SOLUTIONS TO THE GINZBURG-LANDAU EQUATIONS FOR
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ABSTRACT. The Ginzburg-Landau equations for planar textures of superfluid
3He are proved to be equivalent to a completely integrable Hamiltonian system.
General solutions to these equations are obtained by means of hyperelliptic
integrals.

1. INTRODUCTION

Superfluid ®He in the state of the p-pairing can be described in terms of a complex
3 x 3 matrix field A,; (the order parameter), which minimizes the Ginzburg-Landau
free energy, [1, 3, 5],

f:/dgm[Fgrad“‘Fb‘i‘Fh‘i‘Fd};
(1) Foraa = 110K A0k Api + 720K A 0i Api + 730K Ap e 0 Api
Fy = aTr(ATA) + 81| Tr(AAY)|? + Bo[Tr(AT A)]?
+ B3 Tr[(A* A" (AAY)*] + By Tr[(A"'A)Q} + 5 Tr[(ATA) (AT A)*];

F,; is the dipole energy density,

F}, is the magnetic energy density.

For a uniform spacial configuration of the order parameter the Fjy.,q terms are
absent. Then the minimization of F;, gives values of the order parameter A,; for
the familiar A and B phases, which constitute smooth manifolds M4 and Mp.

In these two cases the order parameter is of the form:

(I) for the A phase

Api = A dy(Aj+V=TAY), d? =1, (A)? = (A7) =1
A =const, A A =0
Ma = S? x SO(3)/Z,
(IT) for the B phase

A )
Api = @Rpi x e, A = const
Mp =S0(3) xU(1)
where R,; is a rotation matrix.
The density Fy is invariant under the transformations

(2) A — RTMARye™
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where Rp, Ry are rotation matrices. Transformations (2) constitute the symmetry
group G = SO(3) ® SO(3) @ U(1). It should be noted that the order parameter for
superfluid phases of 3He takes its values in homogeneous spaces of the group G.

For space dependent states, A,; = Ap;(x), we have Fyaq # 0. Then in the
London (or hydrodynamic) limit, [3], we assume that the order parameter takes
its values in the manifold of a superfluid phase, which lies in the space of complex
3 x 3-matrices, and the space dependence of the order parameter is determined by
the minimization of free energy density (1) under appropriate boundary conditions.

This situation is similar to the problem of chiral fields which take values in a
homogeneous space M = G/H of the group G and generate a metric on M by the
gradient terms of the Lagrangian. But it should be noticed that the gradient terms
appearing in the theory of superfluid 3He differ from the gradient terms of chiral
theory in that they do not generate, in general, the standard-invariant metric on
the manifold of the order parameter, while they do in chiral theory.

In this paper we assume that the order parameter depends only on a space vari-
able z, i.e. we consider planar textures, which describe reasonably well superfluid
3He confined between two parallel plates devided by a narrow gap [7].

We have found that for planar textures in the A phase of superfluid 3He there
exists a mechanical analogy with a top that substantially differs from the top of
classical mechanics in having moments of inertia which can change. Until now there
has been only the analogy with the top of classical rigid body, which was derived
for the needs of NMR [19].

Using the SO(3) ® SO(3) ® U(1)-symmetry of superfluid *He we have obtained
general solutions to the GL equations for the order parameter by means of hy-
perelliptic integrals. These solutions fulfill only the necessary conditions of the
minimization problem and it is still necessary to select the true minima among
them.

2. EQUATIONS FOR THE A PHASE

We shall consider separately two cases: (i) L < Lg and (ii) L > Ly, where L, Ly
are the characteristic and dipole lengths respectively.

(i) L <Ly
In this case we may cancel out the dipole energy and take the order parameter in
the most general form

(5) A=e¥RTYAGR,, Ay = -A.

—_ o O

0
0
7

o O O

We note that any value of the order parameter A for the A phase may be written
in the form
A=R;'AgR,

since we have the formula

cose sing 0
(6) e Ay = R;lAORW R,=|—sing cosp 0

0 0 1

Following papers [8], [9], we shall introduce the velocities

(7) v=1i0.R7" Ry; w=Ry" i0.R,.
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They take their values in the Lie algebra of the group SO(3) and we may write the
equations
V=0fe, W=wWefq
where f,, a = 1,2,3 are the generators of SO(3) having matrix elements (fy)pc =
1€qbe- WIith the help of v, w and their coordinates v,,w, we may write down the
density of the free energy given by Eq. (1) in the form
Fgrad - Iab(A)wawb + Xab(A)Uavba
(8) Iap(A) = 1 (faATAfo)ii + (72 +73) (fa AT Afp)s3,
Xab(A) = 11 (AT fafoA)ii + (72 +73) (AT fafo A) 33,

The velocities v, w are defined by Eq. (7) in the same way as the angular velocities
of a three-dimensional rigid body. The matrices I, and X, change for different
values of A as is clearly seen from their explicit form

(8" Xab(A) = [A(271 + (72 +73)|A31%) (Gab — dady)
YA+ (1 +72+78) AP (1 +r2+3)A1AS —71A1A%
ab = —M1T72T73)A1A2 Y1A3 Y1 TY2TV3 1 —Y1R24A3
I (1 +v2+73)ATA |As]2+ (71 +72+73) | AL Ay A%
—y1 AT A —mA5A; 71 (|A2?+|A5)%)

Here A;,dp; i,p = 1,2,3 are the familiar complex and real vectors for the order
parameter Ap;.

It is convenient to define a scalar product of two complex 3 x 3-matrices by the
formula

9) (X]Y) =7 (XY )i + (2 + v3) (XY )3s.
Then we have
(10) Lap(A) = (AfalASo),  xab(A) = (faAlfHA).

Now let us notice that under variations of the rotation matrices of the order
parameter
Rig— Ri2(1+46(1,2)+...)
the velocities v,,w, and the order parameter are transformed as follows
Vg — Vg + 8219((11) + 5abc7]b"9£1) + ...
Wy — Wq — 82’19&2) + 5abcwb19£2) + ...
A—A—idMVf A+ i0DAf, + ...

Hence we may obtain the equations of motion (or the equations for texture) in the
form

(11) VMg, — (i{fafoAlfeA) + c.c.)vpve = 0
(12) 3 — (({AfafolAfe) + ccchwpw, =0
Msapin = aF‘grad/ava; grb = 6Fgrad/6waa
vZ\4s‘apin = azM:pin - EabCUszcpin7

a a c
orb = a»Z‘Z\4orb + Eabcwaorb'

They are similar to the Euler equations for a top. Since there are no cross terms
with respect to v, w, in Egs. (11-12) we may say that we have two 3-dimensional
tops, which nonetheless do interact with each other as follows from Eq. (8'). The
second terms in Egs. (11-12) have appeared since our tops have changing inertia :
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coefficients. We may transform Eqgs. (11-12) into a Hamiltonian form by means of
Poisson brackets as follows

H = Fgrad; 9. Mg )y = {M:pin(orb); H}7

spin(orb
a . b _ c . . A — -
{Mspin7 Mspin} - gabCMspirﬂ {AP“ AQ]} - 07
a . b _ c . a . b —_n.
orb» Morb} - _eabCMorb’ orb» Mspin} =0;

{Mapin; A} = —ifaA;  {M2,} = —iAfe

We have six conserved quantities or integrals for our system:

(1) The spin currents Jspins @ = 1,2,3 generated by the rotations in the spin
indices (since the dipole energy is cancelled out);

(2) The momentum along the axis OZ, i.e. the Hamiltonian H of the system;

(3) The superfluid current

Jm = (A|Af)w, + c.c.

generated by the gauge transformation A — e A,
(4) Mgrb, generated by the rotation in the orbital indices round the axis OZ

cosy —siny 0
A— ARy; = |siny cosy 0
0 0 1

We notice that the components jg;, of spin current coincide with the spin mo-
menta M%. ~a=1,23.

spin»
It is easy to see that the integrals

H = Fgradajma Mgrb’ Ms?)pin’ (Msa )2

pin

are in involution, i.e. the Poisson brackets among any two of them are zero. Hence
our system is completely integrable. But it should be noticed that the actual inte-
gration requires additional consideration of the symmetry of the order parameter,
(cf. below).

It is easy to incorporate the magnetic field in Egs. (11-12), but since the magnetic
energy is represented by the term

Fy = gu|HpApil®

We lose two spin current integrals and our system is no longer completely integrable.

(ii) L> Lq
In this case we shall use only the superfluid velocity w = R~' - i0,R.
Now the function Fgyaq takes the form
Fyraa = Lap(A)wawy,
Loy = ([A4; fa]|[4; fo])
where (|) means scalar product (9). First we suppose that the magnetic field is

absent. Then by the considerations similar to those of the last subsection we obtain
the Euler equations in the form

VM* + <Z<[A7 fb]l[[Avfa]ch - Z([[Aa fa]fb]HA; fc]>)wbwc =0,
(14) M® = aF:grad/awaa
VM, =0,M®*+ egpcwpME.

(13)
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The magnetic field can be incorporated in the free energy density through the
additional term

Fp = gH‘H;/:ApiF
which generates the right hand side in Eq. (13). We consider only the case of the

magnetic field being parallel to the axis OZ. Then the arguments of the previous
subsection go through for obvious reasons and we have three integrals in involution

H:Fgrad+FH,jmaM3

and our system is completely integrable.

(iii) Now we shall obtain explicit formulae for the solutions by symmetry consid-
erations with the Euler angles. We consider separately the two cases: (i) L > Ly
and (ii) L < Lg.

(i) L> Lqg
In this case the minimization of the dipole energy density reduces the order param-
eter to the form

0 0
A=RY4oR, Ay=1{0 0 A.
1 i

o O O

The free energy density is invariant under the transformation of the order pa-
rameter

(15) A— e¥R'AR,
where Ry is a rotation round the OZ-axis by an angle 1. We notice that
e'’R,' AR, = (R;'RRy) " A(R,'RRy,).

The whole point about the symmetry of the order parameter of the A-phase is
that transformations (14) generate two commuting one-dimensional subgroups of
SO(3), which act on SO(3) as follows:

-1
R — R, RRy.
From the Euler form of a rotation matrix

_ RO RE RA
R=RYRIR).

where REOZ), Rf;) are rotations round the axis OZ by the angles ¢, and RI(;E) is a
rotation round the axis OX by the angle ¥, we infer that the angles ¢, can be
cancelled out by transformations (14) with a suitable choice of ¢, .

Therefore, the coefficients I, of the free energy density depend only on the angle
9.1 Hence we obtain

(16)  Fyraa = 1110% + Ly sin® 09% 4 Isg(vp cos 0 + ¢)% — 2Lp3 sin (1) cos ¥ + )
L =|APGyu +y2+73); he=hs=Ii=1I5=0
Iy = |A|2(2’Yl + 2 + 3 + 71 cos? 9 + (v2 +73) sin? 9 cos? 9);
Inz = |A* (1 + (72 + 73) sin? ¥) sin 9 cos ¥;

LThis result was also obtained in papers (10, 11].
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Here the dot denotes the derivative d,. Using the cyclic variables , ¥ we may put
(15) in the form

(17) Fraa = I119% + {jm - I3 — 2 M3 (I35 cos ) — Iygsin )

1
4sin? 9 - I(¥9)
+ M2(I33 cos® 9 — 2I53sin 9 cos ¥ + Ixp sin® 9)}
I(9) = Ipol33 — I3,
Since Fypaq is an integral of motion we may write Eq. (16) in the form
. 19)
18 Iy - 9% + L =
(18) " 4sin® 9 - I(9)

where ¢(9) is the function in the brackets of Eq. (16).

We may incorporate the magnetic energy in the free energy density if the mag-
netic field is directed along the axis OZ, since in this case the symmetry consider-
ations of Egs. (12-14) go through. We have

p(V)
4sin® 9 - I(¥9)
We may write solutions to Eq. (18) as a hyperelliptic integral

2sind - I'/2dY
/ (4sin® 9 - [(V)(F — 295 H2| A2 cos2 ) — p(1))1/2
I(t) dt
/ ({4(1 = 2)(E — 295 HX|AP)I(t) — o(t)} - I(2))'/?

_ 1/2 I(t)dt _
= T2 / (Pra(t))/?’ t=cost,

where I(t) and ¢(t) are polynomials of the 4-th and 6-th order, respectively.
We may write solutions for ¢, in a similar form

)

(19) Ly 9% + + 29 H?|A? cos> 9 = E.

(20) 2z =+1/?

= F0{’

e [ Ks() dt
o o =1} /L_tﬁm(t) B
p= 41/ Ks(t) dt

1—2 (Pra(t)'/2

where ¢ = cos®), Pia(t) is the polynomial under the radical in Eq. (19); Ka(2),
K5(t), K5(t) are polynomials in ¢ of degree 4 and 5.

(ii) L < Lq
This case can be treated along the same lines as the last one. We shall consider

textures in the absence of the magnetic field. We may eliminate all the Euler angles
except ¥ and obtain the coefficients I, X4 in the form

Xab = |AP {7 + (72 +73) sin® 9} (6ab — basdis);

Lii =7+ (2 +73) cos® ;g = —yisindcost; I1o = Ipy = 0;

Iy =y 472 +7v+msin®d; Iz =7 +71c05°9; Iz = Ir3 = 0.
We have the conserved quantities

2
Pspin;s T,Z)spin, Mspin = const.
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With their help we can put the free energy density in the form

F = 1150% 4 Iny sin? 9 - ¢)? — 253 sin 9 - (¢ cos 9 + @)

2
spin

4Af?
We notice that ¢, 1) are cyclic variables and we can derive an equation for . Here

we shall write down only the equations for the simplest case of M3z = 0, Mgpin = 0.
We have

_ (71 + (v2 +y3)uw) I (w)du
o i/ (w(y1 + (2 + v3)u) Ps(u)) /2’

+ Is3 (1 cos ¥ + )2 + [y + (2 +y3) sin® 9] L.

b= JmM / 71+ (2 +3)u du
2 (71 4 (v2 +73)u) P3(u))/2 1 —u’
o= L Imm / 7+ (2 +3)u du
2 - (u(y1 + (72 + v3)u) Ps(u))t/2

-y 271+ 72 + 3 / (71 + (2 + 73)u)du
" 2 (u(y1 + (2 +v3)u) Ps(u))/?’

where u = cos? ¥, and

I(u) = AP 2y + 72 +73) + 71 (72 + 73)u)
Py(u) = I(u)[AE(1 — u)I(u) — ¢(u)]

p(u) = (29 + 72 +13) AP jm — (72 + 73) [ AP - w.
APPENDIX A. EQUATIONS FOR THE B PHASE

We assume that the characteristic length of a texture is much less than the dipole
length L. Then the order parameter is of the form

A= ARew
V3
where R is a rotation matrix and A is a complex number. Again we shall use the
velocities
w=R'-i0.R, v=—-0.p.
Then it is easy to see that the gradient part of the free energy density can be written

as
1 J m
_21AP

3
2 2
m = §|A| (371 + 72 +73)-

(22) J

2
2y I = g\A|2(2% + 72 +73),

We notice that Eq. (21) has the form of a Lagrangian for symmetric top with a mass
m, inertia-coefficients I, J. The velocities w = (wy, we, w3), v mean the velocity of
the center mass and the angular velocity of the top.

Now the integration technique for symmetric top must work for planar textures
in the B phase. Here we want to notice an interesting example. Let us take into
account the dipole energy contribution to the free-energy

Fy = ga(cos® + 2 cos? 9),
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where ¢ is a rotation angle of the order parameter. If we assume that the rotation
axis is perpendicular to the plates confining the superfluid throughout the gap, then
there exists a solution, first found by Maki, for which the Euler equations reduce
to only one equation for v}. It has the form

JU + ggsin (1 +4cosd) =0

and can be solved by means of the elliptic functions.

APPENDIX B. SINGULARITIES OF THE EULER ANGLES

We shall demonstrate that for the rotation group the Euler angles ¢, 1,9 con-
stitute a system of coordinates having a singularity at ¢ = 0,7. Since the Euler
angles change within range

0§¢1¢§27{7 Og'lggﬂ-

we may say using the geometrical language that they form a product II of a two-
dimensional torus and a segement

=5, xSy x1Iy

the angles ¢, 1 taking values in the circles and the angle ¥ in the segment Iy. The
formulae, which express a rotation matrix by the Euler angles, give a map

(23) =5, xSjxIy— SO(3), R=R(p,,0)

of the space II onto the rotation group. We notice that II is a manifold with the
boundary consisting of two tori

1 1 —
S¢X5w, '19—0,71'

Map (22) has points of degeneracy at the boundary. To see this we may consider
the formulae for the angular velocity

@ sindsiny 0 cost
wC|lY]; C=[sindcosyy 0 —sing
) cos v 1 0

We may say that Eq. (23) gives the differential of smooth map (22) and @b, 0
and w1, ws,ws are coordinates of tangent vectors on II and SO(3) respectively. The
matrix C in Eq. (23) is degenerate of rank 2 at ¢ = 0, 7 i.e. at the boundary which
is mapped into the matrices

cosa sina 0 cosB sing 0
R(p, 0,9 =0)= | —sina cosa 0]; R(p,p,9=m)=[sinf —cosf 0 |,
0 0 1 0 0 -1

here
alp,¥) = +v, Blp,¥) =¢—1.

To put this in geometrical terms we may say that the tori of the boundary are
contracted by map (22) into circles. On the other hand we have no contraction or
singular points for 0 < ¥ < w. Hence the Euler angles provide a means to obtain
the manifold SO(3) as follows:

(1) two pairs (¢, %) and (¢ + 27n,¥ + 2wn), n is an integer, are equivalent;

(2) ¥ changes within the segment 0 < ¢ < ;
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(3) if ¥ = 0 the pairs (¢, 1) and (¢’,9’) determine the same point of SO(3) if

ety =9 +¢
if ¥ = 7 the pairs (¢, ) and (¢’, ') determine the same point of SO(3) if
p—p =9 —¢.
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