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Abstract. It is shown that the investigation of the conductivity in a single
crystal of a normal metal with a complicated Fermi surface in strong magnetic

fields B can reveal integral topological characteristics which are determined

by the topology of open-ended quasiclassical electron trajectories. Specifically,
in the case of open-ended trajectories of the general position there always

exists a direction η orthogonal to B in which the conductivity approaches zero

for large B, and this direction lies in some integral (i.e., generated by two
reciprocal-lattice vectors) plane that remains stationary for small variations of

the direction of B.

In the present letter we describe topological effects arising in the study of the
conductivity tensor of normal metals in strong magnetic fields. We assume that con-
ductivity is described well in the quasiclassical approximation for the one-electron
problem with some dispersion law ε(p), which is periodic in the quasimomentum
space with periods equal to reciprocal-lattice vectors. The only vestiges of quantum
mechanics in the theory are a transition from Euclidean momentum space E = R3

to the first Brillouin zone B, which is a three-dimensional torus T 3 related with
the reciprocal lattice, and the form of the function ε(p). In this approximation
the electrons follow quasiclassical trajectories which, as functions of the time t, are
solutions of the system

(1)
dx
dt

= ∇ε(p),
dp
dt

=
e

c
[∇ε(p)×B].

The system (1) is a Hamiltonian system with the Hamiltonian H(x,p) = ε(p) and
Poisson brackets {xi, xj} = 0, {xi, pj} = δij , {pi, pj} = eBij/c (i = 1, 2, 3), where
Bij = −Bji, B23 = B1, B31 = B2, and so on. The trajectories of the system (1) in
momentum space are given by the intersection of the surfaces of constant energy
ε(p) = const with planes perpendicular to the magnetic field:

(2) p ·B = pjBj = const.

The theory described above works well up to the comparatively high values of the
magnetic field B which we shall study. For comparison we point out that the upper
limit on the magnetic field is determined by the applicability of the quasiclassical
approximation ωB � εF , while the effects due to the topology of the trajectories
come into play for ωB > τ−1, where τ is the free time of flight of the electrons (see
[1]–[3]).

Date: Submitted 17 April 1996.
PACS numbers: 72.15.Cz; 72.15.Eb
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Although the system can be integrated analytically in the expanded Brillouin
zone E , nontrivial topological effects are possible in the case of complicated Fermi
surfaces. In this case open trajectories, defined as open-ended in E , can exist. If
such a trajectory is closed in B, we shall call it open periodic.

It is well known that if all trajectories of the system (1) are closed, then the elec-
trical conductivity in a plane Π perpendicular to the magnetic field B approaches
zero as B →∞. As a result of the existence of open-ended trajectories, terms which
do not vanish as B → ∞ can appear in the conductivity tensor σαβ (α, β = 1, 2)
in the plane Π. If all such trajectories lie in bands of finite width, having (in all
planes orthogonal to B and at all energy levels in which open trajectories exist)
the same general direction ~η(B), then the tensor σαβ has a very simple structure
in the limit B → ∞: j~η = 0, jζ = σζEζ . Here j is the current in the plane Π, E
is the electric field, ζ is a direction perpendicular to ~η in the plane Π, i.e., crap is
a degenerate tensor with kernel ~η(B). These results all follow naturally from the
contributions of the individual trajectories, described in [1]–[3]. A more detailed
discussion can be found in [4] (as indicated to the authors by V. G. Peschanskĭı,
this book contains experimental observations related with the results of the present
work).

The main result of the present work is that if open trajectories exist for a field B
with an irrational direction (i.e., such that the plane Π does not contain reciprocal-
lattice vectors), then the situation described above occurs necessarily and therefore
the above-described form of the conductivity tensor in the limit B →∞, if it does
not vanish, is the only possible one. Moreover, in this case it can be asserted that
open-ended trajectories exist and possess the same properties as for magnetic fields
with directions lying in some open neighborhood of the irrational initial direction
(on the unit sphere), the above-described direction ~η(B) being given each time by
the intersection of Π(B) with a integral (i.e., generated by two reciprocal-lattice
vectors) plane Γ(B0), which is the same for a given neighborhood.

The assertion formulated above describes the most general situation, i.e., the
case of magnetic fields of the general position. The experimentally observed zones
of stability and the corresponding integral planes Γ(B0) are nontrivial topological
characteristics of a metal with a complicated Fermi surface. If the magnetic field
is such that the plane Π(B) contains reciprocal-lattice vectors, the assertion that
each open trajectory lies in a band of finite width and passes through it remains
valid. However, besides the above described trajectories “of the general position,”
open trajectories with asymptotic directions along the reciprocal-lattice vectors ~ηα

contained in Π(B) can also arise. Each family of such trajectories makes in the limit
B →∞ a nonvanishing contribution to σαβ that is identical to the above-described
contribution with the only difference that now ~ηα, ζα, and σζα appear instead
of ~η, ζ, and σζ , respectively. The number of integral directions for which such a
situation is observed in the metal does not exceed the genus g of the Fermi surface,1

so that the direction of the magnetic field must be specially chosen so as to be able
to observe such contributions to the conductivity tensor. These contributions are
easy to distinguish experimentally, since the corresponding open trajectories remain
only for variations of B which are perpendicular to the corresponding ~ηα and they
vanish for all other variations, which gives rise to a jump in the tensor σα,β . It also

1Any two-dimensional closed orientable surface is topologically equivalent to a two-dimensional
sphere with “handles.” The genus g of the surface equals the number of handles.
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follows from the topological analysis that if together with such trajectories for a
given direction of the magnetic field the above-described trajectories of the general
position also exist, then the vectors ~ηα observed in this case should lie in the Γ(B)
plane.

Therefore the observation of electrical conduction in metals with a complicated
Fermi surface in strong magnetic fields makes it possible to determine the following:

1) the integral directions ~ηα and
2) the above-described zones of stability with the corresponding integral planes

Γ(B0).
The physical consequences formulated above were obtained from the mathemat-

ical results presented in [5]–[8]2 (see also Refs. 9 and 10). We shall present these
results here.

Using the starting point p(0) on an open trajectory, we shall call the limits

(3) ~η± = lim
t→±∞

[p(t)− p(0)]/|p(t)− p(0)|,

if they exist, outgoing and incoming asymptotic directions, respectively.
Further, if ~η+ = −~η− = ~η, we shall say that the open trajectory has an average

direction. If, in addition, the trajectory lies in a strip of finite width in the plane
(2) (necessarily parallel to ~η), then we shall say that it possesses a strong average
direction.

In describing the implications of the topological theorems, formulated mainly in
Refs. 6 and 8, we shall assume for simplicity that ∇ε(p) does not vanish on the
energy levels considered (i.e., we exclude the energies at which an isoenergy level is
restructured) and that each special trajectory contains a single special point (this
holds for fields of the general position).

There are two possibilities:
1) In very special cases it can happen that open trajectories which do not have an

average direction exist on one energy level (see Ref. 10). In this case all trajectories
are closed on all other energy levels. This situation corresponds to zero phase
volume and does not contribute to the conductivity.

2) In the case of the general position [i.e., if Eq. (1) does not hold] for fields with
an irrational direction open trajectories, if they exist, exist on energy levels in some
connected energy interval ε1 < ε < ε2, and they all have a strong average direction,
given by the intersection of the plane Π(B), perpendicular to the magnetic field, by
some locally stable integral plane Γ(B0). There are no open trajectories on levels
lying outside this interval. If the Fermi level falls within the indicated interval, then
the contribution of such trajectories with remarkable topological properties to the
conductivity is observed experimentally.

In the more general case, i.e., not requiring that the directions of B be irrational,
the assertion is that any open trajectory lies in the Brillouin zone B ≡ T 3 on a two-
dimensional torus of the M or N type (membrane and needle, respectively). We
shall describe these concepts.

For a fixed direction of the magnetic field, we remove from each energy level
in B those parts which consist of nonsingular trajectories that are closed in E .
The boundary of the manifold obtained will be singular orbits which are closed in
E and which can be glued in B by disks lying in the plane Π(B). A nontrivial

2The topological problem is formulated in [5] and some questions present in [5] are made more
precise in [7].
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Figure 1. Open trajectory corresponding to the integral direction
(1, 0, 0) in the plane Π(B) perpendicular to the magnetic field

topological theorem (see [8]) asserts that the manifold obtained is a disjoint union
of nonintersecting two-dimensional tori in B; two-dimensional tori lying on different
energy levels also do not intersect one another.

Two types of two-dimensional tori can appear. The simplest type is a “needle”
or a N type torus, bounding the region in B and topologically homologous to zero
in B. The embedding of such a torus in B is reminiscent of a cylinder or tube and
can be continuously deformed into a closed curve in B. In an expanded zone E
the covering of such a torus is an infinite periodically-deformed (“fluted”) cylinder,
determining a reciprocal-lattice ~ηα. The longitudinal sections of this cylinder by
the plane Π(B) give open trajectories in E . It is obvious that tori of this type can
arise only if Π(B) contains reciprocal-lattice vectors and they vanish for variations
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Figure 2. Pair of integral planes in the complicated Fermi surface.
The pair is obtained after the closed trajectories are removed. The
open trajectories are given by the intersection of these planes by a
plane perpendicular to the magnetic field.

Figure 3. The conductivity vanishes in the direction ~η perpen-
dicular to B in the limit B →∞. The direction ~η is perpendicular
to the current j observed in the limit B →∞.
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of B that destroy this property. A trivial case in which the open trajectories are
directed along the px axis is shown in Fig. 1.

The other possibility is a “membrane” or M type torus, which is not homologous
to zero in B (i.e., it does not bound any region in B). In the expanded Brillouin
zone its covering is a periodically deformed integral plane (“fluted plane”), whose
intersection with the plane Π(B) gives the above-described open trajectories of the
“general position.” All such planes corresponding to all type M tori are parallel
in E , since they do not intersect one another, and their common homology class is
the previously described integral plane Γ(B0). The closure of an open trajectory
lying on a type M torus in B covers this torus, except for the initial openings,
with α(B) revolutions. Thus such a trajectory can be regarded as quasiperiodic
and therefore for isoenergetic surfaces of the general position any open trajectory is
either periodic or quasiperiodic. The number of type M tori on a given energy level
is even, and their significant feature is that they are locally stable for variations of
all parameters, including B. Figure 2 illustrates the special case in a “thick” Fermi
surface. If “fluted cylinders” are also present, then they also lie in the plane Γ(B).
These properties lead to the experimental predictions formulated above. Figure 3
illustrates the experimentally observed situation.

In closing, we wish to thank L. A. Fal’kovskĭı for a consultation on solid-state
physics and Michael E. Fisher for assistance and helpful suggestions.
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