ON EMBEDDING SIMPLY-CONNECTED MANIFOLDS IN EUCLIDEAN SPACE

S. P. NOVIKOV

We shall consider compact smooth manifolds and smooth mappings. As usual, a mapping [:
M" — W™ will be called regular if its Jacobian has rank n at every point, and completely regular if the
inverse image fL(w) of every w € W™ contains no more than two points. We shall study the possi-
bility of smoothly embedding M" C E2*~1. Our method generalizes Whitney’s in [2], where he consid-
ers embeddings M™ C E2", and is based on an idea of Pontryagin’s concerning homotopy groups of

spheres [1].

Theorem 1. Every simply-connected odd-dimensional M* (n>6) can be smoothly embedded in
E2n-1

The proof depends on a series of lemmas on regular mappings in the large. By means of a familiar
technique elaborated by Whitney, one easily proves
 Lemma 1.* For every regular f: M* — E27% yish f < [;] there exists a regular g: M" — F277%,
close to f in the C1 topology, such that

1) The equation g(x) = g(y) defines a compact submanifold qug CH™ x M® — AMP), where A is
the diagonal map;

2) The projection p: M™ x M™® — U™, restricted to E{g‘, is @ smooth mapping; N

3) g is completely regular; the restriction of g to the singular submanifold M: s p(ﬁ!? CM* isa
two-sheeted covering.

It follows from the lemma that the singular manifold M: decomposes into some number s of spec-
cial pairs of mutually homeomorphic connected components

Q (M;:i U M::é)

. . t .
such that g(Mz’i) = g(Mg’a), and some number ¢ of connected manifolds U M’g"f on which g is a

‘21
nontrivial 2-covering. Thus !

t i t .
Me=(U M)y (U g:i U M),

Definition. }" will be called k-parallelizable if an e-neighborhood Uf‘k) of the k-skeleton of a
differentiable triangulation of M" is parallelizable, for some sufficiently small e.

It is obvious that for n > 2% + 2 our definition does not depend on the triangulation, and that a
k-connected manifold is k-parallelizable. For % = 1, our definition gives simply orientability. Note
also that a k-parallelizable manifold is (% — 1)-parallelizable. Let us now take n 22k + 3.

Lemma 2. If M® is k-parallelizable, then the singular submanifold M% has trivial normal bundle
in " and is a w-manifold (i.e., in an embedding M: CE™ the normal bumfle is trivial if m > 2k + 3).

The proof is based on the fact that M* x M" — A (M") is also k-parallelizable, while the normal

*For k =1 this lemma is contained in Whitney®’s work, for example, in [3].
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bl-mdle of a submanifold of dimension <%, contained in a k-parallelizable manifold of greater dimen-
slom, Is constructed exactly as in a euclidean space of the same dimension.

Now suppose n even, k=1, M" orientable.
Lemma 3. The singular manifold M; CM"™ consists only of singular pairs of circles.

Suppose 0!11 the iontrary that M} contains a circle S1 C M! on which g is a connected 2-covering.
Obviously g(S)) = §' C E2"71, Choose a system Wy, e, ¥,-1) of independent vector fields tangent
to M" and transversal to Sé CMm.

Then, roughly speaking, there results a decomposition of the normal bundle of g(S!) c E2%71 jaeo

a sum of 2-plane bundles ugz), i=1, -+, n~1, generated by the vectors W,. Each of the bundles

2) . .
[I.E- ) is transversal to the circle g(S? and has transition matrix Ai = ((1) (1) ), that is, is nonorientable,

The Whitney sum of an odd number of such bundles is also nonorientable, therefore nontrivial. But
since n—1 is odd, while the normal bundle of a circle in euclidean space must be trivial, we obtain
a contradiction, and the lemma is proved.

More generally, when k=1, we have

Lemma 4. The number t(g) of connected singular coverings is always even. The map g is regu-
larly homotopic to a map 8, having no singular nontrivial 2-coverings.

NThe proof of this lemma is of rather different character, and is based on studying the projection
M" &, E?" 7, E2%71 where g=mo g and 2’ is completely regular. (We can always reach this situation
by means of a small deformation of the mapping in E2”, and a projection of this small deformation in-
to E2"71 which obviously preserves the properties mentioned in Lemma 1.)

The behavior of this projection is further described in the following (trivial) lemmas:

Lemma 4a. If 3: Y™ — E2" and 7g: M — E*™Y are regular, then g is regularly homotopic
to an embedding and has an even number of pairs of singular points.

Lemma 4b. A connected singular covering for g can arise under the projection only from an odd
number of pairs of singular points of g ‘

A singular pair can arise in the projection only from an even number of pairs of singular points of
g.

Lemma 4c. There exists a regular homotopy 'g\"t of &= ’gvo such that

1) E’t and ngt are regular for t <1, and completely regular for t=1; ng'l satisfies Lemma 1;

2) coverings of the map ﬂg’l can arise under the projection from a pair of singular points, while
singular pairs of circles can come from nothing.

From now on we consider only mappings g: M" — E 2n-1 which have no connected singular cover-
ings. Suppose also that 7, (/") = 0. Following Pontryagin [1], we define an invariant of a singular
pair and an invariant of the mapping g.

Definition of the invariant of a singular pair. Let Si, S% cur, g(Si) = g(S%). Consider a pair of
discs a%, a% C M™ such that a% N a% =4 and 80% = Si, 80% = S;. We define a system of vector
fields W(.i), i=1,2; j=1,++,n—2 o0n M™, orthogonal to the al?. We put ngll = Qa%/at where ¢
denotes the radii of the films (i.e., these are transversal to the set Sll and to the Wg-‘), j<n=-2).

We obtain vectors g (W) = V]- Ki-1)j? transversal to g(S%) and independent. These correspond to an
element a € 7, (GL(2n - ) =Z,.

Lemma 5. If the generator of H" (3", Z,) has the form S¢2(x), x € B2 (4, Z,), then the discs
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a? and the fields W;.i) can be chosen that o = 0.

In case H"(M", Z,)/Im Sq? = Z, the invariant o of the singular pair does not depend on the
choice of the discs ag. In this case the sum E ay, of the invariants of all the singular pairs S =

(Sl ]‘ U S1 k, can be considered as an invariant of g: M® — E2"7! at least when the latter has no
connected smgular coverings.

Lemma 6. If M* is simply-connected and n = 4l + 3, then the invariant Eak vanishes for any
regular g: M* — E2*71 with the properties of Lemma 1.*

This lemma is an important step, and its proof, which is direct and geometrical, is rather compli-
cated. However, it also follows easily from recent work by Hirsch on regular mappings [4].

Let 5, S, be two singular pairs of the mapping g: ¥" — E?"71 such that a (S =als,).

Lemma 7. There exists a regular homotopy g, of g =g, such that g, satisfies Lemma 1l and has
two fewer singular pairs than g =g,.

The proof generalizes a familiar proof of Whitney’s [2] for pairs of singular points. We attach
rings B =Si x I and Bz=5%xl to M* in such a way that S} x € form the pair S, and S} x(1—-¢
form S5,). We can arrange B, N B, = #- On these rings we take vector fields o i=1,2; j=1,

, & ~ 2 extending those on the dlscs which induce the invariants @ (S;). We can easily ensure that
the frames (7, g(W(l)) g(W(z))) (where the 7; are the fields tangent to the g(S,)) define opposite
orientations, fot i=1, 2. Now we attach a "Wlntney cell” o 0% x ST — E2771 such that

w(a? x SY n g™ =¢(B) U g(B,);

we must also choose i to satisfy certain compatibility conditions on the boundaries. Now, since the
invariants of S| and S, coiacide, we can pick in a small neighborhood U (4(? x S1) a suitable sys-
tem of coordinates, one of which is the coordinate on the circle, two others are the standard 2-frames
on o?, and the remainder satisfy our boundary conditions. With these coordinates in U (y(o? x S1)),
we can perform Whimey’s deformation, for a constant circle-coordinate.

Repeating this construction and applying Lemma 6, we obtain finally a map gg: H" — g2rl
which bas singular pairs with zero invariant only.

With g¢ we may now proceed in either of two ways: following [2], we may attach complementary
pairs with zero invariants, and apply Lemma 7, or we may simply carry out a direct separation of a
pair with zero invariants.** In either case we arrive at an embedding. The theorem thus follows from

the preceding lemmas.
Note that the lemmas imply the following conditional
Theorem 2. Suppose n =2, n>6, n; (M") = 0. There is an embedding M" CE?"L if and only if

there is an immersion M® — E27"2_ (See [4].)***
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2n- . . - . .
*If n=4l+1 ons can assert the existence of a g: M » E" L with zero invariant, since there exists an
immersion M" > E2*

**A method for separaung a singular pair with zero invariant has been indicated to me by D. B. Fuks, who
kindly took an interest in the present article.

***Closer study shows that for n = 4] + 2, the invariant G is a homotopy invariant of M": it does not depend
on the immersion g: M* 5 E"7! when n £ 1 (mod 4).
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