form is:

(rj)T = vj(r)(rj)X

where

(3.6)

−3vj = r1 + r2 + r3 − 2fj ,

f1 = (r2 − r1)
(

K

K − E

)
, f2 = (r3 − r1)

(
(1− s2)K

E − (1− s2)K

)
,

f3 = (r1 − r3)
(1− s2)K

E

and K(s), E(s) are the standard “complete elliptic integrals”,

(3.7) s2 =
r2 − r1
r3 − r1

, v1 6 v2 6 v3, r1 6 r2 6 r3.

On the boundary our family degenerates to a constant solution of KDV for
r2 = r1 and to soliton for r3 = r2. The result about the existence of the Riemann
invariants was generalized in 1980 ([12]) to the families of finite-gap solutionsm > 1,
N = 2m+ 1: they are exactly the branching points of Riemann surfaces Γ and the
endpoints of the spectrum of corresponding Schrodinger operator with periodic
(quasiperiodic) potential on the line:

(3.8) (rj)T = vj(r)(rj)X , j = 1, . . . , 2m+ 1.

The same results are valid for the systems SG and NS. The family of finite -gap
solutions has a form for KDV:

(3.9) ϕ(x, t;u) = −2∂2
x log Θ(Ux+ V t+ η0|B) + C.

Here we have the Riemann surface

(3.10)

Γ: µ2 =
∏

(λ− rj), (rj real),

U = (k1, . . . , km), V = (ω1, . . . , ωm), B = (bij),∮
bi

Ωj = bij ,

∮
aj

Ωk = 2πiδjk,

∮
bj

dp(λ) = kj ,

∮
bj

dq(λ) = ωj .

Here ωj are the 1st kind differentials and dp, dq are the second kind ones on the
Riemann surface Γ normalized as in (3.11):

(3.11)

∮
aj

dp =
∮

aj

dq = 0,

dp = dk + regular, dq = d(k2) + regular,

z = k−1 = λ−
1
2 → 0, aj = ([r2j−1, r2j ];±).

The multivalued functions p(λ), q(λ) are the “quasi-momentum” and “quasi-
energy”, ak, bk—canonical basis of cycles:

(3.12) ak ◦ aj = bk ◦ bj = 0, ak ◦ bj = δkj .
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It is well-known that the Kruskal integrals exactly coincide with the asymptotic
coefficients

(3.13)
p(λ) =

√
λ+

∞∑
s=0

Is
1

(2
√
λ)2s+1

,

Is =
∫
Ps(ϕ, . . . ) dx.

Here P0 = ϕ, P1 = ϕ2

2 , P2 = ϕ2
x

2 − ϕ3, . . . .
As it was observed in [12], the averaged H.T. system has the nice algebraic form

(3.14) dT p(λ) = dXq(λ).

The generalization of the form (3.14) to KP was found by Krichever [17] who
was able also to develop a “Nonlinear WKB”-method for KP (this is more difficult
because KP is a non-local evolution system). The averaged densities P̄s generate
the conserved quantities

Is =
∫
us dx, s = 1, 2, . . . .

Any linear combination of them is also a conserved quantity

I =
∑

j

cjIj .

So we have a huge family of conserved H.T. quantities after averaging∑
p

up(r1, . . . , r2m+1).

Any independent group of (2m+ 1) of such quantities determines the “physical
coordinates”

(3.15) wp =
∑
j>0

cpju
j(r1, · · · r2m+1),

such that the H.T.P.B. has a strongly Liouville form. This property gives us some
characterization of the averaged P.B. for the integrable KDV-type systems.

All quantities vp determine some exact solutions by the Tsarev’s procedure
(above). We call these solutions “the averaged finite-gap solutions” (AFG).

For the basic quantities uq = P̄q the AFG-solutions are self-similar as it was
observed by Krichever. There is a nice formula:

(3.16) vj(r) =
(
dp

dq

)
λ=rj

.

The AFG-solution generated by the averaged Kruskal integral
∫
uq dx using the

hamiltonian formalism and (3.5) may be written in the form:

(3.17)
rp(X,T ) = T γfp(XT−1−γ),

γ =
1

q − 2
, q = 3, 4, . . . .
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(details see in [1]). For q = 4, m = 1 computations were done in [31]. We obtain
from (3.5)

(3.18)

wp =
1
35

[(3vp − a)fp + f ],

f = 5a3 − 12ab+ c,

a =
3∑

p=1

rp, b =
∑
p<q

rprq, c = r1r2r3,

fp =
∂f

∂rp
.

The system (3.18) is nondegenerate in the domain ∆ = (z−, z+):

z− = −
√

2, z+ =
+
√

10
27

, z = xt−
3
2 .

Consider the curve r(x, t) = t
1
2 l(z) determined outside of ∆ by the equation

x+ 6rt = (r)3.

It will be by definition the C0-continuation of the 3-valued curve (r1, r2, r3) at any
moment t equal to constant.

We have the “boundary condition”:

(3.19)
r2(x−) = r1(x−), r3(x−) = r(x−),

r3(x+) = r2(x+), r1(x−) = r(x+).

So the complete C0-curve r(z) is such that

(3.20) r(z) = (r1, r2, r3), z ∈ ∆.

The “dispersive shock wave” r(x, t) = t
1
2 l(z) which was found numerically by

Gurevitch and Pitaevsky in 1973 and which we call “GP”-solution belongs to C1-
class in the points (z−, z+) and may have singularity in some point z0, l2(z0) = 0.
After proving that in fact the functions (3.18)–(3.20) are C1 we shall come to the
result that our formulas present the “dispersive shock wave” exactly (and there is
no singularity in the point r2 = 0). This important difference in the definition of
the functional classes has been missed in [31] as the present author pointed out to
Krichever and Potemin.

Consider the meromorphic form ds(λ) on the surface Γ such that:∮
aj

ds = 0, ds =
∑
p>1

cpd(k2p−1) + (regular).

All collection of the “averaged finite-gap” solutions may be obtained from the next
equation of Krichever:

(3.21)
(X dp+ T dq − ds)λ=rp

= 0,
p = 1, . . . , 2m+ 1.

Here we have c4 = 0, cp = 0 (p 6= 4) in the GP-case above. More general class
of the forms ds with some jumps along the curves on the surface Γ leads to the
general solution of the averaged H.T. system of hydrodynamics of soliton lattices
for KDV.
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3.3. Time evolution of the multivalued functions. Numerical investiga-
tions. Hydrodynamics of soliton lattices based on the Whitham type equations
cannot be realized on the ordinary spaces of one-valued functions in the physically
interesting cases. We should define the time evolution for the multivalued func-
tions. (The same conclusion may be deduced from the results of Lax, Levermore
and Venakides [32, 33].) We constructed in the works [18, 19] the class of special
1- and 3-valued functions for the investigation of stability of the “dispersive shock
wave” which should be realized also as the asymptotics t→∞.

Consider now 2 classes of multivalued functions r(x), one-valued for |x| → ∞:
Class 1: r(x) → A±, |x| → ∞,
Class 2: r(x) ∼ x

1
3 , |x| → ∞.

We suppose that there is one and only one finite interval ∆ for each function
r(x) such that it is one-valued outside ∆ and 3-valued inside ∆ = [x−, x+]. The
branches rp of r should be such that

(3.22)
r1 < r2 < r3 (inside ∆),

r1(x−) = r2(x−) = r− < r3, r2(x+) = r3(x+) = r+ > r1.

The graph of the curve r(x) should be C1-smooth. The most important require-
ments are the asymptotics near the boundary of ∆:

0 > x− x− = [a+ + b+(r − r+)]f(1− s2) +O(r − r+)3,(3.23)

0 < x− x− = [a− + b−(r − r−)](r − r−)2 +O(r − r−)3.(3.24)

The parameter s2 was defined in (3.7) and

(3.25) f(u) = u log
(

16
u

+
1
2

)
, u = 1− s2.

Time evolution was realized numerically [18] for the functional classes above.
Our conclusion is that for the C1-small perturbations of the GP-solutions (in the
both classes 1 and 2) the time dynamics is correctly defined for all t > t0 and
has self-similar GP-asymptotics for t → ∞. For the class 1 this result may be
rigorously deduced from the IST-method for KDV (see [34]). For the important
class 2 connected with the “dispersive shock wave” it is probably impossible now.

The influence of small viscosity in the same classes was investigated in [19]. More
details and discussion may be found in the survey [1].

Appendix

The situation of dispersive shock wave appeared recently in the so-called “quan-
tum 2D-gravity”, as you may find in the preprints of Douglas, Seiberg and Shenker,
Molinari and Parisi (1990). After the results of Gross and Migdal, Brezin and
Kazakov, Douglas and Shenker (the end of 1989) we know that the so-called renor-
malization group for the “matrix models” in some special continuum limit (for the
large order of matrices) may be described as a KDV-type hierarchy:

(A.26)
∂L

∂tj
= [Aj , L], j 6 l − 1, t0 = x.

The critical points, corresponding to concrete conformal theories coupled with
gravity should satisfy to the next equation (string equation)

(A.27) [Al, L] = 1



14 S.P. NOVIKOV

(and L should have very special asymptotic for |x| → ∞; if L = −∂2 + u we have
here exactly the KDV hierarchy and u ∼ x

1
l+1 .

For l = 1 the equation (A.2) coincides with the classical “Painleve-1” equation
it never was written before in the form (A.2)). For l = 2 its asymptotic for the
large x is exactly like in the case of the “dispersive shock wave” (see the last part
3.3 of the paragraph 3). The asymptotic behavior of solution for t→∞ is written
in (3.18)–(3.20).

The present author and Krichever developed recently useful asymptotic methods
(nonlinear WKB and linear WKB, using Riemann surfaces and Lax-type pairs) for
the studying the equation (A.2), written in the form:

(A.28) [A,L] = ε1.

(see [36, 37]).
Very recently the present author investigated the equation (A.3) and found very

interesting formula for the physically important “string solution”. In the simplest
nontrivial case (order of A equal 3, order of L equal 2, where the equation (A.3) is
exactly the Painleve-1) the potential u(x) has the form:

(A.29)

u = 2℘
(ω

2
||g2, g2

)
,

2g′3 = εu,

g2 = −εx, x→ −∞.

The quantity 2ω here is the real period. The basic periods are complex-adjoint.
This equation may be obviously integrated by 1 quadrature. Our main conjecture
in [36] was not true; the ψ-function is in fact multivalued on the Riemann surface.
After the investigation I found that the conjecture has to be replaced by the formula
(A.4). The analogous result is true for the operators of the higher order also.
This work is still not finished: I still do not know—is this formula exact or only
asymptotic for x→∞?
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