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§ 1. The Cartan–Serre theorem

1. Homological properties of Eilenberg–MacLane complexes.

Theorem 1.1. If the abelian group π is trivial, finite, or finitely generated, then the
homology groups Hk(K(π, n)) for all k and n are trivial, finite, or finitely generated,
respectively.

The proof is by induction on n. For n = 1, the theorem follows from the examples
and Theorem 1 in D.B. Fuks’ lecture. We assume that the assertion is true for n
and prove it for n + 1.

Consider the space of paths on K(π, n+1) beginning at a fixed point x0. Putting
each path into correspondence with its endpoint, we obtain the Serre fibering

(1) E
Ω−→
p

K(π, n + 1),

in which E is homotopically trivial and the fibre Ω is homotopy-equivalent to
K(π, n).

For fiberings we have:

Lemma 1.1. If E
F−→
p

B is a fibering with simply-connected base and the cohomology

group of two of the three spaces E,B, F are trivial, finite, or finitely generated, then
the cohomology groups of the third space have the corresponding property.

This is easily obtained from the properties of the spectral sequence of a fibering.
Applying the lemma to the fibering (1), we obtain the result of the theorem for

n + 1. This proves Theorem 1.1. Similarly we can prove:

Theorem 1.2. The ring H∗(K(Z, p), Q) is a polynomial algebra over Q for even
p, and an exterior algebra over Q for odd p, with one generator of dimension p.
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The proof is analogous to that of Theorem 1.1, but we have to use the following
diagram, which is obtained from the Leibniz formula for the differentials of the
spectral sequence of the fibering (1):

0 q=2n+2
0 1 V V 2

uVp
p=2n+1

u ∈ H2n+1(Z, 2n + 1;Q),

vi ∈ H(2n+2)i(Z, 2n + 2;Q),
d2n+2u = v,

d2n+2uvi = vi+1,

di = 0, i 6= 2n + 2,

Ep,q
2 =

= Hp(Z, 2n + 1;Q)⊗Hq(Z, 2n + 2).

The passage from K(Z, 2n + 2) to K(Z, 2n + 3) is similar.

2. Application of Eilenberg–MacLane complexes to homotopy problems.

Theorem 1.3. The homotopy groups of a simply-connected space X are finitely
generated if its homology groups are finitely generated ; they are finite if the homology
groups are finite, and trivial if the homology groups are trivial.

Proof. Let πi(X) = 0 (i < k, k ≥ 2), πk(X) = π (i > k). By the Hurewicz theorem,
πk(X) = Hk(X). Consider K = K(π, k) and construct a mapping f : X → K
inducing the isomorphism f∗ : πk(X) → πk(K) = π.

We convert f into a fibering in Serre’s sense (see the Appendix to this section)
f : X

F−→ K. From the exact sequence of the fibering it follows that πi(F ) = 0 for
i ≤ k and πi(F ) = πi(X) for i ≥ k + 1, and this isomorphism is established by f∗:

· · · → πi(X)
f∗−→ πi(K) ∂−→ πi−1(F ) → πi−1(X) → · · ·

From Theorem 1.1 we find that X and K = K(π, k) have together the properties
of the condition of Theorem 1.3. Hence the same is true for the fibre F (Lemma
1.1). But by the Hurewicz theorem πk+1(F ) = Hk+1(F ). Also πk+i(F ) = πk+i(X)
for all i ≥ 1. Hence Theorem 1.3 is true for i = 1, and thus by induction on i and
passing from X to the fibre we can complete the proof of the theorem. �

Corollary 1.1. The homotopy groups of a finite simply-connected complex are
finitely generated, and are finite if the homology groups are finite.

(This is not true for complexes that are not simply-connected: the reader is
recommended to examine the example of π2(S2∨1), where ∨ denotes the one-point
union or “bouquet”.)

Theorem 1.4 (Cartan, Serre). Let X be a simply-connected space with finitely
generated homology groups. Let the algebra H∗(X, Q) be the tensor product of an
exterior algebra on odd-dimensional generators {lij} of dimension i (1 ≤ j ≤ ri)
and a polynomial algebra on even-dimensional generators {λik} of dimension i (1 ≤
k ≤ rR0).

Then the group πl(X) ⊗ Q has exactly rl generators l∗l,1, . . . , l
∗
l,rl

. In addition,
if the elements l∗l,k are regarded as elements of the homology group Hl(X, Q), then
they have zero scalar product with all cohomology classes that can be non-trivially
expressed as a product, and the matrix of their scalar products with the multiplicative
generators of dimension l of the algebra H∗(X, Q) is non-singular.
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Proof. For each multiplicative generator of H∗(X, Q) we pick a complex K(Z, l)
of the same dimension l, and multiply them together for all l. We get a complex
Y =

∏
K(Z, li) with the same cohomology algebra H∗(Y, Q) ≈ H∗(X, Q).

From the basic properties of K(π, n) there is a mapping f : X → Y inducing this
ring isomorphism. If X is (k − 1)-connected, then for l = k we could at once take
K(πk(X), k) (this will be better for our purposes) and assume that πk(Y ) = πk(X),
where the isomorphism is set up by f . We assume that f : X → Y is a fibering
f : X

F−→ Y (see Appendix).
Then H∗(F,Q) = 0 and π1(F ) = 0, where Hi(F ) is finitely generated. The latter

fact follows from the exact homotopy sequence of the fibering and from Lemma 1.1
and Theorem 1.1. The equation H∗(F,Q) = 0 follows from the following simple
lemma:

Lemma 1.2. Let E
F−→
p

B be a Serre fibering (with simply-connected base) in which

the homology groups of E, F , and B are finitely generated. Let p∗ : H∗(B) → H∗(E)
be an isomorphism. Then H∗(F ) = 0.

The proof follows from the spectral sequence as in Lemma 1.1.
Now note that by Theorem 1.3 all the homotopy groups of the fibre F are finite.

Hence πi(X)⊗Q ≈ πi(Y )⊗Q.
Thus, the groups πi(X) ⊗ Q are calculated. As for the assertion about scalar

products with cocycles, it follows from the corresponding fact for Y =
∏

K(Z, li)
where it is obvious.

Theorem 1.4 is now proved. �

Note 1.1. Let X = S2n−1. Then H∗(S2n−1, Q) is the exterior algebra with one
generator of dimension 2n − 1. So we find that all the homotopy groups of S2n−1

are finite, apart from π2n−1(S2n−1) = Z (Serre).

Note 1.2. Let X = S2n; then the algebra H∗(X, Q) does not satisfy our conditions.
Consider ΩS2n; obviously πi(S2n) = πi−1(ΩS2n). We know that H∗(ΩS2n, Q) is an
algebra with two generators, one exterior in dimension 2n− 1, and one polynomial
in dimension 4n−2. We find that all the homotopy groups πi(S2n) for i 6= 2n, 4n−1
are finite, and π4n−1(S2n)⊗Q = Q, that is, π4n−1(S2n) = Z+a finite group (Serre).

Note 1.3. Let X = BSOn, BUn, BSpn, here again Theorem 1.4 is applicable. It
follows from the Cartan–Serre theorem that bundles over Sk are determined “mod-
ulo finlteness” by classes — for BSO the Pontryagin or Euler–Poincaré classes, for
BU the Chern classes, and for BSp the symplectic classes of Borel–Hirzebruch.

Recall that the classes are the multiplicative generators of the ring H∗(BG,Q),
where G = SOn, Un, Spn and BG is the classifying space.

Note 1.4. X is a complex and πi(X) = 0, i < n. Then πi(X)⊗Q = Hi(X, Q) for
i < 2n− 1, the “stable case”.

Appendix. The conversion of a mapping into a fibering. Consider a map-
ping of complexes (or of Hausdorff spaces) f : X → Y , and construct the “mapping
cylinder” Cf = X × I ∪f Y , where I is the interval [0, 1] and f : X × 1 → Y .
Obviously Cf is contractible to Y and X ⊂ Cf , so that the inclusion X ⊂ Cf is
homotopic to f .

Consider paths starting in X and ending at some point of Cf ∼ Y . Denote the
space of these paths by E. Obviously E can be contracted to X ⊂ E (one-point
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paths). We have defined a Serre fibering

E
F−→
p

Cf ,

where p maps each path to its endpoint. However, E is contractible to X and Cf

to Y , so that p is homotopic to f . Hence we can say that E is X and Cf is Y (we
are working only up to homotopy, so it is valid to identify E with X, Cf with Y
and p with f).

Thus, we have replaced a mapping by a fibering.

§ 2. The Cartan–Serre theorem for vector bundles

Let X be a finite complex and η a (complex) vector bundle over X. We have:

Theorem 2.1. If the Chern character ch η ∈ H∗(X, Q) is trivial, then there exists
an n such that the Whitney sum η ⊕ · · · ⊕ η︸ ︷︷ ︸

n

is trivial.

Proof. If X is a sphere Sk and η1, η2 : Sk → BU are two bundles over Sk, then the
sum η1⊕η2 corresponds to the sum of elements η1 +η2 ∈ πk(BU). Here we assume
that the bundles are “stable”, that is, the dimension of the fibre is sufficiently large,
since this is tacitly contained in the hypothesis if n is chosen to be large.

In fact, the sum ⊕ is induced by the inclusion Ul×Us ⊂ Ul+s by diagonal blocks(
Ui 0
0 Us

)
Also it is easy to see that two mappings

p1 : Ul × Us → Ul+s,

p2 : Ul × Us → Ul+s,

where

p1(a, b) =
(

a 0
0 b

)
and

p2(a, b) =
(

ab 0
0 E

)
are homotopic.

Here p2 is defined for l = s, which we may assume by increasing l and s.

Lemma 2.1. Let G be a topological group and f : G × G → G its multiplication.
Then α + β = f∗(α, β), where α, β ∈ πk(G) and πk(G)× πk(G) ≈ πk(G×G).

The proof of this lemma is left to the reader.
We now use the isomorphism q : πi(G) ≈ πi+1(BG). Let η1, η2 ∈ πk(BU) ≈

πk−1(U), we assume that η1 and η2 are bundles over Sk. Then we have

η1 ⊕ η2 = qp1(q−1η1, q
−1η2) = qp2(q−1η1, q

−1η2) = q(q−1η2 + q−1η2) = η1 + η2,

from the fact that p1 and p2 are homotopic and Lemma 2.1.
It follows that the sum ⊕ coincides with the ordinary one for “stable bundles”

(of high dimensions). From the Cartan–Serre theorem we know that a bundle over
Sk is determined by its Chern class “modulo finiteness” relative to the usual sum
(for G = Un). Having established that the Chern class and character only differ by
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a non-zero (rational) factor for spheres and that the operations ⊕ and + coincide,
we obtain our assertion for spheres.

For an arbitrary complex X we can assume that the bundle η is trivial on the
(k−1)-skeleton. Choose n so that η⊕· · ·⊕η is trivial on the k-skeleton. But if the
(k − 1)-skeleton is shrunk to a point, the k-skeleton becomes a bouquet of spheres
Sk and the assertion has already been proved for these.

By induction on k, we obtain our theorem. �

The second assertion is proved similarly to the first, but instead of “differences”
we must consider the “obstruction” to the extension of a napping.

Theorem 2.2. Let α ∈ H∗(X, Q) and H(0)(X, Q) = Q (scalars). There exist
numbers N1 and N2 such that the element N1 + N2α is the Chern character ch η
of a bundle over X, provided, of course, the decomposition of α into homogeneous
components αi ∈ Hi(X, Q) does not contain elements of odd dimension (for G =
U), or elements of dimension divisible by 4 (for G = SO, Sp).

The proof of Theorem 2.2 runs parallel to that of Theorem 2.1; Theorems 2.1
and 2.2 were first published in a closely related form by Dold.

In the large, we can prove the following theorem.

Theorem 2.3. Consider the rings K(X) = KC(X) and K(X) = KR(X). Then
there are natural isomorphisms:

ch: KC(X)⊗Q ↔
∑
i≥0

H2i(X, Q),

ch: KR(X)⊗Q ↔
∑
i≥0

H4i(X, Q),

where the additive group of the ring K(X) is finitely generated.

The proof follows from Theorems 2.1 and 2.2 and the multiplicative property of
ch. The assertion that the group of K(X) is finitely generated follows from the
fact that πi(BG) is finitely generated for G = U , SO and an argument similar
to the proof of Theorem 2.1, not “modulo finiteness”, but “modulo being finitely
generated”.

Appendix. 1) Bott periodicity:

Ω2U = U, Ω2BU = BU,

Ω4Q = Sp, Ω8Q = Q,

Ω2Sp = Q, Ω2Sp = Sp

 up to homotopy type

2) KC(X ×S2) ≈ KC(X)⊗KC(S2), KC(S2) = Z + Z (one Z is the scalars, the
other has trivial multiplication);

KC(S8) ≈ KR(S∞).

3) ch: KC(S2i) → H∗(S2i, Z) is an isomorphism. Since ch =
∑

chi and chn =
± 1

(n−1)!Cn + · · · , the class Cn of a bundle over S2n is divisible by (n − 1)! (and a
bundle with such a class exists).

4) KR(X × S8) ≈ KR(X)⊗KR(S8); ch: KR(S8n) → H∗(S8n, Z) is an isoinor-
phism; ch: K0

R(S8n+4) → H∗8n+4(S8n+4, Z) is a monomorphism whose image is
divisible only by 2.
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The Pontryagin class pk of a bundle over S4k is divisible by ak(2k − 1)!, where
ak = 1 or 2 (1 for even k and 2 for odd).

5) Now consider the “complete” k-functor K∗ =
∑

Ki(X). We have already
defined K∗(X, Y ) and the exact sequence of the pair X ⊃ Y . K∗ is a ring and
K−i(X, Y ) = K0(EiX/Y ).

Let X = P (a point).

Theorem 2.4. There exists a spectral sequence of rings

Er =
∑
r≥2

Ep,q
r , dr : Ep,q

r → Ep+r,q−r+1

such that
a) {Er, dr}, K∗

Λ(X), Λ = R,C,
b) Ep,q

2 = H∗(X, Kq
Λ(P )),

c)
∑

Ep,q
∞ is associated with Kn(X).

6) The form of the functor of a point Kn
Λ(X).

a) Λ = C; K0
C is the scalars; Ki

C = 0 for odd i and K−2
C is generated by the

element u, and K−2n
C by the element un.

b) Λ = R: K0 is the scalars; generators: h ∈ K−1
R , u ∈ K−2

R , v ⊂ K−8
R (ring

generators); relations: 2h = 0, h3 = 0, hu = 0, u2 = 4v.
The functor K∗

R is periodic “modulo” 8.

§ 3. T -regularity and Thom complexes

The aim of this section is the study of “cobordism” by algebraic methods, fol-
lowing Thom’s plan.

1. The concept of t-regularity. Let Mn be a manifold and W a submanifold
of codimension p (in the smooth sense). We can assume Mn is a manifold only in
a neighbourhood of W (this remark is essential in applications). Let Rp

x denote a
“normal plane” to W at x ∈ W : Rp

x = Rn
x/Rn−p

x , where Rn
x and Rn−p

x are tangent
planes to Mn and W . The projection Rn

x
q−→ Rp

x is denoted by q.

Definition 3.1. A mapping f : V m → Mn, smooth in the neighbourhood f−1(W ),
is called t-regular on W if for each point y ∈ f−1(W ) the linear mapping q ◦
dfy : Rm

y → Rp
x is an epimorphism.

A more general concept of t-regularity can be formulated in the “jet-bundle”
J(X, Y ) in the sense of Ehresmann; it can also be carried over to infinite-dimensional
manifolds (Abraham) (all known forms of reduction to general position fall under
these “t-regularities”, but this is not necessary for our purpose).

Lemma 3.1 (Thom). Every mapping can be arbitrarily closely approximated by a
t-regular mapping (in any smooth metric of mappings).

Properties of a t-regular mapping f .
1) The inverse image Vf = f−1(W ) ⊂ V m is a submanifold of codimension p; the

mapping f |Vf → W is smooth and “non-singular in the direction of the normal”.
2) The normal bundle of Vf in V is induced by f : Vf → W from the normal

bundle of W in Mn.
f induces a mapping of these bundles.
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2. Thom complexes. Let W be a manifold and η a vector bundle over W . Let
Eη be the space of the bundle of unit discs in each fibre. Obviously dEη is a sphere
bundle and Eη ⊃ W as a surface of zero vectors.

Definition 3.2. The factor-space Eη/dEη, with the distinguished embedding of
the zero section W ⊂ Tη, is called the Thom complex Tη of η.

(The whole of dEη is one point in Tη.)

Example 3.1. W is a point P . The bundle η is trivial, η = Rn. Eη is the disc Dn;
Tη = Dn/dDn = Sn (“Pontryagin Thom complex”).

Example 3.2. W is BG for the group G ⊂ O(m) and η is the universal G-bundle
with fibre Rn. We assume that BG is a manifold of sufficiently high dimension.

Then Eη is the space of the universal bundle of the disc Dn and dEη is a sphere
bundle. Put

MG = Tη =
Eη

dEη
⊃ BG.

For example, G = O(n), SO(n), U(n), SU(n), Sp(n), e ⊂ O(n).
For G = e we have a “Pontryagin Thom complex” Sn = Me. We can usefully

introduct MSpin for the usual embedding Spin(n) ⊂ SO2n.

Example 3.3. W = BG×Mn and the bundle η over W is induced by the projection
p : W → BG from the universal G-bundle of Example 3.2.

The corresponding Thom complex will be denoted by MG(Mn).

Example 3.4. W is an n-dimensional manifold lying in Rn+N or Sn+N and η is its
normal O-bundle with fibre RN . The space Eη is a neighbourhood of W in Rn+N

and the complex Tη is a sphere Sn+N with its complement in Eη shrunk to a point.

We have only introduced the most important forms of the Thom complex, each
of which has a substantial theory associated with it; Example 3.1 is connected,
with homotopy groups of spheres and smoothnesses on Pontryagin spheres (Milnor,
Kervaire); Example 3.4 is connected with the problem of diffeomorphisms of simply-
connected smooth manifolds (Novikov). Here we shall need the Thom complexes
of Example 3.2 (“the original Thom complexes”), connected with the theory of
intrinsic hornology (“cobordism”) and of Example 3.3 (Atiyah, Conner, Ployd),
connected with the “bordism” theory necessary for the index problem (in Atiyah
and Singer’ s work for G = SO, Mn = BU).

3. Cohomology properties of Thom complexes.

Lemma 3.2. a) There is a natural isomorphism φ : Hi(W,Z2) → Hi+n(Tη, Z2)
where η is an On-bundle over W.

b) If η is an SO-bundle over W , there are isomorphisms

φ : Hi(W,Z) → Hi+n(W,Z),

φ : Hi(W,Q) → Hi+n(W,Q).

The proof follows from the fact that the cells in Tη are products of cells σ in
W and the fibre Dn\dDn, and the boundary is shrunk to a point. For O-bundles
similar considerations lead to Lemma 3.2 modulo 2 because of the possibility of
“confusing” orientations.
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Lemma 3.3. Let G = SO(2n) or G = U(n), SU(n). Consider the inclusion
j : BG ⊂ MG and the Thom isomorphism φ : Hi(BG) → H2n+i(MG). Then the
composition j∗φ is the isomorphism of multiplication by the Euler class W2n ∈
H2n(BG,Q) for G = SO2n, and by the Chern class Cn ∈ H2n(BG,Q) for G =
Un, SUn. (For G = O2n, it is also W2n but only mod 2.)

The proof follows from the universal bundle BSO2n−1
S2n−1

−−−−→ BSO2n for G =

SO2n, and BUn−1
S2n−1

−−−−→ BUn, BSUn−1
S2n−1

−−−−→ BSUn for G = U, SU . We have
to consider the cohomology of MG as the cohomology of the space Eη mod dEη

which is the sphere bundle mentioned above, and note that it can be shrunk to the
base of η; and this kills precisely the ideal generated by W2n or Cn in H∗ in the
spectral sequence of the above sphere bundle.

The exact cohomology sequence of the pair (Eη, dEη) leads to the required result.

Note 3.1. It is easy to define a multiplication Hi(X, Y ) ⊗ Hj(X) → Hi+j(X, Y )
for any pair X ⊃ Y . We apply this to K = Eη, Y = dEη. We define the element
φ(1) ∈ Hn(Eη, dEη) as the cocycle taking the value 1 on each fibre. For BG we
have

j∗φ(1) = W2n, G = SO2n,

j∗φ(1) = Cn, G = Un, SUn.

There is the simple formula:

φ(x) = φ(1)X ∈ Hi+n(Tη), x ∈ Hi(W ).

4. Homotopy groups of the Thom complex MSO2n. From Note 1.4 we get
the following theorem.

Theorem 3.1. πi+2n(MSO2n)⊗Q, i < 2n−1, has a system of generators in one-
to-one correspondence with polynomials in the Pontryagin classes of dimension i.
This means that πi+2n(MSO)⊗Q = 0 for i 6≡ 0 mod 4 and is determined by these
Pontryagin polynomials “modulo finiteness” for i 6≡ 0 mod 4.

The proof is easily obtained from the Thom isomorphism

φ : Hi(BSO,Q) → H2n+1(MSO2n, Q)

and the form of the cohomology H∗(BSO2n, Q) — polynomials in the Pontryagin
classes and the Euler–Poincaré class of dimension 2n. Then Note 1.4 is applied to
the Cartan–Serre theorem.

We now consider the Thom complex of Example 3.3 (for the index problem);
W = BSO2n ×BUm, η = p∗ηSO2n

, where ηSO is a universal SO-bundle.
We write Tη = MSO2n(BUm) (m large).

Theorem 3.2. π2n+i(MSO2n(BUm)) ⊗ Q has a system of generators of the fol-
lowing form: polynomials in pk ∈ H∗(BSO2n, Q) and cj ∈ H∗(BUm, Q), that is,
products of a polynomial in pk − x and a polynomial in cj − x.

The proof is the same as that of Theorem 3.1.

§ 4. Cobordism

1. The cobordism group and ring. Let GSO =
∑

K≥0 GK
SO be the set of all

oriented compact (not necessarily connected) manifolds with or without boundary;
GSO is a group relative to the disjoint sum.
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There is a ring structure in GSO induced by the cartesian product of manifolds;
there is also a boundary operator d : Gn

SO → Gn−1
SO in GSO, induced by taking the

boundary of a manifold (the cycles are closed manifolds). We denote the product
of a, b ∈ GSO by ab; obviously d2 = 0 and d(ab) = (da)b± a(db).

We obtain the cohomology ring H∗(GSO, d), denoted by ΩSO =
∑

i≥0 Ωi
SO,

where Ωi
SOΩj

SO ⊂ Ωi+j
SO .

The ring ΩSO is called the “cobordism” ring (intrinsic homology).
Other forms of the cobordism ring:
1) ΩO — an manifolds without regard to orientation.
2) ΩU — manifolds with complex structure in the normal bundle under embed-

ding in a space of sufficiently high dimension.
Similarly ΩSU ,ΩSp,ΩSpin,Ωl — the ring of stable homotopy groups of spheres.
3) Ω(U)

SO is constructed from pairs (M,η), where M is an oriented manifold and
η is a complex bundle over it, η ∈ KC(M).

At present the following rings are completely known: ΩO,ΩSO,ΩU (Thom,
Rokhlin, Milnor, Averbrukh, Novikov); fairly well known are ΩSU (Novikov, Con-
ner, Floyd), the tensor products of ΩSp,ΩSpin,Ω(U)

SO with a field of characteristic
6= 2,

∑
i≤22 Ωi

l (many authors), and also of course, their tensor products with the

rationals Q, as will be seen here for ΩSO and Ω(U)
SO (as a consequence of the Cartan–

Serre theorem and the connection between cobordism and homotopy).
We shall now study the connection between cobordism and the homotopy groups

πn+i(MSOn), i < n− 1, for the group Ωi
SO.

We have the important

Theorem 4.1 (Thom, and for Ωi
l Pontryagin). The groups Ωi

SO are isomorphic to
πn+i(MSOn) for i < n− 1.

Proof. Let α ∈ πn+i(MSOn) and f : Sn+i → MSOn be a mapping in the class
α. We make f t-regular on the submanifold BSOn ⊂ MSOn. The corresponding
mapping (now t-regular) is denoted by g. It is obviously homotopic to f , since they
are close. Put M i

g = g−1(BSOn), where M i ⊂ Sn+i (the embedding is smooth).
If f1 and f2 are homotopic (and represent α), there is a homotopy F : Sn+i×I →

MSOn, F |Sn+i× 0 = f1 and F |Sn+i× 1 = f2. Suppose that f1 and f2 are already
t-regular. We make F t-regular in such a way that it is unchanged on Sn+i× 0 and
Sn+i × 1. The t-regular homotopy so obtained between f1 and f2 is denoted by
G : Sn+i × I → MSOn.

Put N i+1
G = G−1(MSOn). Obviously dN i+1

G = M i
f1
∪ (−M i

f2
). We obtain a

well-defined mapping πn+i(MSOn) → Ωi
SO. It is easy to verify that it is additive.

Let M i be a manifold with orientation. Embed it in Sn+i. We get a normal
bundle ν with group SOn. We obtain its classifying mapping M i → BSOn. The
space of the bundle ν (a neighbourhood of M i in Sn+i) is mapped into the space
Eη of the universal bundle η over BSOn with fibre a closed disk. Obviously the
mapping of the fibres can be normalized so that the boundary of ν goes into dEη.
Since Tη = MSOn = Eη/dEη, the boundary of the neighbourhood Wi in Sn+i goes
into the point (dEη) in Tη. We extend trivially the mapping into the neighbourhood
of M i to the whole sphere Sn+i, taking all the exterior of this neighbourhood
to the point (dEη). We get a mapping f(M i) : Sn+i → MSOn. This mapping
(its homotopy class) does not depend on the embedding M i ⊂ Sn+i for n � i;
similarly we construct a homotopy film by film, where the film N i+1 ⊂ Sn+i × I
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goes orthogonally to the boundaries Sni × 0 and Sn+i × 1. We obtain an inverse
mapping Ωi

SO → πn+i(MSOn), i � n. It is easily verified that this mapping is
the inverse of the previous one, which proves the theorem. (Various incidental
details are omitted here: such as getting an exact agreement with the inverse in
the first construction, the normalization at the corners of the inverse image of the
boundaries, etc.) �

Similarly it can be proved that the other forms of cobordism coincide itb the
homotopy of the corresponding Thom complexes. It can also be shown that the
multiplicative structures in ΩSO (and the other ΩG) are induced by certain purely
homotopic constructions on the Thom complexes, but we shall not need this for
purely “rational” problems.

Corollaries:

Corollary 4.1. Ωi
SO is finite for i ≡ 0 mod 4.

Corollary 4.2. Ω4k
SO ⊗Q has rank equal to the number of polynomials in the Pon-

tryagin classes of dimension 4k (that is, as many as the Pontryagin numbers of a
four-dimensional manifold).

The Pontryagin numbers are additive and defined for Ω4k
SO. Therefore we have

the conclusion: every linear form on Ω4k
SO with values in Z (or in Q) is a linear

combination of “basis forms”, the Pontryagin numbers.

Corollary 4.3. The structure of the ring ΩSO ⊗Q =
∑

k≥0 Ω4k
SO ⊗Q.

Polynomials in the classes pk are, as already stated, symmetric functions in the
squares of the “Wu generators” t1, . . . , tN , where

pk =
∑

t2i1 . . . t2ik
.

Let ω = (a1, . . . , as), ai > 0 (ω is a partition of k into summands ai, disregarding
order).

Put Pω =
∑

t2a1
i . . . t2as

is
, where Pω is a function in Pi, i ≤ k. (A new basis for

polynomials in the Pontryagin classes.)
The Whitney formula (for the sum of bundles)

Pω(ζ ⊕ η) =
∑

(ω1,ω2)=ω
ω1 6=ω2

Pω1(ζ)Pω2(η) + Pω2(ζ)Pω1(η) +
∑

(ω1,ω2)=ω

Pω(ζ)Pω1(η)

Put P(k) =
∑

t2k
i .

There is the following simple lemma:

Lemma 4.1. The Pontryagin class P(k) (or the Pontryagin number (P(k),M
4k))

is trivial for all manifolds of the form M4l1 ×M4l2 , l1 + l2 = k, l1 > 0, l2 > 0.

Lemma 4.2. For a sequence of manifolds {M4k
k } (k = 1, 2, . . . ) to represent a

system of polynomial generators of ΩSO ⊗Q it is necessary and sufficient that the
Pontryagin number (P(k),M

4k
k ) is non-trivial for all k = 1, 2, . . .

In particular, if there is such a set of manifolds, it follows that ΩSO ⊗ Q is a
polynomial ring.

Lemma 4.2 follows from Lemma 4.1 and the fact that because of the Whitney
formulae the polynomials in such manifolds are independent in Ω4i

SO⊗Q and gener-
ate the whole group. The value of the rank of Ω4i

SO was calculated earlier; we shall
now give a lower bound and find the polynomial generators.
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Theorem 4.2. The manifolds CP 2i (i = 1, 2, . . . ) form a system of polynomial
generators of the ring ΩSO ⊗ 1Q. In addition, (P(i), CP 2i) = 2i = 1.

Proof. Let τ(CPn) be the (complex) tangent bundle, O1 the one-dimensional trivial
complex bundle and ν1 a one-dimensional complex bundle (or SO2-bundle) such
that C1(ν1) = x, x a basis element of H2(CPn).

Earlier we proved the formula

τ(CPn)⊕O1 = ν1 ⊕ · · · ⊕ ν1︸ ︷︷ ︸
n+1 terms

.

Since P (ν1) = 1 + p1(ν1) = l + x2, we have P (τ(CPn)) = P (CPn) = (1 + x2)n+1.
From the definition and meaning of the Wu generators t1, . . . , t2i+1 for the bundle
τ(CP 2i)⊕O1, we get

tj = x(j = 1, . . . , 2i + 1),

P(2i) =
2i+1∑
j=1

t2i
j =

2i+1∑
j=1

x2i.

Hence
(P(2i), CP 2i) = ((2i + 1)x2i, CP 2i) = 2i + 1.

The theorem is now proved. �

Conclusions.
1) The signature of the manifold M4k is the index of the quadratic form (y2, [M4k])

on the group H2k(M4k, R).
The signature is a linear form on Ω4k

SO (see Appendix).
Therefore the signature σ(M4k) is a linear form Lk in the Pontryagin numbers

of M4k with rational coefficients, independent of the manifold (for k = 1, the
Thom–Rokhlin theorem, for k > 1, Thom).

For example, σ = 1
3p1, p1(CP 2) = 3; for M4k (Thom, Rokhlin) it is easy to find

that for k = 2 (σ(CP 4) = σ(CP 2 × CP 2) = 1):

σ =
1
45

(7p2 − p2
1) (Thom).

A general form for Lk(p1, . . . , pk) was found by Hirzebruch (also by using poly-
nomial generators of CP 2i). Let

Q(z) =
√

z

tanh
√

z
= 1 +

∞∑
k=1

(−1)k−1 22k

(2k)!
Bkzk

(Bk is the Bernoulli number, Bk > 0 and 6= 1
2 , B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , B4 = 1
30 ,

B5 = 5
66 .)

As usual we put pi =
∑N

i=1 t2j1 . . . t2j (N very large) and L =
∑

k≥0 Lkzk, L0 = 1;
then L =

∏N
i=1 Q(t2i z), N →∞. It is easy to calculate L1 = 1

3p1, L2 = 1
45 (7p2−p2

1),

L3 =
1

27 · 5 · 7
(62p3 − 13p2p1 + 2p3

1).

2) For the ring Ω(U)
SO ⊗ Q, which is needed for the index, we have the following

answer in exact analogy to that for ΩSO ⊗ Q: Ω(ω)
SO ⊗ Q is a polynomial algebra

with generators of the following forms:
1. (CP 2i, 1), where 1 ∈ K0

G(CP 2i) is a one-dimensional trivial U1-bundle.
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2. (S2i, η), where η ∈ K0
C(S2i) is an element such that ch η = u ∈ H2i(S2i, Z)

(basis element). The homomorphism I : Ω(U) → Z such that I(CP 2i, 1) = 1 and
I(S2i, η) = 2 can be calculated, by analogy with with the L-series of Hirzebruch,
using ch η of the bundle η over W 2i, and the “Todd genus” from the Pontryagin
classes of the manifold (or, which comes to the same thing, from the Chern classes
of the complexitication of its tangent bundle).

Appendix. The intrinsic homology invariance of the signature and the Pontryagin
numbers (the Pontryagin theorem).

1. The Pontryagin numbers. Let Mn ⊂ Rn+k, k � n and Mn = dNn+1. Place
Nn+1 in Rn+k so that it approaches the boundary Rn+k × 0 orthogonally. The
normal bundle of Nn+1 in Rn+k × I induces the normal bundle of Mn in Rn+k.
There is a classifying map f : Nn+1 → BSOk, where f |dNn+1 is the classifying map
for Mn = dNn+1 of the normal bundle to the boundary. The Pontryagin number (of
the normal bundle) is by definition, (f∗[Mn], pi1 ◦· · ·◦pis

), where pi ∈ H∗(BSO,Q).
But since f |Mn extends to f : Nn+1 → BSO, we have f∗[Mn] = 0, and all the
numbers are zero. By the Whitney formula, the Pontryagin polynomials of the
tangent and normal bundles are mutual inverses (their sum is the trivial bundle,
and therefore the same is true for the tangent Pontryagin numbers.

2. The signature (Rokhlin, Wu, Thom). Let M4k = dW 4k+1. Consider the
exact cohomology sequence

H2k(W ) i∗−→ H2k(M4k) δ−→ H2k+1(W,M).

Let µ denote a basis element of the group H4k(M4k) = Z, with (µ[M4k]) = 1.
Then for any y ∈ H2k(M4k) we have y2 = λµ, where λ = (y2, [M4k]). If y ∈ Im i∗,
then y2 = 0, since δµ 6= 0, and if y = i∗z, then y2 = i∗z2.

Therefore (y2, [M4k]) = 0, if y ∈ Im i∗. Because of the Poincaré duality law for
manifolds with boundary the honomorphisms i∗ and δ are associated. Therefore
the image Im i∗ has halt the dimension of H2k(M4k) and the whole dimension is
even. The from (y2, [M4k]) is identically zero on the subspace Im i∗ of half the
dimension, and the form is non-singular. Hence its signature is 0. By Poincaré, it
coincides with the form induced by intersections of cycles.

§ 5. Some applications of the Hirzebruch formula

In the previous section we proved the Hirzebruch formula

(Lk(p1, . . . , pk),M4k) = σ(M4k),

where L =
∏N

i=1 Q(t2i z), L =
∑

Lkzk and

pk =
∑

t2i ◦ · · · ◦ t2ik
, Q(z) =

tanh
√

z√
z

,

with L1 = 1
3p1, L2 = 1

45 (7p2 − p2
1).

1. Milnor’s example of a smooth structure on the seven-sphere. Consider
an SO4-bundle with fibre a closed ball D4 and base S4. The boundary of this
bundle is an SO4-bundle of spheres S3. Such bundles are determined by two integer
parameters since π3(SO4) = Z + Z = π4(BSO4). These integer parameters are

1) the Pontryagin class p1 ∈ H∗(BSO4),
2) the Euler class χ ∈ H4(BSO4).
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Lemma 5.1. There exists an SO4-bundle ν over S4 with given numbers χ =
(χ(ν), [S4]), p1 = (p1(ν), [S4]) if and only if 2χ− p1 ≡ 0 mod 4.

Note that p1 mod 2 is W 2
2 , and therefore p1 is always even. If χ = 0, then a

non-vanishing vector field can be constructed in this bundle. Therefore the bundle
with χ = 0 reduces to SO3. It is easy to show that the class p1 of the bundle
is divisible by 4. There exists a unique Hopf fibering with fibre S3 over S4 and
total space S7, for which p1 is 2 and χ = 1. (This fibering is obtained by using
quaternions.) The unique linear relation satisfying these conditions on χ and p1

is 2χ − p1 = 4k. However, all this follows simply from the homotopy structure of
BSO4 in dimensions ≤ 4.

Consider bundles with χ = 1.

Lemma 5.2. The space of a bundle of spheres S3 over S4 with χ = 1 is homotopy
equivalent to S7.

The proof is left to the reader as an exercise in the definition of and elementary
homotopy theory.

Bundles with χ = 1 have p1 = 4k + 2, where k is arbitrary.

Theorem 5.1 (Milnor). If 45+(4k+2)2

7 is not an integer, then the space of the
sphere bundle with fibre S3, base S4, χ = 1, p1 = 4k + 2 is not diffeomorphic to
S7, although it has the homotopy type of S7.

Note 5.1. (In fact, Milnor explicitly showed that on such manifolds M7 there is
a function f with two non-singular stationary points, and therefore they are all
piecewise-smoothly (piecewise-linearly) homeomorphic1 to S7.)

Proof. Consider the space E of a bundle ν of discs D4 over S4 with χ = 1, p1 =
4k + 2. We denote it by E, where dE is the manifold required. The cycle S4 ⊂ E
has self-intersection 1, by definition of χ. Assume that dE is diffeomorphic to
S7. Consider the smooth manifold M8 = E ∪h D8, where h is a diffeomorphism
S7 → dE.

The following are obvious:
a) Hi(M8) = 0 (i 6= 0, 4, 8), H4(M8) = Z;
b) σ(M8) = 1; p1(M8) = p1(ν) + p1(S4) = p1(ν) = (4k + 2)u, where u is a

basis element of H4(M8) = Z.
From the Hirzebruch formula we have

p2 =
1
7
(45τ + p2

1) =
1
7
(45 + (4k + 2)2).

By hypothesis, this number is not an integer, which contradicts the fact that p2 is
always an integer, by definition. �

Example 5.1. For k = 1, the number 1
7 (45 + (4k + 2)2) is not an integer.

2. The piecewise-linear invariance of the Pontryagin classes (the Thom–
Rokhlin–Shvarts theorem). Let Mn

i be a smooth manifold and W 4q×Rn−4q ⊂
Mn be a smooth embedding. Then there is the simple formula

(Lq(p1, . . . , pq), i∗[W 4q]) = σ

1Smale and Wallis have proved that such functions always exist on homotopy spheres of di-
mensions ≥ 5.
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where i∗[W 4q] is the cycle in Mn corresponding to W 4q, and Lq is the Hirzebruch
polynomial in the Pontryagin classes of Mn. The formula holds because pi(W 4q) =
i∗pi(Mn) in view of the triviality of the normal bundle to W 4q in Mn and the
Hirzebruch formula for W 4q.

Since σ(W 4q) has a meaning even if W 4q is not smooth, this formula can be used
in reverse to define the classes, or rather Lq not pq.

a) Let W 4q be an h-manifold (a complex whose local homology groups are those

of the sphere S4q−1) and h : W 4q ×Rn−q
i
⊂ Mn be a polyhedral embedding, where

Mn is also an h-manifold.
Put (Lk(Mn), i∗[W 4q]) = σ(W 4q).
b) Justification of the definition — its existence and validity: Mn is an h-

manifold, x ∈ H4k(Mn) is a cycle (if 4k > 1
2n, consider Mn × SN for large N

instead of Mn).

Lemma 5.3. There exists a number λ such that there is a mapping f : Mn →
Sn−4k, where f∗µn−4k = λDx (D is the Poincaré duality operator), and µn−4k is
a basis element of Hn−4k(Sn−4k).

The lemma follows easily from the fact that the stable homotopy groups of
spheres are finite and the obstruction to the extension of a mapping are finite, as
in the Cartan–Serre theorem for vector bundles.

Lemma 5.4. If n− 4k > 1
2n + 1 and there are two mappings f1, f2 : Mn → Sn−4k

such that f∗1 µn−4k = f∗2 µn−4k, then there is a number δ such that the δ-fold sums
of the mappings are homotopic.

Lemma 5.4 is similar to Lemma 5.3. The sum of the mappings is defined because
of the “stability” if n−4k > 1

2n+1. Also Sn−4k is the Thom complex of the trivial
bundle, and therefore we can stick together manifolds — the counter-images of
points Be ⊂ Sn−4k (see §2 on Thom complexes) — that have dimension 4k < 1

2n,
in view of which we can regard them as non-intersection (as if Mn were smooth).
Since this is a fact that is purely about homotopy, the smoothness of Mn is not
necessary.

Lemma 5.5. Let σn−4k ⊂ Sn−4k be a simplex of maximal dimension, y0 its centre
and σ̃ its interior. If f : Mn → Sn−4k is a simplicity mapping, then f−1(σ̃) =
f−1(y)× σ̃ in the piecewise-linear sense, and f−1(y) is an h-manifold.

Now let x ∈ H4k(Mn) and f : Mn → Sn−4k, where f∗µn−4k = λDx. We put
(Lk(Mn), x) = 1

λσ(f−1(y)), where f−1(y) is an h-manifold and y is an interior
point of an (n− 4k)-dimensional simplex in Sn−4k.

From Lemma 5.3 it is possible to construct such a mapping f , and from Lemma
5.4 the definition is valid (two cobounding h-manifolds have the same signature;
the membrane arises as the counter-image under the homotopy).

Note 5.2. The classes p4k are determined conversely by the Lk, and therefore we
have a definition of pk ∈ H4k(Mn, Q). For example, p1 = 3L1, p2 = 1

7 (45L2 +9L2
1).

In general, the pk do not now have integer scalar products with cycles; see Milnor’s
example.
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Note 5.3. For n = 4k + 1, the definition gives a wider result: the class p4k(M4k+1)
is a topological invariant (Rokhlin’s theorem, which preceded the general Rokhlin–
Shvarts theorem). Recently it has been proved that this class is a homotopy invari-
ant (Novikov).

Note 5.4. The integer Pontryagin classes are not even combinatorial invariants (Mil-
nor for the 7-torsion class p2 ∈ H8(Mn, Z)). This is connected with the existence
of “bad smooth structures” on S7 and, hence, with the fact that the combinatorial
Pontryagin class p2 ∈ H8(Mn, Q) not belong to the integer lattice (the class 7p2

probably does belong to it).

Note 5.5. It is known that apart from the Hirzebruch formula (Lk,M4k) = σ there
is no relation of homotopy invariance for rational Pontryagin classes of simply-
connected manifolds (Dold, Milnor, Novikov, Browder, Tamura).

Note 5.6. The central problem is the invariance of the rational Pontryagin classes
relative to continuous homeomorphisms (topological Invariance). Only very re-
cently it was proved that certain classes were topologically invariant in cases when
they were known not to be homotopy invariant.


