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Introduction

The Korteweg–de Vries equation (KV) arose in the nineteenth century in connec-
tion with the theory of waves in shallow water. It is now known (cf., for example,
[15]) that this equation also describes the propagation of waves with weak dispersion
in various nonlinear media. In reduced form it is written

ut = 6uux − uxxx.

In 1967 in the well-known work of Gardner, Green, Kruskal, and Miura a remarkable
procedure for integrating the Cauchy problem for this equation was discovered
for functions u(X) which are rapidly decreasing for x → ±∞. This procedure
consists in the following: we consider the Schrödinger (Sturm–Liouville) operator
L = −(d2/dx2)+u; let f(x, k) and g(x, k) be such that Lf(x, k) = k2f , Lg(x, k) =
k2g, whereby f(x, k) → e−ikx for x → −∞ and g(x, y)e−ikx for x → +∞. We
then have two pairs of linearly independent solutions f, f̄ and g, ḡ and a transition
matrix

f(x, k) = a(k)g(x, k) + b(k)ḡ(x, k),

f̄(x, k) = b̄(k)g(x, k) + ā(k)ḡ(x, k).
If the potential u changes in time according to the KV equation, then the coeffi-
cients a and b vary according to the law ȧ = 0, ḃ = 8ik3b, and for the eigenfunction
f(x, k) there is the equation ḟ = Af + λf , where A = 4 d3

dx3 − 3
(
u d

dx + d
dxu

)
,

λ = 4ik3. If λn = +k2
n = (iκn)2 is a point of the discrete spectrum of the potential

u(x), then κ̇n = 0 and ċn = +8κ3cn, where cn is the natural normalization of the
eigenfunction. These formulas make it possible to reduce the Cauchy problem for
the KV equation with rapidly decreasing functions to an inverse problem of scatter-
ing theory and to use the results of I. M. Gel’fand, B. I. Levitan, V. A. Marchenko,
and L. D. Faddeev (cf. [2, 3, 4]). Subsequently, P. Lax [7] discovered that the
KV equation is identical to the operator equation L̇ = [A, L], where L = − d2

dx2 + u,
A = 4 d3

dx3−3
(
u d

dx + d
dxu

)
, since L̇ is the operator of multiplication by u̇, while [A,L]

is the operator of multiplication by the function 6uu′−u′′′. In particular, it follows
from this that the spectrum of the operator L is an integral of the KV equation
(this is also true for the periodic problem). This fact reveals the algebraic meaning
of the procedure in [5] and is extremely useful for the application of these ideas to
other problems. Further, L. D. Faddeev and V. E. Zakharov [8] have shown that
the KV equation is a completely integrable Hamiltonian system, where the canoni-
cal variables are 2k

π ln |a(k)|, arg b(k), κ2
n, ln(bn), bn = icn

(
da
dk

)
k=iκn

. In particular,
the eigenvalues λn = k2

n are commuting integrals of the KV equation also in the
periodic problem [and not only in the case of rapidly decreasing functions u(x)]. A
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number of other equations have subsequently been found which admit the “Lax rep-
resentation” L̇ = [A,L] for a certain pair of operators A, L. P. Lax [7] and Gardner
[6] have shown that the known polynomial integrals In(u) =

∫∞
−∞ Pn(u, . . . , u(n)) dx

of the KV equation (the In are expressed in terms of the spectrum of the operator
L) all determine equations

u̇ =
d

dx

δIn

δu(x)
, (1)

admitting the Lax representation L̇ = [An, L], where L = (d2/dx2) + u and the An

are certain skew-symmetric operators of order 2n + 1,

I0 =
∫

u2 dx, I1 =
∫ (

u′2

2
+ u3

)
dx,

I2 =
∫ (

u′′2

2
− 5

2
u2u′′ +

5
2
u4

)
dx,

A0 =
d

dx
, A1 = 4

d3

dx3
− 3

(
u

d

dx
+

d

dx
u

)
,

A2 =
d5

dx5
− 5

2
u

d3

dx3
− 15

4
u′

d2

dx2
+

15u2 − 25u′′

8
d

dx
+

15
8

(
uu′ − u′′′

2

)
. (2)

We shall call these equations “higher KV equations.” Further, beginning with the
papers [9, 10], a number of other important equations were found which admit
the Lax representation L̇ = [A,L], where L is no longer a Schrödinger operator
(and is not always symmetric). In the papers of L. D. Faddeev, V. E. Zakharov,
and A. B. Shabat ([10, 11, 12]) the needed generalization of scattering theory was
carried out for the new operators which has made it possible to solve the direct and
inverse problems and to carry through the “Kruskal” integration of the Cauchy
problem for rapidly decreasing (as x → ±∞) initial data. A considerable literature
has recently been devoted to discovering such new equations and carrying over
the Kruskal mechanism to them. However, even for the original KV equation the
periodic problem has not moved forward. The only new result in the periodic case,
which was obtained by the method of Gardner, Green, Kruskal, and Miura, is the
theorem of Faddeev and Zakharov to the effect that the eigenvalues of the operator
L are commuting integrals of the KV equation as a Hamiltonian system (we remark
that the integrals themselves can be expressed in a one-to-one manner in terms of
the previously known polynomial integrals In which are thus also involutive). This
result has not been used in an essential way until the present work, but here it
plays an important role (cf. §2).

The interaction of simple waves [solutions of the type u(x − ct), usually called
“solitons”] are of major interest in the theory of the KV equation. This interaction
is described by means of so-called “multisoliton solutions” where b(k) ≡ 0 for real
k.1 These solutions decay into solitons for x, t → ±∞ and describe their interaction
for finite t. For this case the Gel’fand–Levitan equations are completely solvable
(cf., for example [8, 9]). Another method of obtaining multisoliton solutions has
been developed in [13]. However, all these results refer to the case of rapidly
decreasing functions u(x). In the periodic case the solitons u(x − ct) of the KV
equation are of a more complicated structure; there are many more of them and their

1I. M. Gel’fand has informed the author that such potentials u(x) were first considered by
Bargmann.
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interaction has not been studied at all. In the present paper we propose a method of
studying certain analogs of the “multisoliton” solutions of the KV equation which,
generally speaking, are found to be not only periodic, but also conditionally periodic
functions u(x) describing the interaction of periodic solitons. Our work is based on
certain simple but fundamental algebraic properties of equations admitting the Lax
representation which are strongly degenerate in the problem with rapidly decreasing
functions (for x → ±∞), and have therefore not been noted. Finally, it is essential
to note the nonlinear “superposition law for waves” for the KV equation which
in the periodic case has an interesting algebraic-geometric interpretation. The
superposition law will be discussed in the second part of the work.

In conclusion, we call the attention of the reader to the following circumstance:
in classical mechanics and mathematics the appearance of integrals in conservative
systems (conservation laws) is almost always related to a Lie symmetry group of
the problem in question. Other fundamental algebraic mechanisms of integrability
were previously unknown. However, there were several exceptions: for example,
the Jacobi case (geodesics on a triaxial ellipsoid) or the case of Kovalevskaya (the
problem of the motion of a solid body with a fixed point in a gravitational field).
Other exceptional examples are now known. There is not the slightest doubt that
all these cases are the manifestation of a Kruskal-type algebraic mechanism based
on the possibility of a Lax-type representation for these dynamical systems.

1. The Schrödinger (Sturm–Liouville) Equations with Periodic
Coefficients. The Monodromy Matrix

We shall first list systematically simple facts which we shall need.
Let u(x) be a smooth function where u(x + T ) = u(x), and let L = (d2/dx2) +

u. We consider on the line the equation Lψk = λψk, where λ = k2 is a real
number. We consider the pair of linearly independent solutions ψk(x, x0), ψ̄k(x, x0),
where ψk(x0, x0) = 1, ψ′k(x0, x0) = ik, or the pair φk, φ̄k, where φk(x0, x0) = 1,
φ̄k(x0, x0) = i. (The pair ψk, ψ̄k is more convenient but is meaningful only for
k2 > 0.) We can define the “monodromy matrix”

T (k, x0) =
(

a b
b̄ ā

)
, a = a(k, x0), b = b(k, x0),

where
ψk(x + T, x0) = aψk(x, x0) + bψ̄k(x, x0),

ψ̄k(x + T, x0) = b̄ψk(x, x0) + āψ̄k(x, x0),

or the analogous matrix in another basis. In the basis φk, φ̄k, for example, the
monodromy matrix is an entire function of λ = k2. The trace of the matrix Sp T =
a + ā = 2aR is real, while the determinant is equal to one, det T = |a|2 − |b|2 = 1
for all real k, since the Wronskian determinant is conserved.

The eigenvalues of the matrix T (k, x0) do not depend on the point x0 and have
the form: µ± = aR±

√
a2

R − 1. In particular, we have two cases: µ± = e±ip, |aR| ≤
1; µ± = e±p, |aR| ≥ 1, where p is a real number (aR = cos p for |aR| ≤ 1). The Bloch
eigenfunctions of the operator L are those solutions of the equation Lf = k2f such
that f(x+T ) = e±ipf(x), where the number p is called the “quasi-momentum.” We
have periodic eigenfunctions for eip = 1 or aR = 1, and antiperiodic eigenfunctions
f(x + T ) = −f(x), where aR = −1. The permitted zones are the regions on
the axis λ = k2, where |aR| ≤ 1, and the forbidden zones are the regions on the
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axis λ = k2, where |aR| ≥ 1. The boundaries of the permitted and forbidden
zones are the points |aR| = 1, where the numbers λn = k2

n are the eigenvalues of
the periodic or antiperiodic problem. These eigenvalues may be nondegenerate or
doubly degenerate. Since a = aR + iaI , b = bR + ibI , and |a|2 − |b|2 = 1, it follows
that at points of both spectra, where |aR| = 1, we have |aI | = |b|, λ = λn = k2

n.
In the nondegenerate case |aI | = |b| 6= 0, λ = λn. In the degenerate case

|aI | = |b| = 0, λ = λn and therefore the forbidden zone in the degenerate case
contracts to zero. Thus, the degenerate points of both spectra where b = 0 for
λ = λn are not boundaries of permitted zones. In the sequel we shall call “essential”
only those nondegenerate points of both spectra which are boundaries of Bloch zones
and which completely determine the zone structure on the axis λ = k2. There is
the following simple fact: multiplying the period T by an integer T → nT does not
change the zone structure. Indeed, multiplication of the period T → nT raises the
monodromy matrix to a power T (k, x0) → Tn(k, x0). Thus, the forbidden zones
remain forbidden zones e±p → e±np and the permitted zones remain permitted
zones e±ip → e±inp, although in the interior of the permitted zones there appear
new degenerate (“inessential”) levels where b ≡ 0 which for increasing n fill out the
entire zone in a dense manner.

This fact makes it possible to carry over the definition of the zone structure of a
potential to almost periodic functions by approximating them by periodic functions
with increasing period. However, in the literature there are no investigations of the
convergence of such a process (apparently it has never been studied). It is possible
that for linear combinations of periodic functions even with two periods T1, T2, the
result may depend on the arithmetic of the number T1/T2.

We note that the function SpT = 2aR is an entire function of λ in the entire
complex plane and can be defined up to a constant multiple as an infinite product
(this was indicated to the author by L. D. Faddeev):

1
2

Sp T (λ) = 1 + const
∏

j

(λ− λj),

where the λj are the points of the spectrum of the periodic problem.
The points of the spectrum of the antiperiodic problem f(x + T ) = −f(x) are

thus determined in principle by the equation aR = −1 starting from the purely
periodic spectrum. However, for this it is necessary to know all the points of the
spectrum of the periodic problem, while we do not wish, for example, to regenerate
points of the spectrum. Therefore, we shall continue to work with both spectra.

We defined the monodromy matrix T (k, x0) by choosing an initial point x0,
although its eigenvalues not depend on the initial point. Therefore, the matrices
T (k, x0) for fixed k but various x0 are conjugate. From this it follow immediately
that with regard to the dependence of this matrix on the parameter x0, which we
now denote by x, a differential equation of the form

dT

dx
= [Q,T ] (3)

is satisfied, where the matrix Q is easily computed as the transition matrix (1+Qdx)
from the basis [ψk(x, x0 + dx), ψ̄k(x, x0 + dx)] to the basis [ψk(x, x0), ψ̄k(x, x0)].
Therefore (1 + Qdx)T (1−Qdx) = T (k, x0 + dx) or T ′ = [Q,T ].
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In our bases the matrix Q has the form

Q = −ik

(
1 0
0 −1

)
+

iu

2k

(
1 −1
1 −1

)
(basis ψk, ψ̄k),

Q = − i

2

(
1 1
−1 −1

)
− i

2
(u− k2)

(
1 −1
1 −1

)
(basis φk, φ̄k).

(4)

Thus, the monodromy matrix T can be sought as a periodic solution of Eq. (3)
which satisfies the condition detT = |a|2 − |b|2 = 1. At the nondegenerate points
of both spectra |aR| = 1, where b(kn) 6= 0 and |b| = ±aI the following equation is
obtained from Eq. (3) by direct substitution:

φ′ ± u

k
sinφ = −2k +

u

k
, k = kn, (3′)

where φ = arg b(k, x) for k = kn, aI = ∓|b| 6= 0. In principle, the nondegenerate
points of the spectrum k2

n are determined from the requirement that the latter
Eq. (3′) should have a periodic solution. In general, this condition may also include
“extraneous roots” kn; however, for the zero potential u ≡ 0 we see that ∆φ =
2πn = 2kT gives the points of the spectrum exactly (analogously for the case
u = const). Formally this equation is applicable only in the nondegenerate case,
but in view of the stability of the properties of this equation under small (smooth)
variations of the potential u, use can be made of the fact that all the levels become
nondegenerate after almost any small perturbation. From this there follows:

Proposition 1.1. 1) For potentials close to zero (or to a constant) the condition of
the existence of periodic solutions of Eq. (3’) includes all the nondegenerate points
of the spectrum kn and is not solvable for kn which are not spectral points;

2) If a) the function φ(k, x) is known as a function of u for a given potential
u for all k, x, where it is meaningful (i.e., on the entire line with the exception
of degenerate points of both spectra aI = b = 0), and b) the function (u/k) sin φ
extends as a smooth function of the variables x, k to all x, k including the degenerate
points of the spectrum k = kn, then each spectral points satisfies the transcendental
equation

2πn =
∫ x0+T

x0

(
2k − u

k
± u

k
sin φ

)
dx. (5)

Assertion 1) of Proposition 1.1 was proved above, since for a constant potential
the condition on the spectral points is exact. For the proof of assertion 2) we remark
that the function sin φ at all points x, k where it is well defined (i.e., b 6= 0) depends
smoothly on the potential u(x). If after an arbitrarily small perturbation δu of the
potential u which makes all levels nondegenerate Eq. (5) is not satisfied for given k,
then this point k is not a spectral point for the potential u. This implies assertion
2) of Proposition 1.1.

2. Potentials with a Finite Number of Zones and Multisoliton
Solutions of the KV Equation

We recall that for an infinite period T = ∞ where u(x) → 0 for x → ±∞;
the monodromy matrix is defined from the transition from −∞ to +∞. The mul-
tisoliton solutions u(x, t) of the KV equation are determined from the condition
b ≡ 0 for real k for these potentials u at any t. In this case a is defined by its
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zeros (the spectral points) kn = iκn in the upper half plane xn > 0 by the for-
mula a =

∏
j

k−iκj

k+iκj
, whereby to a single soliton u(x− ct) there corresponds a single

spectral point k1 = iκ1, where κ2
1 = +c/4 (cf. [5]). What is the right analog of mul-

tisoliton solutions in the periodic problem? We suppose that the periodic potential
u is such that it has only a finite number of zones; this means that starting from
some number n > n0 all points of both spectra aR = ±1 are doubly degenerate and
that the entire half line k2 ≥ k2

n0
forms a single zone. The degeneracy condition

for a spectral point is the condition b(kn, x) ≡ 0 for k2
n ≥ k2

n0
. On multiplying the

period T by an integer T → mT the entire zone is filled out by degenerate levels
b ≡ 0 as m → ∞. On the other hand, with correct passage to the period T → ∞,
whereby the potential uT (x) with period T tends to a rapidly decreasing poten-
tial for T → ∞, the zones of finite size contract to isolated points of the discrete
spectrum. All this indicates that it is natural to suppose that the right analog of
multisoliton solutions are the finite-zone potentials. The property that a potential
be a finite-zone potential is conserved in time by virtue of the KV equation. How
should one seek such solutions of the KV equation? What are finite-zone potentials
like?

We consider the “higher KV equations” of order n

u̇ =
d

dx

(
δIn

δu(x)
+ c1

δIn−1

δu(x)
+ · · ·+ cn

δI0

δu(x)

)
, (6)

where In =
∫

Pn(u, u′, . . . , u(n)) dx is a polynomial integral of the KV equation
and c1, . . . , cn are arbitrary constants. Equation (6) has order 2n + 1 and by the
theorem of Lax and Gardner [6, 7] it admits the Lax representation

L̇ = [L,An + c1An−1 + · · ·+ cnA0], (7)

where L = −(d2/dx2) + u and the operators A0, A1, A2 are indicated in the intro-
duction, A0 = (d/dx). We shall now indicate the corollary of the Zakharov–Faddeev
theorem mentioned in the introduction which, while not noted by them, is extremely
important for our subsequent purposes.

Proposition 2.1. The set of all fixed points (stationary solutions) of any one of the
higher KV equations is an invariant manifold also for any other of the higher KV
equations (in particular, for the original KV equation) considered as a dynamical
system in function space.

Proof. All the higher KV equations are Hamiltonian systems; the Poisson brackets
of the integrals are equal to zero [In, Im] = 0 for all n,m. Therefore, all the higher
KV equations commute as dynamical systems in function space. Therefore, the set
of fixed points for one of them is invariant with respect to all the remaining ones.
This proves Proposition 2.1. ¤

We have the following basic theorem:

Theorem 2.1. 1) All the periodic stationary solutions of the higher KV equations

d

dx

(
n∑

i=0

ci
δIn−i

δu(x)

)
= 0 (8)

are potentials u(x), the number of zones of which does not exceed n.
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2) The equation
δIn

δu(x)
+

n∑

i=1

ci
δIn−i

δu(x)
= d (8′)

is a completely integrable Hamiltonian system with n degrees of freedom depending
on (n+1) parameters (c1, . . . , cn, d), whereby the collection of n commuting integrals
of this system and all the parameters (c1, . . . , cn, d) are expressed in terms of 2n+1
nondegenerate eigenvalues of both spectra of the potentials u(x) which form the
boundaries of the zones.

Proof. As is known, in the case of rapidly decreasing functions u(x) from the Lax
representation L̇ = [A,L] it is easy to derive an equation for the eigenfunctions ψk

of the operator L: ψk = Aψk + λψk. In the periodic case the analogous derivation
gives

ψk = Aψk + λψk + µψ̄k, ˙̄ψk = Aψ̄k + µ̄ψk + λ̄ψ̄k, (9)
where λ + λ̄ = 0.

Indeed, (L− k2)ψk = 0. Therefore,

0 = L̇ψk + (L− k2)ψk = (AL− LA)ψk + (L− k2)ψk = (L− k2)(ψk −Aψk).

Since (L − k2)ψk = (L − k2)ψ̄k = 0, we obtain the desired result with unknown
coefficients λ(x0, t), µ(x0, t). To determine the coefficients we make use of the fact
that ψk(x0, x0) = ψ′k(x0, x0) = 0. From this for x = x0 we have

(Aψk)x=x0 + λ + µ = 0, (ψ̇k)x=x0 = 0,
(

d

dx
Aψk

)

x=x0

+ ik(λ− µ) = 0, (ψ̇′k)x=x0 = 0
(10)

in the basis ψk, ψ̄k. (In the basis φk, φ̄k it is necessary to let k 7→ 1 in the lower
equation.)

We consider the matrix Λ =
(

λ µ
µ̄ λ̄

)
, where λ+λ̄ = 0. This is a matrix of the Lie

algebra of the group SU1,1 to which the monodromy matrix T (k, x0) belongs. The
matrix Λ, as is evident from Eq. (10), depends on u(x0, t), u′(x0, t), . . . , u(2n)(x0, t), k.

In order to study the time dependence of the monodromy matrix T (k, x0) by
Eq. (6) it is necessary to compute ψk and ψ′ at the point x = x0 + T , where T is
the period. Having done this we obtain (x = x0)

ȧ + ḃ = A(aψk + bψ̄k) + λ(aψk + bψ̄k) + µ(b̄ψk + āψ̄k),

ik(ȧ− ḃ) =
d

dx
A(aψk + bψ̄k) + λ(aψ′k + bψ̄′k) + µ(b̄ψ′k + āψ̄′k).

(11)

Substituting relation (10) into (11) and performing simple computations, we obtain

ȧ = µb̄− bµ̄, ȧ + ˙̄a = 2ȧR = 0, ḃ = (λ− λ̄)b + (a− ā)µ = 2λb + 2iaIµ. (11′)

Proposition 2.2. On the basis of the higher KV equation the dependence of the
monodromy matrix on time is described by the equation

Ṫ = [Λ, T ], (12)

where the matrix Λ is found from formula (10) starting from the time dependence
of the eigenfunction basis (ψk, ψ̄k):

(ψ̇k, ˙̄ψk) = A(ψk, ψ̄k) + Λ(ψk, ψ̄k).
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This proposition has been proved above. It implies:

Corollary 2.3. The equation

Λ′ − Q̇ = [Q, Λ], (13)

holds and is the compatibility condition for the two-parameter family of matrices
T (k, x, t) satisfying the equations Ṫ = [Λ, T ], T ′ = [Q, T ], where the matrix Q is
that of formula (4).

Proof. Since Ṫ = Ṫ ′, it follows that [Λ′, T ] + [Λ, T ′] = [Q̇, T ] + [Q, Ṫ ]. Using the
Jacobi identity, we obtain [Λ′ − Q̇− (Λ, Q), T ] = 0.

This proves the corollary (it now follows easily from elementary properties of the
Lie algebra of the group SU1,1). ¤

We now proceed to the basic Theorem 2.1.
If u(x) is a stationary solution of Eq. (6), then the corresponding monodromy

matrix T (k, x) is also stationary Ṫ ≡ 0 and Q̇ ≡ 0. From Corollary 2.3 we obtain
the equation

Λ′ = [Q, Λ], (14)
where Sp Λ = λ+λ̄ = 0. The eigenvalues of the matrix Λ are integrals of the system
(8). Since Sp Λ = 0 for the eigenvalues of the matrix Λ we have α±(k) = ±

√
detΛ,

where detΛ = |λ|2 − |µ|2.
Further, det Λ is a polynomial in k2 of degree 2n+1, as is easily verified from the

form of the matrix Λ, whereby the leading coefficient is a nonzero constant. The
roots of the polynomial detΛ = 0 are numerical integrals of the system Λ′ = [Q, Λ];
formally the coefficients of the polynomial det Λ in the variable k2 are written in the
form of polynomial expressions in u(x) and its derivatives with constant coefficients.
We remark that the equation Λ′ = [Q, Λ] is equivalent to the original equation
d
dx

(∑
ci

δIn−i

δu(x)

)
= 0 for the function u(x). Thus, we have 2n + 1 integrals of this

system (the roots of the equation det Λ = 0 or the coefficients of the polynomial
detΛ), the first n + 1 of which are formed from the constants (c1, . . . , cn, d).

We shall prove that these integrals are commutative and define all the zone
boundaries of the potential u(x). Using Eq. (12) [Λ, T ] = 0, we can obtain the
following relations:

1) (a− ā)µ = 2λb, 2) b̄µ = µ̄b. (15)
From this we immediately obtain

e2iφ = b/b̄ = µ/µ̄, where φ = arg b, iaI/b = λ/µ. (15′)

At the (nondegenerate) points of the spectrum k2 = kn∣∣∣∣
iaI

b

∣∣∣∣ =
∣∣∣∣
λ

µ

∣∣∣∣ = 1, k = kn, (16)

or |λ|2 − |µ|2 = det Λ = 0. Thus, the zone boundaries are the zeros of the polyno-
mial det Λ = 0. Passage to the limit of infinite period whereby u tends to a rapidly
decreasing function shows that the last n coefficients of the polynomial det Λ are
algebraically independent integrals which are polynomials in u and its derivatives
for almost any values of the first n + 1 constants (c1, . . . , cn, d). We thus have n
independent integrals of the Hamiltonian system (8′) with n degrees of freedom.
From the previously mentioned theorem of Zakharov and Faddeev it can be seen



THE PERIODIC PROBLEM FOR THE KORTEWEG–DE VRIES EQUATION 9

also that these integrals commute. Indeed, the manifold of functions [the station-
ary points of Eq. (6)] lies in a complete function space where all 2n + 1 integrals
are commutative. On the finite-dimensional manifold of functions in question the
symplectic form is degenerate. The integrals (c1, . . . , cn, d) after restriction to the
manifold have zero Poisson brackets with all functions on this manifold. It is easy
to verify that the symplectic form on this manifold is in fact obtained by restriction
of a form from the entire function space. This implies the complete integrability of
Eq. (8′) and all the assertions of the basic Theorem 2.1. ¤

Remark 1. It is evident from Eqs. (15′) that φ = arg µ + mπ, φ = arg b, and
thus ± sinφ is expressed in terms of u and its derivatives. Combining this fact with
Proposition 1.1, we find that also the degenerate points of finite-zone potentials
u(x) can be obtained from the transcendental equation(5):

2πn =
∫ T

0

(
2k − u

k
± u

k
sin φ

)
dx

where ± sin φ = sin(arg µ).

Remark 2. Periodic and conditionally periodic solutions are obtained when the
level surface of all the commuting integrals found of Eq. (8′) for whatever values
of the constants (c1, . . . , cn, d) is compact (i.e., is an n-dimensional torus). In
general, for randomly chosen eigenvalues or zone boundaries (or, what is the same
thing, values of the constants and integrals), periodic functions are obtained with
n incommensurable periods. It is thus more natural to solve the inverse scattering
problem in almost-periodic functions rather than in periodic functions only.

Remark 3. The matrix Q itself has the form of the matrix Λ for the “zero-order KV
equation” {u̇ = u′}, where the operator A0 = d/dx, [A0, L] = u′. The stationary
solutions in this case are constants constituting 0-zone potentials. Further, for
any n the transformation u → u + c takes an n-zone potential into an n-zone
potential, and by means of this transformation it can be achieved that the function
u = v + const satisfies the equation

δIn

δu(x)
+ c2

δIn−2

δu(x)
+ · · ·+ cn

δI0

δu(x)
= d,

where c1 = 0 (it is assumed that c0 = 1). By studying the form of the matrix
Λ = ΛR + iΛI starting from the the formulas (10), it is possible to show that the
matrix ΛR has the form (n ≥ 1)

ΛR =

(
n−1∑
q=0

γq

(
d

dx

δIq

δu(x)

)
k2(n−1−q)

) (
0 1
1 0

)
,

where the constants γq are expressed in terms of the constants c1, . . . , cn.

Remark 4. The stationary solutions of the KV equation of order q are contained
among the stationary solutions of the KV equation of order n > q as degenerate
tori of Eq. (8′), where the n + 1 constants (c1, . . . , cn, d) and the values of the n
integrals I1, . . . , In are chosen such that these integrals depend on the entire level
surface. We shall now consider stationary solutions of the KV equations for n = 1
and n = 2.
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1) The Case n = 1. In this case we have the equation

cu′ + 6uu′ − u′′′ = 0,

u′′ = 3u2 + cu + d, u′2 = 2
(

u3 +
cu2

2
+ du + E

)
.

We obtain the elliptic function

x =
∫

du√
2u3 + cu2 + 2du + 2E

,

where u(x − ct) is a solution of the KV equation of the type of a simple wave.
According to Theorem 2.1 u(x) is a 1-zone potential. This fact was first proved
by E. Ince in 1940 in another language and by another method [14]; the Sturm–
Liouville equation with an elliptic potential is a special case of the Lamé equation
arising from the Laplace operator on an ellipsoid where 1/2 n(n + 1)-fold elliptic
functions also occur in the potential. (As shown in [14], they are n-zone potentials
which are a degenerate case of the general n-zone potentials given by Theorem 2.1).

In the basis ψk, ψ̄k the matrix Λ has the form

λ =
ik

2k2
(u′′ − 2u2 + 8k2)− ick +

icu

2k
,

µ = −u′ +
ik

2k2
(−u′′ + 2u2 + 4k2u)− icu

2k
,

(17)

and the characteristic polynomial has the form

detΛ = 4k6 + 2ck4 +
c2 + 4d

4
k2 +

cd− 2E

4
. (17′)

We see that k2
1 +k2

2 +k2
3 = −c/2. If the period T →∞ and u(x) tends to a rapidly

decreasing function, then E → 0, d → 0. Therefore, k3 → 0, k2
1 → −κ2, k2

2 → −κ2,
and the zone contracts to the eigenvalue k2 = −κ2 where κ2 = c/4.

We note that the transcendental equation for all the degenerate points of the
spectrum follows from Remark 1.

2) The Case n = 2. On the basis of Remark 3 we consider only an equation of
the form

d

dx

(
δIn

δu(x)
+ 8c

δI0

δu(x)

)
= 0, (8′′)

where 8I0 =
∫

(8u2) dx, I2 =
∫ (

u′′2
2 − 5

2u2u′′ + 5
2u4

)
dx [we obtain all 2-zone po-

tentials by adding a constant to the solutions of Eq. (8′′)]. The Lagrangian of the
dynamical system (8′′) has the form

L = L2 + 8cL0 − du = L(u, u′′), 8L0 = 8u2, L2 =
u′′2

2
− 5

2
u2u′′ +

5
2
u4.

We denote by q the quantity q = (∂L/∂u′′). The energy of a system in which the
Lagrangian depends on two derivatives has the form

E = L− u′′q + u′q′.

We denote u′ by pq and q′ by pu. Then E = H(u, q, pu, pq) = V (u, q) + pupq, and
Eqs. (8′′) assumes the Hamiltonian form

p′u = −∂H

∂u
, p′q = −∂H

∂q
, u′ =

∂H

∂p
, q′ =

∂H

∂pq
,
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where V = L − u′′q = − q2

2 − 5
2qu2 − 5

8u4 + 8cu2 − du. However, the study of this
Hamiltonian system with two degrees of freedom is not so simple. We therefore
compute its remaining integral by using the Lax representation Λ′ = [Q, Λ] of this
dynamical system. The operator A has here the form

A = A2 + 16cA0 =

=
d5

dx5
− 5

2
u

d3

dx3
− 15

4
u′

d2

dx2
+

15u2 − 25u′′

8
d

dx
+

15
8

(
uu′ − u′′′

2

)
+ 16c

d

dx
.

Computing the matrix Λ by Eqs. (10), we obtain (in the basis ψk, ψ̄k)

−16λ =
ik

k2

(
−u(4)

2
+ 4uu′′ + 3u′2 − 3u3 + 2k2u2 + 16k4

)
+ 16ick − 8

icu

k
,

16µ = (6uu′ − u′′′ + 4k2u′) +

+
ik

k2

(
−u(4)

2
+ 4uu′′ + 3u′2 − 3u3 + 2k2u′′ − 4k2u2 − 8k4u

)
− 8icu

k
,

detΛ = k10 + 2ck6 − d

16
k4 + k2

(
c2 +

E

32

)
+

I + 16cd

162
,

(18)
where

I = p2
u − 2upupq + (2q − 16c)p2

q + D,

D = u5 + 16cu3 − 4uq2 + 32cuq − 2dq.
(19)

The integrals I and E = H are commutative, and the Hamiltonian system (8′′) is
thus completely integrable. Let p2

u = α2
1,

(2q − 16c)p2
q =

{
α2

2 for q ≥ 8c,

−α2
2 for q < 8c.

Then
α2

1 ± α2
2 = I −D(u, q) + u(E − V ), ±α2

1α
2
2 = (2q − 16)(E − V )2,

±2α2
j = A±

√
a2 − 4B, j = 1, 2,

(19′)

where A = I −D + 2u(E − V ), B = (2q − 16c)(E − V )2. We find that for given
values of the constants c, d, E, I we must seek regions of the (q, u)-plane where

A ≥ 0, A2 − 4B ≥ 0, q ≥ 8c. (20)

Compact regions satisfying inequality (20) give tori in the phase space (u, q, pu, pq).
It is evident from the equations that compact regions are possible only in the half
space q ≥ 8c. Indeed, for q < 8c the expression A±

√
A2 − 4B always has roots of

different signs which coalesce only at the isolated points A = 0, B = 0.
For these potentials (periodic and conditionally periodic with two periods) the

relation
∑

j k2
j = 0 is satisfied.

As noted in Remark 3, the remaining 2-zone potentials found in Theorem 2.1
are obtained by adding a constant u → u+const, where this constant is the sum of
the eigenvalues — the zone boundaries — of the new potential v(x). The equations
giving the singular points of the Hamiltonian system, as is easily seen, reduce to
the conditions

pu = pq = 0, q = −5
2
u2, 10u3 − 16cu + d = 0
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or
u = u(c, d), q = q(c, d), E = V (c, d), I = D(c, d).

In parameter space this is a two-dimensional surface E = E(c, d), I = I(c, d).
In general, under these conditions we obtain in phase space compact separated
level surfaces E = const, I = const of torus type with one degenerate cycle. The
trajectories of the KV equation on these surfaces describe the interaction of a peri-
odic simple wave with a rapidly decreasing soliton. The interaction of two rapidly
decreasing solitons (a two-soliton solution of the problem with rapidly decreasing
initial data) is obtained [up to an additive constant U(c, d)] if still another condition
on the parameters is satisfied under which both cycles on the torus degenerate to
a point. This relation has the form of a condition on the parameters under which
the polynomial det Λ has three distinct roots, two of which are double roots (the
two zones contract to points).

With the exception of this special case, the evolution in time of two-zone poten-
tials according to the Korteweg–de Vries equation is characterized by two constants
∆1,∆2 such that

u(x + ∆1, t + ∆2) = u(x, t).
Calculation of these constants ∆1,∆2 in terms of the zone boundaries will be

given in the second part of the work.
In the second part of the work we shall study n-soliton solutions in more de-

tail. Does there exist a superposition law synthesizing them from single-soliton
solutions — an algebraic function of pairs of solitons (elliptic functions) which
contains doubly valued points (roots) and therefore, in general, leads beyond the
field of elliptic functions? In terms of the characteristic polynomials this appears
as follows: there are two solitons u1(x, c1, d1, E1), u2(x, c2, d2, E2) with matrices
detΛ(1) = (k2 − λ1)(k2 − λ2)(k2 − λ3), det Λ(2) = (k2 − µ1)(k2 − µ2)(k2 − µ3).

Suppose that the roots λj , µj are nonmultiple and λ1 = µ1 (a condition for the
possibility of composition); the remaining 4 roots λ2, λ3, µ2, µ3 are all distinct. The
superposition law of solitons is such that the 2-soliton potential v = F (u1, u2) has
a characteristic polynomial det Λ in the form of the least common multiple of the
initial polynomials detΛ = (k2 − λ2)(k2 − λ3)(k2 − µ2)(k2 − µ3)(k2 − λ1), where
λ1 = µ1. The correct analog of the amplitude ak for rapidly decreasing functions
is here the quantity det Λ. However, this definition of superposition is ineffective.
Completely different representations of the superposition law are possible; we shall
discuss these in Part II.

Remark 5. V. B. Matveev and L. D. Faddeev have informed the author that in
1961 N. I. Akhiezer essentially formulated and began the solution of the problem
of constructing examples of finite-zone potentials starting from the results of [2, 3]
on the inverse scattering problem on the half line. In this work [1] N. I. Akhiezer
developed an interesting approach to the construction of finite-zone potentials using
facts from the theory of hyperelliptic Riemann surfaces. His construction, however,
gives for a prescribed zone structure only a finite number of potentials which satisfy
specific parity conditions in x. Theorem 2.1 of the present work gives many more
periodic and almost-periodic n-zone potentials — they depend on n continuous
parameters for a prescribed zone structure. Since the KV equation {u̇ = 6uu′−u′′}
is not invariant under the transformation x → −x, it follows that during evolution
in time other potentials will be obtained from those of Akhiezer which are not
contained in his construction of n-zone potentials. Judging from the work [1],
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N. I. Akhiezer was not familiar with the work of E. Ince [14] which actually proved
(in another language) that an elliptic function is a 1-zone potential. It is curious
to note that the three proofs of this particular fact which follow from the works of
E. Ince [14], N. I. Akhiezer [1], and the present work are, in principle, all different.
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