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MANIFOLDS WITH FREE ABELIAN FUNDAMENTAL GROUPS
AND THEIR APPLICATIONS

i (Pontriagin Classes, Smoothnesses, Multidimensional Knots)
S. P. NOVIKOV

In this paper we establish the topological invariance of rational Pontrjagin
classes of smooth and piecewise-linear manifolds and we draw a number of corol-
laries from this result. The methods are also applicable to other problems.

Introduction

As the author has shown in previous papers {10-13]) the question of the
topological invariance of rational Pontrjagin classes is very closely related to
certain problems of homptopy and differential topology of non-simply-connected
manifolds and of their nn.:\nl:wm, namely, those in which the fundamental group is
free abelian. The reduction of the problem of the invariance of classes to homo-
topy problems in this group of papers by the author is linked by one general idea.
This idea consists in making judicious selections from the notion of **continuous
ro,BnoEonvEmB: by using special, non-simply-connected, open subsets which can
then be studied by the means of a purely smooth topology making use of the non-
simply-connectedness, although the fundamental group has no relation whatsoever
o the problems originally posed. ‘Thus, in the very first reference [10] ([13])
special cases of this .vnozns were solved with the aid of analogs of the Hirze-
bruch formula on coverings, which already led to distinguishing between homeo-
morphism and homotopy type. A direct development of this ‘‘signature’’ method
led the author to the proof of the topological invariance of the Pontrj agin-
Hirzebruch class hwgm:v for n <4k + 3. This intermediate discussion is indi-
cated in the appendix; it was found before the general result of reference [11}
and soon thereafter lost its interest w a great degree since the author succeeded
in giving a more general proof of the invariance of classes (published in brief in

[11]) which did not contain “‘signature’’ arguments and analogs of the Hirzebruch
formula.

In the present paper the problem of the classes is solved by generalizing to
the non-simply-connected case the techniques of papers [3] and [14] for investi-
w.w&am smoothnesses on manifolds of the type M" x R, 7 MY =Z+. -4 2, al
though the reduction of the problem to such a problem in differential topology is,
of course, also w be found in the first paper [ 10] by the author on the topological
invariance of classes. A manuscript of W. Browder (later published in [4]) in:
which the problem of smoothnesses on manifolds of type M x R was solved for

the simply-connected case 7y (M) =0, was submitted at the very same time as the

1




2 S. P. NOVIKOV

present paper and proved to be very useful to the present author. Certain argu-
ments from [4] aided him during his work and he takes the opportunity here to
thank W. Browder. .

The results of the work are formulated in §1. ‘The central nnm.c: is Theorem 1,
which establishes the topological invatiance of rational Pontrjagin classes of
smooth and piecewise-linear manifolds.

$2 is very important in the paper; it contains the nn&.-nno:, of ,Hrno:ww. 1 HM
Theorem 3 and also interrelates the remaining results. It is here that use wm made
of the fact that the manifolds M; and M, from Theorem 1 are homeomorphic.

Theorem 3 is proved in §83_8. Of separate interest in itself is $5 which

a.“wa easily be extended to a wider class of groups.

Theorem 6 from the theory of knots is proved in $9.

@Ho contains ( without proof) a generalization of Theorem 5. .

A number of corollaries follow from Theorem 1 of this paper together with
previously-known results of algebraic and differential topology.

Certain consequences of the invariance of classes:

1. The number of smooth structures on a simply-connected topological mani-

i h
fold M", n # 4, is finite and does not exceed the constant ¢(M™), w ere

n
gpt+ B by glnc; +Mnbw

cMy<le :

moreover,

= In|67(dn) |, di=In|TorHi(M")],

= max rkH;(M", Zp), c¢;= aj|nnsi(SV) ],
=2

a; 1 when Nm 1, 2 (mod 8) and a; = 2 when j=1,2 (mod 8). This consequence
arises from a comparison of Theorem 1 with Bott periodicity and the author’s
results in the diffeomorphism problem (see [14]).

The finiteness and the bound (with other universal constants) hold, mbl?
gously, for a number of combinatorial structures on M" under the same nnmﬂ.wn-
tions. Here it is necessary to make use of the result of Cerf that mg (diff S°) =

H::m we —Hmcm the W—umvncﬂn_ﬁ:ﬂ—.—nu €—H—~ accuracy up to a m:unﬁm B_.—vaﬂn of OMM-Tw@
his m ppen-
~ M\ structures Caﬁnn our restrictions. T] Oﬂwogw from Hﬂmﬂhﬂnﬁﬂ 14 Amﬂw A €

dix 2 of [ 14]).

2. As has already been mentioned in [ 10],. for dimensions of the form 4k + 2,

the difference between homeomorphism and homotopy type of closed simply-

connected manifblds follows from the invariance of Pontrjagin classes and from
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the results of the author and of Browder { see [3] and Appendix 1 of [14]). It
follows.from Theorem 1 that for any simply-connected manifold M*, n > 6,
which the homology group H44(M") is infinite for at least one k #£ 0, n/4, there
exist an infinite number of smooth, or smooth except at a point, manifolds M7
not pairwise homeomorphic bur having a common homotopy type with M™. When the
above homological condition is not satisfied the number of such manifolds is auto-
matically finite, as follows from [14].

3. On the odd-dimensional spheres mmaﬁ. n >3, there exist an infinite num-

ber of smooth, or smooth except at a point, operations on the circle S! without

.. fixed points, which are not topologically equivalent pairwise. This fact follows

as.a result of applying the preceding paragraph to the factor- space §27*1/§1 of
homotopy type CP", since topologically o@::cm_m:n operations generate homeo-

morphic factor-spaces.

.:.: 4 Since the Pontrjagin numbers are topologically invariant, two smooth mani-
mo_mm belonging to different classes of oriented cobordisms b are always non-
hom eomorphic.

5. All piecewise-linear manifolds with fractional Pontrjagin classes are non-
homeomorphic to smooth ones. Many such manifolds are known in each dimension
n 2> 8, and many of them (although not all) are homotopically equivalent to smooth
ones.

6. The SO,-fiber spaces with the sphere S** as base and the euclidean
space R", the disc D" or the sphere S ! when n> 4k + 1 as layer, are com-
pletely classified from the wpological poiat of view by the Pontrj agin class of
this fiber. This is also true of a number of other examples. It has been long

known (Dold) that here there are only a finite number of different homotopy types.

7. If on a smooth closed manifold M* we are m:n: an elliptic integro-
differential operator 4 which transforms a section of the fiber Iy over M" into
sections of the fiber F, over M", then, as usual, it defines the “‘symbol’’ {4 ).
This symbol is the isomorphism of fibers F; and F, extended onto f(M") and
then bounded on the subspace-

(M) \ M"* < v(M»),
where 7(M") is the space of the tangent fiber over M" with layer R and
M™ Cr(M™) is the zero section. Since the space 7{M") and the section M" r(M™)
do not depend on the smoothness on the manifold M", the “*symbol of the op erator

’y

o’ isa topologically invariant concept; however, in different smoothnesses on
M" one and the same symbol o defines the operators A, A, given in different
spaces but such that 0{4|) = 0{4,) (the operators are defined nonuniquely but

with accuracy up to a completely continuous component in each of the smoothnesses).
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The well-known Atiyah-Singer formula expresses the index of the operator

in terms of invariance of the triple (Fy, F,, o), not dependent on smoothness,
and in terms of the Pontrjagin classes of the smooth manifold M". From Theorem
1 it follows that the index of the operator is determined only by the symbol, inde-
pendently of smoothness on the manifold M"; the indices are the same for oper-
ators with a common ( homotopy) symbol, given in different smoothnesses.

8. The natural map 7,;(BSO) — m;(B Top) is monomorphic, while the map
H* (B Top, Q) — H*(BSO, Q) is epimorphic.

9. The group of homotopy classes of the diffeomorphisms of a closed simply-
connected manifold of dimension not less than five, has a finite index in the ana-
logous group for the homeomorphisms (see Theorems 6.9 and 6.10 of [141).

In conclusion I would like to thank V. ‘A. Rohlin for advice and numerous use-
ful discussions. It should be noted that the proof found by the author for the invari-
ance of the Pontrjagin classes is to a considerable extent an extension of the line
of work by Rohlin and Thom {15,19] on this problem, I also thank S. P. Demu5kin,
I. R. Safarevi& and Ju. {. Manin for help in the many algebraic questions which
arose during the work, and A. V. Cemavskil for questions related to Theorem 6.

$1. Formulation of the results

The following theorems are basic to this paper from the point of view of
application:

Theorem 1. Let M, and M, be two smooth (or PL-) manifolds and let
h:M; — M, be a continuous homeomorphism. Then

Wi (M) = pi(My),
where p;(M,), q =1, 2, are rational Pontrjagin classes of the manifolds My and
M.

Theorem 2. Let M4* be a closed manifold, wmt4k o smooth closed manifold

of the homotopy type of M4% x T™, where T™ is an m-dimensional torus, let

Q:Qxiav =Z++--+ 2, andlet h: wmt4k _, M4k « T™ be a certain homotopy

equivalence. Then
(L (Wintth), B* [M*] ® 1) = (M),

where Ly are the Hirzebruch polynomials and 7 is the signature of the manifold.

The condition my = Z + -+++ Z in Theorem 2 can undoubtedly be removed,
but we shall not do this here.

Now let W be an open smooth manifold of dimension n + 1, having the homo-
topy type of a closed n-dimensional manifold, and let us further be given a (pos-
sibly nonsmooth) transfomation T: W — W acting discretely and such that the

factor W/T is compact. The following theorem holds under these conditions.

Theorem 3. If n> 5 and if the group my (W) is isomorphic to a free abelian

MANIFOLDS WITH FREE FUNDAMENTAL GROUPS

roup, th 3 ) ' is di
m\ xzwua. en we can find a closed manifold V such that W is diffeomorphic to

This theorem is proved in $$3-8 and Theorems 1 and 2 for the smooth case
(see %wv are derived from it. The case of PL-manifolds is entirely analogous
‘and requires only a combinatorial analog of Theorem 3, which is proved without
any changes with due regard to the author’s remarks in [14] (see [14], Appendix :
on combinatorial Morse surgery). ‘

Among other results which can be extracted from Theorem 3 and its analo s
we mention the following. ®

Theorem 4. Let M" be a closed manifold such that wy(M™) is a free abelian
group of rank k. Then the smoothness on the direct product M* x R? with ¢ >n
is completely determined by a stable tangent bundle which can take only a finite
number of values. ,

Theorem 5. Let M™ be a smooth closed manifold, m;(M™) =n a free abelian
mwonv of rank k, and let M™ have the homotopy type of a fiber bundle with torus
T* as base and layer M L where M*™! is a closed topological manifold. N\,
L<n-5, the covering M over Y™ having the homotopy type of M™% is diffe o-
morphic to the direct product M ™' x R:, where M3l s a closed smooth manifole

Theorem 5°follows directly from Theorem 3.

The following theorem can be extracted in indirect fashion from Theorem 3 or
from a direct analog of it.

‘Hrm.o..wa 6. Let S» CS"*2 p 25, be a topological locally flat imbedding.
.ﬂs.,m,: ,&E imbedding is topologically equivalent to a smooth imbedding S™ C §°t?
in ,woim miee“\,:amm on S™. In particular, the imbedding is locally flaz.

- The derivation of Theorem 6 from the preceding results will be given at the
end of the paper. In contrast to Theorems 1, 2, 4, 5 we shall here require some

additional discussion (see $9).

At the end of the paper ($10) we shall also state without proof one gener-
alization of Theorem S.

$2. Plan of the proofs of the fundamental theorems

1. The proofs of the fundamental theorems of the paper will be carried out
along the following plan:

1) We shall first prove Theorem 3 (see @%wlwv.

2) From Theorem 3 will be derived Theorem 1 for the simply-connected case
and Theorems 2, 4, 5 (see @Nv. It is well known that in Theorem 1 the general

case follows from the simply-connected one. Further, it suffices to prove Lemma
2.1 (below) only for the spheres G4k,
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3) At the end of the paper we shall give separately the proof of Theorem 6
on the basis of Theorem 3 and its generalizations ( see §$9, 10).

2. The proof of Theorem 3 will take up the main part of this paper. Here we
indicate the plan for deriving Theorem 1 for the simply-connected case and for
deriving Theorem 2, both from Theorem 3.

The following lemma is in essence contained in references [15, 16,191 1t
was communicated to the author by V. A. Rohlin a rather long time ago.

Lemma 2.1. Let W be any smooth manifold homeomorphic to M4 x R™,
where M4¥* is.a simply-connected closed manifold. If the formula

(Le(W), [ME*]) = (M),
always holds, then the rational Pontrjagin classes of smooth simply-connected
manifolds are topologically invariant.

Hete L, are the Hirzebruch polynomials :and r is the signature of the mani-
fold. We do not prove this lemma, considering it to be very well known from the
papers by Thom, Rohlin, ¥varc (see [15,16; 5:“ where it is used mainly, it'is
true, for piecewise linear homeomorphisms.

Our aim is to prove the following assertion.

Lemma 2.2. The formula

(Le (W), [M*]) = ©(M*).
always holds under the hypotheses .of Lemma 2.1. Moreover, this formula holds.
for piecewise linear manifolds .and for “‘combinatorial’’ Pontrjagin classes.

From the conceptual point of view the derivation of Lemma 2.2 takes a
central place in the paper since itis precisely here that we use the fact that the
two manifolds are homeomorphic. The fact of the matter is that Theorem 3 by it
self has no relation whatever with the problem of invariance of Pontrjagin classes.

We here proceed with the derivation.

We use the topological structure of the manifold W in the following way. The
ordinary torus Tm~1 can be smoothly realized in the euclidean space R™D>
771 « R; we consider the open submanifold i: W; CW, where W= MAE
Tm™™1 « R, where, moreover, the imbedding i: Wy CW is defined in accordance
with the homeomophism W~ M*¥ x R™ and the imbedding T" 1xRCR™. Itis
obvious that i*L; (W)= L, (W;) and that is: Hgp (W) — I 4, (W) is an epimor-
phism. Therefore we can study the class of Li(W ) instead of the class of L (W).
Since W, is homeomorphic to M4 x T™"" 1) x R and since 7, (M**) = 0, Theorem
3 is applicable to Wy if &> 1 orif k=1but m>1.

Later on below our discussion will be of a periodic nature. We indicate the

construction of the first period:
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a) On the basis of Theorem 3 we can find a closed submanifold V,Ccw,
such that ¥, is diffeomorphic to V| x R; therefore Ly(W,) = L,(V D

b) We consider the covering over the torus T™ 2 x R — T™" ! and from this

OOGGHhQW we construct the covering over ﬁ 1» ﬂ‘—umnm .“ as the ~u°=~°n°mw% n% € o
.
y 8 1 h —.v M

: ~ D1
‘and, moreover, ¥V} has the homotopy type of M** x T™2 and Z is the group of
the motions of the covering. Obviously, L (V) = piLyV ) and the map

Pix : Hin (V) IYN&»:Q\C

. is such that H44(V ) =Im p;, + 4, where L,/A =0 for a suitable choice of A.

. ¢) We now denote V| by W, and we note that Theorem 3 is once again applic-
able to the manifold W, if 5> 1 orif m —1 > 1. Thus we have the “period’’:

S\H.U ﬁ\HAI.—Vn = ﬁ\ﬁ\uUﬁ\uA.l ﬁVn = S\w.
| P | | Ps I L

It is significant that dim W, = dim W ; — 1 while the class of L; is essentiall
unaltered. ’
: .m.—:.nrn_.v from the manifold ¥, we once again seek, as in the first period, the
. 1.99&&% V2 CW; and W3=V, and we go on in this way until we reach the
simply-connected manifold ¥, of dimension 4k + 1 of the homotopy type of M*¥
If 4k > 4 we can once again apply Theorem 3 to W,, =V, x R and note that
(La(Vim), [Va]) = (Lo (W), [M2])

by construction, and that

| (Lu (V) [Viml) = (M%)
gwnrn Hirzebruch formula, since by construction ¥, has the homotopy type of
M** and is closed. Hence we obrain Lemma 2.2 for the case 4k > 4.

If, roiuﬁ“w 4k = 4, then here we note that the manifold V n~1 hias the homo-
topy type of M*¥ x S!. Then from Theorem 1 of the author’s paper [ 13] it follows
that (L, (V ,.-D), [(M45]) = 7(**), and once more we obtain Lemma 2.2 for k = 1. -

Theorem 2 is derived analogously from Theorem 3.

3. Let us derive Theorem 4 from Theorem 3. We consider a smooth manifold
¥, homeomorphic to M™ x R™ for large m. We smoothly imbed M" CW. (see [5]).
The neighborhood of M™ in W is the space of the SO-bundle B such that
BDa(M) = a(W),
where a(X) is the tangent fiber of the smooth manifold X.

.
We desote by ¥V = ¥V""™"1 the space of the SO-fiber 8 with the sphere S™ !

n
over " as layer. ‘From the manifold ¥ we discard the closed neighborhood of the
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manifold ™ in ¥, homeomorphic to- ™ x D™. What remains will be homeomorphic

“ Mr X S™ X R= Wi
By Theorem 3 W ; is diffeomorphic to Vi xR, where V is a smooth closed
manifold of the homotopy type of M" x Sm~1 However, V| is h-homologic to the-
manifold V, the bundle space of the spheres f. Since my=Z +°+ Z, V,is
diffeomorphic.to ¥ and the whole manifold W is diffeomorphic to the bundle space
of B with R™ over M" as layer. The theorem is proved.

Note that for M* =S! the tangent fibers a(S1) and () are always trivial.
Therefore W =S x R™

4. We note that Theorem 5 follows formally from Theorem 3 for the case when
the dimension of the torus is 1; for this we must examine the manifold W, being
the covering over M with motion group Z. The general case is derived by apply-
ing Theorem 3 successively to this situation.

§3. A geometric lemma

The purpose of this section is to prove a lemma of a type which is rather
usual in the theory of smooth imbeddings. The single feature which distinguishes
it from the ordinary case is that we need it for the non-simply-connected case,
although this does not give rise to significant changes in the proof.

Lemma3.1.¥ Let (W**1, V™ be a manifold in Wr*tl =W, one of the compon-
ents of whose boundary is V" =V; Wn*l can be open. If the imbedding 7 (V) —
m (W) is an isomorphism and if the group 7,(V) does not have a 2-torsion and all
the groups w;(W, V) are null when i <s, then every map of pairs, f;: (D", 8h —
(W, V), is homotopic to a smooth imbedding if 3] +3<2n and 2l -n+1<s.
Furthermore, under the same restrictions on the dimensions, every finite collection
of maps f;: (DO Sy W, V), i=1,---,q, is homotopic to a system of pair-
wise nonintersecting smooth imbeddings.

Proof. We begin by considering the first part of the lemma, on the mapping of
one object.

Let f: (D', SH — (W, V) be an arbitrary mapping of pairs. We nw:m\mmon the
universal covering Q«N Wv and the covering pair map f: (D', mJ\,ll (W, V). Since
the pair Q«N ﬁwv is simple-connected, we can take it that the map f is a smooth im-
bedding (see [23]). Furthermore, the map f, from generality considerations, has

only two points of self-intersection. These points of self-intersection form a sub-

* The author is not certain that this lemma cannot be extracted directly from the work
of Haefliger [5] or of J. Levine. The lemma will be applied only for n =20 +1 and n = 21
(see Hmmf and therefore the reader should not pay too much attention to it.
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: t I+1 . :
manifold #* CD®™", in general, with a boundary, where ¢ = 2] —n + 1. The map

U W ) .
.\ is a two-sheeted covering. ‘Let us show that this covering is trivial
ie. ,

CMt=MiUM
F(ME)y=f(Ms).

Indeed, if there were a connected component M§ CM* on which the map f were

two-sheeted, then the image f(M§) CW would be such that there would exist an
element @€ 7y (V) = w1 (W) such that

t
o a(Mo) = Mj,
| ﬁ._..n_.m a: W.— ¥ and DN\\_; = 1; therefore we would have a? = 1, which contra-
dicts the hypotheses of the lemma.

Thus M*= M4 UM5 and f(MY) =~ F(MY).

On the i 4 i
manifold M | we construct the Morse function g, equal to zero on the

and

t i :
boundary dMj CS°. After passing through the first critical point g = x the topo-

logy of the *‘region of large values” is changed. Let us show, by analogy with

Haefliger [ 5], that we can correspondingly change the map

fo (DR, 8 — (W, V),
so that instead of

.

‘xgl
Mi={g=0}={g = z—¢}
we shall have the self-intersection manifold

M= {g=z+8}, >0,

for the new map
fo(DH,8) — (W, V),
homotopic to the map f.

Consider the region G ={g <x, +¢}. Let the index of the point (gg ==
grad g = 0) be k. Then "

G = OM{X 1(0, 1) |y Dk X Dt-*,
h

Lec h: 8D X Dt > 9M* x 1.

St~ = B (3D* X 0) = aM],
D= h(Dk X 0) = DH1,
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Consider the disc D¥*1 CD'*1 where dD**! = DEUD* is such thac D*TInM5=4,
D M{ = D¢
(in the general position) and
DhA() DM = B»
(in the general position). Let T be a neighborhood of the disc f(D¥*Y in W and
let Int T be its interior. We set
W =W\ IntT.

Obviously W' is &mmnoBoQEn,.no W; we have “‘squeezed out’’ the :..nnlon of
T from the boundary dW = V. Retaining the former notation we denote W' by W
and ¥’ by V.

Consider the abstract disc D'*! and the submanifolds M}, M} in it. From
D'*! we remove the set D¥*1 CD!*1 together with its “‘envelope” fTY(DEY,
and in so doing we also have removed the unmm:vonroom of the disc

(D) N M; = D
from GTJ The topological effect of this ovmnwn_on is that the neighborhood of
the disc to is removed from the disc. D'*? in such a way that
muc = Uo N 8DH1,
Therefore the boundary of this new body is Sk« S'7% and the body itself is
D**1 « S7% we have
D = DWt \_ff(DFH) = DrH X Sik,

D' NoW’ = S8k X S+*.
The disc D**! x 0 CD ' defines an element of the group
u.SiLA%\u @ﬁ\ﬁ\\v = u.CTIA,S\v %gv = Oa k IT 1 m

We consider a disc D**2 CW' < W. such that
ADM2 = bfr» U th

D2 oW’ = @wu.n ,
D2 f(D') = DR = f(D*+1 X 0)

(all the intersections are transversal). We perform surgery on the manifold D
along the disc DF*2, whereby the boundary undergoes Morse surgery o<mNn+n~rn base
cycle S* x 0. After the surgery we again obtain a map of the disc, f: D

W = W', while the manifold of the singularities is “diminished’’ by one critical

point of the function g: M] — R.

. ' L plti_,
More precisely, we have the map [ : D ' — W "induced by the map f: D

W, such that
f 8D — W', QD == Sk X Snh IV = DkH X Snh

and the singularity manifold for f' is diffeomorphic to the region {g>x9+¢}on
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M3. -On the disc D** x ' the map ' is one-to-one and there exists a disc
D*¥*2 CW' such that
ODR+2 = f (Dh+ X 0) |J Di+

and

bwﬁ < aW’, Dkt NYo)= (DX Q).
We consider the abstract disc D**2 x UN k .where aD**2 . D@I U Dwi
and we paste it onto D' in the following manner:
A= Nv;mbfm % bT». h- @%i % D* D — Dt % rwa,lu*
where \;Uwi x0)=D¥*1 w0 cCD s let
B = A\ [D*?2 X Int D],
The result of the pasting is diffeomorphic to the disc B = D'*!. In a natural way

there arises the map f: D!Y! '

D' =B = A\ [D*2 X Int D'*], A= D’ Y D#i2 X Dok,

constructed in accordance with themap f': D' — W' w:m with the imbedded
disc D**2cw'’
It is easy to see that the pair map
(DL, S — (W, 0W)

.is roBonov-n to arn map

(W, o)

fo (O, 8 (W, W)
and has self-intersections “‘more simply’’ at one critical point of the function &
By iterating the process we arrive at a map without self-intersections, which

proves the first part of the lemma.

In a completely analogous way we can kill the intersections of the pair of
imbeddings

fo f2 i (D", SY — (W, ow).
This proves the second part of the lemma. The lemma is proved.
4. ‘Analog of the Hurewicz theorem
Let f: X — Y be a map of complexes such that
fo i (X) >y (Y)
is an isomorphism; let f itself and the corresponding covering map f: X— ¥V on
the universal coverings \Nu Y, induce epimorphisms in all the dimensions:
H; (%) PP (¥)—0,
H; ANV i(Y)—0.
The following lemma holds under Qﬁmn conditions.

Lemma 4.1. If the map f*: m, CDl ™ (Y) isa monomorphism in all dimen-

sions j <k, then it is an EoSoS\:mS in &Sm:ﬁo:m J <k and is an epimorphism

11
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in dimension k, and the “Hurewicz theorem™ holds for the kernels:
a) Kerf, Nou\ﬁtlg?
b) My/Zo () M = Ker fL7#,
where m=m,(X) = (Y), Zo(n) is the kernel of the augmentation e: Z(n) — 7

(mp)

of the numerical group ring, and the homologic kernel M, is interpreted as a
Z (nY-module.

Before proving this lemma we point out those situations in which it will be
applied.

R 1. Let f: M7 — M3 be a mapping of closed manifolds of degree + 1 and let
71 (M} = 7w (M5). Then the map \,” %H — %m of the universal (and of any other)
mo<al=m has degree + 1 as 3@>bmanm~ map does.  Therefore \» induces the map
f. of open homologies and of f*compact cohomologies; moreover,
1.DfD (@) ==, z&Ho (M),

Consequently, . :

H, (M) = Ker B 4 DF* DH, (I1,).
It is evident that Lemma 4.1 mm. applicable here.

2. Let W be the smooth manifold from Theorem 3 ( see €1) and let i: V,Ccw
be a connected submanifold separating W into two parts and realizing the base
cycle of the group H, (W) = Z, and, moreover, let it be such that my(V ) = ay(W).
We denote the ‘‘right’’ and ‘‘left”’ sides of W with respectto V; by 4 and B,
respectively, where

AUB=W, ANB=
Then, the assertions a) and b) following below are valid.

a) The imbeddings i;: V{ C A4, i,: ¥V C B and i: V; C W satisfy the hypo-
theses of Lemma 4.1.

b) On all the coverings we have the direct expansion

Kerz, {HY — Ker i 4 Ker iy iHw,

and the maps

Nm. : Ker SM&IV H, Qwv ,

fae Ker NMWtIvma (4)
are monomorphic, while the images NN*NQ i Q:nv and : Ker iy :_:L coincide with
the kernels of the imbeddings \\1\3 — twﬁs and mimv — t\n%\v.

We prove assertion a). Since
(W) = mu(4)*awomu(B)

and (W) = 7(V ), we getthat 7(4) =7 (V) and 7y(B) == (V).

We consider the basis x,---,x, €[] +W), which we realize by the cycles
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zq,--+, 25, €W. Then we can find an N so large that TNz, -, TNz, all lie
wholly in B CW. Since T, is an isomorphism, these cycles form the basis of the
group 1, (W). Let x € H (4) and let z C A be acycle representing it. Then z
is homologous in W to the linear combination Sa;T"z; by means of the membrane
¢ CW. The intersection ¢ [}V, is the cycle Z C V) nmvnnmnalzm the class of
homologies % € H (V) such that x =i;,x. The arguments for B and for the
whole of W are identical.

We now consider the coverings 4, B, @T ¥ and the covering imbeddings
f £, &, Note that the homologies H (7)), H (), Hy(B), Hy(F) are finitely
generated Z (77;)-modules since 7 is a Noetherian group (my=2Z +++++2). Fur
ther arguments are identical, but instead of the basis of the group we must choose
the 7,-basis of the module.

The same is true of all the intermediate coverings. Therefore Lemma 4.11is
applicable here.

We prove assertion b). If the intersection

Nofmat N wamm;v

is nonempty, we can find a cycle z C S which is homologous to zero in A and B.

The membranes define a cycle ¢ in W of dimension % + 1. This cycle c, accord-
ing to the above arguments, is homologous in ¥ to the cycle ¢ CW such that
cN ﬁ\ﬂ =#, by means of the membrane d C 7. The intersection d () 7, is such
that
Q.EDQHV = QDQ_ = gz,

and z is homologous to zero. Therefore

Ker?® nKerii =0
on all the coverings.
We now consider the kernel of the imbedding mi\j — m»:w\v. Let z be a
cycle in 4, homologous to zero in 7 by means of the membrane ¢. Then, z; =
cN w\,H is such that 2 :*NH and z; € Ker i3 23 The assertion is proved.

Proof of Lemma 4.1. Let us first consider the “simply-connected’’ case of

~ ~ ~

the map \>“ £ — ¥. Let C denote the cylinder of the map f, shrinking down to Y.
We write down the exact sequences
Hi (R) — Hy (9)— H:(C, X) > Hiy(X)
(§: tu tH g:s
7 (X) — 1 (V) = m (C, X) — s (X).

~

m,mnnm fat ﬂiC@ — :T%MV are monomorphisms when I < k,

8: m(C, X)—>mi(X)
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trivially. Since \ H QOI\. H C\v are epimorphisms, d: H;(C, erlm MAMV are
monomorphisms on nrm kernel Nmn \ i=1), Because HA = dH, then for the first i,

where 7{C, )'e) # 0, we have
7 (C, X) = H,(C, X)
and JH is an isomorphism: R N
7, (C, X) =~ Ker fHi-0,
But this can be so only when i > % + 1; otherwise, H3 = 0. When i =k +1,
Ker f™ — Ker fHx)
and when i <k +1 the map f,: JCMV — m;-1(P) is an-epimorphism.
Following Serre, let us convert the map f: # — ¥ into the fiber w(“ X, £, Y.
where X}, ¥ are, respectively, of the homotopy type of X, ¥, while { is of the
homotopy type of f. From the exact sequence of this fiber in homotopies we see
that
st (F) = Hy (F) = Ker 0%,
on the basis of the preceding resulrs.
We consider the map f: X — Y and convert it into a fiber; the layer F ' is
of the same homotopy type as F, and
e (F) = Ker £™ = Ker /1 7® = M,
moreover, 7;(F) =0, i <k.
Consider the spectral sequence of this fiber. Obviously, mw-w =M/Z(mM,
and E"" = 0 when 0 <i<k.
Since f,: Hp41(X) — Hyp(Y) is an epimorphism, the differential

L0 met BTN = Hu(Y),

dpss : Es

is trivial. Therefore
EXR = M/ Z () My
Obviously,
m_wuw = Ker fiHx) = My/Zo(n) M.
All the assertions of the lemma have been proved.
§5. The functor P = Hom, and its application to the study of the
homological properties of maps of degree 1

Let 7 be a Noetherian group, K a ring or a field, K{(n) a group ring with
coefficients in K, K (7} — K an augmentation, Ky(#) = Ker ¢. We shall take it
that K is either 7 or'afield Let M be a finitely-generated K (n)-module.

Definition 5.1. By the module PM = Hom (M, K) we mean the submodule
PM CHom (M, K) consisting of linear forms h: M — K such that for any element
x € M the function f, (a) = (h, ax), a € 7, on the group is finite.

We note several simple properties of the functor P = Hom .
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1. The module PF is free for a free module F.

2. For a projective module there exists the natural isomorphism P % M — P2

3. There always exists a natural map P2 M — P?M which, in general, is not
monomorphic and not epimorphic. We denote the kemel of this map by M_ C M.
Then

0— My — M — P2M — Coker P2 — ().

Example 1. Let p: #—M"bea regular covering with motion group w1
The homologies E_A%. K) =N, are K(#)-modules, finitely generated if the group
7 is Noetherian and M" is a comp act manifold. There exists the homomorphism

Ni/Niw—>PNp_,

established by the intersection index.

Example 2. Let f: M} — M3 be a map of degree + 1 and let

m (M)") = my (M),
By f: M; — M, we denote the map of the coverings &, — M7 and H, — M3
| with motion group 7. We set

M; = Ker { B9 < H, (M)
By analogy with Example 1 we have
h
E.—.\gmoolY.Nvgﬂ.|\T
(hz,y) =z°y.
Let us now consider derived functors Om the functor P = Hom . We shall

denote them by Ext’, i > 0. Note that in contrast to the ordinary Hom, the functor
P = Hom_ is not exact even for a field K. Therefore it is possible that

Exti(M,K) 0, i>0.
Example 3. Let ¥ be a module with one generator u and let au = u for all
a€rn If m=7 +..-+7Z is afree abelian group with n generators, then
Exte (Mo, K) ==

and

Ext! (M, K) =0, i<n.
Let us prove this fact. Consider the triangulated torus T" and the covering
R™ — T" with the group #=Z + ...+ Z. Let F; denote the free Z (z)-module of

.i-dimensional chains on R". We have

] €
0> Fo 5 Foid> o Fy> Fy> My—0,

w:m moreover, the sequence is exact since
Hy(R) =0, >0, Hy(Rv)
We apply the functor P to the resolvent:
PF,<«PF, <« .. .~ PF; < PF,,

vcn PMy = 0 and the complex written down is a complex of compact cochains for
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R"™. Theref
erefore mw Qw:, va = M,

and

H}(R* K)=0, i<n,

and, moreover, .
HY (R, K) = Ext} (M,, K).

The following simple lemma holds.

Lemma 5.1. If the module M is such that mNnMQF K)Y=0, i>0, and if
m=7 +..-+Z, then the module PM is stably free, i.e. one can find a free
module F such that PM + F is.a free module.

Proof. Since w=7 + ...+ Z, we can find a free acyclic resolvent of finite
length

8 O!Y\A.\[YNuNI_'IY...lYNuo‘4Y>N|¢.O.
But, by the hypothesis of the lemma, the sequence

0Pl <« PF_j<« .. .« PPy« PM
is exact. The functor P possesses the property that the modules PF; are free.
Furthermmore, the functor P is “‘semi-exact from the right”’; it takes an epimor-
phism into a monomorphism. Therefore the kernel of the mapping PF, — PF is
precisely PM. By virtue of the properties of a free module we have the equality
Pty + PFy = PF,+ PM,

provable by the usual nieans; moreover, the PF; are free. The lemma is proved.

Let C be a complex of free or projective modules:
a 2 8
C = ﬂ B .,IYN\.NI.YN_TLIJY. . .fYN‘hnIYNuow‘

Then the groups [ ,(C)=N; are mmodules. Consider the complex PC:
.. 0 [+} [ .
Akl,mu\a\.Af»C\lehAyl...va%<ov~ 6= Po
whose homologies we denote by H(C) since they have the sense of “‘cohomo-
logies with compact supports’’.

The following fact is known: the spectral sequence {E,, d,},

E,= D EM?Y EPi=Ext®(N, K)

PE20, 220

\

exists and the module S
>k

[

pg=l
is associated with :MAD.

This fact is “‘the formula of universal coefficients.”
As is shown by examples, the functor P is such that the modules H,(C) = N

influence the Iwﬁﬁv for very large k (see Example 3). We shall be interested in

complexes which in some sense are manifolds and admit of some geometric reali-

zation.
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The following are the necessary and sufficient conditions for the realizability

of the complex
C=(FasFus > Spy)
as a covering with motion group # over a finite complex:
a) freeness: all the f; are free modules;
b) Hy(C) = My (see Example 3).
.~ The necessary “‘geometric’’ requirement oo the morphisms of complexes
f: €y — C, is then that
| For Ho(Cy) > Iy (Co)
is an isomorphism.
Later on we shall need manifolds and maps of degree 1. For realizability as

a homological manifold, of course, we must have that the complexes of modules

C={F, 2P 5. 5 Fy
and

PC = {PF, & PPy ... 2 PRy},
{

where 8 = Pd, are “homotopically equivalent’’ in the algebraic sense (what this
weans is very well known). This gives us the Poincaré duality laws:

.

D:H(C)~ 0.7 (C), i=0.

Furthermore, if we wish to obtain the duality law in a form connected with coho-
mological multiplication and the cut operation, we should require thar the complex
_C be a coalgebra, etc. We shall not formalize exactly all concepts we need. Note
that for algebraic complexes obtained from the trian gul ation of manifolds we have
the following: for maps of degree A, f: C1— C% we can define the operator
Df*D: C% —» C% such that

F+Df*D: C>CF

is a multiplication by A; however, if A = 1, then-
C!'=Ker f4 Df*DCy

Therefore, here there arises the complex WQ.\ composed of projective iom:—nm
-»and such that the complex P (Ker f) is al gebraically homotopic to it. Conse-
quently we have the duality law

D: Hi(Kerf)=H""(Kery),
mEP, moreover,

H;(Ker f) = Ker fHy)

and

) (Ker f) == Coker f*@,»~9,
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where the kernels and the cokernels are taken for the map of the complexes them-
selves, f: C} — C3. Therefore we can apply separately the Poincaré duality
laws and the “‘formula of universal coefficients’’ to the kemels Ker \:c  and to
the cokernels: Coker \;AEU. as was already clear, of course.

The following theorem holds.

Theorem 5.1. If f: M7 — M3 is a map of closed manifolds of degree + 1,
n =2k, while f: \5 — EN is a covering map, where the \x are regular aeemﬂSmm
over M7 with motion group m=2 + -+ Z, and if the \Rsn? M, = Ker \Am $)

s <k, then the kernel M;, = Kerf« PR s g stably free Z (m)-module.
Proof. Since all the M; = 0 when s <k,
i

Ext. (Ms, Z)=0, s<k,
and therefore, by virtue of the “formula of universal coefficients’ mentioned
easlier in the form of a spectral sequence, we get that

P

Coker /P =0, s<k.

Since

Coker 7* ) = KerjFn-9 =0, s<k,

all the M,_, =0 when s <k, n =2k, and all the M, = 0 except for ¢ = k.
Consequently, by virtue of the “‘formula of universal coefficients,’’

Coker m.am:c = Exti(M,, K).
But g
Cokerf ¢ '=M, =0, ¢>0.
Therefore ExtI(My, Z) =0 for all g > 0. By Lemma 1 the module PM, is stably
free, PM, =M. The theorem is proved.
_In the case of odd n =2k + 1, we again have f: M} — M3 of degree + 1, and
m M, — M, is the map of regular coverings with Noetherian motion group 7.
Theorem 5.2. If M, = Ker \5 s)
a) PMy = Mpys.
b) Ext (PMy, Z) = Exti™ (M, Z), i=1.
c) The sequence
0> Ext}(Ms, Z)— My—» P*M, — Ext2(My, Z)—0
(M 4o = Exti (M3, Z), Coker P? = Exti (M, 2))

=0, s.<k, the following relations hold:

is exact.
If Ext (M, 7) = 0, i >3, the module PMy ; = P2M, is stably free
(=2 +.ee42).
The proof of this theorem is obtained very simply from the Poincar€ duality

law
A NFI

D:M, = Oowﬁ.\

a
D: M., = Coker \.E

and from the formula of universal coefficients in the form of a spectral sequence.
Indeed, since M; =0, j <k,
S (HE) :
Coker f*7 ¢ = PMy = Mgy,
and we get item a). The isomorphism in item b) is established by the differential

d,, where

&N“ .NWWJ#H.W'VNM..I.N
) I I
Exte(Mpy, Z) Extg? (M, Z),
. . o (HEY
since My, ; =0, j>2, and Coker f* "¢

from the spectral sequence of the formula of universal coefficients, since

P2M, = PMy,, = EX™°,

=0, ] >2. Item c) also is obtained

since the map

P2M, — Ext? (M, Z)
is d,, and since the module
. . Kerd, 4- Extg(M,, Z)
is associated with the module
.AmNtv

M, = Coker f

The stable freeness of the module P2My, = PM;, i follows from items a), b), ¢) and
from Lemma 5.1 if

Exti(PM,, Z) = Ext¥*(M,, Z) =0, i>1.
Theorem 5.2 is proved.

Remark. For maps f: M} — M} of degree + 1 the formula

~u(HE)
Coker f = Hom, (M,, Z),

always holds on the coverings \\,“ M, — \_Mm if M; =0, j <k, whatever be n and .

Corollary 5.1. If in the hypotheses of Theorem 5.2, w=Z + Z, the module
PMy 1 = P2M,, is stably free. (This fact is true also for the case w=Z, but it is
trivial.)

Proof. If w = Z + Z, then Ext’(My, Z) = 0 when i >3 for any module M. By

" virtne of Theorem 5.2, we then obtain our assertion:
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$6. Stable freeness of modules of kernels under the hypotheses
of Theorem 3
Let V, CW be a connected submanifold separating W. into two parts 4, B,

where

ANB=1V, AUB=W.

We denote the imbeddings ¥; C4 and V| CB, as we did in %A by iy, «Nv and
the imbedding of universal coverings over V; of W, 4, B by iV CW, 4 _\~ mx_
e B. Here W is an (n + 1)-dimensional manifold having the homotopy type
of the closed manifold ¥", the group 7 = #; (W) is Noetherian and a discrete
transformation T is given on' W; moreover,
w (Vi) = m(4) =i (B) = m (W)

and the factor W/T is compact. The following lemma holds.

Lemma6.1. If m=Z + ...+ Z and if the kernels M; = Ker i7" are trivial

when j <k, then when n =2k the modules
(7ty) (1)

14 .
My = Keriy, , \5 = Ker iz.

are stably free. However, if n =2k +1 and if

, @) )
E HA.@H. N»t = O. N A Nn_

J<E+1,

2:“+~v

NE.:[ Ker NE i) =0,

then the kernels E = Ker _Q:L Ehﬁ = Ker i,

cases, under the \G\wognmmu of Sm lemma there holds a natural isomorphism

are stably free. In both

established by the intersection index of the cycles \5“ = H&Mn

Proof. Let n = 2k. By Theorem 5.1, under the hypotheses of Lemma 6.1 the
module My, =My + M} (see $4) is stably free. Therefore both modules M, and
My are projective, and since 7 =2 +---+Z, M} and M} are stably free. As we
know, M} is the kernel

imwv ()

Ker: = Keri,  “".

Since
+(Hp) A*(HF)

Ker i = Coker ¢ = PM,

(see $5) and since both.modules Em and EM have a zero intersection index,
each one by itself, M) = PM; and M) = PM/, whence the lemma follows for
even n = 2k.
Now let n =2k + 1. We first prove that under the hypotheses of the lemma,
the kernel
2 Hpip)

My, = Keri
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is trivial. Because

4 :ﬂ )
Ker i 251

= M1 = Mysy + M,y = Coker { MES _ pag, — PM,,

we have
;b , "
ﬁgw =My ITEfT
" ' -
kel +Ew+1 YEM, =M, and x oy is the
intersection index. ‘But the intersection index E o\xw. , 1s identically zero
N .

“Therefore Ewi 0.

Let us take a sufficiently large integer s. Then the intersection Tsv,nv,
is empty. We denote the region between Vi and T°V; by Q and we denote sy,
Citself by V' ; 0Q=V,yv’
Consider the imbeddings j: V; CQ, il v m@ on the universal covering W.

We bave (for sufficiently large s):

WQQEV ﬁ.\ﬁ_w QHTM,
ky g =#,

moreover, {hx, y) = x oy, where x € M/

- Here we have considered that TV, CA.

ﬁ g+k+1,
En+5 g=k+1,

Oon:.anv\)(\ o QATF ,
’ o \K.W\\N\\E? Q”\nu

Coker NE%\)(\ .mv. 7 %\n +1 .
L1 \—NFLRE\?L, g=k+41

From the above equalities we easily get
Hy(0,V)=0, qk, k41,
He(Q, Vi) = Hya (0, Vi) = My,
Hy(0,V)=0, q=£k+1, k2,
N&thQ, ﬁ\Q = mquQ. ﬁ\uvngwt.
Therefore
9=k, k41,
\—\w.:. Q”\n. \ﬁITA..
NN.M AQ\,. ﬁ\\\vn O.\ QH*H\ﬂI_r.Ag \n!TM_
My, q=k+1, k42,
By the formulas of universal coefficients for QMA@. WD,

My = PMy = HE (D, V),

Exts(My, Z)—> Bxt:™ (M}, Z)
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is an epimorphism when i = 0 and an isomorphism when > 0. Recall that

Ewnma A@. QLRQ?L@, ,W\mv
and
B = Bxt? (Ho,Z), duEP—EP™ T
Since 7 =2 +++++Z, Ext? =0 when p > rkn. Therefore
HMF Q—&? Z)y=0, i>0.

By Lemma 5.1 the module PM] is stably free. Since M) = PM},;, the same
is true also for M. The lemma is proved.

Remark. In proving the acyclicity of the module M, we made use of the fact
that Ext’ = Ext!*? and that Ext] = 0 when p > rkm. Inreality, the triviality of
the modules Ext’(Mj, Z) when'i > 0 can be proved differently for any Noetherian
group 7 under the hypotheses of Lemma 6.1.

$7. Homological effect of Morse surgery
Let W have the same meaning as in-the formulation of Theorem 3 ($1),
v, m—«\, W=A|JB, A B =V;, and, moreover, let the imbeddings

w»“ﬂ\»nxﬁi mn”«m\»nm

be such that

(Vi) = my(4) = m(B) = m (W)

and (74) (1g)
Ker N.T._ =0, k<p, Kerip, =0, k<<n—p
We set
Ker H.MH& =M, Ker N.MH:L.V = Mn_p.
Both modules &Mlu and Em are Z (m)-modules. According to Lemma 4.1,
M, = Keri®, Mg, —Ker [

- - o 1 " .
On the universal covering ¥, between M, and M , there exists a scalar prod-

uct, integral and minvariant, generated by the intersection index of the cycles.

By virtue of Lemma 4.1,

(Hyp)
Keris, = == Mp/Zo(x) My
d
- .Qw:luv "
HAQHNNu la —_ \NOA.@VN—&: p.
We choose a mbasis a,,.---, &, in EM . Let p satisfy the hypotheses of

Lemma 3.1. We find discs Uwi. S, bmt C A such that their boundaries

"
M
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mbwt CdA =V, realize the elements a_, ..., a, € E , and we paste on the

handles

1
=BUT:U...UTq
A= AN (IntTiU...UInt Ty),

where the T; are the :mpwrroqroomm of discs. bvt in A. Then it is easy to see
that for V,' =dB’ the kernels

and

o~

Wa:ﬁmv M;

" will be arranged thus:

M{=0, j<p, Mj=M;, j>p+1,
M'=0, j<n—p—1, Mj=M, j>n—p

We denote the scalar product between the modules E and M, _ _p by (,).
Let B,,---, B, be the mgenerators of the module M, _,. an following lemma

- then holds.

"
Lemma 7.1. The module M ,_,_; is described in the following manner: its
~ Rd . .
generators Qy,---, A, are found in one-to-one correspondence with the generators
of the module M ,, while the relations are given by the generatars of the module

o as follows:’

M Aad?; Om) @0 = O.

Proof. The geometric meaning of the generators mw is that they are the
‘spheres S%"P~!1 C V| linked with the spheres dDP +! < V| removed from Vy. It
is obvious that the elements Q. are p-generators in & n-p—1 Since &: —p-1=0.

Let us consider the geometric situation on the universal covering %.) The
geometric meaning of the relations we have written is obvious, sinceon W 2 I

the cycle B; has intersection indices with the cycles aa,, a € n, and after re-

“moving the neighborthoods of the cycles a,, from V, the cycle 8; determines the

relation indicated.

That this is a complete system of relations in our case ensues from the fact

that it is a complete system of relations in the module

Ar ~n

11 Mnpa CHnpy TA )
The factis that A’ is obtained from A homotopically by a simple removal of the

discs DP+! It is easy to see that
nppa(d, Vi) == Hp11(4, V3).

~y

o
Since the relation in ¢, E arises at the expense of intersections of cycles

p-1
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from H,_,(A) with covering discs D2*1 CA and since the map H, (V) —
maluA.xC is epimorphic, the system of relations written down in the lemma is com-

plete. The lemma is proved.

$8. Proof of Theorem 3
Let n >5. We retain all the notations for V; CW, 4, B, iy, iy, i, m>~.~“>~. i
MM
The proof of the theorem is carried out in three stages.
Stage 1. We achieve that V; CW is connected and that
(V) = ng(W).
Here no constraints are imposed on | (W) except that it be finitely determined.

Stage 2. The homotopic kernels of the imbedding ¥, CW in the dimensions
k <[n/2] are killed by surgery, while on the basis of Lemma 3 the kernels

(7y) .
Keriy, = N_&\

also are killed for odd n = 2¢ + 1. Here we use the fact that the fundamental
group is Noetherian.

Stage 3. By pasting the one-sided handles V; — V1 §* x S"~* onto the
manifold V; CW we “‘stabilize’’ the module ¥, — M, + F when n = 2t or
n =2t +1 and we achieve that the kernel ¥, becomes a free module over Z (n).
Here we apply the results of Theorem 5.2. Next, applying Lemma 3.1, we remove
M, and M, | for n =21+ 1 and M, and M, for n =2t by ‘surgery on the n~
free basis from M, . On'the basis of Lemma 7.1 the kernels in the remaining di-
mensions (including M,_,_ ) remain trivial. As a result of the surgery we obtain
a closed submanifold V CW which is a deformation retract. Hence at this point
Theorem 3 follows trivially: we can find a number k& such that T*V (V = f. The
neighborhood of the manifold T*V in W is homeomorphic to ¥ x R. According to
the preceding discussion, in this neighborhood we can find a smooth V' C W
close to T*V, of the homotopy type of W. A smooth cobordism lies between V
and V'. Therefore this region is ¥V x1(0, 1) and V' =V because Wh(zn) =
m=Z -t Z (see [1+2:2]). Setting up such regions for all %, we see that
¥ =VxR.

The theorem is proved.

Remark. If in stage 3 the surgery had been performed not on the free n-basis
in M, but on any other one in accordance with the projection F — M, then
after the surgery we would have obtained the module of the relations R, 0 — R —
F M, -0, where R = @\mt (see §7) for the reconstructed manifold. By virwe
of Lemma 7.1, for this manifold we would have had that

E“M|N“.» = wEMIT» = NuNw.
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%@. Proof of Theorem 6

Let S" CS"*2 be a topological locally flat imbedding and let n > 5. Note
that the difference G = S*+2\S" is an open smooth manifold in which the *homo-
topy type at infinity” is that of §" x S!. We construct a smooth closed manifold
YV CG of the homotopy type of S™ x S, which bounds in $"*? the manifold D of
the homotopy type of S", containing the “‘knot’’ §" C D CS"+2.

In the case when we already know that the knot S” C §7+2 jg globally flar,
i.e. it has a neighborhood U D S® which is homeomorphic to $" x R2, this problem
mm,mme% solved with the help of Theorem 3: namely, we set W = U\S". Then W
is homeomorphic to S™ x S! x R and is smooth. By Theorem 3 we can find a
smooth ¥ CW such that ¥ is diffeomorphic to V x R. Obviously V bounds in
UDWDV the manifold D of the homotopy type of S* CD, n > 5.

However, if global flamess is not known a priori, then we consider a de-
creasing sequence -of smooth manifolds with boundary,

UoU,> ..
such that U; D 5" and Nn;jU;=S".

We set W, = Q/.w: Obviously the group H,,,(¥;) # 0, and for a number h
Hmhwa in comparison with j; 5> 1 the image

?

‘ Huyt(Wi,) > Hop(W),)
is isomorphic to the group Z.

If the numbers jj, j; are sufficiently large, we can realize the base cycle of
* this image inside wx: by the submanifold V| C Wi it is easy to see that for suf-
ficiently large j; > jo>> 1, the map of the imbedding V; CW;, is “‘made up” in
the same way as the map V| — §" x S1. Zonn vnmommlvﬁ this signifies that for a
L 57k St (which in the case of

global flatness can be considered as a simple projection onto S™ x S 1) which by

" large number j we can find a narwral map =\

the same token induces the map 8iy: _«\ — S x S1 for j, >j. The composition of
the imbedding V| CW; and of g;: W, — m: x S! is a map fi: V1 — 5% xS of de-
gree + 1.

It is easy to achieve, as we did before, that V1 is connected and that
m{V}) = Z. Then V, separates W;, into two parts 4 and B and the homotopy
kernels of the imbeddings i;: V; C \A and i : V; CB, have all the very same prop-
erties as the kernels featured in Theorem 3 (see MA 8), although here, in con-
trast to the proof of Theorem 3, one cannot make use of the epimorphicity of the
homological homomorphism of the imbeddings V) C Aand ¥} CB for the study of these
kernels. Note, however, that this epimorphicity holds with respect to the “inner’’

part of A C w\: such that its closure in $"*+? contains S™. As before we denote
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the imbeddings ¥; C4 and V, CB respectively by i; and 7.

In view of the local flatness of the knot §" CS"+2 the manifold G possesses
the following property: we can find an  ¢>0 such that any map h: P — G of
any complex P is homotopic in G o themap h : P — G whose image lies ata
distance > ¢ from S™ in S"*2. We take it that all the W; being swdied lie in the
e-neighborhood of the knot 5" C §n+2 je. that j is sufficiendy large. But this just
implies that Lemma 4.1 is applicable to the inner part of A with respectto V;. Itis
evident that Lemma 4.1 is applicable also to the map fj: V3 — S x§ L

Just as we did inthe proof of ‘ﬁ.n%nna 3, ,in. Awwnmvﬂ kill, by pasting handles on-
to V, inside G, the kernels Ker iy, 7 and Ker i,,9 when g <[n/2], and for
odd n +1 also Ker mhwnﬂ 2¢ + 1=n + 1 (the dimensionof V; hereis n + 1).

Note further that

~(H )
Ker «.an = Keri, 1!

and
A ﬁmnv

(n,)
Ker f;.¢ = Kerf; %,

and also that

~(H 2 (Hp) 2(HY
HAS.\M..%H Kerig? + Keria?,
. . 2(H )
whence it follows that the “Hurewicz theorem’’ from §4 is applicable o Ker 13,7,

N
Now, just as in the proof of Theorem 3, we perform surgery on Ker i3,% an

we apply Lemma 7.1 with n = 2¢ + L “The case n =2q is analogous to Theorem 3
also by virtue of the remark made on the applicability of the “*Hurewicz theorem’’
(Lemma 4.1) to the kernel Ker m%“ev.

Thus we have proved the following theorem.

Theorem 9.1. ‘Under the hypotheses of Theorem 6 one can find a submanifold
V cS*+2\S" of the homotopy type of S™ x S1 such that the region A CS™*?,
bounded by V, has the homotopy type of S™.

This is also an analog of Theorem 3 for the case being considered.

Note that by virtue of the Browder-Levine theorem (see {201, §5) the mani-
fold V is a fiber bundle with layer Steon Qﬂv\ and basis S!. For even n the
group 6"(3n) = 0. However, be that as it may, S$™ is PL-homeomorphic to S!
while V is. PL-homeomorphic to S x St since the group of PL-automorphisms
of the sphere S" is connected. Our subsequent discussions will be in terms of
P L-manifolds.

For the region Mv A = v, imlgrn the “dual region”’, PL-homeomorphic to
D"+« S1 and we paste together 4 Cr@:i x S1 where mln A+t xSt SV is
a PL-homeomorphism. ‘As we know, under our hypotheses A c;b:t xSl is PL-

S e e e e iy A e A Ua U rai

homeomorphic tw $"+2. The original sphere S” lies in A and the complement

‘ ANS™ shrinks down to V = 9A. Therefore the pair (4|J,D"*! x S, S™) satisfies
the Stallings theorem [ %], Without loss of generality we can take it that the im-
bedding S* CS™+2 js linear on a small simplex. From the method of reference _mwmu
; we get at once a variant of the result, which we state below.

There exists a homeomorphism (a PL-homeomorphism everywhere exceptin-a
.small neighborhood of S") transforming S" into the standard sphere. Consequent-
ly, on the manifold 4 we can give a new PL-structure such that:

a) it coincides with the old one on wNw
: b) mm = 8" x S! is h-cobordant to the boundary of the tubular neighborhood
TES™ CA.

Therefore in the new PL-structure we see that 4 is PL-homeomorphic to
S* x D2 (see [17]).

Hence the inference on the global flainess of the knot §"* CS”*2 is obvious
at this point.

Let us prove the rest of Theorem 6.

Everywhere except in the neighborhood of §™ CA there exists the PL-
homeomorphism

d: A—~ S X D?,

‘ d(S7)y = 8= X 0.
To 5™ x D? we paste the closed complement () = (5**A\4) in accordance
; with the identification d/9d4 = d). Then
. M= 8" X D*|jQ,
where d: 30 — S* xS! and d/3Q is a wh-roMmOBoGEmB. It is easy to see
that Y is a homotopy sphere of dimension n + 2. Therefore we also obtain the
- joint transformation d': M — S"*2, where d' =d/A and d' = 1/Q, taking the
“koot’’ into a PL-knot with the direct product S® x D2 C M. In such a sitnation

the PL-knot is smoothed out and a smoothness from 6" (J7) (= bP™+L. see [7])
arises on S™ CM.

Theorem 6 is proved.

$10. One generalization of Theorem 5
Let K be a finite “Browder complex.” In the simply-connected case this
means that there exists an n-dimensional ‘‘fundamental cycle” i € H, (K) such
that the map D: Z — Z |y is the isomorphism H/(K) — H,_; (K). If the complex
K is non-simply-connected and if p: K’ — K is a finite-sheeted cover with m

sheets, then it is necessary to require that # ,(K') = Z and that the element

w e Hy(K), p'w =my,




be defined such that themap D: 7 — Z (y' is an isomorphism. If the group
3?5 is finite this gives us the definition of a Browder complex. In case dHQO
is imfinite this is clearly insufficient. Let K' — K be a cover with subgroup
7! Cn =7 (K) and with layer F = n/n’, on'which # acts as left displacements.
Let there be defined a- f, a€ 7, f € F, and the growps H(F), H o(F), HY(F), H{O(F)
on which 7 acts (here H2(F) are functions on' F with values in Z, having a
finite carrier, t%ova.v are the infinite linear combinations 2o, ¢, € Z, f. € F).
Then we have . 0
H'(K')=H"(K,H°(F)), H.(K')=H"(K, H:(F)),
H,(K')=H.(K,Ho(F)), HY (K'Y= H,(K, HY (F)),

and all the homologies are assumed with local coefficients.

Consider the generating element

g =il (F).
i
Then the comparison Z — Z ® g takes H,(K) into
H:(K, B (F))= H (K').

If F consists of m elements, the composition ps(Z® g) is a multdiplication
by m: Z - mZ.

Let us require that the maps D: Z — Z ) (¢ ® g), u € H,(K), -be isomor-
phisms:

D: Hi(K') —~ H,_(K'), ZeH\(K),
D: Hi(K')— HY (K, Ze<Hi(K').

As before, the element y € H, (K) is a fundamental cycle in K and L Qg is the
fundamental open cycle in K'.

In this case the complex K is called a “Browder complex.”

The following lemma holds.

Lemma 10.1. If W is an open smooth (n — 1)-dimensional manifold having the
homotopy type of a finite complex and if on W there acts a (possibly nonsmooth)
discrete transformation T: W — W such that the factor space is compact and that
the group H, (W) =Z, then W is a Browder complex relative to an n-dimensional
fundamental cycle.

We leave the lemma without vmoom.* Note that the condition on the existence

of the transformation T can be replaced by the simple condition on the “‘homotopy

*We remark that the proof is carried out by means of homologies with special families
of carriers, introduced by Rohlin in work as yet unpublished.
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type at infinite’’ for W.

The following theorem is easily extracted from Lemma 10.1 on the basis of
Theorem 3, in which the hypothesis on the homotopy type of the closed manifold
is replaced by Lemma 10.1.

Theorem 10.1. Let M" be a closed smooth manifold, let m{(M™) =« =7 4+ ...
-+++Z, and let the decomposition w=u' + " be given. Then the cover M with
fundamental group n' Cw is diffeomorphic to M*~* x R, where I = rkn" and Y-
is a closed smooth manifold, n ~ 1> 5.

This theorem has been established by Browder and Levine (see [2°]) for the

case 7 =Z, n" = 0.
APPENDIX I

The signature formula

Asin ['®13] we consider a manifold M™ n=m+ 4k, and an indivisible
element z € Hy, (M", Z) such that Dz =y, - - -, Ym> ¥j € H'M™, 2), j=1,--, m.
As has been shown in [19:13]) there exists one canonical el ement z€ mﬁng\w. AN

where M is the cover over M" with group Z + -+++ Z (m of them), under which
those and only those paths y CM", for which

(v, 1) = ... = (v, ym) =0

are covered by closed manifolds. ‘Here we do not recall the algebraic definition of
the element z € mtngwu Z) from the element z. Geometrically it is represented
thus: we realize the cycles Dy; by the submanifolds M?~1 CM"™ and the cycle z
by their intersection
My =Mn. o aMEt .

In this case the manifold ¥** is covered by a manifold closed in M and defines
the cycle z.

The following theorem holds when m = 2.

Theorem. The formula

(Ln(M7), Z) =(2).

holds. if the intersection index of the cycles on the group ENTLQNV is identically
zero.

Note that if the group Hy; 4 (M, R) is finite dimensional the conditions of
our theorem are fulfilled. ‘Consequently this theorem is a generalization of Theo-
rem 2 of To_.

Proof of the theorem. We consider the covering #, defined earlier, on which
lie the complete pre-images of the manifolds M%~! .and M2-1 under the projection

~

p: M — M*%*+2 1 - 4k + 2. The base transformations of the group Z + Z of
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motions of the manifold M are denoted by T;, To: M — M. Then, Ew complete
1 i h io C.E.:v and the com-
pre-image of the manifold ¥}~ is decomposed into the union Uj; om
- . . 2 .
plete pre-image v|~Q§m|J is decomposed into the union Cn&% . Eonno<mn.m Vhsm s
where € =1, 2, — o0 <s.< + 0, separates the manifold M into two parts: AL®) and
B{®), where

APYBY =1, APNBY =MD

i ere is such that
Furthermore, the notation chosen her

) 1)
MO = mE. 7, MP =M,
2) 2)
T, M2 =M, T.MP =M3,

. IM i m T
and for any s, \xmmv are Z-coverings over M%™". The complete pre-image of the

manifold M** = Y3~1 M5! can be represented in the form
4

pHMY) = U (MPNME) = U M,
3.2 »

. .. tn .L L
and, moreover, all the %ﬁm are diffeomorphic to the original M** = M}~ M5~ .
e r Nv

i (1) = L
The cycle which E\m”\,mom:mm in EMC is denoted by .t; € Hyp (M), Ty.tj= ¢, and
the imbedding M CM, by A;. Obviously

Ajetj = 3.
©(t;) = T(M™)
13
holds on the basis of Theorem 1 of [1°] (or of Theorem 2 of [1°1).

The formula

Let us prove that N
e w(t) =(3).
: (1)
Let j=0, tg mm:me‘:v. We denote M{V simply by M, ¢, by ¢, Ay by 4
nd B{Y by B. Then .
: : Bnd=M, BUA=M

We denote the manifold ¥{?> by N. Then
MON = My'y = M,

We now recall the resule of {13]. If the equality (o2, £) = 0 holds for any ele-
ment a€ H25M, R) such that the cycle B = ant € H, (M) is homologous to
zero in A and in B, then the required formula

1(2) = 1(2)
is valid. N )

Note that geometrically the cycle 8= at lieson M** =M N and that N_M»M

self-intersection index 8 ° 8 (on MiF equals (2, t) in M. Furthermore, on

the cycle [ is intersected by the open disc Da€ mmmW~3~v.

The membranes 8, C A and 8, C B span the cycle B8 such that 08, = 38, = B.

~

Further, the pair M and N divides M into four parts: Wy, Wy, W3, W, where

MANIFOLDS WITH FREE FUNDAMENTAL GROUPS 31

NW; = Mir,
uw; =M, (W UWon(WsUW) =,
(Wi UW) n (WoU Wy)- = N.

By J; CH¥*1(M, R) Nt C Hy(M, R) we denote the subgroups consisting of ele-
ments which have representatives homologous to zero in %\v i=1, 2,3, 4. Ana-
logously, we inwoduce the subgroups \Amv CH2E+1Yy  R) Nt e=1, 2, consisting
‘of elements homologous to zero i 4 for € = 1 or in B for € = 2.

Obviously,
LUl =1y LUL= I

We denote the group H2%+1(j{, R) Nt by H. We introduce the operator P: H-— H
by setting
P(aNt) = (Ta) NL
Since Tyt =1t, P is an isomorphism. Note that ¥ is a finite-dimensional space
~over R.
The following relatians hold:

Pilycdy, PRy U,

N.u#\@ (e .\m. Nvlb.\@ [ .Nr
for sufficiently large k. in view of the finite dimensionality of H, J, Jic). There-
fore (again because of finite &Enammoam—?v& we have

.NQV = N» = .NN, .NANV = .N..w == .N\-.
We now return to the element 8= a)¢, homologous t zero in 4 and in B, lying
N:.E: and represented by the cycle B CM*%. Since BE I N \CV. the cycle
B on T-2kM*% (L large), representing, naturally, ~u|;\w, is homologous to zero

" in'the manifolds ﬂlmwa\_ and Nf;_«\b if to this cycle we add the cycle & C T-2kpy 4k

homologous to zero in M. Because the group H, ,(M4%) is finite dimensional, the

.~ number %k can be chosen so large that the BnEE.m:n mlpgv can be selected so as

not w intersect with T~ *4%* Then the cycle m C T-2kyk s homologous to
zero in the regions T~*W, and ﬂLn_F.

We denote the corresponding membrances by 83 and &,:
. s T*W,, dqc=T*W, mow”m?”wu.
mmnnnﬁmmwagﬁ mv‘mnmo:oimﬁrmaﬁo(mmgvvawvmbmbo;m anawmnnmmv<

2k+1 =
an open cycle in M, whose intersection with M4% s B and with T =2Ey4Fk 5 B.

The segment of this open cycle from m to f is denoted by d, da=j - Ww We

set

&t

82

Il

@mlm&l—l@»u
0 — d + 8,

Il
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where g, and g, are (2% + 1)-dimensional cycles in M. The cycle

B = d T—* M
- - -k -k -k :
is such that it is homologous to zero in' T k., T~*Wy, T~*W3, T~*W4 and its
self-intersection index in T~ *M** equals

BoB=(c2 ) =BoB
However, it is easy to see that - -
g1082=Po

and

%.».o%.w‘”c

by the hypotheses of the theorem. Hence we conclude that from the condition

(el t) =(al@,t) =0
it follows that
(a2,t)=0.
By analogy with To.&f the theorem is proved.
We now draw several conclusions from the theorem we have proved.
1. It is easy to show that if the condidon N/Zym)N =0 is fulfilled, then
Nopt1= Ne D Em_m_i.

The important fact here is that each element 0-€ N satisfies the polynomial
relation
Q(T1, T2)o =0, .
where T), T, are generators of 7 and €Q =1, ¢: Z (n) — Z. F&mn&w if o4, e o
are generators of N over Z (w) and if N/Z (@)N = 0, then we can find a BHMEN
P = (P;;) with coefficients in Z(m) such that ¢P = E and %;P;0;= 0. But then
(detP)o; =0

and

Q = det P, eQ=1.

e can take it that
) Q“:n_nﬁiﬂnvn_l*-ﬁﬁ;ﬂuv+...+§=ﬁiﬂwv4,
where P &mvm:mw. o:.g on positive powers of T, w.nm Py BW = 0. .Hr.w.nmmonn ﬁwn
polynomial ( is invertible into formal series in T} and T3, ac.r.n_.n \NrP m—lmnm
f(j) > = ». Consequently the element o is roBo—omoAsm n.o zero in open homolog
and is orthogonal to N in the sense of the intersection index.

The sufficient condition stated here for the applicability of the theorem

(N/Z o(a)N =0) is satisfied, for example, if the image
p.: Hoenn (M, R)~ Hyers (M, R)

is trivial and if the differential
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dy: E3™ — B} — N/Zy (m) N,
Nw_w.uw — mm_“%«.m:m:n = mnw Q—\Wv.

is trivial in the Cartan spectral sequence for the cover p: - um

: 2. Let us give another proof of the topological invariance of the class of
Ly(M™) when n <4k +3 and 7 (M™) = 0. Indeed, if M" is homeomorphic to
Mk 5 xw. where M 4% s simple-connected and closed, then, as in @wv we can
pick out a submanifold W = M** x T2« R and realize the cycle [M4* x T by a
smooth ¥ m W such that the homomorphism of the imbedding i«: 7, (V) — 7, w)
s an isomorphism when ¢ <2k, which is trivial Then V separates W. into two
_u..w,,mnm A and B, ANB =V, and i1: VCA, 5:V CB. We set

. (Hapyq)
Moy = Ker iy,

uce the intersection index on M3, = Ker mﬂmtwwtv is trivial, where i: P c 4

universal coverings), following Whitney we can realize the Z (7)-basis.ig ENJ:H ,

by imbedded spheres and we can perform Morse surgery on them (the possibility

f the realization is proved identically to the Whitney proof; see [6] for details).
€ surgery can be performed so that the Pontrjagin classes do .not change; after

urgery we obtain a manifold ¥, w which we can now apply the theorem of this

appendix. Under the surgery it is evident that the ‘‘signature of the cycle’’ on the
coyerings over V and ¥,

also does not change. By comparing what we have said
vith the fundamental lemma of [13 applied o the imbedding vew , with the above-
mentioned theorem of this appendix and with the equality of the “‘signatures of the

~
ycle” on V and V), we obtain our assertion in accordance wit

h the scheme of
[ w}..sj.

o APPENDIX 2 ;
Unsolved problems related with the theory of characteristic classes

We mention here several problems directly connected with the results of the
work of the author [ 19-11. 12} and of Rohlin, related mainly to Pontrjagin classes.
; I. Topological problems.

1.*
e .

Does there exist a number n = n (§), depending only on k, such that for
all simp

le p >n{k) the Pontrjagin classes p; of modulus p* are topologically
invariant? This should follow from the fact that the groups = (B Top) are finitely-
generated for all i < 4k. However, it is apparent that some generalization of the
method of this paper or of the author’ s paper ['3] is more suitable for answering

this question. Such a result would have a good application, for example, to the

¥Added in proof. Problem 1 has been sol
by the author and V. A. Rohlin.

ved recently in an as yet unpublished paper



. P. NOVIKOV
34 S.P.N

8
classical lenses of dimensions > 5. For example, p £7 for k=2 (see [gh.

2. Are the rational Pontrjagin classes of complexes of rational homolo gy
manifolds topological invariants? We have affirmative answers here only for
L. (M™), n <4k +2 (see [1* 12y,

3. For the topological microbundles of Milaor ¢ . ;
Pontrjagin classes p; € H%(B Top, Q) satisfying the following axioms:

th the ordinary ones for O and PL-microbundles;

an we determine rational

a) they coincide wi

b) the Whitney formula for sums;

4k 41
¢) the Hirzebruch formula for L (M%4*) and the author’s formulas for Ly(M***%)

and sometimes for Ly Qstnt:v, m>1 (see [10,13] and Theorem 2 of this paper)-

1I. Homotopy problems.

1. Let z € Hy;(M™ be an element such that Dz =y -- .v\s.. m =n — 4k,
y: € HY(M™. Is the scalar product (Lp(M™, z) a homotopy -MMNM_NE,_Q The msnwwn
has solved this vnozmi for m = 1, partially for m =2 (see [19-12] and Appendix

1 of this paper) and sometimes for m > 2 (see Theorem 2 of this paper). For m =2

the final solution has been obtained by Rohlin.

2. In those cases in which the preceding question has been answered affirma-

ises the problem of computing the classes of L; in terms of homo-
been solved even in the case of the Rohlin
ses of this problem will

tively, there ar
topy invariants. This problem has not
theorem for the codimension m =2. Important special ca

also be taken up in a later section, dealing with differeatial-topological questions.

II. Stably-algebraic problems.

Before dicussing the problems we give an algebraic introduction. Let 7 be a
Noetherian group and let M be a finitely-generated Z (m)-module. .
the modules h: M — PM, where PM = Hom,(M, 2), is

¢ and skew-symmetric cases

The homomorphism of
called the scalar product (%, ¥) = hx (y). Symmetrl

naturally arise.

We say that the scalar product is unimodular if ‘h is an isomorphism.

If # Cm, thenon N = E\No?.vk there arises the bilinear form (px, py) =
' (%, ay), being a scalar product in the same sense if 7' is a normal divisor.

M Ny .
i We call this bilinear form the induced

Here p: M — N is anatural projection.

scalar product. o .
We call a symmetric scalar product even, if (x, x) is divisible by 2 an
2
(x, ax) is divisible by 2 for all a€ m, a” =1.
finite index in 7 and of symmetric case, it makes sense

alar product on N = M/Zo(z' M, and

function of the subgroup 7 Cm,

For subgroups 7' of
to speak of the signature of the (induced) sc

of the signature of the form on N defined as a
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re 7(z"), if the index of 7' in 7 is finite. We set r(M) = r(w); I(#') is the index
of n'. Then we require that (') = r(M) ! (z").

Let the scalar product be skew-symmetric. We designate as an Arf-invariant
the map ¢: M — Z; such that ¢p(ax) = ¢(x), a € 7, and

#(z+y) = ¢(z) + ¢(y) + (z, y) mod 2.

Let 7' C7and N =M/Zy(«" )M, p: M — N. We designate as an induced
“Arf-invariant the map ¢_,: N — Z; such that

¢ (pz) = @z) + D) (2, az) mod 2,

Emrw

where 7'/2 Cn' denotes a subset in #' which contains one and only one element
from any pair of elements a, a~! € n. The case a =a~! is not essential since
‘then (x, ax) = (e~ %, x) = —(x, ax) = 0. For ¢+, the correctness and identity of
Arf 'a are easily verified. If 7' has a finite index I{z') in m, then'a “‘total’’
Arf-invariant @(7') € 7, is defined on M/ Zy(7" VM. We set M) = (7). Theén
we let ®(n') =@M I(x").
" Now let « be a finite or an abelian group. We say that the module ¥ with a
symmetric or skew-symmetric scalar product possesses Poincaré duality if for all
subgroups 7' C 7 the induced scalar products are unimodular.
; ‘Let Fi be a freé module with two generators x, y € F;; moreover, (x, ax) =
Q. nv\v =0 for all a € n, (x, ay) =0 for a #1 and (x, y) = 1. Here we take the
scalar product to be symmetric or skew-symmetric. In the latter case we also re-
: Anmnm that ﬂ?v = ﬂG\v = 0, i.e., that there exists an Arf-invariant of a mwmnmp—
mOn,B in the module. Such a module we call a one-dimensional free module.

The sum F = F{ + ...+ F| with due regard to scalar product and Arf-invariant
(for the skew-symmetric case) is called a free module.

~Our examination of the isomorphisms, direct sums, etc., preserves all the
existing structures.

Admissible classes of modules:

~ Cy: projective modules with symmetric even scalar product and Poincaré
sduality;

€Y CCy: modules with zero signature (M) = 0;

Cy: projective modules with skew-symmetric scalar product, Poincaré
duality and Arf-invariant;

0 . . .
€7 CCy: modules with zero Arf-invariant;

1 . - . - -
Cy: as in €, but without reckoning Arf-invariant;

C; CC; i=1, 2: inverse modules M C m«. for which we can find a module ¥’
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such that M + M’ = F with due regard to all existing structures, where the module

F has been defined above.
The class C, C C, without reckoning Arf-invariant is defined analogously.

We denote the subclasses C{ N C; by D;
With each class C;, (5, Cs, Qwv ﬁw there is related in a natural way the
**Grothendieck group’’:

A (n) = K%Cy), B(n) = R°(Cy),

C(x)= RY(Cz), D (m) = R(CY),

E(n)= K°(Cz).
The homomormphism B (7) — C (7) has been defined. The subclasses G,
G, Dy, D, define subgroups of “‘substantively inverse’’
The algebraic problem is to compute the groups A, B(m), C (@), D(w), E (@)
It would be of special interest to find these groups for 7 = Z+.-++Z and for
= Z,. For the latter case this is connected with the arithmetic of the number p,
since here even the ordinary functor NcAN AN }), without regard to scalar products,
could be nontrivial for “‘bad’’ p.

For n=Z + Z, the ordinary K%a) is trivial, but B (7) and C (n) are non-
trivial as shown by Example 2 in $3 of [13]. As will be seen from the subsequent
topological problems, all the A, B, C, D, E are nontrivial for 7 = Z 4.t 2.

In case w=2Z + -+-+ Z, we can take it that we are always dealing with

scalar products on algebraic free modules since projective modules are stably

Gy,

elements.

free.
1v. Differential-topological problems.
Our questions will refer to the following two situations.
a) There is a commutative diagram of maps of degree + 1 and of (regular)

coverings
My
nt pt
sr, L,
element € ﬁ&w:v

’ Let us assume

where the monodromy group of the coverings is # and where the
is given such that f*a € K° anav is a ‘‘stable tangent bundle.’
that the roEo_om_nw_ Wm_.nn_m of the map \ are trivial in dimensions <n. Then the
kernel M = Ker \ (Hm) ;s a mmodule and determines an element of A(7) when

n =2k orof B(#) when n =2k + 1. When n =3 or 7, we need only the image
B(m) — C{(m).
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+b) There is a membrane W?" with two boundaries EN: L ﬁw: ! and with
Qma

straints analogous to those on [ in example a) for the coverings W — W27,
&—.,l%w:lu. )Q& )

etractions r;: Ew: ! which are tangential maps. On r; we impose con-

Then the kermnel M =Kerr;
=2k, or of B(n), n =2k +1; moreover, here it is easy to reduce these elements
_no D (n) for n=2k or to E (7) for n =2k + 1.

Problems.

1. The realizability of the elements x € 4 (n), B (n), C(x), D(a), E (#) in

the situations of examples a) and b).

determines an element of A (r),

2. The case in the preceding problem when in example a) the element

a€ NWQ_AW:V is a “‘stable tangent bundle’’ to %wﬁ is of special interest. :

3. The rational Pontrjagin classes: if in example a) the manifold §w= i

the torus T2", then o€ Ker / and the Pontrjagin classes

f'pi(a)=p:(M2 ),

are defined; moreover, 7 =Z + ...+ Z. As the author has proven, a stable tan-
gent bundle of manifolds of the homotopy type of T? is always trivial (this fol-
lows ,nmm_; from Theorem 2 of this paper, from the Bott periodicity for BO, from :
ﬁrm result of Adams on / ® Z,-homeomorphism and from the fact that the w:mvn:-
sion over the torus T? has the homotopy type of a union of spheres). Therefore .
,n,ro classes p:(a) € miwaJ are not tivial when a#£ 0 and the invariant x(Q) €
A(r) for n =2k and x(a) € C(nw) for n =2k + 1 is defined Avomm.:u_% :o:.::mncn_v&
The equality x(a)= 0 implies the equality @= 0 by atheorem of the author. The

classes p; are linear forms in the exterior powers:
) .

pi(a): Abn—Z,

T ”N + cee l_r. N~ mOB A>5.udu Nv = >N3..I:ud.

n general, it is necessary to consider that p; (@) € A2"~ 4l when 7=27 +--

.+N

>N=I~um

The problem is to compute p;(a) € 7 as a function of the element

AQ,V € A(n) or C(w). What we have said above shows that a connection between
(o) and x (@) definitely exists.

. Finally, in this problem, instead of the torus T2" = Ew: we can take the
-product S4k o p2n-4 wq and then the question will be that of number. This ques-

‘tion is closely related to problem 2 (**homotopy problems’’).
4. The situation of non-Noetherian fundamental groups is vague to the author;
here are many geometric examples of ‘‘finite-dimensional groups’’ here, and the

corresponding theory would have a number of applications. Of course, the functor
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P = Hom, can be introduced with the help of “locally finite’’ classes of bases,
which are always geometric. However, in applications it is necessary that the
modules of the kernels be finite dimensional over Z (7). These questions, it is
true, are not connected with characteristic classes and the author has not investi-
gated them. A

5. To investigate the odd-dimensional case g =2k + 1. The constraints on
the module which yield Theorem 5.2 of this paper are clearly insufficient.

Everywhere further on we shall denote NoANAiv by K%a).

Let us note in addition that the ordinary K%(n), consisting of stable classes
of projective modules, is imbedded in D () and E (n) in the following way:

If a€ K%n), then Pa€ K%4#), and there is a natural scalar product on the
module a+ Pa. We obtain the imbeddings

K (n)cD(n) = A(n),

K°(n) c E(n) = B(x),
by taking in the case of E () the Arf-invariant on aC o+ Pa andon PaCa+ Pa
to be trivial.

It is easy to prove the following theorem by using Poincaré duality, the form-
ula of universal coefficients and other factors besides P = Hom, ( , Z).

Theorem.* If in Theorem 3 and in §2 we replace the group wy =Z +--++Z
by another (Noetherian) group m =1, then the obstruction to the existence of
the submanifold V" C W2+l being a deformation retract in Wr+l lies in the
Grothendieck group K°(n), and the equality to zero of this obstruction is sufficient
for the existence of the deformation retract V* C W+l

Remark. The question of the uniqueness of such a ¥ CW"**! leads to the -
cobordism problem and by the same token to K1(xn) or, more precisely, to the fac-
tor-group Wh (7)) (see [8]). Thus we have the following situation.

A. The problem of the type of Theorem 3 and of %N is connected only with
K°(n) (or with its image in A () and B (7)) and with K'(#) - Wh(a). As we see
from the proof of Theorem 6 (see $9) and from the paper by Browder, Levine and
Livesay [21], these questions are analogous to the question of finding the bound-
ary of an open manifold.

B. The diffeomorphism problem divides into the following:

1) The J-functor, the Nx-?:nmom and the normal bundles of smooth manifolds;

*Added in proof. This theorem has been found independently by L. C. Siebenmann,
The obstruction to finding a boundary for an open manifold of dimension greater than five,
Thesis, Princeton Univ., Princeton, N. J., 1965. (Dissertation Abstracts 27B (1966), p.
2044-B).
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here, 4 () and B () play a role when n = 2k (see [2+22- 147 anq Appendix 1).
2) The realizations of classes in a Thom complex for n =2k (see v_..oEoE 2);

here the torsions tor 4 (i) and tor B (m) play a role (see Theorem 1 of _HNNH for
my = Ov

3) The relations between k-cobordism and homotopy class in a Thom complex
(see Theorem 2 of HNN D; here the inverse elements from D (#), E (#) play a role
when n =2k — 1.

. 4) For n =2k —1 in 1) and 2) and for n = 2k in 3), there appear Ext!,
,i..ow.n tole is not clear. They generalize torsion for my = 0.
5) The relation, between h-cobordism and diffeomorphism for n > 5 has been
well studied and is connected only with Wk (n) = K1(2)/(x U- n). B
APPENDIX 3
Algebraic remarks on the functor P = Hom,
Here we consider the following questions.
1. The connection between Ext’ (M, Z) and Exti (PM, 7).
2. The concept of the “‘reflexivity’’ of a module: P2Y = M.
3. The functor () for open homologies.

*We start by considering the first question. Let ¥ be an admissible m-module.
Consider the mn%n.En free (projective) resolvent

C={...— > ... > Fy S M 0}
and apply the functor P:
PC={0—PMESPFy—...»PF,—..}

We obtain a sequence which is exact in the term PF.

Now consider the resolvent of the module PH,

C'={...>Fn—...>F,% PM—50}.

Let us paste together the complexes ¢ and C':

C'={...>Fn—s...>F X PFy— ... PFy— ...},
/m‘\:ﬁ
PM
7N
0 0
- such that 8 =(Pe)oe’'.
: Weset F! =F_  F' [ =PF, n>0. Obviously we have

Hi(C")=0, iz=—1, H,(C")=FExt;" "(M,2), i<—2.

Furthermore, for the complex PC”,
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B! (C")y= Hi(PC")=Ext{(PM,Z), i>0,
H? (C") = Hy(PC") = Coker Pz = P2M/Im P?,
H'(C")= H_(PC")=Ker P2 M,

H7 (C"y=H_(PC")=0, i=+2.

All chese equalities follow from the fact that P? is a natural isomorphism for

projective modules. Thus Ker P2 and Coker P? acquire a homological meaning.

Since H{C') and Hi(C") are connected by the Cartan-Eilenberg-Grothendieck
1
spectral sequence, we can draw certain conclusions:
A. Let the homological dimension of the group w be n (for example, 7 =

Z 4+ ««++Z2). Then we always have
fxt™ (PM, Z) = Ext;" (PM,Z)=0.

B. If Ext(Exti(M,Z),Z)=0, i>0, then Ker P2=0.
c 1 Exti(Exti (M, Z), Z)=0, i>>0, then Coker P*=0.

[
The modules M such that P2Y = M are called reflexive; and the modules M

such that PM' ~M' are called selfadjoint. Every reflexive module is a direct
sum of selfadjoint ones and vice versa, since in this case P(M + PM) =M + PM
and P is an additive functor.

Corollaries.

1. If Extt(M, Z)=0, i >0, and if m= Z 4 ..o+ Z, then M is stably free,
since PM is stably free by Lemma5.1 and P = M. .

2. If a=Z + Z, then for any module M the module PM is stably free, since
Ext}(PM, Z) = Ext2(PM, Z) = 0.

Note that this is not true even for 7 = 7 +Z + Z, since there exists a module
M £0 which is reflexive and such that

Ext: (M, Z) = Ext’ (M, Z) =0,
Ext! (Ext! (M, Z), Z) = Ext; (Extc (M, Z), Z) =0,
Ext: (M, Z) = Ext; (Ext. (M, Z), Z) == 0.
We shall find such a module. Let My be a one-dimensional module with a

generator u € My such that Zo(m)ou = 0. The resolvent of My (see $5, Example

1) is three dimensional,
d d [ k
0 Fy S Fy & F 5 Fo 5 Mo —0,
and, moreover,

Exti(M,, Z)=0, O<i<Z2 Ext? (M,,Z) = M,.
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Let ¥ = Fy/Imd. We have
0->F3 % Fy 5 M —0.
Therefore mxa._.ugﬁ 7)y=0, i>1, and mxmwgﬁ Z) = MNﬁw (Mo, ZY = My. This
module M yields the required example of a module which is reflexive but not
projective for n=Z + Z + Z.
~* Let us introduce a topology in Z () : namely, as a base system of neighbor- .

hoods of zero we take all linear spaces over Z, generated by the elements a €

. a/m: where 4; is any finite set in 7.

In a finitely generated module the topology is introduced thus: if x,---, %, € M

~are mgeneratrs and if Ay,---, 4, are any finite sets in 7, then as a neighbor-

hood of zero in M we take all the x € M such that Ax = M.«.L&:. a;ix, A£0, where
o, € u/x_% A, A;; € Z. Such neighborhoods generate a system of neighborhoods of
zeroin M. In this topology the points are nonseparable, in general.

We have that the PM are continuous characters of the continuous group ¥ in

Z (in the discrete topology), and moreover, PM is a topological Z (z)}-module. The

Ker P? are points in M, infinitely close to zero.

g

17 We define the complement Q: M — M. where M is the compactification of M
and Ker P? is equated to zero in M. The derived functors of functor Q correspond
to open homologies, so that for a field K we have

. Q = Hom (Hom.(M, K), K),
" Torg (M, K) = Hom (Ext (M, K), K), i>0,
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-, N, be two sets of
uare integer matrices of the same order m. We will call the

se two systems equiva
lent if there exists a unimodular integer matrix C such that

C4,C = By, k=12 ... N.
;. In this article we will show that the problem of the equivalence of two given

ystems of matrices can be reduced to the question of whether a certain ideal of

Z-ting contained in a semi-simple algebra is principal (by a Z-ring we mean an

2° The group &. We will write each system of N square matrices U
the same order m as a row AQH.

s Uy
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phlos. Soe A Translated by N. H. Choksy

A= (4,...,Ay), B= (By...,By),

here AH“ e, \AE and mwT e, wz are systems of integer matrices for which the
estion of equivalence is posed. Consider the set of rows

S = {4X — XB)

where X ranges over all rational matrices of order m. It is clear that S is a linear

ace over the field () of rational numbers and a basis over Q can be found in a

inite number of steps. We denote by M the set of rows §AX — XB}, where X

ges over all integer matrices of order m. Obviously M is a lattice and its di-

nsion is equal to the dimension of the space S, since S = MQ.
: Also, we denote by N the set of all integer matrices contained in §. Clearly

s alattice, SON DM, and hence the dimension of N is also equal to the di-
-nsion of S. Consequently the group

EA,B)y =N/M

i.e. the least common multiple of the orders of the ele-
ats) of this group is denoted by i(4, B)
M and N,

s finite. The exponent {

. The construction of bases of the lat-
and hence the determination of the structure of the group &4, B)

43



