
MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES.
TYPICAL DISPERSION LAWS AND THEIR QUANTUM

NUMBERS

S. P. NOVIKOV

I. In previous joint papers by the author and B. A. Dubrovin [1], [2] we computed
completely the basic states of a two-dimensional, nonrelativistic electron with spin
1/2 in an external doubly periodic (in x and y) magnetic field B(x, y) (directed
along the z axis) and a zero electric field. The Hamiltonian in this case is the Pauli
operator

(1) H0 = −1
2

(
∂

∂x
− ieA1

)2

− 1
2

(
∂

∂y
− ieA2

)2

+ eσ3B;

here ~ = m = c = 1, B = ∂2A1 − ∂1A2, and H0ψ = εψ. Suppose that the lattice is
rectangular, zm,n = mT1 + inT2, and that the magnetic flux is integral and positive
(generalization to a rational flux presents no difficulties):

(2) Φ =
∫∫

K

B dxdy, eΦ = 2πN,

K is an elementary cell, 0 ≤ x ≤ T1, and 0 ≤ y ≤ T2.
Since H0σ3 = σ3H0, we have a decomposition of the Hilbert space of square-

summable, vector-valued functions ψ on the plane into a direct sum of two scalar
spaces:

(3) L2 = L(+)
2 ⊕ L(−)

2 , σ3ψ = ±ψ, H± : L(±)
2 → L(±)

2 .

As was indicated in [3] for a localized field B, the basic states for Φ > 0 are
found in the periodic case only in the space L(+)

2 and have energy ε = 0:

(4) H+ψ = 0.
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The formulas for the basic states are as follows (see [1] and [2]; for the properties
of σ see [4]):

(5)

ψ = ψA = λ exp(−eφ)
N∏

j=1

σ(z − aj) exp(az),

φ =
1
2π

∫∫
K

ln |σ(z − z′)|B(x′, y′) dx′ dy′, z = x+ iy,

σ(z) = z
∏

m2+n2 6=0

(1− z/zm,n) exp
{
z/zm,n −

1
2
z2/z2

m,n

}
,

Re a = Re

 η1
T1

2
N∑

j=1

aj −
e

π

∫∫
k

zB dx dy

 ,

Im a = Im

 η2
T2

2
N∑

j=1

aj −
e

π

∫∫
k

zB dx dy

 ,

A = (a1, a2, . . . , aN , λ),

where λ is any number, η1 = ξ(T1/2), iη2 = ξ(iT2/2) and ξ(z) = σ′/σ.
The states (5) are “magnetic Bloch” states, i.e., they are the eigenstates for the

operators of “magnetic translations” T ∗1 and T ∗2 , which commute with the Hamil-
tonian and have unimodular eigenvalues (this is a projective representation of the
discrete group of translations):

(6)

T ∗1 ψA = exp(ip1T1)ψA = ψA(x+ T1, y) exp{−ieη1Φy/π},
T ∗2 ψA = exp(ip2T2)ψA = ψA(x, y + T2) exp{−ieηΦy/π},

p1 + ip2 =
2πi
T1T2

∑
aj + const, T ∗1 T

∗
2 = T ∗2 T

∗
1 exp(−eΦ).

The states (5) form a complete basis in L2 of solutions of the equation H0ψ = εψ
for ε = 0 and generate a subspace L0

2 in L2 which is distinguished by the direct
sum L2 = L0

2 ⊕ L1
2 in a manner similar to the case of a discrete level; according to

[2], it is possible to choose a discrete basis of localized “Wannier states” in L0
2 in

place of the continuous magnetic Bloch basis (5).
We note a useful supplement to a result of [1] and [2].

Theorem 1. For any integral or rational flux eΦ = 2πNM−1 the basic states (5)
are separated from the remaining energy levels (eigenvalues of H0ψ = εψ) by a
finite gap ∆{B}.

Conjecture. The gap ∆{B} varies continuously with the magnetic field B(x, y)
in the class of doubly periodic fields with arbitrary periods (which may vary and
therefore pass through irrational fluxes).

The proof of Theorem 1 for integral fluxes follows easily from the following
consideration: fixing the quasimomentum (p1, p2), we obtain an elliptic, selfadjoint
operator H0(p1, p2) in a bundle over a compact manifold—the torus T 2, where the
connectivity is defined by the field B. Therefore, the spectrum εj(p1, p2) is discrete,
of finite multiplicity, and depends continuously on the parameters p1, p2. Following
[1], [2], we know that a) ε0 = εmin(p1, p2) = 0 for all (p1, p2); and b) the dimension
of this eigensubspace is equal to N , and it varies continuously together with the
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quasimomenta (p1, p2) (without bifurcations) because of formulas (5). Further, the
next eigenvalue ε1(p1, p2) is positive and depends continuously on (p1, p2). The
equality ε1(p0

1, p
0
2) = 0 is impossible because of the absence of bifurcation of the

eigensubspace with level ε0 = 0. Therefore, ∆ = min(p1,p2) ε1(p1, p2) > 0.
For rational fluxes the proof also reduces to the proof for integral fluxes.

Remark. The two-dimensional Pauli operator (1) with a zero electric potential on
the subspace L(+)

2 reduces to the scalar Schrödinger operator (with spin 0)

(7) H = H+ = −1
2

(
∂

∂x
− ieA1

)2

− 1
2

(
∂

∂y
− ieA2

)2

+ eV (x, y)

with a nonzero but special electric potential V :

(8) ∂1A2 − ∂2A1 = V (x, y)

(in the system of units c = ~ = m = 1). Under the condition (8) we denote the
operator H by H0. Later we shall also consider the general Schrödinger operator
(7) where the condition (8) is not satisfied.

For the Schrödinger operator (7) we have two integrable cases: a) V ≡ 0 and
the field B = const is homogeneous; b) condition (7) is satisfied, but the field B is
arbitrary (only the lowest level ε = 0 can be integrated). In both cases we denote
the operator H by H0.

II. An important property of the basic states (5) (which also occurs for the Landau
levels in the homogeneous field B = const) is that the magnetic Bloch functions
(5) for, integral number of quanta of the flux N 6= 0 form a topologically nontrivial
vector bundle over the torus T 2. Under variation of any aj over a lattice period
aj → aj +T1 or aj → aj + iT2 the σ-function is multiplied by an exponential. This
variation is compensated by the variation of the quantity a(a1, . . . , aN ) in (5):

(9) a(. . . , aj + T1, . . . ) = a+ 2η1, a(. . . , aj + iT2, . . . ) = a+ 2iη2.

We thus obtain a “gluing law” for the complete space E of the vector bundle ξ
with is defined by (9); from this it follows that

(10)

(λ, a1, a2, . . . , aN ) ' (λ, ai1 , ai2 , . . . , aiN
),

(λ, a1, a2, . . . , aN ) ' (λ′, a1, a2, . . . , aj + T1, . . . , aN ),

(λ, a1, a2, . . . , aN ) ' (λ′′, a1, a2, . . . , aj + iT2, . . . , aN ),

λ′ = λ exp{2η1aj + η1T1 + iπ}, λ′′ = λ exp{2iη2aj − η2T2 + iπ}.

As indicated in [1] and [2], for a fixed quasimomentum we have a vector space
CN (p1, p2) of functions ψA: they are all obtained from ψA0 by multiplication by
a meromorphic, doubly periodic elliptic function with the same lattice, i.e. ψA =
ψA0χ. The function χ(z) must have poles at some of the points aj , so that the
product again has no poles.

Lemma 1. The mapping of quasimomentum

p = p1 + ip2 : E → 2πi
T1T2

∑
j

aj + const

transforms the manifold E of all magnetic Bloch functions (5) of the basic state
(ε = 0) into a vector bundle ξ with fiber CN over the torus T 2 obtained from the
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reciprocal lattice (T−1
1 , T−1

2 ). This bundle is topologically nontrivial for all N > 0
and has nonzero first Chern class c1(ξ) = 1 6= 0.

This lemma is derived from (10) in a topologically standard way, and we shall
not prove it.

Remark. This lemma is also true for the magnetic Bloch functions of any Landau
level in a homogeneous field B = const.1

III. Of course, the very fact of the occurrence of a situation of rankN (i.e., a bundle
ξ with an N -dimensional fiber) for the magnetic Bloch functions over the torus T 2

implies very strong degeneracy for N ≥ 2. This degeneracy should vanish under
small perturbations. We shall consider small perturbations of the Hamiltonian by
an electric, doubly periodic potential W (x, y) with the same periods

(11) H = H0 + eW (x, y),

where the operator H0 is any of those studied in §§I and II. For N = 1 a small
perturbation (and therefore also a perturbation which is not small) leads only to the
formation of a “dispersion law” ε(p1, p2) and spreading of any Landau level (or basic
state for the operator (7), (8)) in a single magnetic zone due to the connectedness of
the torus T 2. The topology of the family of Bloch functions itself—the “dispersion
law”—does not change under small deformation of the operator for N = 1 and
remains the same as in §II for the operators H0. Thus, consideration of the single-
quantum case N = 1 may lead to the illusion that the topology of all dispersion
laws, although it is not trivial, is nevertheless completely determined by the flux
of the external magnetic field B through an elementary cell—by the single integer
N (this is actually the case for any small perturbations of the field B = const for
N = 1).

We consider the Hermitian form Ŵ (ψA) on the fibers of the bundle ξ which is
defined by a perturbation W (x, y) with the same periods (p1 and p2 are fixed):

(12) Ŵ (ψA) =
∫∫

K

ψAWψ̄A dx dy.

Here there arise the real eigenvalues

ε1(p1, p2) ≥ ε2(p1, p2) ≥ · · · ≥ εN (p1, p2)

of the form Ŵ on the fibers CN (p1, p2).

Lemma 2. a) In the class of doubly periodic, real functions W (x, y) the condition
of coalescence εi = εj for fixed (p1, p2) is given by three independent conditions on
the Fourier coefficients (this is also true in three-dimensional space). In particular,
for functions in “general position” W (x, y) the coalescence ei(p0

1, p
0
2) = εj(p0

1, p
0
2)

for at least one quasimomentum p0
1, p

0
2 of the given dispersion law has codimension

1 in the function space (i.e., it is realized only at isolated points with respect to the
parameter τ for “typical” one-parameter families of potentials Wτ (x, y)).

1For a homogeneous field,

eφ =
eΦ

2π

»
η1

T1
x2 −

η2

T2
y2 − η1x+ η2y

–
.

The operator An takes the functions (5) into the Bloch functions of the nth Landau level, where

A = −
∂

∂x
+ i

∂

∂y
+
eB

2

»
z̄ + z

„
T1η2

π
−

1

2

«–
−
eΦ

4π
(η1 + iη2).
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b) In the three-dimensional space of the parameters (p1, p2, τ) there may be sta-
ble singular points (p0

1, p
0
2, τ0) such that εi = εj (for only one pair i, j) and the

restrictions ξδ
i and ξδ

j of the one-dimensional bundles ξi and ξj to a small sphere
S2

δ of radius δ surrounding the singular point are nontrivial (although their sum is
trivial), ξδ

1 ⊕ ξδ
2 ∼ 0 on S2

δ ,

(13) q = c1(ξδ
i ) = −c1(ξδ

j ).

On passing through the value of the parameter τ = τ0 the dispersion laws “collide”
and are changed by the quantum number q = ±1:

(14)
c1 = (ξj)τ0−δ = c1(ξj)τ0+δ + q,

c1 = (ξi)τ0−δ = c1(ξi)τ0+δ − q.

c) For the Schrödinger operator in three-dimensional space the quasimomentum
p3 = τ plays the role of the parameter τ ; therefore, the condition of coalescence for
one quasimomentum (p0

1, p
0
2, p

0
3) is stable, and the situation of part b) occurs.

The following result is established using Lemma 2.

Theorem 2. a) In the case of a small perturbing potential W (x, y) in “general
position” the eigenvalues of the form Ŵ (ε1(p,p2) > ε2(p1, p2) > · · · > εN (p1, p2))
are distinct for any (p1, p2) and provide a decomposition of the family (bundle) of
magnetic Bloch functions ξ of the unperturbed operator H0 into a direct sum of
one-dimensional (fiber C1) complex bundles

(15) ξ = ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξN

with the single condition on the first Chern class

(16) c1(ξ) = 1 =
N∑

j=1

c1(ξj).

b) The “monodromy group” generated by permutations of the eigenvalues εj un-
der basic circuits of the torus T 2 is, in general position, always trivial. Therefore,
precisely N “decay” dispersion laws εj(p1, p2) are formed, with topological quan-
tum numbers c1(ξj) = mj which can be any integers (positive or negative) with
the single relation (16). These dispersion laws have rank 1 (i.e., the fibers are
one-dimensional) and are therefore stable under further deformation (which is not
small).

c) In the three-dimensional case the potential W (x, y, z) occasions the decay of the
family of magnetic Bloch functions (the bundle ξ) into a sum of bundles ξ1, . . . , ξk
(which are not necessarily one-dimensional), where each of the ξj has fiber of dimen-
sion kj and decomposes into a sum of one-dimensional bundles after removal of the
singular points from the torus T 3 according to the dispersion laws (εj,1, . . . , εj,kj ):

(17) εj =
kj∑

s=1

ξj,s on T 2 \ (Pj1 ∪ · · · ∪ Pjm),

where the branches εjs = εjt with topological invariants qjα coalesce at the points
Pjα.

Thus, by performing further large perturbations, we arrive at the following
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Conclusion. For a “general” two-dimensional Schrödinger operator (7) in a sta-
tionary magnetic field which is periodic in (x, y) with an integral flux N ≥ 2 and
an electric field with a periodic potential there are a countable number of disper-
sion laws εj(p1, p2) for the magnetic Bloch functions. These dispersion laws (i.e.,
Bloch functions) form one-dimensional (fiber C1) bundles over the torus T 2 of the
reciprocal lattice and have “quantum numbers” c1(ξj) = mj in no way connected
with one another or with the flux N of the external magnetic field in the energy
range where the perturbations of different Landau levels are “mixed” and cannot
be separated from one another.2 In a homogeneous magnetic field for sufficiently
high energy levels a doubly periodic electric potential W (x, y) produces only a small
perturbation of the levels of the homogeneous field. Therefore, the perturbed dis-
persion laws which arise from them do not overlap; condition (16) is satisfied for
the dispersion laws arising from each Landau level individually. For the general
three-dimensional Schrödinger operator the “typical” dispersion laws do not form
only one-dimensional bundles over the torus T 3, and the pairs of branches εj and
εk coalesce for singular values of the quasimomentum.

Remark 1. Comparison with some results of the author and Kričever (see [5])
on integrable cases of rank greater than 1 shows that the conclusion regarding
the occurrence of dispersion laws with completely random quantum numbers is
probably also valid for N = 0 in periodic problems of dimension ≥ 2. This is
probably also true for N = 1 if the perturbing potential is not small. However,
here there is not an “integrable case” of even one dispersion law or of rank > 1 that
might provide a proof from consideration of small perturbations.
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2The corresponding Bloch function ψj(x, x0, p), where ψj = 1 for x = x0, has an algebraic

number of zeros, equal to N for fixed p{xjk(p)} and equal to mj for fixed x{pjl(x)}. The poles

are located at points pjl(x0).


