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Lecture I: Discrete Symmetries and Com-
pletely Integrable Systems.

The famous completely integrable systems like KdV and many

others are associated with linear operators (see [2]). Following

”strong and weak factorization” properties of 1D and 2D second

order operators play fundamental role here:

(1D)L = −∂2
x + u(x) = QQ+ + c

Lψ = λψ,Q = ∂x + a(x)

ax + a2 = u− c.
(2D,a),”hyperbolic”:L = −Q1Q2 + V

= −(∂x + A)(∂y + B)) + V, Lψ = 0

(2D,b),”elliptic”: L = QQ+ + V =

−(∂ + A)(∂̄ + B) + V, Lψ = 0

”Darboux Transformation” (Euler, 1742) for D = 1 follows

from the strong factorization,

L → L̃ = Q+Q + c, ψ → Q+ψ = ψ̃

preserves all solutions for all λ (except may be one such that
Q+ψ0 = 0.)The iso-spectral deformations dL/dt = [A,L] lead to
KdV and other famous systems.

The Laplace transformation for D = 2 follows from the weak
factorization,

2D, a : ψ → Q2ψ, L → V Q2V
−1Q1 + V
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and similar for (2D,b), replacing

Q1 → Q,Q2 → Q+ = −∂̄ + B

. The whole chain Ln of Laplace transformations Ln → Ln+1

with potentials Vn = exp{fn+1 − fn} is equivalent to the 2D
Toda Lattice fn,xy = or fn.zz̄ =

= exp{fn+1 − fn} − exp{fn − fn−1}
. One-level analog of iso-spectral deformations appears here
dL/dt = [A,L] + BL leading to the 2D analogs of KdV like the
so-called NV(Novikov-Veselov) Hierarchy with better properties
than KP.
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Lecture II: Discretization of Linear Operators.

What is the best discretization? We are looking for the dis-
cretizations of linear operators preserving the discrete symme-
tries described above. For 1D case we have a shift operator
T : n → n + 1 and take such class of operators

L = cnT + T−1cn + vn

that factorization L = QQ+ + c is always possible, Q = anT +
bn, Q

+ = T−1an + bn. Iso-spectral deformations dL/dt = [A, L]
appear here like ”Toda Lattice” or ”discrete KdV” for the sub-
family vn = 0.

For the 2D case there are two different discretizations. Take
the shifts T1(m,n) = (m + 1, n), T2(m,n) = (m,n + 1):

Hyperbolic (see Fig 1): We take a square lattice and equation
Lψ = 0

L = am,n + bm,nT1 + cm,nT2 + dm,nT1T2

They admit gauge transformations:

L → fLg, ψ → g−1ψ

where the functions f, g are nonzero everywhere,so L depends
on two gauge invariant functions. We always can present L in
the form L =

f((1 + uT1)(1 + vT2) + w) = f(Q1Q2 + w)

implying the same gauge-invariant Laplace transformation as
above.
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Elliptic, real self-adjoint operators first studied in [1] and de-
veloped in [2]–see Fig 2): We take an equilateral triangle lattice
and operators of the form L =

a + bT1 + cT2 + dT−1
1 T2 + T−1

1 b + T−1
2 c + T−1

2 T1d

We always can factorize them

L = QQ+ + V,Q = u + vT1 + wT2

so the Laplace transformations are well-defined.
Definition. We call Q = u + vT1 + wT2 ”Black Tri-

angle Operator” and Q+ ”White Triangle Operator” on
the Equilateral Triangle Lattice. We call Qψ = 0 ”Black
Triangle Equation” and Q+ψ = 0 ”White Triangle Equa-
tion”.

Another interesting class was found in the joint work (S.N.-
I.Krichever, 1999): Consider a trivalent tree (see Fig 3) and any
real self-adjoint real 4th order operator Lψ(P ) =

∑

i

bPP ′′i ψ(P ′′) +
∑

j

bPP ′jψ(P ′
j) + V (P )ψ(P )
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Such operators can be factorized L = QQ+ + v through the
second order operators Q, and completely integrable systems
appear on this graph. Nothing like that exists for the second
order operators L on this graph.
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Lecture III: Discrete GLn Connections and Triangle
Equation.

These ideas were developed in [2, 4, 3]. Let K be a simplicial
complex (n-manifold) with fixed family of n-simplices X, and
set of coefficients is fixed bT :P 6= 0 for every n-simplex T ∈ X

and its vertex P ∈ T .Following Triangle Operator

QXψ(T ) =
∑

P∈T

bT :Pψ(P )

is defined on the functions of vertices.
Three families X–black, white, all– will be especially con-

sidered: Let all n simplices of K are colored into black and
white colors. We have operators Qb and Qw where X is the
set of black (or white) simplices. Another example is the case
where X is simply set of all n-simplices T ∈ K. We call cor-
responding triangle equation Qψ = 0 ”Discrete GLn

Connection”.We call solutions to the equation Qbψ = 0 for
n = 2, bT :P = 1 ”Discrete Holomorphic Functions”, and for
Qwψ = 0 we call them ”Discrete Anti-Holomorphic Func-
tions”. (see Fig 4). Following picture explains how nontrivial
curvature appears for such ”connections” (see Fig 5). For every
vertex P we start from the vertex P1 in its star. Knowing ψ(P )
and ψ(P1) we calculate all ψ(Pi) ”along the circle” for n = 2 in
the star. However, contradiction might appear after returning
to the original point P1 in the form of non-unit triangle matrix
CP . We call it ”curvature operator”. For bT :P = 1 and n = 2
” the zero curvature” property CP = 1 simply means that even
number of edges (triangles) enter P . Holonomy is defined here
along the ”thick paths”. For the case bT :P = 1 and CP = 1
holonomy belongs to the permutation group Sn.
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Theory of curvature was developed recently in [3].

8



Lecture IV: New Discretization of Complex Analysis.

Classical discretization of complex analysis is based on the
square lattice (Lelong-Ferrand, 1940–see [5]). A lot of people
developed this approach–see [6]. Our ideas are based on the
properties of equilateraL triangle lattice (see[4]).

For every 2-manifold with black/white triangulation
and bT :P = 1 we define d.(i.e. discrete) holomorphic
functions as real functions satisfying to the equation:
Qbψ = 0 and d.anti-holomorphic functions Qwψ = 0.
Here ψ is real. ”The Covariant Constants” are such functions
that Qψ = 0:

Qbψ = 0, Qwψ = 0

For the standard Laplace-Beltrami Operator L0 = ∂∂∗ we
have

−2L0 + 3mP = Q+Q = 2Qb+Qb = 2Qw+Qw

where mP is equal to the number or edges (triangles) entering
P . So for mP = const the zero modes of Q+Q coincide with
maximal modes of Laplace-Beltrami L0. For compact mani-
folds they are exactly Covariant Constants: Q+Qψ = implies
(Qψ,Qψ) = 0 and Qψ = 0. So every d-holomorphic function
on compact manifold is covariant constant: Qbψ = 0 implies
Qb+Qbψ = 0 implies Q+Qψ = 0 implies (Qψ, Qψ) = 0 im-
plies Qbψ = 0, Qwψ = 0. We call it Liouville Principle. We
assume now that the space of covariant constants is exactly 2-
dimensional. (May be to make finite covering is needed for that).

Continuous limit: Take covariant constant f0 whose values
in every triangle are 1, ζ, ζ2 where ζ3 = 1. Make the transfor-
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mation
L → f−1

0 Lf0, ψ → f−1
0 ψ

After that our theory should be considered over the complex field
C. One of covariant constants became the ordinary constant.
In the continuous limit one half of our theory converges to the
ordinary complex analysis but second half of this discrete theory
is divergent for the small scales. We are working in the most
symmetric purely discrete gauge form over the field R
imitating all complex analysis.

Maximum Principle
Let ψ be holomorphic function in a finite domain D consisting

of black triangles whose vertices all belong to D. A Boundary
Triangle is such that at least one of its vertices belongs to some
black triangle outside of D. The Evaluation Map Eψ : T → R2

assigns to black triangle with vertices P, P ′, P ′′ a vector in the
space of covariant constants R2 defined by ψ(P ), ψ(P ′), ψ(P ′′).

Theorem. The image Eψ(D)) coincides with the con-
vex hull of the image Eψ(∂D).

D-Holomorphic Polynomials and Taylor Series
Consider now equilateral triangle lattice in the plane with

shifts T1, T2 and natural b/w coloring as above (see Fig 6). Our
operators Qb, Qw map here the space of functions of vertices into
itself. We have We call d.holomorphic function ψ Holomorphic
Polynomial of degree k if (Qw)k+1ψ = 0 Consider big equilateral
triangle Tk whose edges are black from inside and contain exactly
2k + 2 vertices (see Fig 6).

Theorem (The Taylor Approximation). For every d.holomorphic
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function ψ and big triangle Tk there exists exactly one holomor-
phic polynomial Pk of degree k such that ψ − Pk = 0 in the
triangle Tk. The space Hk of holomorphic polynomials has di-
mension 2k + 2 over R.

Fig 6
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The choice of basis of holomorphic polynomials depends on
Tk. There are 3 functions P α

k (Tk), α = 1, 2, 3, equal to zero in
Tk except one boundary edge with number α. Along this edge
P α

k is equal to 1,−1, 1,−1, ...,−1. We have (see Fig) Lemma.

P 1
k + P 2

k + P 3
k = Pk−1 ∈ Hk−1, α = 1, 2, 3

Here Pk−1 = P α
k−1 corresponds to the triangle T α

k−1 (see Fig 6).
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Cauchy Formula.
Let ψ be d.holomorphic in the bounded domain D in the

equilateral triangle lattice. We can easy construct fundamental
solution G(x−y) such that QbG(x−y) = δy(x) where x = (m,n)
and δy(x) = 1, y = x and zero otherwise. For y = 0 such function
is given in Fig 7. It is equal to zero for all x = (m,n) where m >

0 or n > 0. Its values at the boundary are (−1)m in the points

(−m, 0) and (−1)n in the points (0,−n) and G = (−1)m+n (m+n)!
m!n!

for m < 0, n < 0 (The Pascal Triangle).

Fig 7
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"Pascal Triangle" G(x)   x=(m,n)

Take function ψ̃ = ψ in D and zero outside. The function
Qbψ̃ is concentrated along the boundary ∂D which is a ”strip”.
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Theorem. Following Cauchy Formula is valid for x ∈
D: ∑

y

(Qbψ̃(y))G(x− y) = ψ(x)

Any Green function can be used here. Our function

looks more hyperbolic than elliptic. Recently Grinevich

and R.Novikov found ”really elliptic” function G(x −
y) decreasing for |x − y| → ∞–see[7]. Such Green

function (The Cauchy Kernel) is unique. It was missed

in previous work of the present author and I.Dynnikov:

Fourier Transform is convergent in our case: Gm,n =∫ 2π

0

∫ 2π

0 dk1dk2×
exp{imk1 + ink2}/(1 + eik1 + eik2)

They obtained a number of results using this function.

Hyperbolic (Lobachevski) Plane.
Recently we started to develop d-complex analysis for the

equilateral lattices on hyperbolic plane. Neither analogs of Tay-
lor Polynomials nor Grinevich-R.Novikov type Green function
are known here. We have negative curvature if number of edges
entering every vertex is mP > 6. In our case it should be
even number. For the homogeneous triangulations with mP =
8, 10, 12, ... we have a big group preserving triangulation. Let us
concentrate on the minimal case mP = 8.

How to describe boundary of r-ball for every integer
r?
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A picture is presented below for r = 0, 1, 2.

Fig 8
r=0,1,2

We define a class of the Right-Convex oriented simplicial
paths–see Fig 9a,b,c,d. Their local picture from the right side
is following by definition
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Fig 9
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We are coding right-convex oriented paths by the words
in 2 symbols b, w assigning bw to fig 9a, wb to fig 9b,
bb to fig 9c and ww to fig 9d. Let us introduce Struc-
tural Transformation T in the space of infinite periodic right-
convex oriented paths by the formulas T : bw → bwbw,
wb → wbwb, bb → bwb,ww → wbw. We apply T to every
pair of neighboring letters in the word and after that delete old
letters.

For the word R1 = ...bwbwbwbw... which is a boundary of
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1-ball,we have T (R1) = ...bwbwwbwbb

wbwwbwbbwbwwbwbbwbwwbwb... = R2

Lemma 1. The T -image of right-convex path coincides

with the right-convex path which is a closest neighbor

from the left side. In particular,

T r(R1) = Rr+1 = ∂Dr+1, r ≥ 1

for r-balls Dr

Such maps are standard for experts in symbolic dynamics.
Mike Boyle from the University of Maryland helped me a lot to
investigate it.

Lemma 2. For every word A we have: |T (A)|/|A|
asymptotically equal to 2 +

√
3, |A| → ∞ . This asymp-

totic behavior is almost exact for r ≥ 4, A = Rr

We have |R1| = 8, |R2| = 32, |R3| = 120,|R4| = 448, |R5| =
1672, ...

Construct basis of d-holomorphic functions zr
P (x) such

that zr
P = 0 for all points x in Rk, k < r and for all

points in Rr except of the selected place P ⊂ Rr. Here
P = wbbw or P = wbw (see Fig 10 for the values of
these functions in P )

Fig 10

P=...wbbw...

0

1 −1 1

0

...wbw...=P

0 0
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Conjecture: There exists basis of d-holomorphic func-

tions zr
P which are globally bounded in the Hyperbolic

Plane. Their linear combinations are similar to poly-

nomials
∑n

k=0 akz
k in the unit disc in the continuous

case). Another basis: Fix zero point and right-convex

line l = ...bbbbbb... passing through 0. Construct specific

d-holomorphic function h0,l equal to zero from the right

side of l and equal to ±1 along the line l (see Fig 11). Its

continuation to the left side of l is nonunique. Make an

”optimal” continuation to the left side (i.e. with minimal

possible growth). What kind of growth is it? One can

easily construct basis of d-holomorphic functions using

this specific function h0,l and its group shifts.

Fig 11

1 1
1−1

1

0 ...bbbb...
0 0 0 0 0

0
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Theorem. Dimension of the space of d-holomorphic func-

tions in the r-ball Dr is equal to 1 + |Rr|/2

It is quite similar to the continuous case. Similar basis

of d-antiholomorphic functions can be also constructed
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z̄r
P (x) replacing b by w in the previous definition and in

the Fig 10. On the boundary Rr these spaces generate

all space of functions; their intersection is exactly space

of covariant constants.
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