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Abstract. An exact definition and calculation of all singular points (in the
sense of qualitative theory of differential equations) are presented for the Ein-

stein equations in a homogeneous cosmological model of the Bianchi IX type,
as well as their separatrices. This makes possible an exact statement and solu-

tion of the problem regarding the initial states of the Universe at early stages

of evolution which are “typical” for the sign of time corresponding to expan-
sion (in contrast to contraction, for which the typical states have been found

by Belinskii, Lifshitz, and Khalatnikov and the analytically complex structure

of the cosmological singularity has been elucidated). The initial typical states
for Universe expansion indicated in the paper correspond asymptotically to

power-law solutions with three types of time-factor asymptotics: that of the

Friedman quasiisotropic type, that of the Taub type and a previously unknown
type.

Introduction

The general anisotropic Bianchi IX model was first investigated by Belinskii,
Lifshitz, and Khalatnikov (BLKh) in[1, 2], and later by Misner[3, 4], by Doroshke-
vich, Lukash, and I. Novikov[5], and by others, who were initially interested mainly
in the asymptotic properties of the components of the spatial metric and the tra-
jectories of light rays when the universe contracts to a point. Another problem,
namely the expansion away from the singularity (up to the instant of the maximum
expansion) was first considered for the Bianchi IX model only recently (see [6]–[8]).
In each of these problems, it is important to know the “typical” states in which the
components of the spatial metric can be situated near the singularity (what is the
definition of these typical states, and how does it depend on the sign of the time).
For the process of contraction to a point, typical states were already indicated in
the language of “Kasner exponents,” which resulted from the piecewise approxima-
tion of the time dependence of the components of the spatial metric by means of
power-law functions, an approximation that turned out to be very successful (see
[2]). For the sign of the time on the expansion side, this problem has not been
solved. Moreover, there was no exact definition of the concept of the “typical”
state during the earlier stages of the evolution near the singularity.

In the present paper we use the method of investigating homogeneous models
from the point of view of the qualitative theory of ordinary equations with algebraic
right-hand sides, namely, it is necessary in principle to determine and to investigate
the singular points of these equations and of their separatrix. It is then necessary
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to draw the diagram of the transitions along the separatrix and to assess from
this diagram the asymptotic behavior and the typical states. However, even the
very definition of the singular points for Einstein’s equations is far from a trivial
matter, since there are 110 singular points in the region where the metric is positive.
Owing to the leeway in the choice of the coordinates and the time, the continuation
of the system to the boundary of this region is highly ambiguous and, as a rule,
gives singularities that are so degenerate that they cannot be used to assess the
asymptotic behavior.

These difficulties can be overcome. We present a correct definition of the singular
points and, using certain simple algebraic procedures, supplement physical region
with a boundary on which the geometry of the dynamic system becomes perfectly
understandable. In particular, the BLKh results [2] in the contraction direction
turn out to be a formal consequence of the separatrix diagram of this system (see
Sec. 5). By way of another consequence, we present a list of the possible power-law
asymptotics near the singularity; for the particular case of the Bianchi IX model
with axial symmetry, there are no other asymptotic forms at all (this model admits
of exact integration only for zero matter (see Sec. 3)). As a third consequence, we
indicate typical initial data (from the point of view of a separatrix diagram on the
boundary) on the expansion side (see Sec. 5).

In conclusion, the authors wish to note that the problems and the results of
Secs. 1 and 2 belong to S. P. Novikov, whereas the results of Secs. 3 and 4 were
obtained mainly by O. I. Bogoyavlenskii. The results of Sec. 5 were obtained by
the authors jointly.

1. Singularities of the Einstein Equations Where the Spatial Metric
Is Not Fully Degenerate

In four-dimensional space-time, there acts on the right a three-parameter group
G (with three-dimensional orbits) of one of the nine Bianchi types (Type IX is
SU2 or SO3); the Einstein metric is assumed to be right-invariant, the orbits of
the group are assumed to be spacelike. We choose four right-invariant vector fields
X0, X1, X2, and X3, where the fields X1, X2, and X3 are tangent to the orbits of
the group G. Their commutators, by definition, are of the form

(1.1) [X0, Xα] = 0, [Xα, Xβ ] = Cδ
αβXδ,

where α, β, δ = 1, 2, 3; Cδ
αβ are the structure constants of the group G. Then the

scalar products

(1.2) gij = 〈Xi, Xj〉, i, j = 0, 1, 2, 3,

depend only on the time gij(t), where the time lines go along the field X0.
We assume that the trajectories of the field X0 are geodesics. If g0α = 0, then

the reference frame is synchronous; if g00 = 0, then we call the reference frame
“light-like.” For simplicity we assume that the equation of state takes the form

(1.3) T i
k = (p+ ε)uku

i − pδi
k, ui = δ0i , p = kε.

The Einstein equations in the synchronous frame have been written out in [2].
Starting with the region where the spatial matrix gαβ is positive, we should like to
determine the behavior of the system near the instant of its degeneracy (cosmolog-
ical singularity).
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The singular points or the rest points are determined for a system of ordinary
first-order differential equations with smooth time-independent right-hand sides
(containing no poles or discontinuities). At these points, all the right-hand sides
are equal to zero. If we have a system of equations of order n, then it is necessary
to reduce it, by the usual means, to a first-order system of the form Ẋ1 = fi(x);
only then can we determine the singular points. If the right-hand sides have poles,
then all the right-hand sides must be multiplied, prior to the determination of the
singular points, by a common (minimal) factor such that the right-hand sides no
longer have poles; only then can we equate all the right-hand sides to zero (this is
equivalent to a change of the time in the system). It is then necessary to determine
the eigenvalues of the matrix |δfi/δxj | at the singular points and the separatrices
corresponding to the nonzero eigenvalues (see [9, 10]).

It is easily shown for the Einstein equations in the homogeneous models that
there are no singular points at all in the region where the spatial metric gαβ is
positive. All the singular points lie on a surface where the metric gαβ becomes
degenerate. By virtue of the chosen form of the energy-momentum tensor (1.3),
we can use a time-independent substitution in the synchronous reference frame to
make the metric gαβ diagonal at all t; the singular points therefore appear on hyper-
surfaces of the type (gαα = 0), for example at α = 1. However, the synchronous
reference frame itself becomes degenerate on this surface; Einstein’s equations lose
their physical meaning on this surface.

To determine the singular points we make use of the fact that the light-like
reference frame, unlike the synchronous frame, retains a physical meaning on the
surface. Let the metric be of the form

(1.4) gij =


0 1 0 0
1 g11 0 0
0 0 gnm

0 0

 , n,m = 2, 3.

In Taub’s particular case, the transition to a light-like reference frame makes Ein-
stein’s metric in empty space analytic at g11 = 0 and without singularities in the
four-dimensional sense[11].

The situation is different in the general Bianchi IX model. As shown in [1], Taub’s
solutions are unstable in a general model of type IX, in spite of its regularity. The
reason lies in the singular points in the sense of the theory of differential equations
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([8]). The Ricci tensor in the system (1.4) takes the form

(1.5)

R00 =
1
2
(ln g).. − 1

2g
+

1
4
κn

mκ
m
n ,

R10 =
1
2

(
d

dt
+

ġ

2g

)
ġ11 +

1
2
(κ3

2 − κ2
3),

R11 =
1
2

(
d

dt
+

ġ

2g

)
(g11ġ11)−

ġ2
11

2
+ 1− 1

2g

∑
g2

nm,

R22 =
1
2

(
d

dt
+

ġ

2g

)
(g11ġ22 − 2g23)−

g11g22
2g

+ 1

− g11
2
κl

2κl2 − (g22κ3
2 − g23κ2

2)

R23 =
1
2

(
d

dt
+

ġ

2g

)
(g11ġ23 + g22 − g23)−

g11g23
2g

− g11
2
κl

3κl2 +
1
2
(g33κ2

2 − g23κ3
2 + g23κ

2
3 − g22κ3

3),

R22 =
1
2

(
d

dt
+

ġ

2g

)
(g11ġ33 + 2g23)−

g11g33
2g

+ 1− g11
2
κl

3κl3

− (g23κ3
3 − g33κ2

3).

All the remaining Rij vanish identically; we denote by g the determinant g = ‖gnm‖,

κnm =
dgnm

dt
; l,m, n = 2, 3.

Einstein’s equation (for empty space) takes the form

(1.6) Rij = 0.

The system (1.6) has two integrals:

(1.7)
I1 = R11 − g11R10 = 1− 1

2g

∑
n,m=2,3

g2
nm −

1
2
g11(κ3

2 − κ2
3),

I2 = gmnRmn − g11R00.

We are interested in this system only at the levels of the integrals I1 = 0 and I2 = 0.
After making the time change

dτ/dt = 1/g11

we obtain, after calculations, a two-dimensional manifold of singular points, which
correspond exactly to the limits of Taub’s solution in empty space on the surface
g11 = 0:

(1.8) g22 = g33, v22 = v33, g23 = 0, v23 = 0, v11v22 = −2, vij = dgij/dt.

Their nonzero eigenvalues are of the form

(1.9) λ1 = v11 < 0, λ2 = λ̄3 = −v11 + 4i, λ4 = −v11,

and an eigenvalue that is negative on the contraction side corresponds to a Taub
solution that enters the singular point in empty space. All the singular points lie
at the level I1 = 0, I2 = 0; if g11 = 0 then g 6= 0. They correspond, by virtue
of (1.8), to the limits of the so-called “Taub solutions in empty space” (g22 ≡ g33,



SINGULARITIES OF THE COSMOLOGICAL MODEL OF THE BIANCHI IX TYPE 5

g23 = g32 ≡ 0). The surface g11 = 0 is an invariant manifold or aggregate of the
emerging separatrices of this set of singular points.

Simple calculation with the system (1.5) shows, following the substitution

dτ1/dτ = 1/g,

that on the surface g11 = 0 there are no singular points other than the Taub
singularities (1.8), except for the case when all gαα = 0. This is the most degenerate
singularity, which cannot be conveniently investigated in the light-like reference
frame. Since the light-like reference frame has retained a physical meaning on the
surface g11 = 0, the obtained singularities are correctly defined. On the basis
of the results we shall subsequently subject the chosen coordinate system to the
requirement that it yield on the surface g11 = 0 the same singularities as the light-
like reference frame. It turns out that this can be done even in the synchronous
reference frame by using the Hamiltonian formalism and by correctly choosing the
phase coordinates.

2. Hamiltonian Formalism. Power-Law Asymptotics
in the Bianchi IX Model

The first question we shall consider in the investigation of a strongly degenerate
manifold of singular points, where the entire spatial metric is degenerate, is that of
the power-law asymptotic expressions in t (in synchronous time t) for an equation
of state (1.3). We already know in this case the asymptotic solutions of Friedmann1

and Taub

q2α = gαα ∼ Cαt
4/3(1+k), Cα = const,(2.1)

q2α = aαα = C1t
2, gββ = gγγ = const.(2.2)

As shown by one of us[8], there is one other possible power-law asymptotic form:

(2.3)
q2α = gαα ∼ Cαt

(1−k)/(1+k), q2β = gββ ∼ Cβt
(3+k)/2(1+k),

q2γ = gγγ ∼ Cγt
(3+k)/2(1+k); α 6= β 6= γ.

The asymptotic form (2.2) appears even in empty space, while (2.1) and (2.3)
appear only in the presence of matter (we shall show subsequently that there are
no other asymptotic forms).

The Hamiltonian formalism in homogeneous models was developed by Misner[3,
4] and finally systematized in the most convenient form in [7]. For the equation of
state (1.3), the Hamiltonian takes the form

(2.4) H =
1

2(q1q2q3)1−k
(Ū(Pα) + V (q2α)),

dpα

dη
= − ∂H

∂qα
,

dqα
dη

=
∂H

∂pα
,

where Pα = pαqα, α = 1, 2, 3, and pα and qα are the momenta and coordinates.
The time η and the polynomial Ū are such that

(2.5) Ū(Pα) = 2P1P2 + 2P2P3 + 2P1P3 − P 2
1 − P 2

2 − P 2
3 ,

dt

dη
= (q1q2q3)k,

and the potential V depends on the group G.

1These asymptotic forms, which generalize the Friedmann solution, were first obtained by
Lifshitz and Khalatnikov [12] and called “quasiisotropic.”
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For the Bianchi IX model, the functions Ū and V have the same form. The
kinetic energy is indefinite, and the motion is allowed at the levels 2H = A ≥ 0,
with the case A = 0 corresponding to empty space.

Using the scale group (the homogeneity of this Hamiltonian) we can make the
substitution

(2.6) Pα = λ2bα, q2α = λ2γ2
α

under the condition F (γα) = 1, where F (λγα) = λmF (γα). We then obtain an
equation with energy H̄ and friction

(2.7)
dpn

ds
= −xn

∂H̄

∂xn
± 2pn,

dxn

ds
= xn

∂H̄

∂pn
,

dλ

ds
= λ;

H̄ = (4(p2
2 − p2p3 − p2

3) + 3V (x2, x3) + 3Ae−αs)1/2 = |b1 + b2 + b3|;

n = 2 and 3, α = 3k + 1 (plus on the contraction side, minus on the expansion
side), where
(2.8)
F (γα) = γ1γ2γ3 = 1, γ2 = x2, γ3 = x3, p2 = b1 − b1, p3 = b3 − b1; A > 0.

We have in the system two monotonic functions

Uvac = 4(p2
2 − p2p3 − p2

3) + 3V, U = H̄2

1) U → +∞ (on the contraction side)

(2.9) dUvac/ds ≥ 0;

2) U → +0 (on the expansion side)

Uvac → −3Aeαsmax < 0.

We now derive the asymptotic form (2.3) on the contractor side (in the coordi-
nates (2.6)–(2.8)). We advance the following hypotheses:
(2.10)

U1/2 → +∞, s→ +∞, p = p2 + p3 � 1,
p2 − p1 = Bp� p2 + p3 = p, or B � 1; x2 = γ2 � 1, x3 = γ3 � 1.

From (2.7) we readily see that

(2.11)

dx2

ds
< 0,

dx3

ds
< 0, w =

1
(x2x3)4

� 1.

3
2

2∑
m=1

xm
∂V

∂xm
= −12 +O

(
1

w1/2

)
,

if |B| < 1/3.
We introduce a new time q such that

(2.12)
dλ−1

dq
=
λ−1

w
U1/2,

dw

dq
= 8p,

dp

dq
∼ 2pU1/2

w
− 12.

It is easy to show that if the growth of p(q) is faster than linear, then the matter
has no influence, for in this case we arrive at the exponential regime p(q), where
|B| ∼ 51/2, and by the same token the condition (2.11) will sooner or later be
violated.
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If p(q) grows linearly, then the following hypotheses must be made for the influ-
ence of matter (at k = 0):

(2.13) λ−1 ∼ βp2, w ∼ αp2; α > 0, β > 0.

In the region where these hypotheses hold, we have

(2.14)

dp

dq
∼ 2z

α
− 12; z = (1 + 3B2 + 3α+ 3Aβ)1/2;

dw

dq
∼ 2αp

(
2z
α
− 12

)
,

dλ−1

dq
∼ 2βp

(
2z
α
− 12

)
∼ βp z

α
.

This yields

(2.15) z = 4, α = 1/3, 16 = 1 + 3B2 + 3α+ 3Aβ; dp/dq ∼ 12.

If p2 ∼ p3 (or B ≈ 0) at all times, then we arrive at the answer

(2.16) p ∼ 12q + const; xα = Dαq
−1/4, Dα = const; α = 2, 3.

Returning to the synchronous time, we obtain formulas (2.3), where k = 0
(dust). For 0 < k < 1 the situation is analogous, but (2.13) must be replaced by
the hypothesis

λ−3k−1 ∼ βp2.

3. Asymptotic Form of the Taub Model with Matter Near the
Singularity q2 ≡ q3

We investigate first the simple singular case when q2 ≡ q3, P2 ≡ P3, and the
Hamiltonian (2.4) takes the form

(3.1) H =
1

(q1q22)1−k
(2P1P̄2 − P 2

1 + 4q21q
2
2 − q41), P̄2 = 2P2.

We introduce formally new variables (without discussing their meaning):

(3.2) u =
P1

2P2
, w =

q21
2P2

, v =
q1q2
2P2

and the time τ , where

(3.3)
dτ

dt
= − w

q1v2
.

In terms of the new variables, we obtain the equations

(3.4)

dv

dτ
= v(−k − (1− k)(u− 1)2 − (1− k)w2 − 4kv2),

dq1
dτ

= q1(u− 1),

du

dτ
= 2w2 + (2u− 1)H0 + 4v2 − 4uv,

dw

dτ
= w(2(u− 1) + 2H0 − 4v2),

H0 =
1
2
(1− k)(1− (u− 1)2 − w2 + 4v2),

H0 ≥ 0,
1
v

dv

dτ
≤ 0, w ≤ 0,

dτ

dt
> 0.

(H = 0 for empty space).
When the singularity is approached, we find that the asymptotic forms are all

determined by the system (3.4), which is correctly defined in the semicircle

(3.5) v = 0, H0 ≥ 0, w ≤ 0
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(the plane v = 0 did not appear in the physical region). The singular points and
their eigenvalues take the form (in terms of the variables (u,w)):

(3.6)

1) u = 0, w = 0 (H0 = 0), λ1 = −(1− k), λ2 = −2 (node);

2) u = 1/2, w = 0, H0 = 3/8(1− k), λ1 = 3/4(1− k); λ2 = −1/4(1 + 3k)

(saddle);

3) u =
3 + k

5− k
, w = − 1

5− k
((1− k)(1 + 3k))1/2, H0 =

2(1− k)
5− k

,

λ1,2 =
2

5− k

(
1− k ± i

((
1− k

2

)
(3 + 16k − 3k2)

)1/2
)

(focus);

4) u = 2, w = 0, H0 = 0, λ1 = −3(1− k), λ2 = 2 (saddle).

(saddle). The phase diagram takes the form shown in Fig. 1.
It is easy to show that the “whiskers” (or separatrices) of the singular point 1),

which come from the region v < 0, are of the Taub type (2.1), those of singular
point 2) are of the Friedmann type (2.2), and those of singular point 3) are of the
type (2.3). The whiskers of the singular point 4) come from the unphysical region
q1 ≡ 0.

This investigation provides rigorous proof that no other power-law asymptotic
forms are possible in this model. At 0 ≤ k ≤ 1/3+α, where α > 0, it can be shown
additionally that the system (3.4) has no limit cycles in the region (3.5). It follows
directly from this that in Taub’s model with matter this interval in k contains no
asymptotics at all other than (2.1), (2.2), (2.3). (There are probably no limit cycles
at all k < 1 either.)

Let us prove that the system (3.4) has no limit cycles for 0 ≤ k ≤ 1/3: we
consider a function R such that

(3.7) R = (u− 1)2 + w2,
dR

dτ
= (1− k)(1−R)[2R+ (u− 1)].

Obviously dR/dτ reverses sign inside the unit circle only on the circle dR/dτ = 0
on which R ≤ 1/4. Therefore the cycle, if it does exist, lies in the region R ≤ 1/4,
which contains the circle dR/dτ = 0. The divergences of the right-hand sides of
the system (3.4) are given by

div f = (1− k)
[
2− 4R+

1 + k

1− k
(u− 1)

]
.

For the interval 0 ≤ k ≤ 1/3, the region lying inside the circle div f = 0 contains
an internal subregion R ≤ 1/4. Therefore in the region R ≤ 1/4, according to the
Bendixson criterion, there are no limit cycles.

The phase diagram indicated in Fig. 1 at v = 0 leads to the following conclusions:
on going towards the singularity in Taub’s model with matter, we “almost always”
obtain (on the contraction side) an asymptotic form (2.1) of the Taub type in empty
space; to the contrary, on moving away from the singularity on the expansion side
during the earlier stages of development, the “typical” state is near the singular
point of type 3) (see (3.6)), since time reverses sign and the singular point of type
3) becomes a tightening point with respect to the variables (u,w) so long as the
entire action takes place close to the singularity.

It is important that the coordinate change (3.2) is regular outside the singularity,
where the entire spatial metric is equal to zero. The substitution (3.2) replaces the
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Figure 1. Trajectories of the system (3.4) in the semicircle H0 ≥
0, w ≤ 0 on the plane v = 0 at 0 ≤ k ≤ 1/3.

singular point in phase space, in terms of the new coordinates, by an entire two-
dimensional manifold v = 0 that is “glued in” in the phase space with the dynamic
system (3.4) on it. This system, under the conditions (3.5), produces a “boundary”
that encloses the physical region completely.

Note. When the Taub model with matter is imbedded in the general Bianchi IX
model, the mapping on the boundary becomes multiple-valued; the point F blows
up into a segment on the triangle ∆, the point T goes over into a point Fα with
a half-line Tu

α together with the ends T 0
α, and T∞α , and the point C goes over into

Cα and the middle of the segment AEα (see Fig. 3 and the start of Sec. 5).

4. General Bianchi Model IX

Starting from the Hamiltonian H (2.4) with time η (see (2.5)), let us determine
and investigate the singular points, especially where the entire spatial metric van-
ishes. We are interested in the region of nonnegative matter and spatial metric.
We make the time substitution

(4.1)
dτ0
dη

=
2

(q1q2q3)1−k
=

2
λ3(1−k)

.

We consider the phase coordinates

(4.2) Pα, Qα = q2α.
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We then change over from them, using gauge invariance, to new coordinates in
accordance with (2.6):

(4.3)

bα =
Pα

Q1
, F (γα) = γ1 = 1, α = 1, 2, 3;

y2 = γ2
2 = Q2/Q1, y3 = γ2

3 = Q3/Q1;

u1 = b1, v1 = b2 + b3, v2 = b2 − b3; dτ1/dτ0 = Q1.

In terms of the new coordinates and the time τ1 we obtain the system
dQ1

dτ1
= −Q1(u1 − v1),

dy2
dτ1

= y2(2u1 − v1 − v2),
dy3
dτ1

= y3(2u1 − v1 + v2),

du1

dτ1
= u1(u1 − v1)− (y2 + y3 − 1) +H1,(4.4)

dv1
dτ1

= v1(u1 − v1)− y2(1 + +y3 − y2)− y3(1 + y2 − y3) + 2H1,(4.5)

dv2
dτ1

= v2(u1 − v1)− y2(1− y2) + y3(1− y3);

H1 = 1/4(1− k)(2u1v1 − u2
1 − v2

2 + 2y2 + 2y3 + 2y2y3 − 1− y2
2 − y2

3)(4.6)

We note that in terms of these coordinates, the monotonic function H (see (2.7))
takes the form

(4.7) −H̄ =
u1 + v1

(y2y3)1/3
, −H̄ → −∞

(on the contraction side).
An essential fact is that vi is always less than zero. If −H̄ < −B2, then

(4.8) v1 ≤ −f2(B, γ̄1, γ̄2, γ̄3) < 0,
3∑

α=1

γ̄2
α = 1, qα = µγ̄α, γ̄α ≥ 0,

with the exception of points of the type (0, 2−1/2, 2−1/2). The constant B in the
inequality (4.7) is of the order of 1. In addition

(4.9) f(B, γ̄1, γ̄2, γ̄3)→ 0

if γ̄α → 0, γ̄β → 2−1/2, and γ̄δ → 2−1/2. This result will be important when it
comes to proving that we have obtained all the singularities (see the end of Sec. 4),
and also to maintain monotonicity under the time change (4.12).

Getting ahead of ourselves, we note that (4.7) and (4.8) can be derived from the
inequalities (4.6) in terms of the coordinates (4.12), by using the fact that matter
is positive, H2 ≥ 0 (4.13). (Naturally, we shall use the coordinates (4.3) and (4.12)
only in the region where γ̄1 > 0, and in other regions, such as γ̄2 > 0 or γ̄3 > 0, we
shall introduce analogous coordinates by making the corresponding permutations.)

We now obtain the singular points of the system in terms of the coordinates
(4.3). First, the system has three invariant manifolds:

(4.10) 1) y2 = y3, v2 = 0; 2) y2 = 1, v1 + v2 = 2u1; 3) y3 = 1, v1 − v2 = 2u1,

corresponding to the Taub model qα ≡ qβ . The simplest singular points of the
system in terms of the coordinates (4.3) in a finite region are given by

(4.11)
1) y2 = 1, y3 = 0, u1 = v1 = v2; 1)′ y3 = 1, y2 = 0, u1 = v1 = −v2;
2) y2 = 0, y3 = 0, u1(u1 − v1) + 1 +H1 = 0; v1(u1 − v1) + 2H1 = 0.
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Obviously, singular points of types 1) and 1)′ belong to the intersection of the
Taub manifolds (4.9) with edge yi = 0 and are equivalent under the permutation
of q1, q2, and q3. Singular points of type 2) appear only in filled space, and the
whiskers produced in them upon contraction yield the power-law asymptotic form
(2.3). Calculating the characteristic polynomial in the singular points 1) and 1)′

from (4.10), we obtain the eigenvalues

(4.12) λ1 = 2u1, λ2,3 = ±2i, λ4 = u1(1− k), λ5 = 0,

where the parameter u1 defines a singular point of type 1) or 1)′ in accordance with
formulas (4.10). Singular points of these types form a single-parameter family,
where all the remaining eigenvalues are different from zero. These singular points
coincide with those defined in Sec. 1 in the light-like reference frame; our coordinate
system is such that there are no “extra” singular points in the region where not all
the qi vanish (see the requirement at the end of Sec. 1).

These eigenvalues contain a new one, not considered in (1.9), namely λ4 =
u1(1 − k), which is due to the matter. The values λ2,3 = ±2i correspond to the
complex-conjugate pair in (1.9). We see that Reλ2,3 = 0 in formulas (4.11), unlike
in the light-like reference frame; this is no more than a manifestation of the poor
properties of the synchronous reference frame on the surface g11 = 0.2 The extra
positive eigenvalue contained in (1.9) is due to the increase in the dimension-ality
of the phase space.

It will be convenient to investigate the singular points of type 2) in (4.10) later
on.

To investigate the singularity in v1 it is convenient, on the basis of (4.6) and
(4.7), to introduce new coordinates and time:

(4.13) ū =
u1

v1
, v̄2 =

v2
v1
, w̄ =

1
v1
,

dτ2
dτ1

= −v1 > 0.

We then obtain the system

(4.14)

dQ1

dτ2
= Q1(ū− 1),

dy2
dτ2

= y2(1 + v̄2 − 2ū),
dy3
dτ2

= y2(1− v̄2 + 2ū),

dū

dτ2
= (y2 + y3 − 1)w̄2 − ūw̄2(y2(1 + y3 − y2) + y3(1 + y2 − y3))

+ (2ū− 1)H2,

dv̄2
dτ2

= w̄2(y2(1− y2) + y3(1− y3))− v̄2w̄2(y2(1 + y3 − y2)

+ y3(1 + y2 − y3)) + 2v̄2H2,

dw̄

dτ2
= w̄(ū− 1− w̄2(y2(1 + y3 − y2) + y3(1 + y2 − y3)) + 2H2),

H2 =
1
4
(1− k)(1− (ū− 1)2 − v̄2

2 + w̄2(2y2 + 2y3

+ 2y2y3 − 1− y2
2 − y2

3)).

2The eigenvalues (4.11) correspond to the picture obtained by Belinskii and Khalatnikov [1]
in a different language in a study of small perturbations of the Taub model in a synchronous

reference frame in empty space.
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The condition that matter be positive delineates a circle on the infinitely remote
plane w̄ = 0:

(4.15) (ū− 1)2 + v̄2
2 ≤ 1 (H2 ≥ 0).

The region where y2 and y3 vanish takes, under the condition H2 ≥ 0, the form

(4.16) (ū− 1)2 + v̄2
2 + w̄2 ≤ 1, w̄ ≤ 0

(the sign of w̄ is given here for the contraction side; in the case of expansion w̄ ≥ 0).
It is easily seen that in the region (4.15) the equations take the form

(4.17)
dū

dτ2
= −w̄2 + (2ū− 1)H3,

dw̄

dτ2
= w̄(ū− 1 + 2H2),

dv̄2
dτ2

= 2v̄2H3,

H3 = 1/4(1− k)(1− (ū− 1)2 − v̄2
2 − w̄2).

It is seen from (4.16) that the plane v̄2 = 0 is an invariant submanifold. The
singular points of the system (4.16) (at w̄ 6= 0) are singular points of type 2) of
(4.10):

(4.18) ū =
3 + k

5− k
, w̄ = − 1

5− k
((1− k)(1 + 3k))1/2, v̄ = 0, H3 =

1− k
5− k

.

On the plane v̄2 = 0 this singular point is a repelling focus with eigenvalues

(4.19) λ1,2 =
1− k
5− k

± i

5− k

((
1− k

2

)
(3 + 16k − 3k2)

)1/2

, 0 ≤ k < 1

(see also Sec. 3).
The remaining eigenvalues are given by

(4.20)

λ3 =
2(1− k)
5− k

> 0 (variable v̄2),

λ4 = λ5 = −1 + 3k
5− k

> 0 (variable y3y3),

λ6 = −2(1− k)
5− k

> 0 (variable Q1).

This singular point is nondegenerate. From the form of the eigenvalues it fol-
lows that a three-dimensional manifold of solutions enters in this singular point
(on the contraction side). Calculation shows that these solutions have power-law
asymptotic forms of the type (2.3), whereas in Taub’s model with matter only a
two-dimensional manifold of solutions entered in these singular points (see Sec. 3).

The singular points at infinity (at w̄ = 0) should be sought for the system (4.13),
since matter is positive, only in the circle (4.14) under the condition that the spatial
metric is nonnegative. Direct calculation in the circle (4.14) yields for w̄ = 0 the
following (see Fig. 2):

(4.21)

1) y2 and y3 arbitrary, v̄2 = 0, ū = 1/2 (point O at fixed y2 and y3);

2) y2 6= 0 arbitrary, y3 = 0, ū = 1, v̄2 = 1 (point B);

2)′ y2 6= 0 arbitrary, y3 = 0, ū = 1/5, v̄2 = 3/5 (point A);

3) y3 6= 0 arbitrary, y2 = 0, ū = 1, v̄2 = −1 (point D);

3)′ y3 6= 0 arbitrary, y2 = 0, ū = 1/5, v̄2 = −3/5 (point E);

4) y2 = 0, y3 = 0, (ū− 1)2 + v̄2
2 = 1 (boundary of circle).
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Figure 2. Singular points (ψ, α) (w̄ = 0)

We consider the singular points of type 1) in (4.20). This is a two-dimensional
manifold, since y2 and y3 are arbitrary. Their eigenvalues are given by

(4.22)

λ1 = λ2 = 0 (variables y2, y3),

λ3 = 3/8(1− k) (variable ū),

λ4 = 3/8(1− k) (variable v̄2),

λ5 = −1/2 + 3/8(1− k) (variable w̄),

λ6 = −1/2 (variable Q1).

This manifold of singular points includes (in contraction) a four-dimensional family
of solutions of power-law form, with all the exponents equal (see (2.2)). This is a
generalization of Friedmann’s solutions.
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The singular points of types 2), 2)′, 3), and 3)′ are the most degenerate; it is
easy to show that “whiskers” of minimal dimensionality enter in these points (on
either side of the time). Singular points of type 4) of (4.20) have eigenvalues whose
signs depend on their location in the circle. These signs are given by the matrix

(4.23)

_

EA
_

AB
_

BD
_

DE A B D E

λw̄ − − + − − 0 0 −
λy2 + + − − + 0 − 0
λy3 + − − + 0 − 0 +
λQ1 − − + − − 0 0 −

The missing eigenvalues correspond to variables in the (ū, v̄2) plane: one of them
is equal to zero, and the other is negative. The singular points A, B, D, and E are
degenerate.

Before we proceed to integrate the separatrices of the singular points obtained
by us, and then to draw conclusions, it is natural to raise the following question:
did we find all the singular points? To answer this question we shall show that
the “boundary” which we attached during the course of change of coordinates
to the physical region S, where H ≥ 0 and qα ≥ 0, makes this physical region
S together with the boundary Γ (after taking gauge invariance into account) a
compact manifold with an edge (apart from three exclusive points); our system is
correctly defined and continuous, including the boundary, and the boundary is an
invariant manifold of the system. The monotonic functions contained in the system
press the phase point towards the boundary, and by the same token the asymptotic
form in contraction is determined by the behavior of this system on the boundary
(analogously, the behavior of the system during the earlier stages of expansion).

Let us describe this manifold S. By virtue of the gauge invariance of Eqs. (2.4),
we can normalize the components of the metric by the condition

(4.24) qα = µγ̄α,
3∑

α=1

γ̄2
α = 1, γ̄α ≥ 0,

and this yields the spherical triangle ∆. By virtue of (4.7), we can use the variables
(ū, v̄2, w̄). At w̄ = 0 we have the circle (4.14), and at all w̄ < 0 satisfying (4.7)
we obtain a compact region in (ū, v̄2, w̄) (with the exception of the exclusive points
γ̄α = γ̄β , γ̄δ = 0, α 6= β 6= δ) as follows from the form of the function H2 and from
the inequalities (4.7) and (4.8). We use the coordinates (4.3) in that part of ∆
where γ̄1 6= 0. In the remaining regions we use analogous coordinates, replacing γ̄1

by γ̄α. Thus, the constructed manifold with the boundary is compact after closure
by the Taub limits at the three exclusive points on the triangle ∆.

The boundary Γ of this manifold has corners Y1, Y2, and Y3. At the corner Y1,
the coordinates γ̄1, γ̄2, and γ̄3 run along the sides of ∆, while ū and v̄2 belong to
the circle (4.14) and w̄ = 0; at the corner at Y2 the coordinates γ̄1, γ̄2, and γ̄3 are
arbitrary, ū and v̄2 belong to the boundary of the circle (4.14), and w̄ = 0; at the
corner Y3 we have γ̄α = 1, γ̄δ = γ̄β = 0 (vertex of ∆), while ū, v̄2, and w̄ belong
to the sphere (4.15). These corners and their intersections Y12, Y23, and Y13 are
invariant manifolds of the system.
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5. Separatrix Diagram of the Singularities and its Applications

We use the following notation for the singular points: Φγ
LKh; where γ̄ is an

internal point of the spherical triangle ∆ (type 1) from (4.20), where γ̄α > 0).
Φγ

LKh lies on the boundary Γ away from the corners;
Φ0γ

α , where γ̄ is on the boundary of ∆, γ̄α = 0, γ̄β > 0, γ̄δ > 0 (type 1) from
(4.20)). Φ0γ

α lies in the corner Y1;
Φ00

α —angles of the triangle (type 1) from (4.20)), lies in the intersection of the
corners Y31;
T 0

α—type 1) from (4.10), where u1 = 0, γ̄α = 0 (exclusive point, arbitrarily
assumed to belong to S);
Tu1

α —type 1) from (4.10), lies on Γ, where γ̄α = 0, −∞ < u1 < 0;
T∞α —type 1) of (4.10), lies in the corner Y12, γ̄α = 0, u1 = −∞ (w̄ = 0, ū = 1).
Nα—type 2) of (4.10) is located in the corner Y3, γ̄α = 1; (ψ, α)—type 4) of

(4.20), where ū − 1 = cosψ, v̄2 = sinψ, 0 ≤ ψ ≤ 2π, lies in the intersection
Y23 = Y123.
BDα—point of segment BD over the side of ∆: γ̄α = 0 (type 2)–3) of (4.20));

BDα lies in the corner Y12,
AEα—points of segment AE over the side of ∆: γ̄α = 0 (type 2)′–3)′ of (4.20));

AEα lies in the corner Y12. The singular points are shown in Fig. 3.
The power-law asymptotics yield whiskers that emerge from the physical region

S, where qα > 0, to the boundary (see (2.1)–(2.3)), into singular points of the type
Φγ

LKh, Nα, and Tu1
α :

(5.1)

Φγ
LKh

Tu1
α Soo

==zzzzz

""EE
EE

E

Nα

The remaining singular points have no separatrices that emerge from S—all
their separatrices lie on the boundary Γ (we recall that the important singular
points (ψ, α) lie on the corner of the edge Y123 of our manifold).

The separatrices lead from each singular point to another. Their integration
is quite laborious but straightforward; omitting the calculations, we obtain the
separatrix diagram shown in Fig. 4. The following notation is used in the diagram:

a) A filled square denotes a separatrix that goes on the contraction side from one
set of singular points in the upper row to another set in the column; the number in
it denotes the dimensionality of this separatrix, and a empty square means absence
of a separatrix.

b) The question mark denotes that the corresponding separatrix has not been
fully integrated or that the corresponding set of singularities has zero eigenvalues
whose number exceeds its dimensionality.

c) On the singular points of type (ψ, a) from the three circles Y123, the transitions
in the diagram to other singular points of the same type are given by the mappings
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Figure 3. General arrangement of the singular points of the dy-
namical system of the Bianchi IX model after taking into account
scale in-variance and adding a boundary to the physical region
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S T 0
α Φγ

LKh Tu1
α Nα Φ0γ

α Φ00
α

_
ABα

_
BCα Cα

_
CDα

_
DEα

_
EFα Fα

_
FAα AEα BDα

Φγ
LKh 3

Tu1
β 3

β=1,2,3
2

β=α

Nβ 2
β=1,2,3

1 ?
β=α±1

Φ0γ
β 2 ?

β=α

Φ00
β 1

β=α

_
ABβ 4 ?

β=α−1
3 ?

β=α−1
3

β=α
3

β=α−1
2

β=α
2 θ
β=α

2 T
β=α+1

?
β=α−1

?
β=α−1

_
BCβ 4

β=1,2,3
3

β=α±1
2

β=α
2 T 2

β=α−1
3 T

β=α+1

Cβ 3
β=1,2,3

2
β=α±1

1
β=α

2
β=α

_
CDβ 4

β=1,2,3
3

β=α±1
2

β=α
2 T

β=α+1
3 T 2

β=α−1

_
DEβ 4 ?

β=α+1
3 ?

β=α+1
3

β=α
3

β=α+1
2

β=α
2 θ
β=α

2 T 2

β=α−1
?

β=α+1
?

β=α+1

_
EFβ 3

β=α
2

β=α
2 θ
β=α

Fβ 2
β=α

1
β=α

1 θ
β=α

_
FAβ 3

β=α
2

β=α
2 θ
β=α

AEβ 3 ?
β=α

2 ?
β=α

2
β=α

BDβ 3
β=1,2,3

2
β=α

2
β=α

Figure 4. Separatrix diagram on the contraction side.

indicated in the squares:

T (ū, v̄2) = (ū0, v̄0
2); ū0 =

1 + v̄2
1− v̄2 + 2ū

, v̄0
2 =

1− v̄2 − 2ū
1− v̄2 + 2ū

;(5.2)

θ(ū, v̄2) = (2− ū, v̄2); T 3 = 1, θ2 = 1.(5.3)

Using the monotonic function (4.6) contained in the system, we can justify the
separatrix approximation on moving towards the singularity. We shall express
the motion near the singularity by means of the sequence of singular points and
separatrices near which this trajectory passes.

Properties of the separatrix diagram on the contraction side. Comparison with
the BLKh model. From the diagram (Fig. 4) we see that when moving on the
contraction side, sufficiently close to the cosmological singularity, we can confine
ourselves to consideration of only singular points of the type (ψ, a), since they and
their separatrices form (on this side of the time) a closed system (together with the
segments BDα). Thus, we have trajectories of the type

(5.4) (ψ0, α0)→ (ψ1, α1)→ (ψ2, α2)→ . . . ,

where α = 1, 2, 3.
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According to the diagram of Fig. 4, (ψs+1, αs+1) is a single-valued function of

(ψs, αs), if ψs on the arc
_

ACE; if ψs lies on the arc
_

EFA, then the transition to
(ψs+1, αs+1) is ambiguous:

(5.5)
(

_

DE,αs + 2) II←− (
_

FA,αs)
I−→ (

_

BC,αs + 1),

(
_

AB,αs + 1) II←− (EF,αs)
I−→ (CD,αs + 2).

It follows from the diagram that in the next step, starting from the results of path
II, we arrive at the same result we obtained in one step on path I.

We now compare the results of this separatrix diagram with the combinatorial
“model of Kasner exponents” of Belinskii, Lifshitz, and Khalatnikov[2], which de-
scribes the regular regime in their sense and which has resulted from the idea of
piecewise approximation of the components of the metric of the Bianchi IX model
by the power-law functions

tp1 , tp2 , tp3 ,

which result from the Bianchi model I.
We introduce the parameter κ, where 1 ≤ κ <∞:

(5.6) p1(κ) =
−κ

1 + κ+ κ2
, p2(κ) =

κ

1 + κ+ κ2
, p3(κ) =

κ(1 + κ)
1 + κ+ κ2

.

We consider the “exponent alternation” transformation

(5.7)
κ→ κ− 1 if 2 ≤ κ <∞;

κ→ 1
κ− 1

if 1 ≤ κ ≤ 2.

The state is described by the pair

(5.8) (κ, σ); σ =

(
1 2 3
i j k

)
, σ12 =

(
1 2 3
2 1 3

)
, σ23 =

(
1 2 3
1 3 2

)
,

where σ is a permutation.
The transformation (“oscillation” or “alternation of Kasner epochs”) takes the

following form in the BLKh model:

(5.9)
(κ, σ) K−→ (κ− 1, σσ12) (2 ≤ κ <∞);

(κ, σ) K−→
(

1
κ− 1

, σσ12σ23

)
(1 ≤ κ ≤ 2).

The sequence of states

(5.10) (κ, σ) K−→ (κ1, σ1)
K−→ (κ2, σ2)→ . . .

codes the asymptotic of the typical trajectory in accordance with BLKh[2].
When comparing this model with (5.5), we choose only path I in (5.5); we note

that after one step path II gives the same result). By choosing path I, we obtain
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an unambiguous model (the next state is determined by the preceding one):

(5.11)

(ψs, αs)
K̄−→ (ψs+1, αs+1),

K̄(ψs, αs) = (ψs+1, αs+1) =


(Tψs, αs + 1) (ψs in arc

_

FB),

(Tψs, αs + 2) (ψs in arc
_

DF ),

(θψs, αs) (ψs in arc
_

BCD)

where T 3 = 1 and θ(ψ) = π − ψ. We define the function

(5.12)

κ(ψ) =
1 + ū+ 2v̄
1 + v̄ − 2ū

(in arc
_

FB),

κ(ψ) =
1 + ū− 2v̄
1− v̄ − 2ū

(in arc
_

DF ),

κ(ψ) = κ(π − ψ) (ψ in arc
_

BCD),

where v̄ = v̄2 = sinψ and ū− 1 = cosψ. We can consider next only the arcs
_

DFB,
carrying out the transition in the model (5.11) in two steps at a time (along path I):

(5.13) ¯̄K = K̄2(ψs, αs) =

(θTψs, αs + 1) (in arc
_

FB),

(θT 2ψs, αs + 2) (in arc
_

DF ).

Identifying the points B, F , and D as a single point, we obtain a smooth transfor-
mation K. Formulas (5.12) show the isomorphism of the model of (5.13) with the
BLKh model (5.9).

The presence of a path II such that

(5.14) κ→ 1
κ− 1

+ 1, 1 ≤ κ ≤ 2,

is obtained in one step complicates the model somewhat in those places where, for
example, the “long era” in the sense of BLKh terminates[2], i.e., where 1 ≤ κ ≤ 2.

We note some properties of the isomorphic models (5.9) and (5.13).
a) All the trajectories are repelled from one another.
b) There is a denumerable everywhere-dense set of periodic points.
c) ∣∣∣∣dT (ψ)

dψ

∣∣∣∣ > 1 on arc
_

FB,∣∣∣∣dT 2(ψ)
dψ

∣∣∣∣ > 1 on arc
_

DF.

Under these conditions, as is well known, the transformation ¯̄K will conserve a
smooth measure and have the “coarseness” property in the sense of Andronov (the
Anosov criterion), namely, each small perturbation of the transformation reduces
to the transformation itself by a continuous change of variables (it is a requirement
that the derivatives in the perturbation be small; it is assumed also that the degree
of proximity of the perturbed transformation to the initial ¯̄K improves sufficiently
rapidly on approach to the points D, F , and B on the semicircle). This property
justifies to a certain degree the approximate application of combinatorial models
(5.9) and (5.13), including their statistical properties, to the description of the
behavior of true trajectories.
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Figure 5. Paths on the separatrix diagram on the expansion side
prior to the departure from the singularity.

Conclusions of separatrix diagram on the expansion side. On going to the
problem of typical initial data near a cosmological singularity on the side of ex-
pansion of the Universe, it is necessary to reflect the diagram of Fig. 4 about the
principal diagonal. We call attention to the fact that during the concluding stage,
prior to the departure from the singularity, the only paths that are possible in the
separatrix diagrams are those shown in Fig. 5, where the arrow denotes the sepa-
ratrix going from one set of singular points to another set, and the figure over the
arrow denotes its dimensionality. The ellipsis stands for all possible singular points
(ψ, α), AEα, or BDα, and the wavy line shows a transition along the continuity as
a result of the inclusion.

Thus, in the separatrix approximation, typical initial data are obtained in the
vicinity of the singular points (5.13) of the types ΦLKh, Tu1

α , and Nα, with singular
points of the type Φγ

LKh running through a two-dimensional set (spherical triangle
∆) and the singularities Tu1

α through a one-dimensional set, while the three points
Nα are isolated.

It is appropriate to stop and discuss here the question of how “typical” initial
data are generally defined and why they depend on the sign of the time. On the
contraction side, this question does not arise by virtue of the BLKh results, namely,
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on approaching the cosmological singularity along practically any trajectory, the
regular regime described by their combinatorial model will sooner or later become
established. On the expansion side, as already indicated, we regard as the typical
initial state a sojourn near the last singularity along a given trajectory of the
separatrix. This separatrix leads from the boundary Γ over to the physical region S.
Of course, it is assumed here that the observer himself is far from the cosmological
singularity, during the later stage of development. This definition of typical initial
conditions is based on the following: The physical region of possible values of
the components of the metric and their first derivatives, after taking the scale
invariance into account, reduces to a five-dimensional manifold S with boundary
Γ on which the spatial metric degenerates, with a dynamic Einstein system on S.
One specifies initially the small parameter ρ, namely the distance from the random
initial condition in the region S to the boundary Γ. The time is then started in the
expansion direction. The trajectory moves for some time still in the vicinity of Γ,
until it passes near a singular point of the type Φγ

LKh, Tu1
α , or Nα, and then starts

to go off into the region S away from the boundary Γ along the separatrix of one
of these singular points.

By the same token, even close to the boundary Γ of the physical region S, random
initial data accumulate in the vicinity of regimes that have power-law behavior in t
((2.1), (2.2), (2.3)), and correspond to separatrices of these singular points emerging
from Γ into S.3

The three exclusive points T 0
α, which should be assigned to S, form a special

case. Several separatrices go into these points, which are limiting for Γ (see Fig. 4).
The special character of this point lies in the fact that a trajectory passing in their
vicinity (on the expansion side) remains in the vicinity of these points up to the
instant of maximum expansion.

Let us compare these results with the previously developed[7] friction formalism
for the expansion process up to the instant of maximum expansion. According to
(2.6)–(2.9), we have

λ3 = e3s = q1q2q3 = (−g)1/2, γ1 = (γ2γ3)−1,

U = H̄2 = K + 3V + 3A exp(−αs), α = 3k + 1, ULKh = K + 3V,

K = 4(p2
2 − p2p3 + p2

3), V = −
3∑

α=1

γ4
α + 2

∑
α6=β

γ2
αγ

2
β ,

dULKh

ds
= −4K ≤ 0,

where K is the kinetic energy and 3V is the potential energy; the phase region
Uvac < 0 is a trap in the terminology of[7].

3The time interval between the stay on one of the seperatrices of the BLKh model (the singular
points (ψ, α)) and the establishment of a power-law asymptotic form of one of the three types (all

this occurs near the boundary Γ) is divided into three parts: 1) the passage from the separatrix
of the BLKh model to a separatrix going from the singular points (ψ, α) into one of the singular
points of the types Φγ

LKh, Tu1
α , or Nα; 2) the time of motion along this seperatrix to a fixed

vicinity of the final points; 3) the passage to a separatrix going from Γ into S. It can be shown

that the time 2) tends to zero with ρ, and that time 3) has a finite limit as ρ → 0. As to the
time 1), which can naturally be called the time of “turning on the matter,” it can have many limits

(from zero to ∞) as ρ → 0, depending on the method of approaching the limit. This pertains

also to the volume (−g)1/2 = q1q2q3, with one important exception, namely, the transition from
a separatrix of the BLKh model to a separatrix of singular points of the type Φγ

LKh yields a small

finite volume (−g)1/2 as ρ→ 0.
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After recalculating the asymptotic expressions (2.1)–(2.3) in terms of the coor-
dinates (2.6)–(2.9), we obtain the following:

1. For quasiisotropic regimes Φγ
LKh

γα = qαλ
−1 ∼ Cα(C1C2C3)−1/3 = Bα, K ∼ 0,

where the constants Cα are arbitrary and positive; the kinetic energy is small here
and the potential energy arbitrary.

For the regime N1 we have

K ∼ V, p2 ∼ p3, λ ∼ DK−1/(3k+1), γ2 ∼ Cγ3,

where γ1 is arbitrary but sufficiently small and the constants C and D are arbitrary
and positive. The kinetic energy is here equal to one-third of the potential energy,
and both are large.

2. For the singular regime T 0
1 , both the kinetic energy K and the potential

energy 3V are small in absolute value, with

3V < 0, γ1 � γ2 ∼ γ3.

We see that in the power-law regimes the kinetic energy is not large compared with
the potential energy, and in the states Φγ

LKh it is very small. To the contrary, for
the contraction process, by virtue of the BLKh results, in typical states the kinetic
energy becomes periodically infinitely larger than the potential one.

The statistical properties of the Bianchi IX model can be determined in this
case by resorting to information on the distribution of the probabilities among the
typical initial data obtained in the present paper. We can then find the probable
instant of falling into the trap Uvac < 0, and the distribution in this trap during
the later development stage preceding the instant of maximum expansion.

The authors thank I. M. Khalatnikov for a valuable discussion, particularly con-
cerning the existence of characteristic transition times, which in some parts of the
separatrix diagram turn out to be completely undetermined (see footnote 3).

Note added in proof (March 1973). In a simpler homogeneous model (axially
symmetrical, with group of motions of type II after Bianchi), an asymptotic form
of the type (2.3) was obtained by Ellis and McCollum (Comm. Math. Physics
12, 108 (1969) as an exact solution. Collins (ibid. 23, 137 (1971) was the first
to use the two dimensional qualitative Poincaré–Bendixson theory for the study of
axially-symmetrical models of Bianchi types II–VII. Not even the axially symetrical
model of type IX reduces to the two-dimensional problem (see Sec. 3). Only on the
boundary v = 0, which we have “glued in,” is the problem two-dimensional (see
Fig. 1).
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