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This paper deals mainly with problems connected with topological and homo-
topic invariance of Pontrjagin classes and some closely related problems of algebraic
topology and stable algebra. These questions have arisen from the authors’ papers
on topological and homotopic invariance of rational Pontrjagin classes, based on the
discovery of deep connections between characteristic classes and the fundamental
group. There are a number of new stable algebraic problems connected with the
diffeomorphism problem and Pontrjagin classes of nonsimply connected manifold
(especially when π1 = Z× · · · × Z).

This paper is divided into three parts.
1. Rational Pontrjagin classes and the fundamental group. Homotopy invariance

problem. Some questions of stable algebra.
2. Topological problems in the theory of classes. Smoothing of topological knots.

Rational homological manifolds.
3. Pontrjagin–Hirzebruch classes with finite coefficient groups for homological

and smooth manifolds. Topological microbundles. Classical Lens manifolds. (Re-
sults of author and V. A. Rohlin).

1. Rational Pontrjagin Classes and the Fundamental Group

The signature formula (Lk, [M4k]) = σ(M4k) was one of the most important
discoveries in the theory of characteristic classes. Before 1964, it was the only
known homotopically invariant relation (“rational”). The theorem of W. Browder
and the author shows that this relation is really unique in a simply connected
category: let τ ∈ K̃O(Mn) be a stable tangent bundle and let J : K̃O(X) → J(X)
a J-homomorphism. The set J−1J(τ) coincides exactly with the set of stable
tangent bundles of manifolds homotopically equivalent to Mn (all manifolds are
closed, n ≥ 5, n ≥ 2l + 1 or n = 6, 14). For n = 4k, the analogous set contains
all elements τi ∈ J−1J(τ) such that Lk(τi) − σ(M4k) = 0 and for n = 4k + 2, the
Arf-invariant must be zero (see Izv. A.N. 1964, 28 N. 2, Supplement 1).

This theorem is false in non-simply connected categories. We prove some results
and show interesting connections with the fundamental group. For any element
x ∈ H4k(X,Q), we introduce the cohomological invariant σ(x) — the algebraic
signature, in the sense of the author’s papers (Dokl. A.N. 162 N. 6, Izv. A.N. 29

This paper had been written originally for a lecture at the Moscow International Congress
(1966), but the subject of my 1

2
hour lecture was, in fact, changed (to cobordism theory). I

include here some additional remarks on the latest developments of these ideas.
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N. 6). Let z ∈ H4k(Mn+4k,Q) and Dz = y1 ◦· · ·◦yn, (D denotes Poincaré duality).
We define a covering Pz : Mz → Mn+4k depending on the element z: the subgroup
ImPz∗ ⊂ π1(Mn+4k) contains all γ ∈ π1 such that (γ, yi) = 0, i = 1, . . . , n. There
is one “canonical” element ẑ ∈ H4k(M̂z) (see Izv. A.N. 29, N. 6). Its definition is
purely homotopic.

Theorem 1 (Author, DAN 162 N. 6, 163 N. 2; Izv. A.N. 29, N. 6, 30 N. 1). If
one of the conditions 1, 2, 2′, 3 holds, then the “non-simply connected signature
formula” (Lk(Mn+4k), z) = σ(ẑ), ẑ ∈ H4k(M̂z) is true.

1. n = 1.
2. n = 2 and rk[H2k+1(M̂z,Q)] < ∞.
2′. n = 2, and the intersection index on the group H2k+1(M̂z,Q) is identically

zero.
3. n ≥ 1 and Mn+4k is homotopically equivalent to a fiber bundle with base

(torus) Tn and fiber-closed manifold M4k.

Corollary 1. Lk(M4k+1) is a homotopy invariant.

Corollary 2. For all k, pk(Mq) = 0 if Mq has the homotopy type of the torus T q.
(From K-theory and Adam’s results, we may now deduce that all homotopy tori
are stably parallelizable.)

Many examples show that for n ≥ 2, this simple form of the nonsimply connected
signature formula is false in general (Izv. A.N. 29 N. 6, Example 2).

We have, however, the following important

Theorem 2 (Rohlin, Izv. A.N. 30 N. 3). The scalar product (Lk(M4k+2), z) is a
homotopy invariant if Dz = y1 · y2.

Rohlin’s proof is non-constructive (except the case of part 2 of my earlier the-
orem). The problem of calculating the number (Lk, z) is not solved in general
for n = 2, Dz = y1, . . . , yn, except the special case of Th. 1, part 2. It leads
to interesting problems of stable algebra. Let J̃(Tn) be a reduced J-functor and
let τ ∈ J−1(0). We apply the construction of Browder and myself and obtain a
manifold Mn and a map f : Mn → Tn of degree 1 such that f∗τ ∈ K̃O(Mn) is
the stable tangent bundle and ker f

(πi)∗ = 0, i < l, n = 2l. Consider the Z(π)-
module N = ker f

(πl)∗ , π = Z × · · · × Z. It has a “unimodular, equivariant and
compact” scalar product h : N

≈−→ HomC(N,Z) which is symmetric for l = 2q and
skew-symmetric for l = 2q + 1; N is stable free (see Izv. A.N. 30 N. 1). The
pair (N, h) is trivial iff N = F1 + F2, and (F1, hF1) = (F2, hF2) = 0. We have
a sum (N1, h1) ⊕ (N2, h2) and Grothendieck groups A(π), B(π) (symmetric and
skew-symmetric cases). We may deduce non constructively from Corollary 2:

Theorem 3. For π = Z × Z, the group B(π) is non-trivial. (The group A(π) is
non-trivial also for π = 0 because the usual signature is the stable invariant.)

Let π be any group and let A(π), B(π) be the analogous Grothendieck groups
of free modules with scalar product (symmetric or skew-symmetric) with some
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“Poincaré duality” restrictions, π∗∗ = Hom(Hom(π, Z), Z). We can deduce from
Corollary 2 the following important fact:

Statement. There are nontrivial homomorphisms ∆i
j , j = 1, 2, i ≥ 0,

∆i
1 : A(π) → Λ4iπ∗∗, ∆i

2 : B(π) → Λ4i+2π∗∗

(Λkπ∗∗ are exterior powers of Z-modules). ∆0
1 is the usual signature of the Z-module

N⊗Z(π)Z with induced symmetric scalar product (Note: 0 → Z0(π) → Z(π) ε−→ Z).

∆i
j are “higher signatures” in some sense. They must be such that in the geomet-

ric situation ∆k
j (N, h) is equal to the dual Pontrjagin–Hirzebruch class DLk(Mn) =

DLk(τ) ∈ Hn−4k(Mn), τ ∈ J−1(0) ⊂ K̃O(Tn). It is another important case of
“non-simply connected Hirzebruch formula”.

Problem. Define algebraically the “higher signatures” ∆i
j .

This algebraic problem is closely connected with the following general topological
problem:

Problem. Let Dz = y1, . . . , yn, yi ∈ H1(M). Is the scalar product (Lk, z) a homo-
topy invariant? How can it be calculated?

The functors A(π), B(π) are interesting also for other groups. They have an
involution α : A(π) → A(π), α : B(π) → B(π), such that α(N, h) = (N,−h). Es-
pecially interesting in topology are the groups Aα(π) = A(π)/{x + α(x)} and
Bα(π) = B(π)/{x + α(x)} and the torsion groups tor A(π), tor B(π) [for π = 0,
α(x) = −x]. The groups Aα(π), Bα(π) are nontrivial for π = Zp (e.g. p = 5), as
follows from simple homotopy theory together with Atiyah’s theorem (classical lens
manifolds are h-cobordant iff they are diffeomorphic) and my constructions in the
diffeomorphism problem. This statement is also non constructive.

There are also other algebraic and topological problems connected with these and
analogous functors. For example, we have the important fact: a) let f : M2n

1 → M2n
2

be a map of degree 1 and let ker f
(πi)∗ = 0, i < n. If the map f is “tangential”

(such that f∗τ(M2) = τ(M1); τ denotes the stable tangent bundle), then the
Z(π1)-module N = ker f

(πn)
∗ with natural scalar product represents the element

x(f) ∈ A(π1) for n = 2l and x(f) ∈ B(π1) for n = 2l + 1 and is such that
x(f) ∈ torA(π1) or tor B(π1). The correspondence f 7→ x(f) determines canonical
maps Π(M2n

2 )/J̃(M2n
2 ) x−→ A(π1) for n = 2l, Π(M2n

2 )/J̃(M2n
2 ) x−→ B(π1) for n =

2l + 1. (Π(Mn) is a finite part of πN+n(TN ) where T is the Thom complex of the
N -dimensional normal SO-bundle) such that x(a + b− c) = x(a) + x(b) + α · x(c).

b) Let W 2n be a manifold with two boundaries M1, M2 and tangential retractions
ri : W 2n → Mi. Then the obstruction to the diffeomorphism between M1 and M2

lies in the groups Aα(πi) (n = 2l) and Bα(π1) (n = 2l + 1) or some of their factor
groups.

We have here the important conjecture:

Conjecture. If the higher signatures ∆i
j are complete invariants for the groups A(π1)

and B(π1) (modulo finite groups), then the number of manifolds {Mi} as above,
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Mi∪Mj := ∂W 2n
ij is finite (up to diffeomorphism homotopic to r−1

i ◦rj : Mi → Mj)
if and only if the natural maps Λ2n−4kπ∗1 = Λ2n−4kH1(Mi) → H2n−4k(Mi) are
monomorphic for all k.

(I can prove this in the case Mi ∼ T 2n−1, dimMi = 2n− 1, n ≥ 3.)

Remark. Very recently, Shaneson proved nonconstructively (he used different ter-
minology) that “higher signatures” are complete invariants (modulo finite groups)
for obstructions to surgeries, and therefore for Hermitian and skew Hermitian in-
tegral, even, unimodular quadratic forms over free abelian fundamental groups
(Bull. A. M. S., May 1968). The algebraic definitions are unknown! Wall, Hsiang
and Shaneson deduced from this the important theorem that the number of n-
dimensional homotopy tori (PL or smooth) is finite, n 6= 4. This fact depends on
the “non simply connected Hirzebruch formula” in the same way that Milnor’s clas-
sical theorem (Θ4k−1(∂π) is a finite group) does on the usual Hirzebruch formula.
R. Kirby found remarkable applications of homotopy tori to purely continuous
topology (Annulus Conjecture), developed now by Kirby and Siebenmann, Lashof
and Rothenberg. The base of his approach is also toral open subsets in the “etale
topology”.

2. Topological Problems in the Theory of Characteristic Classes

I will not formulate here the corollaries of the topological invariance of the ratio-
nal Pontrjagin classes (they may be found for example in my paper Izv. A.N. 1966,
30 N. 1, Introduction). I had always considered modern (1966) ”topological invari-
ance problems” (Pontrjagin classes, simple homotopy type) from the general point
of view: All earlier “topological invariance” theorems (homology, Stiefel–Whitney
classes) state, in fact, that some invariants are homotopy invariants. All “negative”
results state, in fact, that some invariants are not combinatorial invariants (most
important are Milnor’s results: differentiable structure, stable tangent bundle and
also integral Pontrjagin classes are not combinatorially and topologically invariant).

It was well known that rational Pontrjagin classes (and also Reidemeister–White-
head torsion) are combinatorial, but not homotopy, invariants. What properties of
“continuous homeomorphisms” can be used for studying topological invariants al-
gebraically?

My approach to this problem is based on the study of “toral” open nonsimply
connected subsets and their coverings in an open manifold W homeomorphic to
Mq×Rn. These open “toral” subsets in the “etale” topology are very important in
the homeomorphism problems. It is a trivial corollary of previous papers that for
topological invariance of all rational Pontrjagin classes it is sufficient to prove the
formula (Lk(W ), [M4k]) = σ(M4k) (W is homeomorphic to M4k × Rn) for simply
connected manifolds M4k (or even just for M4k = S4k).

The main idea of the proof is to find a sequence of non simply connected inter-
polating manifolds (open and closed) with special properties: we first consider a
subset W1 ⊂ W homeomorphic to M4k × Tn−1 ×R (because Tn−1 ×R ⊂ Rn) and
prove that W1 is diffeomorphic to V1×R if π1(M4k) = 0 or K̃0(π1×Z× · · ·×Z) =
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K̃0(π1(W )) = 0. The pair (W1, V1) is the first and main one in the sequence of our
manifolds, because Lk(V1) = Lk(W1) and we can apply to V1 the purely homotopic
“non simply connected signature formula” (Theorem 1, part 3). This gives us the
results: (Lk(W ), [M4k]) = σ(M4k). But our process gives, in fact, a stronger result.

Theorem 4. Let V1 be homotopically equivalent to Mq × Tn−1, q ≥ 5, and let
K̃0(π1 × Z × · · · × Z) = 0 (n − 2 times), π1 = π1(Mq). The covering V̂1 → V1

homotopically equivalent to Mq (with monodromy group Z×· · ·×Z) is diffeomorphic
to Ṽ × Rn−1 (see Izv. A.N. 30 N. 1, Theorem 5 and Supplement 2).

I do not know any proof of topological invariance of classes without “toral”
interpolating manifolds. However, the problem seems very far (formally) from the
fundamental group. I also do not know whether the condition K̃0(π1×Z×· · ·×Z) =
0 is only technical in the problems connected with Mq × Rn.

We use here essentially (for technical purposes) a non-simply connected gener-
alization of Browder’s recent theorem: if Wn+1 is “like” Mn × R (Mn is closed,
n ≥ 5) and K̃0(π1) = 0, then Wn+1 is diffeomorphic to V × R) (see W. Brow-
der, Cambr. Phil. Soc. 1965 for π1 = 0 and the author, Izv. A.N. 1966, 30 N. 1
for π1 6= 0). I remark here that the last generalization of Browder’s theorem it-
self (and also the generalization of Browder, Levine and Livesay’s theorem about
the boundary for open manifolds) was found independently by L. C. Siebenman;
namely, he found the condition K̃0(π1) = 0 in these problems, on the basis of
Wall’s idea in another problem (“direct summands” of the homotopy-finite com-
plexes. Annals of Math. 1965). These ideas were developed recently by V. L. Golo
who found here a “Poincaré duality law”, which gives very strong restrictions on the
“geometrically realizable” elements in K̃0(π), and constructed nontrivial geometric
examples for π = Zp (Doklady 1966). He uses here some results of Kummer theory
reformulated in terms of K̃0(π). Soon after my papers (Dokl. A.N. 1965, N. 6;
163 N. 2) Siebenmann developed somewhat the construction of a sequence of non-
simply connected interpolating manifold and proved the “splitting theorem”: let
K̃0(π1×Z×· · ·×Z) = 0, q ≥ 5, n ≥ 1, π1 = π1(Mq). Then, if W is homeomorphic
to Mq × Rn, Mq closed, it is diffeomorphic to V × Rn.1 Interesting results were
obtained by Sullivan and Wagoner in application of this result to the Hauptver-
mutung (Bul., AMS, 1967). In 1967, Sullivan, Lashof and Rothenberg proved the
Hauptvermutung for almost all manifolds with π1 = 0.

Let me give another example to illustrate the usefulness of considering non-
simply connected open and closed submanifolds in purely topological problems.
Let Sn ⊂ Sn+2 be a locally flat topological imbedding and let n ≥ 5.

Theorem 5. All such imbeddings Sn ⊂ Sn+2 are topologically equivalent to differ-
entiable imbeddings in some differentiable structure on Sn (from Θn(∂π); see Izv.
A.N. 30 N. 1, Theorem 6).

1This theorem is a direct corollary of Theorem 4 applied to the “toral” subset M×T n−1×R ⊂
W only for n ≥ q because we have the immersion V × Rn → W by Theorem 4.
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The proof of this theorem uses essentially open sets Ui ⊂ Sn and Wi = Ui − Sn

with π1(W1) = Z, the sequence of which is “like” Sn × S1 × R.
My first approach to the topological problems connected with rational Pontrja-

gin classes contains another idea (from the technical point of view) in the study
of open manifolds homeomorphic to M4k × Rn and M4k × Tn−1 × R (see Dokl.
A.N. 162 N. 6, Izv. A.N. 29 N. 6). It had given me the first nontrivial results in
these problems (for example, the first negative solution of the Hurewicz problem
about the homeomorphism and homotopy type of closed simply connected mani-
folds). This idea is based also on the fundamental group and coverings, but does
not use the specific differentially-topological technique of the author and Browder
(and its generalizations). The method of these papers is purely homological (for
manifolds over Q). But there are many difficulties here (not only technical ones) in
codimensions greater then two. It would be very interesting to develop this method.
Perhaps this problem is connected closely with the homotopy problems of the first
part of our paper, because the parts 1 and 2 of Theorem 1 were obtained by this
method.

3. Pontrjagin–Hirzebruch Classes over the Finite Coefficient
Groups

We consider now the coefficient group Zm and classes pk ∈ H4k(M,Zm). Many
homotopic invariance relations are known here. All of them are connected with
J-functors and cohomological operations in some sense (Thom, Wu, Atiyah, Hirze-
bruch). However the class p1 is not homotopically invariant for 5-manifolds (the
rational class p1(M5) is homotopically invariant). This may be seen with the clas-
sical lens manifolds M2l+1 = L2l+1

p ; (g0, . . . . , gl), gi 6= 0 (modulo p). The complete
homotopy invariant here is q =

∏
i gi up to multiplication on λl+1 6≡ 0 (mod p),

pk =
(∑

i q2k
i

)
x2k, x ∈ H2(L,Z).

As previous (“rational”) results had shown, it is useful for invariance problems to
give a “signature” definition of classes (modulo p) like the Thom–Rohlin–Schwartz
definition of rational classes.

The problem of finding such a definition was solved by the author and V. A. Rohlin.
We shall give a definition of classes δk · Lk (mod m) for Qm-homological mani-
folds (Qm is the ring of rationals with denominators relatively prime to m), δk =∏

i≤4k |πN+i(SN )|2.

Remark. We can define also the classes µk·Lk forQm-manifolds, µk =
∏

p≥2 p[(2k−1)/(p−1)],
by using more complicated arguments, connected with the problem of realization of
the homology class by a submanifold with normal SO-bundle: the universal multi-
ple αi in this problem (such that αiz is realizable for all z ∈ Hi(Mn, Z), n > 2i) is
equal to

∏
p>2 p[(i−1)/(2p−2)], and α4k = µk) (Dokl. A.N., 1960, v. 132 N. 5).

The idea of the definition of Rohlin and myself is this: we realize the homology
class Z (mod m) by a regular map f : V 4k → M of a manifold with boundary
∂V 4k = mW = W∪· · ·∪W (m times), such that the image of ∂V 4k is diffeomorphic
to W and f on each component of ∂V 4k is a diffeomorphism. The normal bundle of
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f may be trivial (first variant) or an SO-bundle (second variant). We consider the
natural quadratic form (possibly degenerate) on H2k(V 4k,Q) or H2k(V 4k, ∂V ;Q)
and its signature σ(V 4k).

Our definition is: (Lk; Z) = σ(V 4k) mod m (in the first variant). This definition
is correct. We use here essentially results of cobordism theory (all torsions have
order 2) and the next lemma: let V 4k

1 , V 4k
2 be manifolds having the same closed

component in their boundaries W ⊂ V 4k
1 , W ⊂ V 4k

2 ; then the signature is an
additive invariant: σ(V 4k

1 ∪W V 4k
2 ) = σ(V 4k

1 )+σ(V 4k
2 ). If ∂V = mW , then 2W ∼ 0

in ΩSO (or W ∼ 0 in ΩSO if m = 2l + 1).2

Thus 2W = ∂V̄ and σ(V 4k ∪2W V̄ ∪2W · · · ∪2W V̄ ) = σ(V 4k) modulo m/2 for
any V̄ , and we can apply to the manifold (V 4k ∪2W V̄ ∪2W · · · ∪2W V̄ ) (m/2 times)
the usual Hirzebruch formula.

Rohlin and I have proved the following theorems A and B.

Theorem A. Let M4k+1 be a Qm-homological manifold and z ∈ H4k(M4k+1,Q)
a homology class such that (βz) · (βz) = 0, β = Bokštĕın coboundary. Then the
scalar product (Lk, Z) mod m is topologically invariant.

The proof of theorem A is the development of purely homological papers (Novikov,
DAN 126 N. 6; Izv. 29 N. 6 and Rohlin, Izv. 30 N. 3). The proof of theorem B is
differential-topological.

Problem. Is this scalar product homotopically invariant? This problem seems to
be connected with “coverings with fixed points”.

Theorem B. All classes δkLk of smooth manifolds are topological invariants.

We have now a number of corollaries:

Corollary A. There are universal numbers λk 6= 0 such that for any manifold
M , complex X and map f : X → M (dimX ≤ k) the element λkf∗τ ∈ K̃O(X) is
a topological invariant of M (τ is the stable tangent bundle of M). For example,
λnτ ∈ K̃O(Mn) is a topological invariant (X = M , f = 1). The number λ5 is
equal to 2h · 3k (possibly h = k = 0). We consider the classical lens 5-manifolds
with π1 = Z5. All of them are homotopically equivalent, because the equation λ = µ3

(mod 5) always has a solution. But they may have different classes p1.

Corollary B. There are topologically nonequivalent classical lens manifolds with
π1 = Z5 in dimension 5 (or the unitary transformation groups A5 = 1), which are
homotopy equivalent.

Corollary C. For almost all prime p (except a finite number, depending upon the
dimension) the tangential homotopy type of lens manifolds is a topological invariant.

Corollary D. The Milnor map j : K̃O(X) → K̃top(X) for any complex X, dim X ≤
k, is such that Ker j is a periodic group with period λk.

2The Cobordism theory (mod p) and its topological applications were pushed very far by
D. Sullivan in 1967 in his paper about the space F/PL and the Hauptvermutung. This theory is
based on manifolds W with ∂W = pV , as is our definition of pk modulo p.


