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Abstract. A method of connecting the Korteweg–de Vries (KdV) equation,
known from the theory of nonlinear waves, with the Schrödinger equation

was discovered in 1967. [1] This method is applied in the present paper to
a study of a periodic problem. We find exact analytical formulae for a class

of solutions u(x, t) such that at any moment in time t the potential u(x, t) of

the Schrödinger operator has only a finite number of forbidden bands in the
Bloch spectrum. We find in this connection all potentials with a finite number

of bands. This class of solutions contains as a degenerate limiting case the

well known N -soliton solutions of the KdV equation, which decrease rapidly
as |x| → ∞.

Introduction

It is well known that the nonlinear Korteweg–de Vries (KdV) wave equation

ut = 6uux − uxxx

reduces to the inverse problem of scattering theory for the Schrödinger (Sturm–
Liouville) operator

L =
−d2

dx2
+ u(x), u(x) = u(x, t)|t=const,

if the solution u(x, t) decreases rapidly as |x| → ∞ (see [1, 2]). The most effective
study has in this case been made of the so-called “multisoliton” solutions which
describe the interaction of a finite number of solitons—solutions of the kind u(x−ct).
They have the form u(x, t) where at any time t the potential u is non-reflective
(the reflection coefficient vanishes identically). Although the algebraic mechanism
connecting the KdV equation with the Schrödinger operator continues to function
also in the case of periodic boundary conditions, nobody had succeeded in applying
it seriously to an effective study of the KdV equation until the recent work by the
present authors [3, 4] and by Its and Matveev. [5]

The basis of this procedure is the fact, noted by one of us, [3] that a strictly
periodic (and conditionally periodic) analog of the many-soliton solutions consists
in those u(x, t) for which at any time t the potential u(x, t) has only a finite number
of forbidden bands in the Bloch spectrum. Such a class of potentials, which we shall
call in what follows finite-band potentials, contain as a degenerate limiting case all
non-reflective potentials which decrease fast as |x| → ∞; all finite-band potentials
and the corresponding solutions of the KdV equation can be found in terms of exact,
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albeit complicated, formulae. The solutions of the form u(x−ct) are in the periodic
case potentials with a single forbidden band. This is a Weierstrass elliptic function
2℘(x) + constant. Even a consideration of their simplest perturbations leads to
a two-band (i.e., two-forbidden-band) conditionally periodic potential u(x, t) with
two, generally speaking, non-commensurate periods, where u(x + ∆1, t + ∆2) =
u(x, t) (i.e., after a period T = ∆2, the picture is re-established with a shift x →
x−∆1).

In this paper we describe a class of periodic and conditionally periodic finite-band
potentials and the corresponding family of solutions of the KdV equation. Although
many facts can easily be generalized also to the case of an infinite number of bands,
to a large extent the results lose their effectivity. We must note here that finite-
band periodic potentials turn out to be relatively numerous among the periodic
functions in contrast to the non-reflective Bargmann potentials: apparently one
can approximate any smooth periodic potential by a finite-band one, although we
have not proved this. We note that the procedure developed in the present paper
is applicable also to other nonlinear equations which are “fully integrable” by the
scattering theory method and which occur in a study of a periodic problem: it is
now already known that their number is large[6]–[8] (Zakharov and Shabat [9] have
developed a regular method to find them).

1. Finite-Band Potentials and Integrals of the KdV Equation

Lax [10], using the procedure of [1], has noted that the basis for the connection
between the KdV equation and the Schrödinger operator is the representation of
the right-hand side 6uu′ − u′′′ as a commutator

(1.1)
6uu′ − u′′′ = [A,L],

L = − d2

dx2
+ u, A = −4

d3

dx3
+ 3

(
u
d

dx
+

d

dx
u

)
,

whence it follows that the equations

(1.2) u̇ = 6uu′ − u′′′ and L̇ = [A,L]

are equivalent.
If φ is an eigenfunction, Lφ = Eφ, we easily get from (1.1) the relation

(1.3) (L− E)φ̇ = (L− E)Aφ.

We fix two eigenfunction bases

φ(x, x0, E), φ̄(x, x0, E),

x = x0, φ = 1, φ′ = ik, k2 = E;
(1.4)

c(x, x0, E), s(x, x0, E),

x = x0, c′ = 0, c = 1, s′ = 1, s = 0.
(1.4′)

For a periodic potential u(x) with period T the translation operator produces when
acting upon the eigenfunc-tions a shift over the period T :

(1.5) (T̂ φ)(x) = φ(x+ T ).
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We obtain in both cases (1.4) and (1.4′) a second rank matrix with a determinant
equal to unity:

(1.6) T̂ (x0, k) =
(
a b
b̄ ā

)
, |a|2 − |b|2 = 1

in the base (1.4), or

(1.6′) T̂ (x0, k) =
(
α11 α12

α21 α22

)
, α11α22 − α12α21 = 1,

where the αij are real, k2 = E, in the base (1.4′).
For rapidly decreasing potentials one usually chooses x0 = ±∞, T̂ = T̂ (k) in the

base from two exponents. In the case of a finite period the choice of the point x0

is arbitrary and when we change x0 (in the base (1.4)) we have the equation

(1.7)

dT̂ /dx0 = [Q, T̂ ],

Q = ik

(
1 0
0 −1

)
− iu

2k

(
1 −1
1 −1

)
.

The Bloch eigenufnotions ψ±(x, x0, E) are determined by the conditions

(1.8) Lψ± = Eψ±, T̂ψ± = exp(±ip(E))ψ±, ψ±|x=x0 = 1,

where the dispersion law p(E) is determined in the allowed bands. The trace of the
matrix T̂ is of the form

(1.9) Sp T̂ = a+ ā = 2aR

in the base (1.4) and is independent of x0. The allowed bands are determined by
the condition

(1.10) 1/2|Sp T̂ | = |aR| ≤ 1.

We note that the eigenvalues of the matrix T̂ have the form aR ± (a2
R − 1)1/2,

or aR = cos p(E). The points of the discrete spectrum En of the periodic and
the anti-periodic problems: ψ(x + T ) = ±ψ(x), are determined by the conditions
aR(En) = ±1. They are the edges of the forbidden bands only when these levels
are nondegenerate (or the matrix T̂ is a Jordan matrix for E = En). If aR = ±1,
but the matrix T̂ is diagonal (and equal to ±1) the forbidden band is collapsed
to nothing. This is characterized by a condition similar to the non-reflectivity
condition:

(1.11) b(x0, kn) ≡ 0, k2
n = En.

The finite-band character of the potential means that all higher periodic and an-
tiperiodic levels En are twofold degenerate.

We find, clearly, from (1.6) that in the points of the spectrum En of the periodic
and antiperiodic problems: aR = ±1, we have the equations

(1.12) |aI | = |b|, E = En,

where a = aR + iaI , |b| 6= 0 in the non-degenerate points of the spectrum for all x0.
If χ(x,E) = −i d(lnψ)/dx, then χ will be independent of the point x0 and will

satisfy the Riccati equation which expresses, in particular, its imaginary part in
terms of its real part:

(1.13) −iχ′ + χ2 + u = E, χI = 1/2(lnχR)′,
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and allows an asymptotic expansion as E →∞

(1.14) χ(x, k2) ∼ k +
∑
n≥1

χn(x)
(2k)n

.

By virtue of (1.13) all functions χn(x) are polynomials in u(x) and its derivatives
with respect to x, while the χ2m(x) are total derivatives.

It is well known that all integrals

(1.15) I(k) =
∫
χ(x, k2) dx, Im−1 =

∫
χ2m+1(x) dx, m ≥ 0,

are conserved by virtue of the KdV equation. Moreover (Lax and Gardner [10, 11])
all “higher KdV equations”

(1.16) u̇ =
∂

∂x

δIm
δu(x)

admit of a representation in the form (1.1):

(1.17) L̇ = [Am, L], Am =
d2m+1

dx2m+1
+

2m∑
i=0

Pi
di

dxi
,

where all Pi are polynomials in u and its derivatives with respect to x. The KdV
equation itself is obtained for m = 1, and the operators A0, A1, and A2, and the
integrals I−1, I0, I1, and I2 take the following form:

(1.18)

I−1 =
∫
u dx, I0 =

∫
u2 dx, A0 = 2

d

dx
,

I1 =
∫ [

u3 +
1
2
(u′)2

]
dx,

A1 = −4
d3

dx3
+ 3

(
u
d

dx
+

d

dx
u

)
,

I2 =
∫ [

1
2
(u′′)2 − 5

2
u2u′′ +

5
2
u4

]
dx,

A2 = 16
d5

dx5
− 20

(
u
d3

dx3
+

d3

dx3
u

)
+ 30u

d

dx
u+ 6

(
u′′

d

dx
+

d

dx
u′′
)
.

Any equation of the form u̇ = Q(u, u′, . . . ), where the right-hand side is a poly-
nomial and can be written in the form of a commutator [A,L] = Q, is of the form

(1.19) A =
N∑

m=0

cmAm, Q =
d

dx

(
N∑

m=0

cm
δIm
δu(x)

)
.

Let some such equation be given. It turns out that all its periodic stationary solu-
tions u(x) are finite-band potentials, and we obtain thus all finite-band potentials.
The conditionally periodic solutions of this equation are also finite-band potentials
(see [3, 4]). We shall indicate below the algorithm for integrating these equations:

(1.20)
N∑

i=0

ci
δIi
δu(x)

= const.

By virtue of (1.3) we have for the basis (1.4) of the eigenfunctions the equations

(1.21) φ̇ = Aφ+ λφ+ µφ̄, ˙̄φ = Aφ̄+ µ̄φ+ λ̄φ̄,
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where the matrix

(1.22) Λ = Λ(x0, k) =
(
λ µ
µ̄ λ̄

)
has a zero trace λ + λ̄ = 0 and has a polynomial dependence on k, on u, and on
its derivatives with respect to x in the point x = x0. It is determined from the
conditions φ̇ = 0 and φ̇′ = 0 when x = x0. It turns out that we have for the matrix
T (x0, k) the equation

(1.23) ∂T̂ /∂t = [Λ, T̂ ]

Comparing (1.23) with (1.7), we get from the condition

∂

∂t

∂

∂x0
T̂ =

∂

∂x0

∂

∂t
T̂

the equation

(1.24)
∂Λ
∂x0

− ∂Q

∂t
= [Λ, Q].

Equation (1.24) gives a new useful algebraic representation of the KdV equation
and its higher analogs. For instance, for stationary solutions of Eqs. (1.16) we have
Eq. (1.20), whence it follows that

(1.25)
∂Q/∂t = ∂T̂ /∂t = 0,

dΛ/dx0 = [Λ, Q], [Λ, T̂ ] = 0.

Since Tr Λ = 0, the eigenvalues α± are given by α±(k) = ±(detΛ)1/2, where
detΛ is a polynomial of k2 = E, the zeroes of which (see below) are the boundaries
of the bands, with coefficients depending on u, u′, . . . , u(2N). These coefficients are
also a complete set of commuting integrals of the Hamiltonian of Eq. (1.20) which
also allows, by virtue of (1.25), a commutator representation with second rank
matrices with coefficients which depend polynomially on k. Furthermore, for the
matrix elements of the second Eq. (1.25) we get

[Λ, T̂ ]12 = (λ− λ̄)b+ (a− ā)µ = 0,

or

(1.26) 2λb = 2iaIµ.

In the non-degenerate points of the spectrum of the periodic and antiperiodic
problems we get from (1.26) by virtue of (1.12)

(1.27) |aI/b| = |λ/µ| = 1

when E = En. Hence it follows that

(1.28) |λ2| − |µ|2 = det Λ = 0.

The roots of the polynomial detΛ in terms of k2 = E determine therefore the Bloch
bands.
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For the case of one or two forbidden bands the matrix Λ and the polynomials
R(k2) = det Λ can easily be evaluated and have the form

(1.29)

Λ =
(
λ µ
µ̄ λ̄

)
, u′′′ = 6uu′ + cu′,

λ = ik−1(−u′′/2 + u2 − 4ik4),

µ = u′ + ik−1(u′′/2− u2 − 2k2u),

64ER(E) = (8E2 + 2cE + d)2 − 8aE − d2,

0 = 1/2(u′)2 − (u3 + 1/2cu2 + du+ a).

If a = 0, we have

u(x) = 2℘(x)− c/6, (℘′)2 = 4℘3 − g2℘− g3,

g2 =
1
12
c2 − d, g3 =

1
12
cd− (c/6)3.

The function ℘(x) is a Weierstrass elliptic function; Ince [12] was the first to
establish in 1940 that the potential 2℘(x) leads to a single forbidden band. In
the same paper, devoted to the Lamé equation, it was ineffectively shown that
n(n+ 1)℘(x) is an n-band potential at integer n (already for n = 2 this class does
not exhaust by far all the two-band periodic potentials).

2) n = 2. Let
5∑

i=1

Ei = 0.

Eq. (1.20) takes the form

(1.30)

δI2
δu(x)

+ c1
δI0
δu(x)

= d1,

λ = ik−1

{
1
2
uIV(−4uu′′ + 3(u′)2 − 3u3)− 2u2k2 + 16k6

}
,

µ = −u′′′ + 6uu′ − 4u′k2 + ik−1

{
1
2
uIV + 4uu′′

+ 3(u′)2 − 3u3 + k2(2uu′′ − 4u2)− 8uk4

}
,

R(E) = E5 +
1
4
c1E

3 − 1
16
d1E

2 +
(

1
32
J1 +

1
4
c21

)
E

+ J2/28 + c1d1/27,

J1 = H(p, q) = p1p2 −
(

1
2
q22 +

5
2
q21q2 +

5
8
q41

)
+ c1q

2
1 − d1q1,

J2 = p2
1 − 2q1p1p2 + 2(q2 − c1)p2

2 + q51 + 2c1q31
+ d1q

2
1 − 4q1q22 + 4c1q1q2 − 2d1q2;

where p1 = q′2, p2 = u′, q1 = u, q2 = − 5
2u

2 + u′′. In particular, we have for the
potential v(x) = 6℘(x)− c/2 the band edges:

(1.31) −1
4
c1, −5

8
c± 1

8
(c2 − 16d)1/2, −1

2
c± 1

2
(c2 − 12d)1/2.
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2. Finite-Band Potentials and Riemann Surfaces

For the periodic potential u(x) the Bloch eigenfunction ψ±(x, x0, E), normalized
by the conditions (1.8), can be analytically continued with respect to E from the
allowed bands and turns out to be a meromorphic function on the Riemann surface
of the root [

2n+1∏
i=1

(E − Ei)

]1/2

which branches at the band edges Ei. Inside the allowed bands the values of the
same function ψ on different sheets then correspond to a pair of linearly independent
functions ψ±(x, x0, E). One sees easily that the zeroes and poles of ψ can lie on
the Riemann surface R only on the forbidden bands or their edges on the surface
R. It is clear that ψ± ∼ exp(±ik(x− x0)) as E →∞, k2 = E.

From (1.13) we get the following representation

(2.1) ψ(x, x0, E) =
(
χR(x0, E)
χR(x,E)

)1/2

exp
{
i

∫ x

x0

χR(x,E) dx
}
.

Moreover, there is for ψ a representation in the base (1.4′):

(2.2) ψ = c+ iχ(x0, E)s.

We get easily for χ(x,E) an expression in terms of the matrix T̂ :

(2.3)
χR(x,E) =

k(1− a2
R)1/2

(aI + bI)
,

χR(x,E) =
(1− 1

4 (α11 + α22)2)1/2

α21

in both bases (1.4) and (1.4′).
One can easily show that the entire function

α̃21 = α21(1− a2
R)−1/2

(
2n+1∏
i=1

(E − Ei)

)1/2

,

has zeroes only at the edges of the forbidden bands and behaves asymptotically like
En as E →∞. From this it follows that

(2.4)

α̃21 =
n∏

j=1

(E − γj(x)) = Pn(x,E);

χR(x,E) =
R1/2(E)
Pn(x,E)

, χI(x,E) = −1
2
P ′n(x,E)
Pn(x,E)

.

Here

R(E) =
2n+1∏
i=1

(E − Ei).

From (2.1) we get the identity

(2.5) ψψ̄ = ψ+ψ− = Pn(x,E)/Pn(x0, E).

Moreover, it follows from (2.5) that ψ(x, x0, E) has up to one pole γj(x0) and
one zero γj(x) in each of the forbidden bands or at their edges; more precisely, the
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function has on the Riemann surface R a pole on only one of the sheets: (γj(x0), σj),
where σj = ±.

From the condition that there be no pole on the other sheet (γj(x0), σ′j) and
from Eqs. (2.2) and (2.4) we find that the quantity

χ(x0, E) =
[
R1/2 − i

2
dPn(x0, E)

dx0

]/
Pn(x0, E)

has no pole when E = γj(x0) and the sign in front of the radical R1/2 is equal to
σ′j . Hence follows the equation

(2.6)
dPn(x,E)

dx

∣∣∣∣
E=γj(x)

= 2σ′jiR
1/2(γj).

Solving (2.6) for γ′j , we get

(2.6′) γ′j = ±2iR1/2(γj)
/∏

k 6=j

(γj − γk).

For the two-band case (n = 2) these equations take the form

(2.6′′) γ′1 =
2iR1/2(γ1)
γ1 − γ2

, γ′2 =
2iR1/2(γ2)
γ2 − γ1

,

and can be integrated by the substitution (α = 1, 2)

(2.7)

(γ2 − γ1)dτ = dx, τ =
1
2i

∫ γ̄α

E2α

dz

R1/2(z)
,

E1 < E2 < E3 < E4 < E5,

x− x0 =
∫ τ

0

[γ2(τ)− γ1(τ)] dτ,

γ1(τ) = γ̄1(τ), γ2(τ) = γ̄2(τ + τ0).

The parameter x0 is chosen here such that γ1(x0) = E2; the functions γ1 and γ2

are periodic in τ and possess the properties

(2.8) E2 ≤ γ1 ≤ E3, E4 ≤ γ2 ≤ E5.

From the asymptotic behavior of χR as E → ∞ (Eq. (1.14)) one can derive
relations that express symmetric polynomials in γ1 and γ2 in terms of u, u′, u′′, . . . .
In particular, we have for n = 2

(2.8′)

u(x) = −2(γ1 + γ2) +
5∑

i=1

Ei,

γ1γ2 =
1
8
(3u2 − u′′)−A, A = −1

2

∑
EiEj +

3
8

(∑
Ei

)2

,

γ1,2 = −1
4
[u± (−5u2 + 2u′′ + 16A)1/2].

Let us explain the geometrical meaning of Eqs. (2.6′) and (2.6′′), which are
written on the Riemann surface R. The forbidden band number j corresponds to
the section lj = [E2j , E2j+1] in the E-plane. However, on the Riemann surface R
this section corresponds to the cycle aj—a circle consisting of two sections (lj ,+)
and (lj ,−), the ends of which are identical (see Fig. 1). The set of points (γj , σj)
lies on the circles aj and Eq. (2.6′) holds for them. By varying x we get the motion
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Figure 1. The functions

y =
2N+1∏
i=1

(E − Ei)1/2

where the Ei are the band edges, are on the Riemann surface R
determined by the cycles aj which are situated above the forbidden
bands lj . The poles (γj ,±) of the Bloch function move along the
cycle aj .

of every point (γj , σj) along the circle aj and the signs of σj change after passing
through the points E2j or E2j+1.

In fact, (2.6′) describes the motion of all “phase points” (γ1, σ1, γ2, σ2, . . . , γn, σn)
over an n-dimensional torus. It is convenient for the integration of Eq. (2.6′) for all
n ≥ 2 to give a different description of the same torus. We consider differentials on
a Riemann surface which have no poles (of first order)

(2.9) Ωm =
n−1∑
k=0

ckm
Ek dE

±R1/2(E)
; m = 1, . . . , n,

normalized by the conditions

(2.9′)
∮

aj

Ωm = 2πiδjm.
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Figure 2. Basis of closed contours (cycles) on the Riemann sur-
face R (two-band case). The cycles aj correspond to forbidden
bands while the part of the cycle aj which lies on the lower sheet
is shown by a dashed line.

We introduce cycles bj on the Riemann surface which do not intersect the am

with m 6= j, while each bj intersects aj in one point, E2j (see Fig. 2). We have the
real matrix Bmj :

(2.10) Bmj =
∮

bj

Ωm.

It is known (Riemann) that Bmj = Bjm, that the matrix Bmj is negative definite,
and that it cannot be broken into blocks (e.g., it cannot be diagonal). At n = 2
this the complete set of conditions for the matrix Bmj .

Let Q1, . . . , Qn be a set of points on the Riemann surface R. We consider the
complex parameters

(2.11) ηn(Q1, . . . , Qn) =
n∑

j=1

∮ Qj

E2j

Ωm.

It is clear that these parameters are not defined uniquely since we have a choice
in the path on R connecting the points E2j and Qj . We can change the path by
any integral number of linear combinations of closed contours, the cycles a1, . . . , an,
b1, . . . , bn, after which we get

(2.12) ηk ∼ ηk +
n∑

j=1

mj

∮
aj

Ωk +
n∑

j=1

nj

∮
bk

Ωk,

where mj and nj are arbitrary integers.
We have thus a lattice of 2n vectors in the space of the n complex parameters

(η1, . . . , ηn) which can be expressed in terms of the basis vectors of n×2n matrices:

(2.13) (2πiδjk;Bjk).

We arrive thus at a 2n-dimensional torus. The real part of the torus is determined
by the matrix Bjk and gives us the n-dimensional torus in which we are interested.
The lattice (2.13) determines the standard multidimensional Riemann θ-function:

(2.13′) θ(η1, . . . , ηn) =
∑

m1,...,mn

exp
{

1
2

∑
Bjkmjmk +

∑
mkηk

}
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(see [13], Vol. I); the substitution (2.11) is reversible and we can write

(2.14) Qα = Qα(η1, . . . , ηn);

we are interested in the substitution (2.11) or (2.14) for the points Qj = (γj , σj)
which lie on the cycles aj on the surface R.

It turns out that the substitution (2.11) or (2.14) integrates Eq. (2.6′) for all n.
To be precise, it means that

(2.15)
ηk = ηk(γ1(x), σ1, γ2(x), σ2, . . . ),

dηk/dx = const; k = 1, . . . , n.

In fact, we can use an idea of Akhiezer [14] to obtain the following expression
for η′k:

(2.16)

dηk/dx = Uk,

iUj =
∮

bj

Ω = −2c1m;

the (second order) differential Ω = (En + q1E
n−1 + · · · + qn) dE/R1/2(E) is here

normalized by the conditions

(2.17)
∮

aj

Ω = 0, j = 1, . . . , n.

It is well known that one can easily get by using (1.14) the following represen-
tation for the potential u(x):

(2.18) u(x) = −2
∑
j=1

γj(x) +
2n±1∑
i=1

Ei.

If Qj = (γj , σj) are points on the Riemann surface, we can write γj as a numerical
function of the parameters η1, . . . , ηn, by virtue of (2.11) and (2.14):

(2.19) γj = κj(η1, . . . , ηn).

Using (2.18) we get

(2.20)
u(x) = −2

∑
κj + const ≡ −2κ(η1, . . . , ηn) + const,

ηj = xUj + η0
j

by virtue of (2.16).
It is well known that the function κ(η1, . . . , ηn) is a standard algebraic function

on the 2n-dimensional torus, given by the lattice (2.13). [4] We can follow Its and
Matveev [5] and take for the function κ from the literature a convenient expression
for calculations in terms of the Riemann θ-function (see [13]). It then follows for
the potential u that

(2.21) u(x) = −2
d2

dx2
ln θ(xU1 + η0

1 , . . . , xUn + η0
n) + const,

η0
j = −x0Uj +

n∑
k=1

∫ γk(x0)

E2k

Ωj −Kj ,

Kj =
1
2

n∑
k=1

Bkj − πij.
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It follows from Eqs. (2.20) and (2.21) that, generally speaking, the potential u(x)
is quasi-periodic with periods (T1, . . . , Tn), where

(2.22) T−1
j =

n∑
k=1

BjkUk,

where the matrix Bjk is the inverse of the matrix Bkj of the periods and, if we
continue into the complex region, with periods (T ′1, . . . , T

′
n) where

(2.22′) T ′j = 2πi/Uj .

The n− 1 relations

(2.23)
∑

njTj = 0,

with nj an integer, are necessary and sufficient for the periodicity of u(x). If,
moreover, the n− 1 relations for the imaginary periods,

(2.23′)
∑

mjT
′
j = 0,

are satisfied, we can express the potential in terms of elliptic functions. For the
two-band case, n = 2, the compatibility condition for having both Eqs. (2.23)
and (2.23′) for five parameters (E1, . . . , E5) gives us an enumerable set of three
parameter families. One of them (Ince’s case) has already been indicated at the
end of Sec. 1 (see (1.30), (1.31), and (2.8′)). To be more precise, we can obtain from
the Lamé potential 6℘(x)+constant other potentials of this family by changing the
time, by virtue of the KdV equation (see Sec. 3), and they will have the same
spectrum (correspond to the same Riemann surface R, satisfying conditions (2.23)
and (2.23′)).

If we use Eqs. (2.8′) and (1.31) for the potential u(x) = 6℘(x) we get the spec-
trum explicitly (surface R) and also the form of γ1(x) and γ2(x):

(2.24) R(E) = E5 − 21
4
g2E

3 − 27
4
d3E

2 +
27
4
g2
2E −

81
4
g2g3,

E1 = 3e1, E2 = −(3g2)1/2, E3 = 3e2, E4 = (3g2)1/2, E5 = 3e3,

4e3i − g2ei − g3 = 0, i = 1, 2, 3;

γ1,2(x) = −3
2
[℘(x)± (g2 − 3℘2(x))1/2].

It is, finally, relevant to note the general uniformity for the Bloch dispersion law
p(E):

(2.25)

p(E) + nπ =
∫ x0+T

x0

χR(x,E) dx,

dp

dE
=
∫ x0+T

x0

dx

2χR(x,E)
,

δp

δu(x)
= − 1

2χR(x,E)
.

From the last equation, together with the form of the function χR (see (2.3)) we
easily get the statement which is the inverse of the result of Sec. 1: any finite-band
potential satisfies one of the higher KdV equations (1.16). We note also that in
the ease of a potential which is periodic with period T it follows from the second
Eq. (2.25) that the differential T−1 dp is the same as the differential Ω occurring in
Eqs. (2.16) and (2.17).
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3. Time-Dependence of Finite-Band Potentials
by Virtue of the KdV Equation

We consider the “finite-band” solutions u(x, t) of the KdV equation which at any
time t give a finite-band potential for the Schrödinger operator. If the finite-band
potential uT (x) is periodic with period T with T → ∞ and if u∞(x) decreases
rapidly, the potential u∞(x) is non-reflective. The family of finite-band solutions
of the KdV equation thus contains as a degenerate limiting case the many-soliton
solutions. In that case the Riemann surface R of the root[

2n±1∏
i=1

(E − Ei)

]1/2

is degenerate as for T →∞ the band edges converge pairwise to one another, and
in the limit the root can be taken. The parameters (η1, . . . , ηn), given by Eq. (2.11)
have no meaning at all when T = ∞.

We now study the time-dependence of the potential u(x) by virtue of the KdV
equation. Firstly, the band edges are integrals of the system. One can show that the
derivatives η̇k are constants, by virtue of any of Eqs. (1.20). One can easily evaluate
these constants. We denote them by η̇k = Wk for the original KdV equation. We
then get from Eqs. (2.20):

(3.1) u(x, t) = −2κ(xU1 + tW1 + η0
1 , . . . , xUn + tWn + η0

n) + const.

It is, however, convenient to evaluate the time-dependence for the functions γj

(or the points (γj , σj) the cycles aj). We get from Eq. (1.23) for the matrix T̂ in
the basis (1.4):

(3.2) aI + bI = −2µR(aI + bI) + 2bR(λI + µI).

Moreover, we find from Eqs. (1.7) and (1.24) the general relations

(3.3) 2µR = − d

dx0

(
λI + µI

k

)
, 2bR = − d

dx0

(
aI + bI
k

)
.

From (3.3) and (3.2) we get, together with (2.3):

(3.4)
χ̇R = (ΛχR)′, Λ = (λI + µI)/k,

ṖN = Λ′PN − ΛP ′N .

Moreover, for E = γj(x) after using (2.6) it follows from (3.4) by analogy with
(2.6′) that

(3.5) γ̇j = −4iσ′jΛ|E=γj
R1/2(γj)

/∏
k 6=j

(γj − γk).

In the case of the KdV equation we have Λ = −2(u+ 2E), i.e.,

(3.5′) γ̇j = ±8i

∑
k 6=j

γk −
1
2

∑
Ek

R1/2(γj)
/∏

k 6=j

(γj − γk).

Through the substitution (2.11) and (2.14) we can integrate Eqs. (3.5) and (3.5′),
and the derivatives η̇k = Wk can easily be expressed in terms of the periods of a
few differentials on the Riemann surface R with poles at infinity.
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For the case of two forbidden bands we get, starting from Eq. (2.7), for the
parameters (x0, τ0):

(3.6)
τ̇0 = 4, ẋ0 = 4

(
γ̄1(τ0)−

1
2

∑
Ei

)
,

u(x, t) = −2(γ̄1(τ(x− x0(t))) + γ̄2(τ(x− x0(t) + τ0(t)))) + const.

Together with Eq. (2.8) this gives the final form of u(x, t) in the two-band case. In
the particular case u(x, 0) = 6℘(x) we get from Eqs. (2.8′) and (1.30), (1.31):

(3.7) u(x, t) = 2℘(x− β1(t)) + 2℘(x− β2(t)) + 2℘(x− β3(t)),

β1 + β2 + β3 ≡ 0,
∫ β1−β3

0

dz

12(g2 − 3℘2(z))1/2
= t,

β2 − β3 =
1
2
℘−1[−℘(β1 − β3) + (g2 − 3℘2(β1 − β3))1/2].

In conclusion we note that the formulae given here can be improved upon in a
number of cases but, in principle, they describe the whole dynamics of the finite-
band solutions. The parameters ηk on the torus (determined apart from the lattice
periods (2.13)) give “angle variables” which are canonically conjugate to the “ac-
tion” variables formed from the eigenvalues of the Schrödinger operator by analogy
of the work of Zakharov and Faddeev. [15] It is relevant to draw attention to
the complexity of the angle variables in the periodic case as compared to the fast
decreasing case.
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