HOMOTOPY PROPERTIES OF THE GROUP OF DIFFEOMORPHISMS OF A SPHERE

S. P. NOVIKOV

We denote by diff M^n and diff M^n , respectively, the group of orientation-preserving diffeomorphisms of a smooth manifold M^n and its arcwise connected component of the identity in the C^{∞} -topology. Let W be a smooth manifold of class C^{∞} .

Definition 1. A mapping $f: \mathbb{W} \to \text{diff } M^n$ is called smooth of class C^r $(r \ge 0)$ if the mapping $F(f): \mathbb{W} \times M^n \to \mathbb{W} \times M^n$ such that $F(f)(x, y) = (x, f_x(y))$, where $x \in \mathbb{W}$, $y \in M^n$, is a diffeomorphism of class C^r .

One easily proves the following

Lemma 1. Every mapping $f: \mathbb{W} \to \text{diff } M^n$ may be approximated arbitrarily closely by a smooth mapping of class C^{∞} .

Our ultimate purpose is to study the groups

diff
$$S^{n-1}$$
, diff S^{n-1} , diff D^n , diff D^n , $\overline{K}^n = K^n \cap \text{diff}^0 D^n$,

where K^n is the group of diffeomorphisms of the disk D^n which are stationary on the boundary $S^{n-1} = \partial D^n$. There is determined the fiber space in the sense of Serre:

$$\operatorname{diff}^0 D^n \frac{\overline{K}^n}{p} \operatorname{diff}^0 S^{n-1}$$
,

where p is the natural projection. The orthogonal group SO_n is imbedded in a natural way in the group $\operatorname{diff}^0S^{n-1}$. Milnor [6-8] has established for certain dimensions n the nontriviality of the groups π_0 ($\operatorname{diff}S^{n-1}$), and even of the group $\pi_0(\operatorname{diff}S^{n-1})/p_*\pi_0(\operatorname{diff}D^n)$, which has been more or less completely computed for $n \geq 6$. We shall study the groups $\pi_i(\operatorname{diff}^0S^{n-1})/p_*\pi_i(\operatorname{diff}^0D^n)$ for certain values of n and for i > 0. To this end we study first the relation between the Whitehead homomorphism $J\colon \pi_i(SO_N) \to \pi_{N+i}(S^N)$ and composition multiplication in the ring $G = \sum_{i \geq 0} G_i$ of stable homotopy groups of spheres, $G_i = \pi_{N+i}(S^N)$, N > i+1. We denote by $I_i \subset G_i$ the image $I\pi_i(SO_N)$, and by $\widetilde{\theta}_i \subset G_i$ the subgroup of G_i whose elements are representable by framed manifolds combinatorially equivalent to the sphere S^i . It is evident that $I_i \subset \widetilde{\theta}_i$. It is known that $\widetilde{\theta}_i = G_i$ for $i \neq 2 \mod 4$ and for i = 10, and that $G_i/\widetilde{\theta}_i$ contains exactly two elements for i = 2, 6, 14 and no more than two elements in the remaining cases (these results are due to Kervaire, Milnor and Smale [5,6,10,11]). By use of the technique of Morse modifications and of frame carry-over [3,5], it is comparatively simple for us to prove the following theorem.

^{*}Translator's note. The Russian term "osnascennyi" (literally: "equipped," "rigged" and here translated "framed") is the same as in, e. g., Pontrjagin, Trudy Mat. Inst. Steklov. 45(1955) (Amer. Math. Soc. Transl. (2) 11(1959), 1), where a "framed manifold" M" is a manifold imbedded in E^{n+N} together with a particular field of normal N-frames (N linearly independent normal vectors); this implies that the normal bundle is trivial. In Dokl. Akad. Nauk SSSR 143(1962), 1046 (cf. correction in RŽMat. 1962 #10A233), the present author uses the same term, with no restriction on the normal bundle, to mean an automorphism of the SO_N-bundle structure which is the identity on the base Mⁿ.

Theorem 1. Let $\alpha \in G_i$, $\beta \in G_j$, i > 0, j > 0. Then $\alpha \circ \beta \in \widetilde{\theta}_{i+j}$ for all pairs (i, j) except for the cases i = j = 1, 3, 7.

The Morse modification depends, as is well known, on an imbedding of a sphere $S^i \subset M^n$ with trivial normal bundle and on an element $h \in \pi_i(SO_{n-i})$. Application of the Morse modification results in a manifold $M^n(S^i, h)$.

It is easy to prove

Lemma 2. Let $M^n = S^i \times S^j$. Then the manifold $M^n(S^i, h)$ is diffeomorphic to S^n .

The proof is based on the fact that every diffeomorphism $\widetilde{h}: S^i \times D^j \to S^i \times D^j$, such that $\widetilde{h}(x,y) = (x, \widetilde{h}_x(y))$, extends to a diffeomorphism $\widetilde{h}: S^i \times S^j \to S^i \times S^j$ such that $\widetilde{h}(S^i \times D^j) = (\widetilde{h}_x \in SO_i)$.

From Lemma 2 follows

Lemma 3. Let $\alpha \in J_i$, $\beta \in J_i$. Then $\alpha \circ \beta \in J_{i+j}$, except for the cases i = j = 1, 3, 7.

Now denote by $B(M^n) \subset G_n$, for a π -manifold M^n , the set of elements $\alpha \in G_n$ representable by the manifold M^n with some frame. Using Morse modifications, we have from Lemma 2

Lemma 4. $B(S^i \times S^j) = I_{i+j}$, except for the cases i = j = 1, 3, 7.

From results of Haefliger [1, 2], Smale [11] and Kervaire [4] one easily derives

Lemma 5. Let \widetilde{S}^j be a smooth π -manifold homeomorphic to the sphere, and i > j/2 + 1. Then the manifold $S^i \times \widetilde{S}^j$ is diffeomorphic to the direct product $S^i \times S^j$.

The proof of Lemma 5 is obtained from the theorems of Haefliger on approximation of topological by smooth imbeddings, of Smale on I-equivalence and of Kervaire on the normal bundles of homotopy spheres in euclidean space.

From Lemmas 2-5 follows

Theorem 2. Let $\alpha \in J_i$, $\beta \in \widetilde{\theta}_j$ for i > j/2 + 1. Then $\alpha \circ \beta \in J_{i+j}$ except for the cases i = j = 1, 3, 7.

When the conditions of Theorem 2 are not satisfied, i.e., if $i \leq j/2+1$, it is possible to have $J_i \circ \widetilde{\theta}_j \not\subset J_{i+j}$, for suitable choice of the dimensions i, j. Suppose $\beta \in \widetilde{\theta}_j$ and the element β is represented by a framed homotopy sphere \widetilde{S}^j_{β} with a certain frame, where the sphere \widetilde{S}^j_{β} is determined uniquely modulo $\theta^j(\partial \pi)$. As is known, \widetilde{S}^j_{β} may be split up as the union of two disks $\widetilde{S}^j_{\beta} = D^j \bigcup_{q_{\beta}} D^j$,

where $q_{\beta} \in \text{diff } S^{j-1}$, i.e., $q_{\beta} \in \pi_0(\text{diff } S^{j-1})$ and defines an element $\widetilde{q}_{\beta} \in \pi_0(\text{diff } S^{j-1})/p_*\pi_0(\text{diff } D^j)$. The following lemma is very important for our purposes.

Lemma 6. Let $\alpha \in J_i$, $\alpha \circ \beta \notin J_{i+j}$. Then there exists a smooth mapping $h: S^i \to SO_j$ such that the diffeomorphism $F_{\beta}(h)(x, y) = (x, [q_{\beta}h_xq_{\beta}^{-1}](y))$ does not extend to a diffeomorphism $S^i \times D^j \to S^i \times D^j$, where

$$F_{\beta}(h): S^i \times S^{j-1} \to S^i \times S^{j-1}.$$

Proof. Consider the direct product $S^i \times \widetilde{S}^j_\beta$ and assign to it two different frames: the trivial one, and one corresponding to the element $\alpha \circ \beta \notin I_{i+j}$. We construct two Morse modifications and pass to the manifolds $M^n(S^i, h_1)$ and $M^n(S^i, h_2)$, where $h_i \colon S^i \to SO_j$ and n = i+j. The mapping h_1 is chosen so as to be able to carry over to $M^n(S^i, h_1)$ the trivial frame, and h_2 so as to be able to carry over to $M^n(S^i, h_1)$ the trivial frame, and h_2 so as to be able to carry over to $M^n(S^i, h_2)$ the frame representing the element $\alpha \circ \beta$. Both manifolds $M^n(S^i, h_1)$ and $M^n(S^i, h_2)$ are homotopy spheres, but $M^n(S^i, h_1) \in \theta^n(\partial \pi)$ and $M^n(S^i, h_2) \notin \theta^n(\partial \pi)$. Therefore

the mapping $h=h_1h_2^{-1}$ is such that the diffeomorphism $F(h)\colon S^i\times D^j\to S^i\times D^j$, where $F(h)(x,\gamma)=(x,\ h_x(y))$, does not extend to a diffeomorphism $S^i\times \widetilde{S}^i_{\beta}\to S^i\times \widetilde{S}^i_{\beta}$. This is equivalent to saying that the diffeomorphism $F_{\beta}(h)\colon S^i\times S^{j-1}\to S^i\times S^{j-1}$, where $F_{\beta}(h)(x,\gamma)=(x,[q_{\beta}h_xq_{\beta}^{-1}](\gamma))$, does not extend to $S^i\times D^j$. This proves the lemma.

From Lemmas 5 and 1 we obtain the following

Corollary 1. Let $\alpha \in I_i$, $\beta \in \stackrel{\sim}{\theta_j}$, $\alpha \circ \beta \notin I_{i+j}$. Then there exist a diffeomorphism $q_\beta \colon S^{j-1} \to S^{j-1}$, $q_\beta \notin \operatorname{diff}^0 S^{j-1}$, and an element $h \in \pi_i(SO_j)$ such that the element $q_\beta h q_\beta^{-1} \in \pi_i(\operatorname{diff}^0 S^{j-1})$ does not belong to $p_*\pi_i(\operatorname{diff}^0 D^j)$ (we may suppose that $q_\beta \in \pi_0(\operatorname{diff} S^{j-1})$).

To apply these last results it is necessary to know the structure of the groups G_i , the multiplication $G_i \circ G_j$, the image Im I and the subgroups $\widetilde{\theta}_i$. We exhibit a table of these groups for $i \leq 14$ and a table of the multiplication $G_i \circ G_i$.

i.	1	2			.				9			12	13	14
	Z_2	Z_2	Z ₂₄	0	0	z_2	Z ₂₄₀	$Z_2 + Z_2$	$Z_2 + Z_2 + Z_2$ $Z_2 + Z_2 + Z_2$	z_6	Z ₅₀₄	0	Z ₃	Z_2
$\widetilde{ heta}_{m{i}}$	z_2	0	Z ₂₄	0	0	0	Z ₂₄₀	Z_2+Z_2	Z_2 + Z_2 + Z_2	<i>z</i> ₆	Z ₅₀₄	0	<i>z</i> ₃	0
J_{i}	z_2	,0	Z ₂₄	0	0	0	Z ₂₄₀	Z_2	z_2	0	Z ₅₀₄	0	0	0

We can take generators $x_i^{(p)}$, $y_i^{(p)}$, $z_i^{(p)} \in G_i$ (p a prime), viz., $x_1^{(2)}$, $x_2^{(2)}$, $x_3^{(2)}$, $x_3^{(3)}$, $x_6^{(2)}$, $x_7^{(2)}$, $x_7^{(3)}$, $x_7^{(5)}$, $x_8^{(2)}$, $y_8^{(2)}$, $y_9^{(2)}$, $y_9^{(2)$

1.
$$2x_1^{(2)} = 0$$
, $2x_2^{(2)} = 0$, $8x_3^{(2)} = 0$, $3x_3^{(3)} = 0$, $2x_6^{(2)} = 0$, $16x_7^{(2)} = 0$, $3x_7^{(3)} = 0$, $5x_7^{(5)} = 0$, $2x_8^{(2)} = 0$, $2y_9^{(2)} = 0$, $2x_9^{(2)} = 0$, $2x_{10}^{(2)} = 0$, $3x_{10}^{(3)} = 0$, $8x_{11}^{(2)} = 0$, $9x_{11}^{(3)} = 0$, $7x_{11}^{(7)} = 0$, $3x_{13}^{(3)} = 0$, $2x_{14}^{(2)} = 0$.

2.
$$x_1^{(2)2} = x_2^{(2)}$$
, $x_1^{(2)3} = 4x_3^{(2)}$, $x_3^{(2)2} = x_6^{(2)}$, $x_1^{(2)}x_7^{(2)} = x_8^{(2)}$, $x_1^{(2)2}x_7^{(2)} = x_3^{(2)3} = x_9^{(2)}$, $x_1^{(2)}y_8^{(2)} = y_9^{(2)}$, $x_1^{(2)2}y_8^{(2)} = 0$, $x_1^{(2)3}x_7^{(2)} = 0$, $x_1^{(2)2}x_9^{(2)} = x_{10}^{(2)}$, $x_1^{(2)2}x_9^{(2)} = 4x_{11}^{(2)}$, $x_7^{(2)2} = x_{14}^{(2)}$, $x_{11}^{(2)}x_3^{(2)} = 0$, $x_3^{(3)}x_{10}^{(3)} = x_{13}^{(3)}$.

- 3. $x_1^{(2)}, x_3^{(2)}, x_3^{(3)}, x_7^{(2)}, x_7^{(3)}, x_7^{(5)}, x_8^{(2)}, x_9^{(2)}, x_{11}^{(2)}, x_{11}^{(3)}, x_{11}^{(7)} \in \text{Im } J$, while the remaining generators do not belong to Im J.
- 4. All the generators except $x_1^{(2)2} = x_2^{(2)}$, $x_3^{(2)2} = x_6^{(2)}$ and $x_7^{(2)2} = x_{14}^{(2)}$ belong to the subgroups $\widetilde{\theta}_i$.

Furthermore, as regards the p-components $G_i^{(p)}$ of the groups, it is known that:

1)
$$G_{2p-3}^{(p)} = Z_p = J_{2p-3}^{(p)}$$
 (generator $x_{2p-3}^{(p)}$);

2)
$$G_{2p(p-1)-2}^{(p)} = \widetilde{\theta}_{2p(p-1)-2}^{(p)} = Z_p$$
 (generator $x_{2p(p-1)-2}^{(p)}$), and for $p > 2$ the group $J_{2p(p-1)-2}^{(p)} = 0$;

3) the elements
$$x_{2p-3}^{(p)} \circ x_{2p}^{(p)k} = \lim_{p \to \infty} \int_{\mathbb{R}^n} \int_{\mathbb{$$

(Concerning the results on multiplication in homotopy groups of spheres, cf. [9].)*

It remains now, using the preceding results and the data on the groups G_n , $\overset{\sim}{\theta}_n$, J_n and multiplication $G_i \circ G_j$, to find cases of nontriviality for the groups $A_{i,j} = \pi_i (\operatorname{diff}^0 S^{j-1})/p_* \pi_i (\operatorname{diff}^0 D^j)$.

Theorem 3. The groups $A_{i,j} = \pi_i (\operatorname{diff}^0 S^{j-1})/p_* \pi_i (\operatorname{diff}^0 D^j)$ have the following form:

- 1) $A_{1,8} \supset Z_2$;
- 2) $A_{1,9} \supset Z_2;$
- 3) $A_{2p-3, \ 2kp \ (p-1)-2k} \otimes Z_p \supset Z_p + \cdots + Z_p \ (p-1 \ terms), \ p \ge 3, \ for \ k \le p-2;$ $A_{3, 10} \otimes Z_3 \supset Z_3 + Z_3 \ for \ p = 3.$

The proof of Theorem 3 follows at once from the lemmas and the structure of the ring $G = \sum G_i$. Since $\pi_1(SO_n) = Z_2(n > 2)$, we have $h \in Z_2$ (cf. Lemma 6) and the element β has order 2, $\beta \in G_8(G_9)$. Therefore $q_\beta h q_\beta^{-1} \in \pi_1(\mathrm{diff}^0 S^7)$ also has order 2 and $q_\beta^2 \in \mathrm{diff}^0 S^7$. Therefore the group $\pi_1(\mathrm{diff}^0 S^7) \supset Z_2 + Z_2$ with generators h and $q_\beta h q_\beta^{-1} \notin \mathrm{Im}\ p_*$. Therefore $A_{1,\,8} \supset Z_2$. Similarly for $A_{1,\,9}$. This proves items 1) and 2). We prove item 3). Note that $\pi_{2p-3}(SO_j) = Z$ for j > 2p-2. Let h be a generator of $\pi_{2p-3}(SO_j)$ and $\beta = x_{2p}^{(p)}(p-1)-2$, $k \le p-2$. Then $h, q_\beta h q_\beta^{-1}, \cdots$ $\dots, q_\beta^{p-1} h q_\beta^{1-p}$ are distinct elements of $\pi_{2p-3}(\mathrm{diff}^0 S^{j-1})$, j = 2kp(p-1)-2k, and all have infinite order. But relations are possible of the form $\lambda_1 ph = \lambda_2 p(q_\beta h q_\beta^{-1}) = \dots = \lambda_p p(q_\beta^{p-1} h q_\beta^{1-p})$, whence the desired result. This proves the theorem.

As usual, denote by B_G the classifying space of a group G.

Corollary 2. The classifying space $B_{\text{diff }S^{n-1}}$ is not homotopically simple for n=8, 9,

 $2kp\ (p-1)-2k,\ k\leq p-2;\ namely:\ the\ group\ \pi_1\ operates\ nontrivially\ on\ the\ respective\ groups$ $\pi_2(B_{\text{diff}S^7}),\ \pi_2(B_{\text{diff}S^8}),\ \pi_{2p-2}(B_{\text{diff}S^{2kp}\ (p-1)-2k-1}),\ k\leq p-2.$

From the Serre fibering $\operatorname{diff}^0 D^n \xrightarrow{\overline{K}^n} \operatorname{diff}^0 S^{n-1}$, where $\overline{K}^n = K^n \cap \operatorname{diff}^0 D^n$, we obtain

Corollary 3. a) There exists a diffeomorphism $F: D^n \to D^n$ such that $F \in \text{diff}^0D^n$, $F|\partial D^n = 1$, F is nonisotopic to the identity in the group K^n for n = 8, 9; b) the groups $\pi_{2p-4}(K^{2k}(p^{-1})p^{-2k}) \neq 0$ (p > 2) for $k \leq p-2$ (p a prime).

Corollary 4. There exist sphere bundles over spheres with structure group diff⁰ S^{n-1} which are equivalent to orthogonal bundles in the group diff^{Sⁿ⁻¹} but not in the group diff⁰ S^{n-1} .

V. A. Steklov Mathematical Institute Academy of Sciences of the USSR Received 23/JUNE/62

^{*}We note that an earlier computation gave $G_{14} = \pi_{N+14}(S^N) = Z_2 + Z_2$. This result is false. The author has shown that $G_{14} = Z_2$, by using the fact that $J_3 \circ J_{11} \subset J_{14} = 0$ and that $G_{14} = J_7 \circ J_7 \cup J_3 \circ J_{11}$.

BIBLIOGRAPHY

- [1] A. Haefliger, Bull. Amer. Math. Soc. 67 (1961), 109.
- [2] _____, Comment. Math. Helv. 36 (1961), 47.
- [3] M. Kervaire, ibid. 34 (1960), 257.
- [4] _____, Bull. Soc. Math. France 87 (1959), 397.
- [5] M. Kervaire and J. Milnor, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651.
- [6] J. Milnor, Bull. Soc. Math. France 87 (1959), 439.
- [7] —, Ann. of Math. (2) 64 (1956), 399.
- [8] —, Amer. J. Math. 81 (1959), 962.
- [9] S. P. Novikov, Dokl. Akad. Nauk SSSR 128 (1959), 893.
- [10] S. Smale, Bull. Amer. Math. Soc. 66 (1960), 373.
- [11] —, Ann. of Math. (2) 74 (1961), 391, 498.

Translated by: J. A. Zilber