
SOLUTIONS TO THE GINZBURG–LANDAU EQUATIONS FOR
PLANAR TEXTURES IN SUPERFLUID 3He

V. L. GOLO, M. I. MONASTYRSKY, AND S. P. NOVIKOV

Abstract. The Ginzburg–Landau equations for planar textures of superfluid
3He are proved to be equivalent to a completely integrable Hamiltonian system.

General solutions to these equations are obtained by means of hyperelliptic
integrals.

1. Introduction

Superfluid 3He in the state of the p-pairing can be described in terms of a complex
3×3 matrix field Api (the order parameter), which minimizes the Ginzburg-Landau
free energy, [1, 3, 5],

(1)

F =
∫
d3x[Fgrad + Fb + Fh + Fd];

Fgrad = γ1∂KA
∗
pi∂KApi + γ2∂KA

∗
pi∂iApK + γ3∂KA

∗
pK∂iApi;

Fb = αTr(A+A) + β1|Tr(AAt)|2 + β2[Tr(A+A)]2

+ β3 Tr[(A∗At)(AAt)∗] + β4 Tr[(A+A)2] + β5 Tr[(A+A)(A+A)∗];

Fd is the dipole energy density,
Fh is the magnetic energy density.
For a uniform spacial configuration of the order parameter the Fgrad terms are

absent. Then the minimization of Fb gives values of the order parameter Api for
the familiar A and B phases, which constitute smooth manifolds MA and MB .

In these two cases the order parameter is of the form:
(I) for the A phase

Api = ∆ · dp(∆′
i +

√
−1∆′′

i ), d2 = 1, (∆′
i)

2 = (∆′′
i )

2 = 1

∆ = const, ∆′
i ·∆′′

i = 0

MA = S2 × SO(3)/Z2

(II) for the B phase

Api =
∆

31/2
Rpi × eiϕ, ∆ = const

MB = SO(3)× U(1)

where Rpi is a rotation matrix.
The density Fb is invariant under the transformations

(2) A→ R−1
1 AR2e

iϕ
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where R1, R2 are rotation matrices. Transformations (2) constitute the symmetry
group G = SO(3)⊗SO(3)⊗U(1). It should be noted that the order parameter for
superfluid phases of 3He takes its values in homogeneous spaces of the group G.

For space dependent states, Api = Api(x), we have Fgrad 6= 0. Then in the
London (or hydrodynamic) limit, [3], we assume that the order parameter takes
its values in the manifold of a superfluid phase, which lies in the space of complex
3× 3-matrices, and the space dependence of the order parameter is determined by
the minimization of free energy density (1) under appropriate boundary conditions.

This situation is similar to the problem of chiral fields which take values in a
homogeneous space M = G/H of the group G and generate a metric on M by the
gradient terms of the Lagrangian. But it should be noticed that the gradient terms
appearing in the theory of superfluid 3He differ from the gradient terms of chiral
theory in that they do not generate, in general, the standard-invariant metric on
the manifold of the order parameter, while they do in chiral theory.

In this paper we assume that the order parameter depends only on a space vari-
able z, i.e. we consider planar textures, which describe reasonably well superfluid
3He confined between two parallel plates devided by a narrow gap [7].

We have found that for planar textures in the A phase of superfluid 3He there
exists a mechanical analogy with a top that substantially differs from the top of
classical mechanics in having moments of inertia which can change. Until now there
has been only the analogy with the top of classical rigid body, which was derived
for the needs of NMR [19].

Using the SO(3)⊗ SO(3)⊗ U(1)-symmetry of superfluid 3He we have obtained
general solutions to the GL equations for the order parameter by means of hy-
perelliptic integrals. These solutions fulfill only the necessary conditions of the
minimization problem and it is still necessary to select the true minima among
them.

2. Equations for the A phase

We shall consider separately two cases: (i) L� Ld and (ii) L� Ld, where L,Ld
are the characteristic and dipole lengths respectively.

(i) L� Ld

In this case we may cancel out the dipole energy and take the order parameter in
the most general form

(5) A = eiϕR−1
1 A0R2, A0 =

0 0 0
0 0 0
1 i 0

 ·∆.

We note that any value of the order parameter A for the A phase may be written
in the form

A = R−1
1 A0R2

since we have the formula

(6) eiϕA0 = R−1
ϕ A0Rϕ, Rϕ =

 cosϕ sinϕ 0
− sinφ cosϕ 0

0 0 1


Following papers [8], [9], we shall introduce the velocities

(7) v = i∂zR
−1
1 ·R1; w = R−1

2 · i∂zR2.
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They take their values in the Lie algebra of the group SO(3) and we may write the
equations

v = vafa, w = wafa

where fa, a = 1, 2, 3 are the generators of SO(3) having matrix elements (fa)bc =
iεabc. With the help of v, w and their coordinates va, wa we may write down the
density of the free energy given by Eq. (1) in the form

(8)

Fgrad = Iab(A)wawb + χab(A)vavb,

Iab(A) = γ1(faA+Afb)ii + (γ2 + γ3)(faA+Afb)33,

χab(A) = γ1(A+fafbA)ii + (γ2 + γ3)(A+fafbA)33,

The velocities v, w are defined by Eq. (7) in the same way as the angular velocities
of a three-dimensional rigid body. The matrices Iab and χab change for different
values of A as is clearly seen from their explicit form

χab(A) = |∆|2(2γ1 + (γ2 + γ3)|∆3|2)(δab − dadb)(8′)

Iab =

γ1|∆3|2+(γ1+γ2+γ3)|∆|2 −(γ1+γ2+γ3)∆1∆∗
2 −γ1∆1∆∗

3

−(γ1+γ2+γ3)∆∗
1∆2 γ1|∆3|2+(γ1+γ2+γ3)|∆1|2 −γ1∆2∆∗

3

−γ1∆∗
1∆3 −γ1∆∗

2∆3 γ1(|∆2|2+|∆3|2)

 .

Here ∆i, dp; i, p = 1, 2, 3 are the familiar complex and real vectors for the order
parameter Api.

It is convenient to define a scalar product of two complex 3× 3-matrices by the
formula

(9) 〈X|Y 〉 = γ1(X+Y )ii + (γ2 + γ3)(X+Y )33.

Then we have

(10) Iab(A) = 〈Afa|Afb〉, χab(A) = 〈faA|fbA〉.
Now let us notice that under variations of the rotation matrices of the order

parameter
R1,2 → R1,2(1 + iθ(1, 2) + . . . )

the velocities va, wa and the order parameter are transformed as follows

va → va + ∂zϑ
(1)
a + εabcvbϑ

(1)
c + . . .

wa → wa − ∂zϑ
(2)
a + εabcwbϑ

(2)
c + . . .

A→ A− iϑ(1)
a faA+ iϑ(2)

a Afa + . . . .

Hence we may obtain the equations of motion (or the equations for texture) in the
form

∇Ma
spin − (i〈fafbA|fcA〉+ c.c.)vbvc = 0(11)

∇Ma
orb − (i〈Afafb|Afc〉+ c.c.)wbwc = 0(12)

Ma
spin = ∂Fgrad/∂va; Ma

orb = ∂Fgrad/∂wa,

∇Ma
spin = ∂zM

a
spin − εabcvbM

c
spin,

∇Ma
orb = ∂zM

a
orb + εabcwbM

c
orb.

They are similar to the Euler equations for a top. Since there are no cross terms
with respect to va, wa in Eqs. (11–12) we may say that we have two 3-dimensional
tops, which nonetheless do interact with each other as follows from Eq. (8′). The
second terms in Eqs. (11–12) have appeared since our tops have changing inertia :
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coefficients. We may transform Eqs. (11–12) into a Hamiltonian form by means of
Poisson brackets as follows

H = Fgrad; ∂zM
a
spin(orb) = {Ma

spin(orb);H};

{Ma
spin;M b

spin} = εabcM
c
spin; {Api;Aqj} = 0;

{Ma
orb;M b

orb} = −εabcM c
orb; {Ma

orb;M b
spin} = 0;

{Mspin;A} = −ifaA; {Ma
orb} = −iAfa

We have six conserved quantities or integrals for our system:
(1) The spin currents jaspin, a = 1, 2, 3 generated by the rotations in the spin

indices (since the dipole energy is cancelled out);
(2) The momentum along the axis OZ, i.e. the Hamiltonian H of the system;
(3) The superfluid current

jm = 〈A|Afa〉wa + c.c.

generated by the gauge transformation A→ eiϕA,
(4) M3

orb, generated by the rotation in the orbital indices round the axis OZ

A→ ARψ; ψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


We notice that the components jaspin of spin current coincide with the spin mo-

menta Ma
spin, a = 1, 2, 3.

It is easy to see that the integrals

H = Fgrad, jm,M
3
orb,M

3
spin, (M

a
spin)2

are in involution, i.e. the Poisson brackets among any two of them are zero. Hence
our system is completely integrable. But it should be noticed that the actual inte-
gration requires additional consideration of the symmetry of the order parameter,
(cf. below).

It is easy to incorporate the magnetic field in Eqs. (11–12), but since the magnetic
energy is represented by the term

FH = gH |HpApi|2

We lose two spin current integrals and our system is no longer completely integrable.

(ii) L� Ld

In this case we shall use only the superfluid velocity w = R−1 · i∂zR.
Now the function Fgrad takes the form

(13)
Fgrad = Iab(A)wawb,

Iab = 〈[A; fa]|[A; fb]〉

where 〈|〉 means scalar product (9). First we suppose that the magnetic field is
absent. Then by the considerations similar to those of the last subsection we obtain
the Euler equations in the form

(14)

∇Ma + (i〈[A; fb]|[[A; fa]fc]〉 − i〈[[A; fa]fb]|[A; fc]〉)wbwc = 0,

Ma = ∂Fgrad/∂wa,

∇Ma = ∂zM
a + εabcwbM

c.
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The magnetic field can be incorporated in the free energy density through the
additional term

FH = gH |H ′
pApi|2

which generates the right hand side in Eq. (13). We consider only the case of the
magnetic field being parallel to the axis OZ. Then the arguments of the previous
subsection go through for obvious reasons and we have three integrals in involution

H = Fgrad + FH , jm,M
3

and our system is completely integrable.
(iii) Now we shall obtain explicit formulae for the solutions by symmetry consid-

erations with the Euler angles. We consider separately the two cases: (i) L � Ld
and (ii) L� Ld.

(i) L� Ld

In this case the minimization of the dipole energy density reduces the order param-
eter to the form

A = R−1A0R, A0 =

0 0 0
0 0 0
1 i 0

 ∆.

The free energy density is invariant under the transformation of the order pa-
rameter

(15) A→ eiϕR−1
ψ ARψ

where Rψ is a rotation round the OZ-axis by an angle ψ. We notice that

eiϕR−1
ψ ARψ = (R−1

ϕ RRψ)−1A(R−1
ϕ RRψ).

The whole point about the symmetry of the order parameter of the A-phase is
that transformations (14) generate two commuting one-dimensional subgroups of
SO(3), which act on SO(3) as follows:

R→ R−1
ϕ RRψ.

From the Euler form of a rotation matrix

R = R(z)
ϕ R

(z)
ϑ R

(z)
ψ .

where R(z)
ϕ , R

(z)
ψ are rotations round the axis OZ by the angles ϕ,ψ and R

(x)
ϑ is a

rotation round the axis OX by the angle ϑ, we infer that the angles ϕ,ψ can be
cancelled out by transformations (14) with a suitable choice of ϕ,ψ.

Therefore, the coefficients Iab of the free energy density depend only on the angle
ϑ.1 Hence we obtain

(16) Fgrad = I11ϑ̇
2 + I22 sin2 ϑψ̇2 + I33(ψ̇ cos θ + ϕ̇)2 − 2I23 sinϑ(ψ̇ cosϑ+ ϕ̇)ψ̇;

I11 = |∆|2(3γ1 + γ2 + γ3); I12 = I13 = I21 = I31 = 0

I22 = |∆|2(2γ1 + γ2 + γ3 + γ1 cos2 ϑ+ (γ2 + γ3) sin2 ϑ cos2 ϑ);

I23 = |∆|2(γ1 + (γ2 + γ3) sin2 ϑ) sinϑ cosϑ;

1This result was also obtained in papers [10, 11].
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Here the dot denotes the derivative ∂z. Using the cyclic variables ϕ,ψ we may put
(15) in the form

(17) Fgrad = I11ϑ̇
2 +

1
4 sin2 ϑ · I(ϑ)

{jm · I33 − 2jmM3(I33 cosϑ− I22 sinϑ)

+M2
3 (I33 cos2 ϑ− 2I23 sinϑ cosϑ+ I22 sin2 ϑ)}

I(ϑ) = I22I33 − I2
23

Since Fgrad is an integral of motion we may write Eq. (16) in the form

(18) I11 · ϑ̇2 +
ϕ(ϑ)

4 sin2 ϑ · I(ϑ)
= E,

where ϕ(ϑ) is the function in the brackets of Eq. (16).
We may incorporate the magnetic energy in the free energy density if the mag-

netic field is directed along the axis OZ, since in this case the symmetry consider-
ations of Eqs. (12–14) go through. We have

(19) I11 · ϑ̇2 +
ϕ(ϑ)

4 sin2 ϑ · I(ϑ)
+ 2gHH2|∆|2 cos2 ϑ = E.

We may write solutions to Eq. (18) as a hyperelliptic integral

(20) z = ±I1/2
11

∫
2 sinϑ · I1/2dϑ

(4 sin2 ϑ · I(ϑ)(E − 2gHH2|∆|2 cos2 ϑ)− ϕ(ϑ))1/2

= ∓I1/2
11

∫
I(t) dt

({4(1− t2)(E − 2gHH2|∆|2t2)I(t)− ϕ(t)} · I(t))1/2

= ∓2I1/2
11

∫
I(t)dt

(P12(t))1/2
, t = cosϑ,

where I(t) and ϕ(t) are polynomials of the 4-th and 6-th order, respectively.
We may write solutions for ϕ,ψ in a similar form

(21)
ϕ = ∓I1/2

11

∫ [
K̃5(t)
1− t2

+K4(t)

]
dt

(P12(t))1/2
,

ψ = ±I1/2
11

∫
K5(t)
1− t2

· dt

(P12(t))1/2

where t = cosϑ, P12(t) is the polynomial under the radical in Eq. (19); K4(t),
K5(t), K̃5(t) are polynomials in t of degree 4 and 5.

(ii) L� Ld

This case can be treated along the same lines as the last one. We shall consider
textures in the absence of the magnetic field. We may eliminate all the Euler angles
except ϑ and obtain the coefficients Iab, Xab in the form

Xab = |∆|2{γ1 + (γ2 + γ3) sin2 ϑ}(δab − δa3δb3);

I11 = γ1 + (γ2 + γ3) cos2 ϑ; I23 = −γ1 sinϑ cosϑ; I12 = I21 = 0;

I22 = γ1 + γ2 + γ3 + γ1 sin2 ϑ; I33 = γ1 + γ1 cos2 ϑ; I32 = I23 = 0.

We have the conserved quantities

ϕspin, ψspin,M
2
spin = const.
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With their help we can put the free energy density in the form

F = I12ϑ̇
2 + I22 sin2 ϑ · ψ̇2 − 2I23 sinϑ · ψ̇(ψ̇ cosϑ+ ϕ̇)

+ I33(ψ̇ cosϑ+ ϕ̇)2 +
M2

spin

4|∆|2
· [γ1 + (γ2 + γ3) sin2 ϑ]−1.

We notice that ϕ,ψ are cyclic variables and we can derive an equation for ϑ. Here
we shall write down only the equations for the simplest case of M3 = 0, Mspin = 0.

We have

z = ±
∫

(γ1 + (γ2 + γ3)u)I(u)du
(u(γ1 + (γ2 + γ3)u)P3(u))1/2

,

ψ = ∓jmγ1

2

∫
γ1 + (γ2 + γ3)u

((γ1 + (γ2 + γ3)u)P3(u))1/2
du

1− u
,

ϕ = ±jmγ1

2

∫
γ1 + (γ2 + γ3)u

1− u
· du

(u(γ1 + (γ2 + γ3)u)P3(u))1/2

∓ jm
2γ1 + γ2 + γ3

2

∫
(γ1 + (γ2 + γ3)u)du

(u(γ1 + (γ2 + γ3)u)P3(u))1/2
,

where u = cos2 ϑ, and

I(u) = |∆|2(γ1(2γ1 + γ2 + γ3) + γ1(γ2 + γ3)u)

P3(u) = I(u)[4E(1− u)I(u)− ϕ(u)]

ϕ(u) = (2γ1 + γ2 + γ3)|∆|2jm − (γ2 + γ3)|∆|2jm · u.

Appendix A. Equations for the B Phase

We assume that the characteristic length of a texture is much less than the dipole
length Ld. Then the order parameter is of the form

A =
∆√
3
Reiϕ

where R is a rotation matrix and ∆ is a complex number. Again we shall use the
velocities

w = R−1 · i∂zR, v = −∂zϕ.
Then it is easy to see that the gradient part of the free energy density can be written
as

(22)

F =
I

2
(w2

1 + w2
2) +

J

2
w2

3 +
m

2
v2,

J =
2|∆|2

3
· 2γ1; I =

2
3
|∆|2(2γ1 + γ2 + γ3),

m =
2
3
|∆|2(3γ1 + γ2 + γ3).

We notice that Eq. (21) has the form of a Lagrangian for symmetric top with a mass
m, inertia-coefficients I, J . The velocities w = (w1, w2, w3), v mean the velocity of
the center mass and the angular velocity of the top.

Now the integration technique for symmetric top must work for planar textures
in the B phase. Here we want to notice an interesting example. Let us take into
account the dipole energy contribution to the free-energy

Fd = gd(cosϑ+ 2 cos2 ϑ),
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where ϑ is a rotation angle of the order parameter. If we assume that the rotation
axis is perpendicular to the plates confining the superfluid throughout the gap, then
there exists a solution, first found by Maki, for which the Euler equations reduce
to only one equation for ϑ. It has the form

Jϑ̈+ gd sinϑ(1 + 4 cosϑ) = 0

and can be solved by means of the elliptic functions.

Appendix B. Singularities of the Euler Angles

We shall demonstrate that for the rotation group the Euler angles ϕ,ψ, ϑ con-
stitute a system of coordinates having a singularity at ϑ = 0, π. Since the Euler
angles change within range

0 ≤ ϕ,ψ ≤ 2π, 0 ≤ ϑ ≤ π

we may say using the geometrical language that they form a product Π of a two-
dimensional torus and a segement

Π = S1
ϕ × S1

ψ × Iϑ

the angles ϕ,ψ taking values in the circles and the angle ϑ in the segment Iϑ. The
formulae, which express a rotation matrix by the Euler angles, give a map

(23) Π = S1
ϕ × S1

ψ × Iϑ → SO(3), R = R(ϕ,ψ, ϑ)

of the space Π onto the rotation group. We notice that Π is a manifold with the
boundary consisting of two tori

S1
ϕ × S1

ψ, ϑ = 0, π.

Map (22) has points of degeneracy at the boundary. To see this we may consider
the formulae for the angular velocity

ωC

ϕ̇ψ̇
ϑ̇

 ; C =

sinϑ sinψ 0 cosψ
sinϑ cosψ 0 − sinψ

cosϑ 1 0

 .

We may say that Eq. (23) gives the differential of smooth map (22) and ϕ̇, ψ̇, ϑ̇
and ω1, ω2, ω3 are coordinates of tangent vectors on Π and SO(3) respectively. The
matrix C in Eq. (23) is degenerate of rank 2 at ϑ = 0, π i.e. at the boundary which
is mapped into the matrices

R(ϕ,ψ, ϑ = 0) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 ; R(ϕ,ψ, ϑ = π) =

cosβ sinβ 0
sinβ − cosβ 0

0 0 −1

 ,

here
α(ϕ,ψ) = ϕ+ ψ, β(ϕ,ψ) = ϕ− ψ.

To put this in geometrical terms we may say that the tori of the boundary are
contracted by map (22) into circles. On the other hand we have no contraction or
singular points for 0 < ϑ < π. Hence the Euler angles provide a means to obtain
the manifold SO(3) as follows:

(1) two pairs (ϕ,ψ) and (ϕ+ 2πn, ψ + 2πn), n is an integer, are equivalent;
(2) ϑ changes within the segment 0 ≤ ϑ ≤ π;



SOLUTIONS TO THE GINZBURG–LANDAU EQUATIONS... 9

(3) if ϑ = 0 the pairs (ϕ,ψ) and (ϕ′, ψ′) determine the same point of SO(3) if

ϕ+ ψ = ϕ′ + ψ′

if ϑ = π the pairs (ϕ,ψ) and (ϕ′, ψ′) determine the same point of SO(3) if

ϕ− ψ = ϕ′ − ψ′.
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