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Introduction

It is now scarcely a matter of dispute that dynamical systems describing real
physical processes are, as a rule, Hamiltonian in one sense or another if the dissipa-
tion of energy can be disregarded. However, the Hamiltonian formalism may turn
out to be non-classical, that is, it may not originate from a Lagrangian formalism
as a result of a Legendre transformation. There may not be global canonical co-
ordinates. This refers in the first place to many systems of hydrodynamic origin.
Various aspects of the Hamiltonian formalism will be discussed in greater detail in
§§ 1, 2. Another aim of this survey is to describe topological methods of search
for periodic trajectories. The fact is that the overwhelming majority of non-trivial
conservative systems are non-integrable even for two degrees of freedom. After sta-
tionary points, periodic solutions are the simplest objects of the qualitative theory
of dynamical systems; nevertheless, even the problem of the existence of periodic
trajectories is often highly non-trivial and requires the use of topological methods.

Date: Received by the Editors 22 April 1982.
This survey was written as a result of reworking and extending the author’s contribution to

[27], Ch. 1, which was written for the English edition.

Translated by R.L. and G. Hudson.
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The Morse and Lyusternik—Shnirel’man (LSM) theory, which combines the calcu-
lus of variations with the topology of function spaces consisting of closed contours
(curves) on the relevant configuration space (see § 3), is widely known.

However, the use of the LSM theory necessitates the strict requirement of a
positive-definite Lagrangian formalism. From this it is clear that in most gen-
eral Hamiltonian systems not of Lagrangian origin, this theory, generally speaking,
cannot be applied. Variational principles on phase trajectories never give rise to
positive-definite functionals. Some very interesting systems, which we call Kirch-
hoff systems, reduce to a problem, mathematically equivalent to the theory of a
charged particle in a magnetic field “the Dirac monopole” (see § 4). The following
systems are of Kirchhoff type:

(a) the Kirchhoff equation for the motion of a rigid body in an ideal incompress-
ible fluid moving under a potential and at rest at infinity;

(b) the equation of motion of a rigid body with a fixed point in an axially sym-
metric strong field;

(c) the Leggett equation for the magnetic moment in the low temperature phases
of 3He (nuclear magnetic resonance).

In these systems, equations of motion can ultimately be reduced to a principle of
extremal action S. But (see § 5) from a global point of view the action S turns out
to be a “many-valued” functional on the space of closed contours (smooth curves)
on the sphere S2, which after a reduction plays the role of the configuration space.
This means that δS is a single-valued quantity (a 1-form or covector) on the space
of contours, but the “integrals over cycles” in the space of contours of δS are non-
trivial. Therefore, S is a many-valued functional (for example, on a circle dϕ is a
single-valued 1-form, but ϕ is a many-valued).

One of the purposes of § 5 is to extend the topological methods of LSM theory
to many-valued functionals. This enables us to establish the existence of a large
collection of periodic orbits for systems of Kirchhoff type. The results of § 4, 5 are
mainly from [1] and [2]. An analogue of Morse theory for many-valued functions
(closed 1-forms) on finite-dimensional manifolds is constructed in § 6. The results
of this section are from [3].

§ 1. The Hamiltonian formalism. Simplest examples.
Systems of Kirchhoff type. Factorization of the Hamiltonian

formalism for the B-phase of 3He

From the contemporary point of view, at the basis of the Hamiltonian formalsim
lies the concept of a “Poisson bracket”. Let yi be local coordinates on a manifold
(the “phase-space”); the Poisson bracket of two functions f(y) and g(y) is given by
a tensor field hij(y):

(1) {f, g} = hij(y)
∂f

∂yi
∂g

∂yj
.

Here we require the following properties to hold:
(a) bilinearity and skew-symmetry

(2) {f, g} = −{g, f},

(b) the Leibniz identity

(3) {fg, h} = g{f, h}+ f{g, h},
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(c) the Jacobi identity

(4) {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

By definition, Hamiltonian systems have the form

(5) ḟ = {f,H},

where f is any function and H is the Hamiltonian.
It can happen that there are non-trivial functions fq (possibly, defined locally

on the manifold) such that

(6) {fq, g} = 0

for any function g(y). In this case the Poisson bracket is said to be “degenerate”;
the matrix hij(y) is degenerate. After finding all such quantities fl(y) then on their
common level surface

(7) fl(y) = const (l = 1, 2, . . . ).

the Poisson bracket becomes non-degenerate.
Let zq be coordinates on the level surface (7). The restriction of the tensor hqt(z)

to this surface is non-degenerate, and there is an inverse matrix

(8) hqph
pt = δtq,

which determines the 2-form

(9) Ω = hqp(z) dzq ∧ dzp.

From (4) it follows that the form Ω is closed:

(10) dΩ = 0 ↔ ∂hqp
∂zt

+
∂htq
∂zp

+
∂hpt
∂zq

= 0.

Let us consider the main types of phase spaces.

Type I: The classical Hamiltonian formalism and variational principles.
Suppose that (y) = (x1, . . . , xn, p1, . . . , pn) and that the matrix hij is constant and
non-degenerate:

(11) hij = hij =


0

1 0
. . .

0 1
−1 0

. . .
0 −1

0


= const.

The equations (6) take the form ẋi = −∂H/∂pi, ṗi = −∂H/∂xi.
The coordinates (x, p) are said to be canonical. Locally they can always be found

for non-degenerate Poisson brackets (Darboux’s theorem).
If H(x, p) is a Hamiltonian, then we have the Lagrangian L(x, ẋ), where x is the

configuration space coordinate, which can be defined by

(12) ẋi =
∂H

∂pi
(x, p), L = piẋ

i −H.
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We assume that the equation ẋi = ∂H/∂pi can be solved for the variables pi. The
Hamiltonian equations (12) are obtained from the variational principle δS = 0,
where

(13) S =
∫
L(x, ẋ) dt.

Type II. The Hamiltonian formalism and Lie algebras.1 We consider now
the following (second) case in order of complexity, when the tensor hij is not con-
stant, but depends linearly on the coordinate (y):

(14) hij(y) = Cijk y
k, Cijk = const.

We consider the set L of all linear functions on the phase space, which we denote
by L∗. For the basis linear forms (the coordinates yi) we define the operation of
“commutation”.

(15) [yi, yj ] = Cijk y
k = {yi, yj}.

From (2) and (4) it follows that the operation (15) turns the linear space L into a Lie
algebra for which the dual space L∗ is the phase space for the Poisson bracket (14).
A bracket of this kind was first considered by Berezin. It was used by Kirillov and
Kostant (in the less convenient language of symplectic manifolds) in the theory of
infinite-dimensional representations of Lie groups.

Example 1. A basic example of the Hamiltonian formalism of Type I is the phase
space T ∗(M): the space of covectors (with subscripts) on the manifold M (the con-
figuration space). The manifoldM can be infinite-dimensional (a space of fields q(x)
in which x is one of the “indices” in the formulae). In the finite-dimensional case
there are the local coordinates xi and the conjugate momenta pi with the Poisson
brackets

(16) {xi, xj} = {pi, pj} = 0, {xi, pj} = δij

and the form
Ω0 =

∑
dxi ∧ dpi.

In the infinite-dimensional case there are two fields and Poisson brackets of the
form

(17)

{
{qi(x), pj(y)} = δijδ(x− y),

{qi(x), qj(y)} = {pi(x), pj(y)} = 0.

Example 2. It is also useful to consider a Poisson bracket of the form (18) with an
additional “external field” Fij(x):

(18) {xi, xj} = 0, {xi, pj} = δij , {pi, pj} = Fij(x),

where the 2-form F = Fij dx
i ∧ dxj is closed:

dF = 0.

Then we have the 2-form

(19) Ω =
∑

dxi ∧ dpj +
∑

Fij dx
i ∧ dxj = Ω0 + F.

1The third case in order of complexity, when the tensor hij(x) depends quadratically on x, is
also very interesting and has been studied recently (Sklyapin, Faddeev).
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The equations of motion with a Hamiltonian H(x, p) and a Poisson bracket (18)
are (for n = 2 or 3) the equations of motion of a charged particle in an external
magnetic field Fij (or an electromagnetic field for n = 4). In the domain where
F = dA, (19) reduces to the standard form (16).

Example 3. Rather more general a priori but as a rule reducible to the form (18)
are Poisson brackets on the space T ∗(M) satisfying the following requirement: any
pair of functions (f, g) on the base M (independent of the variables pi on the fiber
consisting of all covectors with a lower index) has a vanishing Poisson bracket:

(20) {f, g} = 0.

We call (20) “variational admissibility” of the Poisson bracket on T ∗(M). Clearly,
the bracket (18) is variationally admissible. As we know, on sufficiently small do-
mains any (non-degenerate) Poisson bracket reduces to the form (16). Globally
this is no longer so; if the form Ω is not exact, then the Poisson bracket does not
reduce to the form (16). Variationally admissible Poisson brackets are probably
always globally reducible to the form (18), but this has not been proved rigor-
ously; they reduce to the simplest form (16) on any domain when Ω is exact. Let
(x1, . . . , xn, y1, . . . , yn) be local coordinates in a domain Uα such that {xi, xj} = 0
and let H(x, y) be a Hamiltonian. We consider half of the Hamilton equations

(21) ẋj = {xj ,H}.
We assume that (21) allows us to express the variables (yi) uniquely in terms of
(x, ẋ):

(22) yi = F i(x, ẋ).

The other half of the Hamilton equations

ẏj = {yj ,H} = Gj(x, y)

now reduces by (22) to the second-order system

(23) F j(x, ẋ) = Gj(x, ẋ).

Let us now construct the “phase Lagrangian” L(x, y) dt = −H dt + ωα, where
dωα = Ω in Uα. We express L in terms of (x, ẋ), using (22).

Lemma. The equations (23) are equations of the extremals for the Lagrangian
variational principle δS = 0, S =

∫
L(x, ẋ) dt.

These are the elementary properties of variationally admissible Poisson brackets.
We now pass on to discuss examples of Poisson brackets of Type II associated

with Lie algebras.

Example 1. Let L be the Lie algebra of the group SO3. The Killing metric is
Euclidean and allows us to identify L with L∗. The Poisson bracket of the basis
functions Mi on L∗ has the form

(24) {Mi,Mj} = εijkMk, cijk = εijk = ±1.

The function M2 =
∑
M2
i is such that

(25) {M2,Mi} = 0 (i = 1, 2, 3).

Hamiltonian systems on L∗ have the form

(26) Ṁi = {Mi,H(M)}.
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Let Ωi = ∂H/∂Mi; the Killing metric allows us to identify upper and lower indices.
The equations (26) reduce to the “Euler equations”

(27) Ṁ = [M,Ω].

This conclusion holds for all compact (semisimple) Lie groups on which the Killing
metric is Euclidean (pseudo-Euclidean) on the Lie algebra and invariant under inner
automorphisms

(28) L→ gLg−1,

where g is an element of the Lie group and L its Lie algebra. Arnol’d calls such
systems for the groups SON “many-dimensional analogues of a rigid body” if the
Hamiltonian is a quadratic form on the space of skew-symmetric matrices (aij) =
(−aji), where M = (Mij)

(29) H(M) =
∑
i<j

dijM
2
ij ,

and

(30) dij = qi + qj , qi > 0.

Now it is known that all systems of the form (30) on the Lie aigebra SON are
completely integrable [46]. Moreover, according to [46], a sufficient condition for
integrability is2 that

(31) dij =
āi − āj
b̄i − b̄j

.

The idea of [46] is as follows. Under the conditions (31) the Euler equation (27)
can be represented as a statinary problem for first-order metric systems in the (x, t)-
space admitting an “L− A”-pair, or the method of the inverse problem (see [47]).
In accordance with the formalism of integration of stationary problems [16] there
arises the matrix equation:3

(32)
d

dx
(M − λa) = [M − λa,Ω− λb],

a = (aij), b = (bij), aij = āiδij , bij = b̄iδij .

The coefficients of the polynomial

(33) P (λ, µ) = det(µ · 1−M − λa)

are integrals of (27) “in involution”, that is, have zero Poisson brackets between
pairs. A complete set of formulae of the motion can be obtained in terms of the
θ-function associated with the Riemann surface P (λ, µ) = 0, starting from the
methods of [16] and ending in [49] for first-order matrix systems. We recall that

2If āi = b̄2i , then we have (30), qi = b̄. The Liouville integrability for SO4 under the condi-

tion (30) was first established in [51] and [52]. However, the connection with the method of the
inverse problem and the theory of θ-functions of Riemann surfaces remained unknown; for this

reason they did not succeed in obtaining an explicit integration, even in this simplest case.
3To a reader unfamiliar with the method of the inverse problem (see [47]) the emergence of

equations of the type (32) may seem incomprehensible; in this case, to understand what follows

he must start directly from (32) as a formal identity whose verification represents no difficulty
once it is written down.
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the Poisson bracket (15) is invariant only under the transformations (28). For the
classical Euler equations for the free rotation of a rigid body we have

(34) G = SO3, H =
∑ aiM

2
i

2
, Ω =

∂H

∂M
,

where Ω is the angular velocity of the body and M is the angular momentum.

Example 2. Some important systems arising in hydrodynamics are connected with
the Lie algebra L of the group E(3) of motions of the Euclidean space R3. This
algebra is no longer semisimple. On the phase space L∗ there are 6 coordinates
(M1,M2,M3, p1, p2, p3) and the Poisson brackets

(35) {Mi,Mj} = εijkMk, {Mi, pj} = εijkpk, {pi, pj} = 0.

The bracket (35) has two independent functions f1 = p2 =
∑
p2
i , f2 = ps =

∑
Mipi

such that

(36) {fq,Mi} = {fq, pi} = 0 (q = 1, 2, i = 1, 2, 3).

Let H(M,p) be the Hamiltonian. We write ui = ∂H/∂pi, ωi = ∂H/∂Mi. The
Hamilton equations assume the “Kirchhoff” form

(37) ṗ = [p× ω], Ṁ = [M × ω] + [p× u].

The equations (37) coincide (for a quadratic Hamiltonian H) with the Kirchhoff
equations for the motion of a rigid body in an ideal incompressible fluid at rest at
infinity [4]. The motion of the liquid itself is assumed to be of potential form. In
this case H is the energy, M and p are the total angular and linear momentum of
the system, the body being identified with a moving system of coordinates rigidly
attached to it. The energy H is assumed to be positive and quadratic in both
variables (M,p). By transformations of the form (28) H can be brought to the
form

(38) 2H =
∑

aiM
2
i +

∑
bij(piMj +Mipj) +

∑
cijpipj .

Even in classical hydrodynamics non-trivial integrable cases were discovered of
Hamiltonians of the form (38) for the algebra L = E(3). These cases of Clebsch
and Steklov do not reduce to an “obvious” group symmetry. We are especially
interested in the case of Clebsch, in which the diagonality relations

(39) bij = 0, cij = c̄iδij

hold as well as the “Clebsch relations”

(40)
i=3∑
i=1

c̄iai(c̄i+1 − c̄i−1) = 0 (i+ 3 ≈ i)

The Lie algebra of SO4 is obtained from E(3) by “deformation” or, conversely,
L can be obtained from SO4 be “retraction”. The precise meaning of this is the
following: in SO4 we choose a basis (e′i, e

′′
i ) such that

(41)

{
[e′i, e

′
j ] = [e′′i , e

′′
j ] = εijkē

′
k,

[e′i, e
′′
j ] = εijke

′′
k

Changing to a new basis ē′i = e′i, ē
′′
i = αe′′i we obtain

(42)

{
[ē′i, ē

′
j ] = εijkēk, [ē′i, ē

′′
j ] = εijkē

′′
k ,

[ē′′i , ē
′′
k ] = εijk · α2ē′j .
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Letting α → 0, we obtain from (42) the relations (35), which define the algebra
L = E(3). We now write in (29)

(43)

{
di0 = ci (i = 1, 2, 3),
d12 = a3, d23 = a1, d13 = a2.

The quantities (31) are connected by the following relation for SO4

(44) 0 =
i=3∑
i=1
i≈i+3

ciai(ci+1 − ci−1 + ai+1 − ai−1).

Let us complete the retraction of SO4 to L = E(3) according to (41) and (42); we
require that the quadratic form (29) has a finite limit under this limit passage. For
this, under the conditions (43) it is then necessary that the ai are finite as α → 0
and the ci are of order ci ∼ c̄iα

−2. As α → 0, we obtain from (44) precisely the
Clebsch relation (40)4. So we arrive at the result due to Novikov and Golo:

The recently discovered cases of integrability of systems on SO4 are deformations
of the classical Clebsch case.

For diagonal Hamiltonians of the form (39) on L = E(3) (more precisely, on L∗)
that do not satisfy the Clebsch condition, the absence of “superfluous” analytic
integrals of motion has recently been proved [50]. Thus, “general” diagonal Hamil-
tonians on L are non-integrable.

We consider two other applications of (37):
(A) The equations of motion of a rigid body with a fixed point in a strong

axially symmetric field with potential W (z) reduce to (37). The corresponding
Hamiltonian is

(45) H =
∑

aiM
2
i /2 +W (lipi),

where li is the vector determined by the position of the centre of mass with respect
to the principal axes of inertia at the fixed point. The quantities pi are dimensionless
and cannot be interpreted physically as momenta. They are the direction cosines
of a unit vector, that is,

(46) f1 = p2 = 1.

(B) The (Leggett) equation of the spin dynamics in the A-phase of the superfluid
3He can also be reduced to the form (37); this is the dynamics of the spin variables
of the vectors (s, d), where d2 = 1, by analogy with (46). (See the survey by
Brinkman and Cross in [5].) On transition to the Leggett equations for nuclear
magnetic resonance in the A-phase one must alter the notation (S is the “magnetic
moment”)

(47) Mi → si, pi → di,

4We note that the coefficients of the “stationary L−A-pair” (32) diverge under the retraction
α → 0, although the integrals of the motion converge. In this connection, recently in [53] another

matrix representation depending on λ of the Kirchhoff equations for the Clebsch case has been

constructed. By way of contrast, this representation does not admit a deformation for α 6= 0 in
any non-trivial way.
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and consider the Hamiltonian of the form

(48) H =
1
2
as2 + b

(∑
sidi

)2

+ λ
(∑

siHi

)
+W (d).

Here a, b, and λ are constants, Hi is the external magnetic field, and the potentialW
has the form

(49) W (d) = const(lidi)2.

By the property (36) of the Poisson bracket (35), f2 =
∑
sidi is equivalent to a

constant in the equations of motion. Therefore, the second term can simply be
deleted from the Hamiltonian:

(50) H ∼ H ′ =
1
2
as2 + λ

∑
siHi +W (d).

The quantity d, the spin part of the so-called “order parameter”, is a unit vector,
d2 = 1, as was mentioned above.

We consider a very important example (though not associated with Lie algebras).
There is another phase, the B-phase, of 3He, in which the Leggett equation

takes a form that is not similar to the classical top (see, for example, the survey by
Brinkman and Cross in [5]).

In a state of hydrodynamic equilibrium and with non-zero spin, the state in the
B-phase is defined by a pair comprising a rotation matrix R = (Rij) ∈ SO3 and a
“magnetic moment” s = (si) (i = 1, 2, 3).

The variables si are coordinates in the dual space of the Lie algebra of SO4

similar to the angular momentum components Mi. The standard Poisson brackets
for T ∗(SO3) in the variables (si, Rjk) can be written:

(51)

{
{si, sj} = εijksk, {Rij , Rkl} = 0,

{si, Rjl} = εijkRkl.

The Leggett Hamiltonian in the B-phase in an external magnetic field has the form

(52) H =
1
2
as2 + b

∑
siFi + V (cos Θ),

where a and b are constants, F = (Fi) is the external field, and

(53) V (cos Θ) = const
(

1
2

+ 2 cos Θ
)2

,

Rij is the rotation through the angle Θ around the axis ni, n2 = 1:

(54)
Rij = cos Θδij + (1− cos Θ)ninj + sinΘ εijknk,

1 + 2 cos Θ = Rii = SpR.

After the substitution

(55) asi = ωi, Ωjk = εjkiωi = (ṘR−1)jk

we obtain a Lagrangian system in the variables (Rij , Ṙij) on T ∗(SO3) where the
kinetic energy is defined by the 2-sided invariant Killing measure, and the potential
V (cos Θ) is invariant under the inner automorphisms

(56) R→ gRg−1, s→ gs, g ∈ SO3.
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If the field F = (Fi) is constant, then the Lagrangian is invariant under the one-
parameter group of transformations (56), where g belongs to the group of rotations
around the axis of F . Let F = (F, 0, 0).

When F = 0, the system admits the group SO3 of transformations (56) and
is completely integrated in [6]. The transformations (56) generate the conserved
vector (when F = 0):

(57) A = (Aj) = (1− cos Θ)
[
n×

(
cot

Θ
2
S + [n× S]

)]
j

,

with the same Poisson brackets as for the usual angular momentum:

(58)


{Ai, Aj} = εijkAk,{
Ai,

1
2
as2 + V (cos Θ)

}
= 0,

As Golo has shown [7], when F = 0, the variables s2 and Θ in the Hamiltonian
generate a closed algebra of Poisson brackets {s2, s‖,Θ}, where

(59)


s‖ =

∑
sini,

{s2,Θ} = 2s‖, {s‖,Θ} = 1,

{s2, s‖} =
1 + cos Θ

sinΘ
(s2 − s2‖),

The quantity A2 =
∑
A2
i = (1 − cos Θ)(s2 − s2‖) has vanishing Poisson brackets

with all generators of this subalgebra

(60) {A2, s2} − {A2, s‖} − {A2,Θ} = 0.

In a non-zero magnetic field (F, 0, 0) there remains only one integral apart from the
energy5

(61) {A1,H} = 0.

The system becomes non-integrable. In this case it seems to be possible to complete
(globally) the procedure of “factorization of the Hamiltonian formalism” and to
reduce the system to 2 degrees of freedom.

The integral A1 generates the group (56), where g is a rotation about the axis
n = (1, 0, 0). The invariant variables under this subgroup are

(62) s2, s‖, Θ, u1, s1, τ = s2n3 − n2s3

with the purely geometrical constraint

(63) s2τ2 = (s2 − s21)(s
2 − s2‖)− (s2n1 − s1s‖)2.

It is easy to check that the variables (62) form a closed algebra of Poisson brackets,
containing the Hamiltonian H (52) and having the functional dimension 5. The
quantity A1 in this algebra has vanishing brackets with all the variables;

(64) 0 = {A1, s
2} = {A1, s‖} = {A1,Θ} = {A1, n1} = {A1, s1}.

5For large fields F →∞ system has been studied in [8] with viscosity taken into account.
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Therefore, by imposing the condition A1 = const we can, as before, formally use
the formulae for the Poisson brackets of the quantities (62), which arise from (51).
Under the condition A1 = const we choose as basis the following variables:

(65) (A2, s‖,Θ, n1), n1 = n.

Their brackets have the form

(66)


{s‖,Θ} = 1, {Θ, n} = 0,

{A2, s2} = {A2,Θ} = {A2, s‖} = 0,

{A2, n} =

√
1
2
(1− n2)A2 − 1

4
A2

1

Thus, the canonical variables can be chosen in the form

(67)


x1 = Θ, ξ1 = pΘ = s‖,

x2 = n, ξ2 = pn =

√
2A2

1− n2
− A2

1

(1− n2)2
.

The Hamiltonian becomes

(68) H =
1
2
a

[
p2
Θ +

1− n2

2(1− cos Θ)

(
p2
n −

A2
1

(1− n2)2

)]
+

+ bF

(
npΘ +

1− n2

2
sinΘpn +A2

1

2− sin2 Θ
2(1− cos Θ)

)
+ V (cos Θ).

We now introduce the spherical coordinates

(69) Θ = 2χ, n = n1 = sinϕ

and go over to the Lagrangian formalism. We obtain

(70) L = 2a(χ̇2 + sin2 χϕ̇2)− Ã1ẏ
1 − Ã2ẏ

2 − U(y),

where y1 = χ, y2 = ϕ,

(71)

Ã1 = 2b sinϕ, Ã2 = 8bF cosϕ sin3 χ cosχ,

U = V (cos Θ) + aA2
1/4 sin2 χ cos2 χ+ bFA1(1− sin2 χ cos2 χ)/2 sin2 χ−
− b2F 2(sin2 ϕ+ 4 cos2 ϕ sin3 χ cosχ)/2.

Thus, we have obtained a system in a domain in the sphere S2 with the usual
metric, in which there is an effective magnetic field and a scalar potential. When
A1 6= 0, this system cannot be extended to the whole sphere, since it is singular at
ϕ = 0, π.

If A1 = 0, then the system is defined on the whole sphere except at the poles,
where it has singularities. We note that the great circle ϕ = 0, π corresponds to
the axis n = (±1, 0, 0); the rotations around this axis correspond to the group of
symmetries of the system.

Finding the stationary points of the Hamiltonian system (68) presents no diffi-
culty. They are given by the equations

(72)
∂H

∂Θ
=
∂H

∂n
=

∂H

∂pΘ
=
∂H

∂pn
= 0.
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The stationary solutions of (72) are periodic solutions of the original Leggett equa-
tions. These exact solutions were not known previously, as Fomin has told the
author.

Since we have treated in the text (above) the equations for a magnetic moment
under homogeneous nuclear magnetic resonance (NMR) in the superfluid 3He, it is
appropriate to recall the definition of the A- and the B-phases. From the micro-
scopic theory of super-conductivity of Bardeen—Cooper—Schriffer, Bogolyubov,
Gor’kii, and Anderson one deduces for a coupling with moment l = 1 that the
superfluid 3He can be described macroscopically in the stationary state according
to the Ginzburg—Landau scheme by a (3 × 3) complex matrix Aqj(x, y, z), where
the index q = 1, 2, 3 refers to the (internal) “spin” space, while the index j = 1, 2, 3
refers to physical space. The field Aqj(x, y, z) is called the “order parameter”. It
must minimize the free energy functional, which depends on the temperature, the
magnetic field, the pressure, and the other external parameters:

(73) F{A} =
∫
R3

(Fgrad + V ) d3x,

where

(74) Fgrad = γ1(∂kĀqj∂kAqj) + γ2(∂kĀqj∂jAqk) + γ1(∂kĀqk)(∂iAqi).

In the absence of a magnetic field (assuming also that the dipole energy is small)
the potential V has the form

(75) V = α Sp(ĀTA) + β1|SpAAT |2 + β2(Sp(ĀTA))2+

+ β3 Sp[(AT Ā)(ĀAT )] + β4 Sp[(ĀTA)2] + β5 Sp[(ĀTA)(ĀTA)].

The exact values of the parameters α, β, γ are undetermined and can vary together
with the parameters of the system (the temperature etc.).

The concept of “phase” is defined in the spatially homogeneous state Fgrad = 0
by minimizing the function V (Aqj). It is difficult to classify the “phases”, that is,
the minima of V for all values of the parameters α and β are an unsolved problem.
In any case, potentials of the form (75) are invariant under the action of the group

(76)


G = U1 × SO3 × SO3,

gA = eiϕR−1
1 AR2,

g = (eiϕ, R1, R2).

Therefore, the minima of the potential are manifolds on which G acts. In the
case of “general position” they are homogeneous spaces of G. However, there is
an important example of the A1-phase close to the critical temperature when the
pressure and the field are small which is defined by a degenerate minimum (by a
non-homogeneous submanifold MA1 , in the matrix space

(77) MA1 = {Aqj = ∆ · (dqe(1)j + d̄qe
(2)
j }, dq = d′q + id′′q ,

e
(α)
j = e

′(α)
j + e

′′(α)
j , |e′(α)|2 = |e′′(α)|2 = 1, (e′(α), e′′(α)) = 0 (α = 1, 2).



THE HAMILTONIAN FORMALISM AND A MANY-VALUED ANALOGUE... 13

The more popular A- and B-phases are defined by the G-homogeneous matrix
manifolds MA and MB consisting of matrices of the form

(78)


MA = {Aqj = 2∆dq(e′j + ie′′j )}, |d|2 = 1,

|e′|2 = |e′′|2 = 1, (e′, e′′) = 0, ∆ = const,

MA = (S2 × SO3)/Z2

or e(1) = e(2) = e = e′ + ie′′, d = d̄;

(79) MB = {Aqj = ∆/
√

3 ·Rqjeiϕ}, R ∈ SO3,

∆ = const, MB = SO3 ×U1.

Passing on to states depending on (x, y, z) we consider “quasi-homogeneous” states,
where the deviation of the field Aqj(x, y, z), from a spatially-homogeneous state can
be disregarded locally, and we may assume that every Aqj(x, y, z) lies in a “phase-
manifold” MA1 ,MA,MB , . . . , but changes from point to point. Now Fgrad 6= 0,
although the whole field is regarded as having values only in the phase manifold.

The Euler—Lagrange equation δFgrad = 0 for fields with values in the manifolds
MA1 ,MA,MB etc., which define the state of the system, are called the Ginzburg—
Landau equations. States depending only on the single variable z, “planar tex-
tures”, lead for the B-phase to the usual equation of the Euler top (here it is even
symmetrical). For the A-phase the equations of planar textures are more complex;
they have been fully integrated in [43], where one can find references on 3He (see
also [5] and [6]). In a magnetic field, in a state with non-zero spin, the functional
of free energy becomes more complex; there arises a new variable, the “magnetic
moment” S whose dynamic (see above) is used in the so-called “nuclear magnetic
resonance”.

The planar textures in the A1-phase are not known, and it would be interesting
to study them. In the manifold MA1 there is a singular submanifold

(80) W : e′(1) × e′′(2) = e′(2) × e′′(2), W ⊂WA1

The submanifold W has codimension 3, although it is given by two equations in
the 8-dimensional manifold MA1 . We have become accustomed to the fact that
the number of “Goldstone perturbations” is equal to the dimension of degenera-
tion, that is, the dimension of the vacuum manifold. The dimension of MA1 is 8.
However, at points of W the number of Goldstone modes turns out to be 9, as
Volovik and Fomin have communicated to me. In the given case, the dimension 9
coincides with the dimension of the “tangent space” to MA1 at points of W in the
sense of algebraic geometry. Apparently, the number of Goldstone modes always
coincides with the dimension of the tangent space of algebraic geometry. In all
previously known cases in field theory the vacuum manifold was homogeneous and
hence non-singular.

§ 2. The Hamiltonian formalism of systems of hydrodynamic origin

In this survey we do not discuss any new results on hydrodynamic systems (with
the exception of the Kirchhoff system already introduced in § 1), and this section is
purely methodological in character. The Hamiltonian formalism has already been
worked out long ago in the language of the so-called “Clebsch variables” for various
types of ideal fluids (see below). However, as will become clear, these field variables
cannot always be introduced, and if they can, then frequently only locally. Here
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the Clebsch variables are extremely unstable under a change of the type of the
system: the addition to the system of a superfluous field (for example, even the
transition from an incompressible fluid to a weakly compressible one in which the
density and entropy are the new field variables) leads to a non-local and by no
means small change in the Clebsch variables. Besides, in several cases the number
of field variables is odd. In the latter case one must introduce superfluous fictitious
degrees of freedom to define the Clebsch variables; they represent a system with
a large, complicated and poorly understood “calibrated” freedom. Consequently,
an invariant exposition of the Hamiltonian formalism of hydrodynamic systems
is useful. In the incompressible case such an invariant exposition can be found
in [19], but its language (that of “symplectic manifolds”) seems to be artificially
complicated and inconvenient compared with the language of “Poisson brackets”.
The situation is more complex for compressible fluids and further systems (see
below).

The underlying Lie algebra L for hydrodynamic systems over which the subse-
quent superstructure will be erected, is the algebra of vector fields (we do not yet
specify the domain of definition). For vector fields vi(x), wi(x) in an n-dimensional
space the commutator is

(1) [v, w]i(x) = vj
∂wi

∂xj
− wj

∂vi

∂xj
.

Here the pairs (x, i) (the point x and the index i) act as a single “index”. The
operation must be expressed in terms of the structure constants in the form

(2) [v, w]i(x) =
∫
dy dz Cijk(x, y, z)v

i(y)wk(z).

Comparing (1) and (2) we obtain

(3) Cijk(x, y, z) = δijδ(z − x)∂(y)
k (y − z)− δikδ(y − x)∂(z)

j δ(z − y)

∂
(x)
j =

∂

∂xj
,

∫
∂

(z)
j δ(z − x)f(z) = − ∂f

∂zj
(x).

The variables pi(x) conjugate to the velocity components on the dual space L∗ to
the vector fields vi(x) must be such that

(4)
∫
pi(x)vi(x) dnx

is scalar under change of variables. This means that the variables pi(x) are densities
of covectors, which under changes of variables are additionally multiplied by the
Jacobian (we call them momentum densities). According to § 1 (14), the Poisson
brackets are of the form

(5) {pj(y), pk(z)} =
∫
Cijk(x, y, z)pi(x) d

nx =

= pk(y)∂
(y)
j δ(y − z)− pj(z)∂

(z)
k δ(z − y).

Here is an important example, the case n = 1. Then we obtain

(6) {p(y), p(z)} = p(y)δ′(y − z)− p(z)δ′(z − y).
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By making the substitution p = u2 we arrive at the standard Poisson bracket
(Gardner, Zakharov, Fadeev) occurring in the theory of the KdV (Korteweg—
de Vries) equation, see [9], [10], [11]:

(7) {u(x), u(y)} = δ′(x− y),

For in the KdV theory it is precisely the quantity I0 =
∫
u2dx that plays the role

of the momentum (see [11]). The Poisson bracket of two functionals has the form

(8) {J, I} =
∫

δJ

δu(x)
∂

∂x

δI

δu(x)
dx.

Since the operator ∂/∂x has the constants as non-trivial kernel, there is a quantity
I−1 =

∫
u dx such that

(9) {J, I−1} = 0

for any functional J . The KdV equation itself is given by the Hamiltonian

(10) I1 = H =
∫ (

u′2

2
+ u3

)
dx,

u̇ =
∂

∂x

δH

δu(x)
= 6uux − uxxx.

It is curious that one of the phenomena of the integrability of the KdV equation by
the method of the inverse problem is the presence of another local Poisson bracket
of the two functionals [12] and even of a family of brackets with the operators
A+ λ∂/∂x;

(11)


A = − ∂3

∂x3
+ 2

(
u
∂

∂x
+

∂

∂x
u

)
,

{J, I}2 =
∫

δJ

δu(x)
A

δI

δu(x)
dx.

The operators A+λ∂/∂x are obtained from A by the substitution u→ u+const.
The KdV equation itself has the following form in the new Hamiltonian structure:

(12) u̇ = A
δI0/2
δu(x)

, I0 =
∫
u2dx.

A further investigation of systems that are Hamiltonian for a family of Poisson
brackets can be found in [15].

Note 1 (Adler, Manin, Lebedev). We mention (although this adds nothing new to
the construction of solutions of non-linear equations by the inverse problem method)
that from the purely algebraic point of view the integrable systems can be inter-
preted, starting from standard properties of “transformation operators” [48], as sys-
tems on phase spaces of type L∗ for Lie algebras of Volterra integral (“upper trian-
gular”) operators L with the corresponding Hamiltonian formalism (see [13], [14]);
the set of Poisson brackets arising here was already known earlier [11]). However,
this algebraic interpretation does not completely cover the algebraic essence of the
Hamiltonian formalism in the method of the inverse problem.

Note 2 (Bogoyavlenskii, Novikov). It is appropriate to note here another interesting
phenomenon arising in KdV theory: the connection between the Hamiltonian for-
malisms of stationary and non-stationary problems for Hamiltonian systems given
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by the Poisson bracket (7); suppose that we are given a system

(13) ut =
∂

∂x

δH

δu(x)
, H =

∫
P (u, ux, . . . , u(n)) dx,

where the Hamiltonian H has the form (13) and P is a polynomial with con-
stant coefficients, and an integral of it, that is, a functional of the same form
J =

∫
Q(u, ux, . . . , u(n)) dx such that {J,H} = 0. We consider the stationary

equation ut = 0 or

(14)
δ(H + λI−1)

δu(x)
= 0.

Since {J,H} = 0, we have for any function u(x) the identity

(15)
(
∂

∂x

δJ

δu(x)

) (
δ(H + λI−1)

δu(x)

)
=

∂

∂x
Tλ(u, ux, . . . ).

Therefore, Tλ is an integral of (14). For the translation group J = I0 the integral Tλ
is the energy for (14).

We consider a flow with the Hamiltonian J in the Poisson bracket (8) that
commutes with the initial flow (13):

(16) uτ =
∂

∂x

δJ

δu(x)
.

Proposition. The restriction of the flow (16) to the finite-dimensional phase space
of the stationary system (14) is also Hamiltonian in the new bracket and is generated
in Hamiltonian fashion by Tλ (see [11], [16], [17]).

Apparently this is true for a wide class of Poisson brackets (see [18] and a number
of other papers quoted there).

We return to systems of hydrodynamic type. In the algebra of vector fields L in
a Euclidean space (in which are distinguished the Euclidean metric and the element
of volume, namely, the mass density, which is assumed to be constant) we specify
the subalgebra of divergence-free fields L0 ⊂ L by

(17) ∂iv
i = 0.

As is easy to see, the dual space L∗0 is obtained by

(18) L∗0 = L∗/(∂iϕ).

By (17), the momentum densities pi(x) give trivial linear forms on L0 if pi = ∂iϕ:

(19) 0 =
∫
piv

i dnx =
∫
vi ∂iϕd

nx = −
∫
ϕ∂iv

i dnx.

The hydrodynamical Euler equation for an ideal incompressible fluid, as a Hamilton-
ian system, can be written (see [19]) in the space L∗0 = L∗/∂iϕ with a Hamiltonian
of the form

(20) H =
∫
ρ
v2

2
dnx, ρ = const, ∂iv

i = 0, pi = ρvi

and the Poisson brackets (5). These equations are always written on the complete
space L∗, which in this case is equivalent to the space of velocities:

(21)

{
ρvit = {pi,H}+ ∂ip,

∂iv
i = 0.
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The terms ∂ip come from the transition from L∗0 to L∗, where quantities of the
form ∂iϕ are equivalent to zero. Here, the pressure p is in principle determined by
∂ip only. On the space L∗0 we can write the Poisson bracket in the form

(22)

 {vi(x), vj(x)} =
1
ρ
(∂ivj − ∂jvi)δ(x− y),

pi = ρvi,

where ρ = const.
In fact, in the presence of boundary conditions the velocity vj(x) or an incom-

pressible fluid is determined by the vortex Ωij = ∂ivj − ∂jvi under the condition
∂ivi = 0.

Example. The case n = 2. When n = 2 the vortex Ω12 reduces to a single scalar
function Ω12 = f(x). Thus, for n = 2 the Poisson bracket (22) reduces to a Poisson
bracket for scalar functions f(x). It has the form

(23) {f(x), f(y)} = ∂1f∂2δ(x− y)− ∂2f∂1δ(x− y).

However, a Hamiltonian H of the form (20) becomes complicated in the “vor-
tex” variables. For the “finite-dimensional” case we have a set of discrete vortices
(x = x1, y = x2):

(24) Ω12 = f(x, y) =
N∑
α=1

qαδ(x− xα)δ(y − yα).

For such f , assuming the qα to be constant, we obtain from (23) the usual 2N -
dimensional phase space with the canonical variables

(25) x1, . . . , xN , p1 = y1, . . . , pN = yN

(that is, the coordinates x and y are canonically conjugate in the plane). The
Hamiltonian of the system of vortices has the form

(26) H =
∑
α>β

qαqβ log
√

(xα − xβ)2 + (yα − yβ)2.

For a 3-dimensional incompressible fluid one can introduce the canonical “Clebsch
variables” locally, starting from the representation

(27)



pi = ψ∂2ϕ (mod ρ∂if),
pi = ρvi, ρ = const,
1
ρ
dψ ∧ dϕ = Ωij dxi ∧ dxj = d(vi dxi),

{ψ(x), ψ(x′)} = {ϕ(x), ϕ(x′)} = 0,

{ψ(x), ϕ(x′)} = δ(x− x′).

Since ∂ipj − ∂jpi = ρΩij , we find that the vortex lines are given by

(28) ϕ = const, ψ = const,

because
ρΩij dxi ∧ dxj = dψ ∧ dϕ.

Thus, we arrive at the conclusion: the canonical Clebsch variables can be introduced
globally if (and only if) the form Ωij can be decomposed into the product of two
1-forms; the decomposition gives a mapping of the domain under investigation into
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a two-dimensional space (for example, into a domain of a plane, a sphere, or a
torus) such that the vortex lines are inverse images of points. Hence we conclude:

if the vortex lines are entangled and form a complex dynamical system, then the
Clebsch variables cannot be introduced globally.

We now return to the Lie algebra L of all smooth vector fields. We consider
a simple example: the simplest Hamiltonian on the Lie algebra L of all vector
fields and the phase space L∗ without derivative of momenta is the Hamiltonian of
non-interacting sound waves, of the “background gas”

(29) H =
∫
c(x)|p| dnx.

In this case the Hamilton equations are easily integrated; for c = const the
solution is given by the standard substitution

(30) v(x, t) = v0(x− tv(x, t)),

where
v(x, t) = cp/|p|, v0 = v(x, 0).

The solution (30) means that the particles conserve momentum and their motion
is free and rectilinear; if c(x) 6= const, then the motion is also free, but proceeds
along a geodesic of the metric gij = c(x)δij , similarly to Fermat’s principle.

In spite of its evident meaning, the formula (30) contains topologically non-trivial
possibilities, if we wish to know the solution v(x, t). For any x and t there is the
mapping Fx,t : Sn−1 → Sn−1 given by Fx,t(m) = v0(x −mt) for a unit vector m.
The fixed points of

(31) m = v0(x−mt) = Fx,t(m)

also give the solution m = v(x, t). If p(x) vanishes nowhere for t = 0, then the
degree degFx,t is always 0.

The Hamiltonian formalism for an ideal compressible fluid cannot be realized on
the algebra L; this is a special case of the Hamiltonian formalism for fluids with
internal degrees of freedom. Two of the more complicated systems of this kind are
the magnetohydrodynamics, where the magnetic field is “frozen” into the particles
of the fluid [21], and also the superfluid 4He, which has an internal degree of freedom
of quantum provenance [22]. A number of more complicated systems are now known
(spin glasses, rigid bodies with dislocations and disclinations, and anisotropic phases
of the superfluid 3He; see [23]–[25]). Of course, in real systems in addition to
the Hamiltonian part there are “viscous” terms in the equations. However, even
when these are large, the approximate Hamiltonian formalism enables us to predict
correctly (we hope) the structure of the equations of motion themselves for which
in certain cases, for example 3He, there is as yet no alternative.

Example 1. A classical compressible fluid. However, we are now interested in the
fact that even an ordinary compressible fluid has such internal degrees of freedom:
the mass density ρ and the entropy density s, and if we wish to include them,
we have to extend the Lie algebra of vector fields. To the vector fields vi we add
another pair of fields vρ and vs with commutators of the form

(32) [(v, vρ, vs), (w,wρ, ws)] = ([v, w], vi∂iwρ − wi∂iv
ρ, vi∂iw

s − wi∂iv
s).
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We denote the algebra (32) by Lρ,s, and the variables in the dual space L∗ρ,s by
ρ (mass density) and s (entropy density) with Poisson brackets (the velocities are
here the covectors vi = piρ

−1):

(33)



{pi(x), ρ(y)} = ρ(x)∂iδ(y − x),

{pi(x), s(y)} = s(x)∂iδ(y − x),

{ρ(x), ρ(y)} = {s(x), s(y)} = {ρ(x), s(y)} = 0,

{vi(x), vj(y)} =
1
ρ

Ωij(x)δ(x− y).

Let H =
∫

(1/2ρp2 + ε(ρ, s)) dnx be this energy. The Euclidean metric contained
in the Hamiltonian permits us to identify upper and lower indices.

The quantities M =
∫
ρ dnx and S =

∫
s dnx have vanishing Poisson brackets

with all functionals (“trivial” conservation laws). The Poisson brackets (33) were
chosen essentially so that that mass and entropy are transported with the particles,
in contrast to the energy, which is conserved only globally. For n = 2 we can
introduce the canonical “Clebsch variables” (evidently globally):

(34)


pi = ρ∂iϕ+ s∂iψ,

{ρ, s} = {ϕ,ψ} = {ρ, ψ} = {s, ϕ} = 0,

{ρ(x), ϕ(y)} = {s(x), ψ(y)} = δ(x− y).

For n = 3 there are three cases:
(a) An irrotational barotropic flow, where the vortex is zero and the entropy is

redundant as a field variable. The Clebsch variables are

(35)

pi = ρ∂iϕ,

{ρ, ρ} = {ϕ,ϕ} = 0, {ρ(x)ϕ(y)} = δ(x− y).

(b) A barotropic flow (the entropy is not a field variable)

(36) pi = ρ∂iϕ+ α∂iβ, Ωij = d(αρ−1) ∧ dβ,

where α is conjugate to β and ϕ to p. For the same reasons as above (see (28)) a
global introduction of Clebsch variables is, in general, not possible.

(c) General flows. Here the canonical Clebsch variables contain the “redundant”
field variable

(37)


pi = ρ∂iϕ+ s∂iψ + α∂iβ,

Ωij dxi ∧ dxj = d

(
s

ρ

)
∧ dψ + d

(
α

ρ

)
∧ dβ.

It would be useful to calculate the degree of many-valuedness of the representa-
tion (37) and to clarify the extent to which it holds globally. Let us consider a
simpler example.

We recall that in two-dimensional barotropic flow the Clebsch variables also
contain the redundant field variable

(38)


pi = ρ∂iϕ+ α∂iβ,

Ω12 dx
1 ∧ dx2 = d

(
α

β

)
∧ dβ.

For this reason, on the space of field variables α/ρ(x), and β(x) there acts a “cal-
ibrating group” (that is, a group of transformations of the plane R2 depending on
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αρ−1 and conserving their exterior product: the element of area (or 2-form)). This
group preserves the representations (38).

Example 2. The superfluid 4He. The equations of hydrodynamics (without dissi-
pation far from the point of transition) for the superfluid 4He can be written down
in the same variables pi, ρ, and s together with the “superfluid velocity” vsi = ∂iϕ
(see [22]). The Poisson brackets have the form (33), where additionally the brackets
for all quantities with the variable ϕ are:

(39)

{
{ϕ(x), s(y)} = 0, {ϕ(x), ρ(y)} = δ(x− y),

{pi(x), ρϕ(y)} = ρϕ(x)∂iδ(y − x), {ϕ,ϕ} = 0.

As previously, the energy acts as Hamiltonian. The Hamiltonian is given in the
form

(40) H =
∫ [

ρv2
s

2
+ p0iv

i
s + ε0(ρ, s, p0)

]
dnx.

It is assumed that p0 is proportional to vn − vs:

(41)


p0 = ρn(vn − vs) = p− ρvs,

vin − vis =
∂ε0
∂p0i

, vis = ∂iϕ.

The quantities ρn and ρs are called the densities of the normal and of the superfluid
components of the fluid. The momentum is p = ρnvn + ρsvs. We introduce the
“Clebsch variables” as usually,

pi = ρ∂iϕ+ s∂iψ + α∂iβ.

It would make sense to investigate the question of global impediments to the intro-
duction of Clebsch variables in more detail.

Various more complicated versions of equations of “superfluid” systems and other
anisotropic fluids can be found in the surveys [24] and [25].

Note. By analogy with § 1, (14), we can write down the Poisson brackets for the
algebra of vector fields in an “external” magnetic field given by a 2-form F =
Fij dx

i ∧ dxj . These brackets are defined by the extended Lie algebra LF , in which
the commutator of the basic vector fields ei = ∂/∂/xi is given in the form (of an
e-extension)

(42) [ei, e] = 0, [ei, ej ] = Fij(x)e.

For the fields v = viei + ψe and w = wiei + ϕe we obtain

(43) [v, w] = (vi∂jwi − wj∂jv
i)ei + (Fijwivj + wi∂iψ + vi∂iϕ)e.

To this algebra there correspond in L∗i the conjugate variables (pi, q) and the Poisson
brackets

(44)


{pi(x), q(y)} = q(x)∂iδ(y − x),

{q(x), q(y)} = 0,

{pi(x), pi(y)} = pj(x)∂iδ(y − x)− pi(y)∂jδ(x− y) + Fij(x)δ(x− y).

Example 3. As already mentioned, in magnetohydrodynamics the magnetic field is
not external but is “frozen” into the particles of the fluid (as always, the Hamilton-
ian coincides with the energy, including the magnetic energy); the Poisson brackets
have another form: the Poisson bracket of the momentum densities conserve the
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form (5), while that of the magnetic field itself with momenta are such that the field
is transported by the particles, as with ρ and s. This means that the flux through
an arbitrary fluid surface remains unchanged (only the surface itself is transported)
(see [21]). Such brackets with momenta can be introduced for differential forms
of any rank: if Hi1,...,ik(x) is a skew-symmetric tensor of any rank (the k-form
H = Hi1,...,ikdx

i1 ∧ · · · ∧ dxik), then the bracket has the form

(45) {H(x),H(y)} = 0,

{pi(x),H(y)} = H(x)∂iδ(y − x)− ∂i ∧ (H(x)δ(x− y)),

where the operation ∂i ∧ . . . on skew-symmetric tensors (forms) of rank k gives a
skew-symmetric tensor of rank k + 1. For example,

1) {pi(x), ϕ(y)} = ϕ(x)∂iδ(y−x)−∂i(ϕδ) = (−∂iϕ)δ(x− y) where ϕ is a scalar;

(46) 2) {pi(x), ρ(y)} = ρ(x)∂i(y − x),

where ρ is a form of rank n (scalar density);
3) {pi(x), Aj(y)} = Aj(x)∂iδ(y−x)−∂i(Ajδ)+∂jδ(Aiδ), where Aj is a covector;
4) {pi(x),Hjk(y)} = Hjk(x)∂iδ(y− x)− ∂i(Hjkδ) + ∂j(Hikδ)− ∂k(Hijδ), Hjk =

−Hkj .

§ 3. What is Morse (LSM) theory?

The general Morse theory [26] deals with the solution of the following problem:
given a finite- or infinite-dimensional space M (manifold) on which there is given
a function (functional) S : M → R.

Fundamental problem of Morse theory. How are the stationary points dS = 0
(or δS = 0 for functionals) connected with the topology of the manifold M?

If the critical points are non-degenerate, that is if δ2S is non-degenerate at critical
points (as one says, there are no “zero modes”), then the “index” (the Morse index)
is the number of negative squares of the form δ2S if this is finite.

Morse theory (in its classical version) is constructed under the following assump-
tions:

(a) all the critical points are non-degenerate, and the Morse indices are finite;
(b) all the domains S 6 const for the function S are relatively compact (the

Arzélà principle); this means that a sequence of points xi such that S(xi) < C has
a limit point in M .

Under these hypotheses the following inequality is established: the number
Mi(S) of critical points of index i is not less than the Betti number (the rank
of the homology group) of M :

(1) Mi(S) > bi(M).

The mechanism by which this inequality arises is very simple. Each critical
point x of index k has a “surface of most rapid discharge”, that is, a map of the
disk Dk (the open ball of dimension k, where

∑k
α=1(y

α)2 < 1):

f : Dk →M.

A function S that is bounded on the disk Dk can have only one critical point:
one maximum at the centre 0, where f(0) = x. The map f should be continued
“downwards” through the levels of the function in such a way that the image of
the boundary f(δDk) falls into the union of “surfaces of fastest discharge” of the
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various critical points xq, where a) S(xq) < S(x) and b) the indices of all the
points xq are less than k.

Thus, the function S generates a cell partition of the manifold M , where the
number of cells of dimension k is equal to the number of critical points of index k
for S.

Since all k-dimensional cycles can be formed from the cells of a cell partition,
the rank of the group of cycles (and of the homology group: its factor group by the
boundary) does not exceed the number of cells:

Mk(S) > bk(M).

If M is finite-dimensional, then the “Poincaré—Morse theorem” holds:∑
i>0

(−1)iMi(S) =
∑

(−1)ibi(M) = χ(M).

where χ(M) is the Euler—Poincaré characteristic and Mi(S) the number of cells.
In passing through the critical value c = ck the level surface Vc{S = c} and the

domain Wc{S 6 c} undergo the operations of reconstruction (it is assumed that
there is only one critical point on S = ck):

(a) Wck+ε = Wck−ε plus “a handle of index k”,
(b) Vck+ε is the “Morse reconstruction” of the manifold Vck−ε.

The operations of “attaching a handle” and of “Morse reconstruction’” have great
significance in topology itself. (There are manifold invariants that are finer than
the Betti numbers, which enable us to give a lower bound for the number of crit-
ical points of S, even when δS is a degenerate form. These are the so-called
“Lyusternik—Shnirel’man” categories. We do not define these invariants here (see
[28]).) In the case of “general position” all the critical points are non-degenerate.
Also useful is the case (which arises quite frequently, especially when there is sym-
metry),

Qk ⊂M, δS = 0.

Suppose that a) lk is the dimension of the critical manifold Qk; b) that the form δ2S
is non-degenerate on planes normal to the submanifolds Qk, and that it has a finite
number k of negative squares (the Morse index). Then there is an inequality for
the numbers determined by the homology of the set of critical points

(2) Mj(S) =
∑
k

bj−k(Qk) > bj(M),

where bj is the Betti number in the homology mod 2 (under certain hypotheses of
orientability this is also true for the ranks of the homology groups with arbitrary
coefficients).

Such is “Morse theory” on compact or open manifolds without boundary. For
manifolds with an edge Morse theory can be extended naturally when the whole
boundary is a level surface S = c and near the boundary S < c.

Example 1 (This observation is apparently due to Maxwell). In a mountainous is-
land the number of peaks minus the numbers of colls plus the number of depressions
is 1 (the peaks, colls, and depressions are critical points of the function “height”).

For χ(D2) = 1, D2 being the island whose boundary is the sea, that is, a level
surface of the height function g > 0.
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Example 2. On a closed orientable surface of genus g > 0 a function always has at
least one minimum and at least one maximum. The number of critical points of
saddle type is not less than 2g if they are all non-degenerate. If the degeneration
is resolved, then for g > 0 the function may have in all three critical points: a
minimum, a maximum, and a “degenerate saddle”. A non-constant function on a
closed surface (with g > 0) cannot have fewer than three critical points.

We do not discuss here the various purely topological applications of Morse
theory in the theory of finite-dimensional smooth manifolds: in the problem of
calculating the homotopy groups of Lie groups [26], [29], in techniques used in the
classification of wide classes of manifolds: in the first place, of manifolds of spherical
type [30]–[32], then of arbitrary simply-connected manifolds [33], [34], and also of
some non-simply connected manifolds [35]–[37].

Initially we are interested in a functional S(γ) on some class or another of con-
tours on a finite-dimensional manifold Mn, say, without boundary. The classi-
cal Poincaré—Birchhoff—Lyusternik—Shnirel’man—Morse theory considers in the
first place the positive functional consisting of length in the Riemannian metric
gij(x):

(3) l(γ) =
∫
γ

dl =
∫
γ

√
gij ẋiẋj dt

or the more general positive functional of “Finsler” length

(4) lF (γ) =
∫
γ

F (x, ẋ) dt > 0,

which gives rise to a Banach space structure on each n-dimensional tangent plane,
where F (x, λẋ) = λF (x, ẋ) for λ > 0. Here the xi are local coordinates on Mn, and
the curve γ has the form xi(t). Frequently the action functional of a mechanical
system occurs

(5) s(γ) =
∫
γ

[
1
2
gij ẋ

iẋj − U(x)
]
dt

We recall the “Maupertuis—Fermat” principle [40]: a functional of length, depend-
ing on the energy

(6) lE(γ) =
∫ √

(E − U(x))gij ẋiẋj dτ,

has extremals that coincide trajectorially with (5). The metric (E − U)gij is non-
singular when E > maxU(x). In what follows we require the metric in question to
be non-singular and complete. For completeness it is sufficient that Mn is compact.

Under these conditions the Arzélà principle holds (the set of curves joining two
points and having length 6 c is relatively compact; similarly for closed curves of
length 6 c on a compact manifold Mn). From this there follows the theorem (of
Hilbert) that there is a geodesic joining an arbitrary pair of points on a complete
Riemannian manifold. The Morse theorem on the finiteness of the number of nega-
tive squares and the finiteness of the degrees of degeneracy of the form δ2S for the
extremals of a γ-periodic form or one joining a pair of points x0, x1 ∈ Mn holds.
Subsequently it will be important for us that this theorem is valid for an arbitrary
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functional of the form

(7) S(γ) =
∫
L(x, ẋ) dt,

∂2

∂ẋi ∂ẋj
ξiξj > 0.

All functionals of the form (7) have well-defined “level surfaces” S = const and
“lines of steepest descent” (along the gradient ∇S), although not all have the
Arzélà principle. The Arzélà principle holds for length (3) functionals on a complete
Riemannian manifold. Also Finsler (positive) metrics (4).

Consequently, for functionals of the form (4) the Morse inequalities (1) hold,
where M is either a space Ω(x0, x1) of contours, joining two points of M , or the
space of closed contours M = Ω.

If the value of S(γ) depends on the direction of the curve γ, then we consider
the spaces of directed closed curves Ω+. One must distinguish two cases:

a) Mn is simply-connected. In this case the homotopy groups are

(8)

{
1. πi−1(Ω(x0, x1)) = πi(Mn),

2. πi(Ω+) = πi+1(Mn) + πi(Mn).

These equalities are established starting from the two fibrations (Serre):

1. E(x0)
Ω(x0,x1)−−−−−→

p1
Mn, where E(x0) is the contractible space of all paths with

origin γ(0) = x0, p1(γ) = γ(1) = x1.

2. Ω+ Ω(x,x)−−−−→
p2

Mn, where p2(γ) = x = γ(0) = γ(1).

There is a section ψ : Mn → Ω+ consisting of one-point curves in Ω+. In the
case of the sphere Mn = Sn the Betti numbers are

(9) bi(Ω(x0, x1)) =

{
1, i = k(n− 1),
0, i 6= k(n− 1).

b) Mn is not simply-connected (for example, all surfaces M2 except for the
sphere S2).

In this case the space Ω(x0, x1) splits into the union

(10) Ω(x0, x1) =
⋃
α

Ωα(x0, x1)

over all homotopy classes α ∈ π1(Mn) in each of which the functional must have a
minimum.

For closed contours we also have the splitting

(11) Ω+ =
⋃
β

Ω+
β ,

where β is a homotopy class of closed paths, that is, a class of conjugate elements
in π1(Mn). The minima in each class β correspond to conjugacy classes in π1.
For example, for manifolds Mn with a complete Riemannian metric for which the
curvature of any element of area is non-positive

Rijklξ
iηjξkηl 6 0,

the situation is as follows: all stationary points of the length functional l(γ) are
minima, both for the problem with two ends and for the periodic problem; all the
spaces Ωα(x0, x1), Ω+

β , β 6= 1 are contractible (homotopically trivial), and each
contains one minimum for the length l.



THE HAMILTONIAN FORMALISM AND A MANY-VALUED ANALOGUE... 25

We call attention to certain peculiarities (important in what follows, see § 4) of
the periodic problem. We consider the space Ω+0+ of curves homotopic to zero
(Ω+

0 = Ω+ in simply-connected manifolds). Then the minimum of the functional l
is achieved on one-point curves

ψ(MN ) = MN ⊂ Ω+
0 .

As a consequence of this, not all stationary points can be non-degenerate in the
strict sense of the word (see above): we may require all except the single-point
extremals of the functional to be non-degenerate. The Morse inequalities (1) must
take the following form:

(12) Mi(S) > bi(Ω+
0 ,M

n)

in the relative homology modulo the single-point curves.
However, here yet another difficulty arises: it is not a priori excluded that all

closed extremals except one are multiples of each one of them. This means that we
may find only one periodic extremal from Morse theory other than the one-point
one.

For n = 2 and M2 = S2 this difficulty was overcome by Lyusternik and Shni-
rel’man in 1930 (see [28]), who were able to show that for n = 2 the number
Mn
i (S2) of non-self-intersecting periodic extremals can be estimated from below

by the homology (and other topological invariants) of the Lyusternik—Shnirel’man
subspace Ω̂+ of closed non-self-intersecting curves in S2 completed by the one-point
curves (the sign + denotes directed curves)

(13)

{
S2

+ ∪ S2
− ⊂ Ω̂+(S2) ⊂ Ω+(S2),

Mn
i (S) > bi(Ω̂+, S2

+ ∪ S2
−).

The space of non-self-intersecting directed curves on the sphere (completed by the
one-point curves) contracts modulo single-point curves to the subset of plane sec-
tions of the sphere S2 having the form S2× I, where I is the interval −1 6 τ 6 +1,
and the boundary is formed by the one-point curves

(14)


S2

+ ∪ S2
− ⊂ S2 × I ⊂ Ω̂+ ⊂ Ω+,

bi(S2 × I, S2
+ ∪ S2

−) =

{
1 i = 1, 3,
0, i 6= 1, 3.

In the classical papers only the functional of Riemannian length (3) is considered,
independently of the choice of direction (there is an invariance t→ −t).

Therefore, the subject of study are the spaces of directed closed curves

S2 ⊂ Ω̂ ⊂ Ω(S2),

where Ω̂ are the non-self-intersecting curves. In this case the Betti numbers mod 2
have the form

(15) bi(Ω̂, S2) = 1 (i = 1, 2, 3)

(here the Lyusternik—Shnirel’man category turns out also to be 3).
In this case one can extract from the methods of the LSM theory no less than

three closed non-intersecting geodesics (without taking the direction into account;
with direction there would be 6).
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For functionals of type (4) without the invariance t→ −t the LSM theory gives
from (14) the existence of two non-self-intersecting closed extremals (in the neigh-
bourhood of which, by the Poincaré—Birkhoff—Kolmogorov—Arnol’d—Moser per-
turbation theory for conservative systems with 2 degrees of freedom, there is, in
general position, an infinite number of self-intersecting periodic extremals, if the
initial system is elliptic [38]). On spheres of dimension n > 3 these arguments no
longer work. At present the only rigorously established result is that in general
position there is at least one further periodic extremal that is not a multiple of the
first [39]. On manifolds on which the Betti numbers of the space of paths bi(Ω+)
increases as i → ∞, the matter is far simpler: the number of critical points of the
functional l = S is much greater than the number of periodic geodesics that could
be multiples of any finite number of “basic” geodesics (see [44]). However, this
argument fails for the sphere Sn.

Unfortunately, topological methods are, as a rule, not applicable to all natural
functionals whose domain of definition has dimension > 1 (that is, the Euler—
Lagrange equations involve partial derivatives). In some examples the minima
that arise naturally in modern geometry (or in the apparatus of modern physics)
form non-degenerate critical manifolds in each connected component of the function
space, and their neighbourhoods are of “good” structure (see [40], II, Ch. 6). How-
ever, the theory of critical points of saddle type and the Morse theory no longer
hold here, as a rule.

§ 4. Equations of Kirchhoff type and the Dirac monopole

Systems of Kirchhoff type were discussed in § 2. These are systems on the phase
space L∗ of the Lie algebra L of the group E(3) of motions of R3. Among them are:
a) the Kirchhoff equations for the motion of a rigid body in an ideal fluid (without
vortices); b) the motion of a top in a gravitational field; c) the (Leggett) system
for the spin dynamics of the superfluid 3He–A.

The phase-variables are (Mi, pi) (i = 1, 2, 3), the Poisson bracket is given by
§ 1, (35). The Kirchhoff integrals are f1 = p2 and f2 = ps =

∑
Mipi such that

{fq,Mi} = {fq, pi} = 0 (q = 1, 2, i = 1, 2, 3). The Poisson bracket on the level
surface p2 = const 6= 0 and ps = const can be found from the same formulae (35)
in § 1.

It is easy to see that the level surface f1, f2 for f1 = p2 6= 0 is topologically
equivalent to the tangent manifold T ∗(S2) of the two-dimensional sphere S2 given
by the equation p2 = const. The variables in the tangent space are given by

(1) σi = Mi − γpi, γ = s/p,

so that

(2)
∑

σipi = 0.

According to (35) of § 1, the coordinates pi have zero Poisson bracket {pi, pj} = 0
on S2. Therefore, the Poisson bracket on T ∗(S2) turns out to be variationally
admissible (see § 1) and must reduce to the form (18) of § 1. The corresponding
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change (see [1]) has the form

(3)


− π/2 6 Θ 6 π/2, 0 < ψ 6 2π,
p1 = p cos Θ cosψ, p2 = p cos Θ sinψ, p3 = p sinΘ,
σ1 = pψ tanΘ cosψ − pΘ sinψ, σ3 = −pψ,
σ2 = pψ tanΘ sinψ + pΘ cosψ, σi = Mi − sp−1pi.

It is easy to verify that from (3) it follows that

(4)


{Θ, ψ} = {pΘ, ψ} = {pψ,Θ} = 0,

{Θ, pΘ} = {ψ, pψ} = 1,

{pΘ, pψ} = cos Θ.

The corresponding 2-form is

(5)


Ω = dΘ ∧ dpΘ + dψ ∧ dpψ + s cos Θ dΘ ∧ dψ,
x1 = Θ, x2 = ψ, ξ1 = pΘ, ξ2 = pψ,

Ω = dxα ∧ dξα + cosx1 dx1 ∧ dx2.

Thus, the Poisson bracket is explicitly reduced to the form (18) of § 1 where the ξα
for α = 1 and 2 are the momenta.

In these variables the Hamiltonian H(M,p) of equations of Kirchhoff type (see
(38) and (45) of § 1) has the form

(6) H =
1
2
gαβξαξβ +Aαξα + V (x1, x2)

for a rigid body in a fluid. Here

(7)



∑
aiσ

2
i = gαβξαξβ > 0, σi = Mi − sp−1pi,

Aαξα = s

(∑
aipip

−1σi

)
+ p

(∑
i,j

bij(σipjp−1 + σjpip
−1)

)
,

2V = s2
(∑

aip
2
i p
−2

)
+ 2ps

(∑
ij

bijpipjp
−2

)
+ p2

(∑
cijpipjp

−2

)
.

By virtue of homogeneity, the Hamiltonian H depends only on sp−1.
By substituting for σi and pi in the expressions (3); Θ = x1, ψ = x2, pΘ = ξ1,

pψ = ξ2, we obtain the final formulae

(8) H =
1
2
gαβξαξβ +A′αξα + V ′

for the top. Here the gαβ(x) are the same, gαβgβγ = δγα. For A′ and V ′ we have

(9)


A′αξα = s

(∑
aiσipip

−1
)
,

2V ′ = s2
(∑

aip
2
i p
−2

)
+ 2W (lipi).

In addition, p2 = 1. Therefore, the Hamiltonian depends only on the level f2 = S

(10) H =
1
2
a(Θ̇2 + cos2 Θψ̇2) +A′′αξα + V ′′
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for the Leggett equations in 3He–A. Here, always p2 = 1 (p is given by d);

(11)


Aαξα = λ =

(∑
σiHi

)
,

V ′′ = λ
(
s
∑

piHi

)
+W (p1, p2, p3), p2 = 1.

The Hamiltonian H depends on the parameter s = f2.
Thus we reach the following conclusion.

Conclusion. Equations of Kirchhoff type reduce to a system mathematically equiv-
alent to a classical charged particle moving on a sphere S2 with Riemannian metric
gαβ(x) in a potential field U(x), and also in an effective magnetic field F12(x). In
spherical coordinates (Θ, ψ) this magnetic field has the form

(12)

U(x) = V (x)− 1
2
gαβA

αAβ ,

F12 = s cos Θ + ∂1A2 − ∂2A1, Aα = gαβA
β , s = f2f

−1/2
1 .

We note that the form Aα dx
α is defined globally on the sphere S2. For the flow

we obtain

(13)
∫∫

S2
F12 dΘ ∧ dψ =

∫ π/2

−π/2

∫ 2π

0

s cos Θ dΘ ∧ dψ = 4πs.

Thus, when s 6= 0, the effective magnetic field is always non-zero and represents a
(non quantized) “Dirac monopole”. Here s is the level of the Kirchhoff integrals.
For s = 0 the “magnetic field”, if it does not vanish, has zero flow through S2.

Note. When s = 0 for the top (45) of § 1, there arises a mechanical system of
traditional type on the sphere S2 (with a non-zero effective magnetic field).6 This
result was obtained by another method somewhat earlier by Kozlov and Kharlaniov
(see [41], Ch. 6): these authors then turned to the classical LSM theory to find
periodic solutions. As indicated in § 3, here there arises the Maupertuis—Fermat
functional of type (6) in § 3, which for s = 0 and E > maxU is the length in a
certain Riemannian metric. Since the length functional does not depend on the
direction, it follows from LSM theory that there exist no fewer than 6 periodic
motions (geometrically 3 curves) that are non-self-intersecting on the sphere S2.

§ 5. Many-valued functionals and an analogue of Morse theory.
The periodic problem for equations of Kirchhoff type.

Chiral fields in an external field

We have reduced equations of Kirchhoff type to the theory of a charged particle
on the sphere S2 (with some metric) in a scalar potential field and an effective
“magnetic field” with non-zero total flow 4πs, that is, a “Dirac monopole”. The
magnetic field F = F12 dx

1∧dx2 is a closed, but not necessarily exact 2-form on S2

(for s 6= 0) (see [1], [2]).

6In its physical meaning the problem of a top in an axially symmetrical field is not associated
with the Lie algebra L = L(3). This problem is naturally depicted as a Lagrangian system on SO3.
Its factorization and transition to T ∗(S2) with a certain symplectic structure is discussed, though

not investigated further, in [45]. As the author of the book [45] has communicated to me, the

erroneous assertion that the resulting symplectic structure is equivalent to the standard structure
on T ∗(S∗) has been removed in the English translation.



THE HAMILTONIAN FORMALISM AND A MANY-VALUED ANALOGUE... 29

It is useful to generalize this situation: let Mn, n > 1, be a manifold with a
metric gαβ , let U be a scalar function (potential) and F a 2-form (magnetic field),
not necessarily exact. We consider a domain Q ⊂Mn such that F is exact on Q:

(1)

{
F = dωQ = d(AQα dx

α),

− Fαβ = ∂βA
Q
α − ∂αA

Q
β .

Let γ be a curve located entirely in Q. Then we can define the action for it:

(2) SQ(γ) =
∫
γ

[
1
2
gαβẋ

αẋβ −AQα ẋ
α − U

]
dt.

By the Maupertuis—Fermat principle, these same trajectories of motion (up to
parametrization) can be obtained for a fixed energy from the functional

(3) lEQ(γ) =
∫
γ

[√
(E − U)gαβẋαẋβ −AQα ẋ

α

]
dτ.

This can be done for any domain Q in which F = dωQ. We fix a 1-form ωQ for
all possible domains Q on which the 2-form F is exact. If γ lies entirely in both
domains Q1 and Q2, then:7

(4) F = dωQ1 = dωQ2 ,

SQ1(γ)− SQ2(γ) = lEQ1
(γ)− lEQ2

(γ) =
∫
γ

(ωQ1 − ωQ2).

The value of the integral remains unchanged under any deformation γλ of the curve
γ = γ0, assuming that γ is periodic (or under any deformation γλ of γ0 with the
same end-points if γ has such):

(5) 0 =
d

dλ

∫
γλ

(ωQ1 − ωQ2) =
d

dλ
[lEQ1

(γλ)− lEQ2
(γλ)],

since the form ωQ1 − ωQ2 is closed.
From this we obtain the following conclusion.

Conclusion. The set of local actions lEQ (or SQ) for all domains Q defines a “many-
valued functional” on the function spaces: a) of the closed contours (the directed
curves Ω+); b) of the paths joining two points, Ω(x0, x1). Here we assume that
E > maxU(x). This means that the infinite-dimensional 1-form δlE is everywhere
uniquely determined and closed, but its “path integral”, in general, determines a
many-valued function on Ω+ or Ω(x0, x1).

Near any extremal this function may be assumed to be unique. The Morse index
theorem and all other “good” local properties hold for the functionals (3) in so far
as the condition (7) of § 3 is satisfied. For example, it is clear that one-point curves
give a local minimum of the functionals (3). This is a very important fact for our
purposes.

The many-value function (functional) lE becomes single-valued after transition
to a certain covering with infinitely many sheets:

(6) ˆ̂Ω → Ω+, Ω̃ → Ω(x0, x1),

7This situation essentially arose in connection with arguments (see [42]) for the construction
of the quantum amplitude exp{iS} as a single-valued functional under the condition that the flow
of the magnetic field of the “Dirac monopole” is integer-valued.
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by defining on the covering space a single-valued function lE(S), running through
all the values

−∞ < lE <∞, −∞ < S <∞

(on ˆ̂Ω or Ω̃). Of course, no analogue of the “Arzélà principle” of § 3 can hold.
When the magnetic field Fij is an exact 2-form, then the functional S or lE is

defined everywhere (Q = Mn) and is therefore single-valued. Nevertheless, this
functional can turn out to be non-positive. In this case also the Arzélà principle
fails for −∞ < S <∞, −∞ < lE <∞.

Example 1. Let R2(x, y) be a plane with the Euclidean metric and F 6= 0 a ho-
mogeneous magnetic field, directed along the z-axis ⊥R2. All orbits of motion of a
charged particle are circles (with a definite direction, depending on the sign of F ).
The radius of the (Larmor) orbits has the form

(7) r2 = const · E/F 2

(the constant involves the charge, the mass, and c). From this it follows that if
the distance between x0 and x1 is sufficiently large, then there is no extremal in
Ω(x0, x1). The reason is that the functional lE on curves γ with large area is not
positive (although lE is single-valued).

Example 2. Let S2 be the sphere with the standard metric and F a magnetic field
invariant under all the motions from SO3. For fixed energy E and large fields F
the Larmor radius r2 ∼ EF−2 becomes arbitrarily small. The problem is exactly
integrable: as for the plane R2 all the orbits are closed. By arguments similar to
those of Example 1 we arrive at the conclusion that there is a pair of points x0, x1

on S2 such that the many-valued functional lE has no extremal in Ω(x0, x1).

We note that in Example 2 the manifold (the sphere S2) is compact, but the
functional is many-valued.

The periodic problem of the variational calculus in this case differs strongly,
on the whole, from the problem with two fixed end-points. In the periodic case,
the Maupertuis—Fermat functional lE when δlE is an everywhere defined 1-form
on Ω+ always has “trivial” critical points: these are the one-point curves, which
form a submanifold of local minima Mn ⊂ Ω+(Mn). On any sheet of the covering
ˆ̂Ωq → Ω+ the complete inverse image

(8) q−1(Mn) =
⋃
j

Mn
j = M0 ∪M1 ∪M−1 ∪ . . .

gives a manifold of local minima of lE that is single-valued on ˆ̂Ω.
Let us join by a homotopy two manifolds of local minima, say, Mn

0 and Mn
1 ; that

is, we construct a map of the cylinder (I is the interval 0 6 τ 6 1)

(9) f : Mq × I → ˆ̂Ω

over any q-dimensional cycle Mq ⊂Mn.
At the boundary we impose the condition

(10)

{
f(x, 0) = Mq

0 ⊂Mn
0 ,

f(x, 1) = Mq
1 ⊂Mn

1 ,
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In particular, for q = 0 we obtain a map of the interval I → ˆ̂Ω; for q = n we
obtain a map Mn × I → ˆ̂Ω of the cylinder over Mn, provided that it is compact
and closed.

When we restrict the functional lE to Mq × I and begin to move the map f
“downwards” along the gradient ∇lE , then the ends f |τ=0 and f |τ=1 do not move
(they even occur in the local minima); we see that somewhere “in the middle” lE

has a maximum (xf , τf ) on Mq × I for any map f ; we have the obvious inequality

lE(xf , τf ) > lE(x, τ)|τ=0,1.

Since the values on the boundaries do not depend on f , we arrive at the following
conclusion:

Theorem. In general position, every basic cycle in the homology group Hq(Mn)
generates a critical point of the many-valued functional lE of Morse index i =
q + 1. For arbitrary energy E, lE has at least one critical point (the non-trivial
periodic extremal) that is not a singleton. It is assumed that the Maupertuis metric
(E − U)gij has no singularities E > maxU(x) and is complete on the compact
manifold Mn (this is always so, for example, when Mn = S2).

The same arguments can also be applied to the case of the two-ended problem,
for a many-valued functional lE on Ω(x0, x1). Here one has to assume that either
x0 = x1 is any fixed point x0 ∈ Mn, or that x0 and x1 are so close that there
is a unique “short” extremal (locally minimal) from x0 to x1 that can be denoted
by [x0, x1]. In this case the manifold of local minima consists of the single point
[x0, x1] ∈ Ω(x0, x1). So we obtain the result: in addition to [x0, x1] there is also a
“long” extremal of index 1.

Now let x0 = x1. We have obtained a “long” extremal γ(x0) with an “angle”
at x0. We consider the scalar function lE(γ(x0)) = ψ(x0) (which is easily seen to
be single-valued) on Mn, where γ(x0) is the “short” extremal.

Proposition. If ψ is smooth, then its critical points on Mn are also periodic ex-
tremals.

Conjecture. The periodic extremals obtained from cycles on Mn of one-point
curves cannot all concide geometrically (that is, they cannot all be multiples of
one of them).

This condition is easily met in the dimension n = 1 on the sphere S2, by using
the Lyusternik—Shnirel’rnan space of smooth non-self-intersecting curves Ω̂+(S2),
completed by the one-point curves. Since Ω̂+ is simply-connected, the many-valued
functional lE on this space reduces to a single-valued one; however, this functional
extends up to the “boundary” (the set of one-point curves) with two different values
(the set of single-pointed curves “bifurcates” into two pieces). As was shown above
(§ 3, (14)), homotopically we have

Ω̂+ ∼ S2 × I, −1 6 τ 6 +1,

S2
+ ∪ S2

− are the one-point curves (the boundary).

More precisely, we must consider the subspace ˆ̂Ω+ in the covering space ˆ̂Ω → Ω+

where Ω̂+ ⊂ ˆ̂Ω. Two copies of the one-point curves (S2
+ ∪ S2

−) are contained in the
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closure of Ω̂+. We normalize the value of lE so that

(11) lE(S2
+) = 0, lE(S2

−) > 0.

For equations of Kirchhoff type we obtain from (4.14?) that

lE(S2
−) = 4π|s|.

Even among the non-self-intersecting curves we obtain two extrema of indices 1
and 3 by using two saddles as in (9) and (10) above:

(12)

{
f : I → Ω+, f(0) ∈ S2

+, f(1) ∈ S2
−,

f : S2 × I → Ω̂+, f(x, 0) = S2
+, f(x, 1) = S2

−,

0 6 τ 6 1.

Thus, in this case we obtain two non-self-intersecting periodic extremals γ1 and γ2

of Morse indices 1 and 3, respectively.
For a single-valued functional lE in the presence of a magnetic field we have

s = 0; all the results remain valid.
Thus, we have obtained the following result:

Theorem 1. For all the values of the parameters f1 = p2 6= 0 and f2 = ps for which
the Hamiltonians are defined of systems of Kirchhoff type (4), (6)–(10), reduced to
the sphere S2, and for all energies E > maxU the system has at least two periodic
orbits (non-self-intersecting in p), depending on the parameters E, s, and p. If they
are non-degenerate, then their Morse indices are 1 and 3, respectively. (In fact, for
the motion of a rigid body in a fluid because of the homogeneity of the Hamiltonian
this dependence reduces to the variables E and sp−1. For a top and the Leggett
system we must set p = 1.)8

As Arnol’d has told the author, from Poincaré’s paper of 1905 (for the quotation,
see [28]) one can extract an idea whose natural development makes it possible to
prove the existence of a closed extremal in a magnetic field in a number of cases.
Poincaré’s arguments, when translated into modern language, have the following
meaning: we consider the sphere S2 with some Riemannian metric gab. Among
all curves γ bounding a given area A we look for the shortest (the isoperimetric
problem). We denote this9 by γ∗A. It is easy to see from arguments with Lagrangian
multipliers that γ∗A is a closed extremal of a (formal) charged particle in some mag-
netic field F proportional to the element of area F = λ d2σ of the metric gab with
some (so far undetermined) λ = λ(A). When A is increased from zero to the whole
area of the sphere S2, then λ(A) increases from −∞ to +∞, as is easy to verify.
Hence, by continuity, λ(A0) = 0 for some A0. From this we also obtain the fact
that in any “constant” magnetic field (that is, F = λ d2σ for all λ) there is at least
one non-self-intersecting extremal. By a trivial generalization of this argument, one
has to consider for any given 2-form ω on S2 the problem of finding the shortest
γmin(A,ω) in the set of non-self-intersecting curves γ for which

∫
U
ω = A, γ = ∂U .

By changing A one can apparently obtain closed extremals in the magnetic field λω

8As is shown in [2], § 5, for a broad class of Hamiltonians there is a Z2-symmetry enabling us

to find periodic motions, unknown classically, among plane sections of a sphere, by looking for
the extremum of action as a function of a single variable.

9Anosov has pointed out that although the isoperimetric problem is present in Poincaré’s work,
Arnold’s idea is lacking; that is, the further arguments with the change of the parameter A from 0
to the area of the sphere; it would be useful to make this argument rigorous.
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for any −∞ < λ <∞. In any case this is true for forms like f(x) d2σ, where f > 0
and d2σ is the element of area.

However, it is more convenient, as Arnol’d has suggested, to act dually. We
fix the length of a curve l(γ) = L homotopic to zero in any complete Riemannian
metric on a simply-connected manifold Mn, and we fix a closed 2-form Ω. We look
for a curve γ such that the quantity I(γ) =

∫
σ

Ω fit has a maximum or a minimum
(a local maximum or even a stationary point if H2(Mn, R) 6= 0 and the homology
class [Ω] 6= 0, although here it is already difficult to prove an existence theorem).
If the class [Ω] 6= 0, then the whole of this construction must be carried out on
the space of pairs (γ, n) ∈ P̂L, where γ is a closed null-homotopic curve of fixed
length L, and n is the homotopy class of the membrane σ, ∂σ = γ. The space of
pairs P̂L is an infinitely-sheeted covering of the space PL of curves γ of the given
length, P̂L → PL, but for small lengths L the covering is trivial;

P̂L = PL × Z as L→ 0;

as L→∞, this covering becomes non-trivial.
The space PL itself is compact. Therefore, if the class [Ω] = 0 or the covering P̂L

is trivial, then there is always a maximum of I(γ). Suppose that it is attained at
γ∗L ∈ PL. Using the previous arguments, and changing L from 0 to ∞, we obtain a
closed periodic extremal in any magnetic field proportional to Ω. Things are more
complicated if the homology class is [Ω] 6= 0. For a certain “critical” L = L0 the
covering PL becomes non-trivial.10 However, on the two-dimensional sphere S2 one
can use non-self-intersecting curves γ which bound only two membranes ∂σ1 = γ,
∂σ2 = γ, σ1 ∪ σ2 = S2.

In this case there is always a maximum; with a change of parameter the previ-
ous arguments reduce to the theorem on a single periodic extremal. The “finite-
dimensional” model of the present arguments with the space of closed curves and
its subspaces of curves of length L is as follows: given a manifold M (open, of large
dimension); suppose that on it there are given

a) a smooth function l(x) > 0 such that the domains l 6 L and the level surfaces
l = L are all compact,

b) a closed 1-form ω̂, dω̂ = 0.
We investigate the critical points of the form ω = dl + ω̂. For this purpose we
consider the family of forms ωL = ω on the level l = L. If the form ωL on the level
l = L is exact: ωL = dϕL, then we consider the maximum γ∗L of ϕL on the level
l = L. By varying L, ∞ > L > 0, we find the critical points of the form λ(L) dl+ ω̂.
We recall that for L = 0 we must obtain not an isolated minimum, but a whole
non-degenerate manifold of minima since in the case of curves we obtain all the
one-point curves. All other critical points may be assumed to be non-degenerate.
Moreover, in the domains l > L for small L ∼ e the form ω = dl + ω̂ must be
(locally) the gradient of a function f = l + ϕ, where ϕ ∼ ε2, that is, f has a
local minimum on the whole set L = 0 of minima of l(x). As L → 0, we see that
λ(L) → 0.

10In this case the critical value L = L0 is a stationary point of the functional L(γ) of index 10;

it is appropriate to conjecture that: the minimal (maxima) γ∗L, generate “short” closed orbits in

the magnetic field λ−1(L)Ω where λ(L) runs through all the values from 0 to ∞ as L changes

from 0 to L0.
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We now assume that the functional lE of the Kirchhoff problem (6)–(10) of § 4 on
the space of non-self-intersecting curves, normalized by the conditions (11), turns
out to be everywhere positive.

According to Stokes’ formula, the magnetic part of the functional lE for a non-
self-intersecting curve γ is always bounded above by the area of the domains on
the sphere which it bounds. Hence, lE is always semi-bounded on the subspace
Ω̂+(S2):

(13) lE(γ) > const > −∞.

If there is a curve γ such that lE(γ) < 0 (under the conditions (11) for one-point
curves), then there is a minimum γmin ∈ Ω̂+, that is, one more “superfluous”
periodic extremal. Apart from the minimum there is also a “superfluous” saddle γ1

where lE(γ1) > 0 in the space Ω̂+.

Example. We consider the Kirchhoff problem (6)–(10) of § 4; at energies close to
the maximum of the potential E ∼ maxU , we look for “small” test curves γε
surrounding the maximum point x0, U(x0) = max, such that

(14) lE(γε) < 0, ε→ 0.

Let x1 = Θ and x2 = ψ be the coordinates (5) of § 4, where the Lagrangian and
the magnetic field have the form (6)–(10) of § 4 and gαβ is a Riemannian metric.

If the effective magnetic field F = F12 exceeds a certain “threshold”, then there
are small test curves γε, such that lE(γε) < 0 for energies E sufficiently close to the
critical energy:

(15) 9,2λmax < 4|F12(x0)|det gαβ(x).

where λmax is the largest eigenvalue of the form (−∂2U/∂xα∂xβ):

(16) det
(
− ∂2U

∂xα∂xβ
− λmaxgαβ

)
x=x0

= 0

(see [2]). The conclusion that there is a saddle when inequalities of the type (15)
hold is valid in all dimensions, in contrast to the existence of a minimum.

For purely methodological purposes it is useful to consider an example that is
unrelated to equations of Kirchhoff type. Suppose that in the (x, y)-plane R2 there
is a magnetic field F (x, y) = F (x+T1, y) = F (x, y+T2) with two periods, directed
along the z-axis. We consider the classical motion of a charged particle in this field
(a generalization of Larmor orbits). Suppose that the average field is non-zero

(17) F̄ =
1

T1T2

∫ T1

0

∫ T2

0

F dx ∧ dy 6= 0.

We form the Maupertuis—Fermat functional, when Q = R2. We have a single-
valued functional lE(γ) on the space Ω̂+

0 of all smooth closed non-self-intersecting
curves, directed in the same sense as the motion along a Larmor orbit in the ho-
mogeneous field F̄ . The functional lE is non-positive (for F = F̄ this was shown in
Example 1 above). For circles γr of radius r we have

(18)

{
lE(γ2) < 0, r →∞,

lE(γ2) > 0, r → 0.
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We consider the function ψ(r) = lE(γr) on the half-line. Using the periodicity
of F , we identify the curves γ1 ∼ γ2 if they differ by a shift through a vector of the
lattice (mT2, nT2). Then the one-point curves form a torus. We apply the same
arguments as above (see (11), (12)) taking instead of the interval I a map of the
half-line

f : Mm ×R+ → Ω̂+
0 .

Here Mq is a cycle on the torus T 2 (q = 0, 1, 2). We have four cycles: a point,
two neighbourhoods, and the whole torus. The map f is subject to the boundary
conditions:

(a) f(x, 0) = Mq
0 ⊂ T 2 are one-point curves;

(b) for large τ →∞ the images f(x, τ) consist of curves γ such that lE(γ) < 0.
By analogy with the preceding we establish in the case of general position the

existence of four “Larmor” orbits for any energy E > 0 with Morse indices (1, 2,
2, 3).

Other examples and the development of an analogue of Morse theory for closed
1-form can be found in [1]–[3].

Let us now introduce the class of chiral fields [3] among the generalized “external
fields”; it is natural to correct “many-valued functionals” with these fields, not
unlike those arising on the space of contours for the Dirac monopole.

The definition of a non-linear chiral field is as follows (see, for example, [40], II,
Ch. 6): letNq andMn be arbitrary Riemannian manifolds; let S0(f) be a functional
defined on the map f : Nq → Mn. Usually, Nq = Rq or Nq = Sq. If Nq = Rq,
then we require that at infinity the field f(x) tends to a constant, f(x) → y0 ∈Mn

as |x| → ∞. Here S0(f) has the form of a Dirichlet functional that is quadratic
in the derivatives of f , possibly with some additions. The principal chiral fields
arise when Mn = G is a Lie group. In field theory one considers the case when the
metric on G is invariant on both sides (the Killing metric); the metrics on Rq or Sq

are also assumed to be standard. The standard “chiral Lagrangian” has the form

(19) S0(f) =
∫
Nq

Sp(AµAµ)
√
g dqx,

where gµν is a metric on Nq (we note that in the theory of the Ginzburg—Landau
equation for the superfluid 3He–A or 3He–B, more complex Lagrangians arise for
chiral fields; for references, see [43]).

Let Ω be an additional closed (q + 1)-form on Mn (the “external field”):

(20) dΩ = 0.

We take a covering of Mn by domains

Mn =
⋃
α
Wα

(with continuously many domains) such that
1. Ω is exact, Ω = dψα, on each Wα;
2. the image of each map f : Nq →Mn lies entirely in some domain Wα.
The “local action functionals” are defined by

(21) Sα(f) = S0(f) +
∫

(Nq,f)

ψα.

In the intersections, if
f(Nq) ⊂Wα ∩Wβ ,
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then

(22) Sα − Sβ =
∫

(Nq,f)

(ψα − ψβ),

where ψα − ψβ is a closed q-form in Wα ∩Wβ . By analogy with § 5, where q = 1,
Nq = S1, Mn = S2 (and Mn = R2) we obtain the following lemma:

Lemma. The set of functionals Sα(f) defines a closed 1-form δS on the functional
space F of admissible map f : Nq →Mn. This 1-form δS determines a many-valued
functional S, which is single-valued on an infinitely-sheeted covering F̂ → F .

In the quantization of such fields one has to require that the quantity (“ampli-
tude”) exp(iS) is a single-valued functional on F . From this it follows that Ω has
integer-valued integrals along (q + 1)-cycles in Mn.

Example. Let q = 2, Nq = R2 or S2 with the standard metric, and let Mn be a
compact Lie group with the Killing metric. The functional S0(f) is taken in the
form (19); Ω is a two-sided invariant 3-form on the group G = Mn (such a form
always exists; when G = SU2 then Ω is the volume element).

Problem. Does the Euler—Lagrange equation δS = 0 have a solution by the inverse
problem method (see [11], Ch. III for ordinary chiral fields with Ω = 0)?

Remark. We obtain a curious example for the so-called relativistic “strings” in
Minkowsky space Mn = R3,1 or Euclidean space M4 = R4, where q = 2, N2 = R2

(or S2 or D2) and f : N2 → R4. Let S0(f) =
∫∫
N2

√
g d2x where g = det gij , gij

being the metric on N2 induced by the embedding f . For any closed 3-form on
some domain in R4 we again obtain the “many-valued functional”

(23) S(f) = S0(f) +
∫∫

(N2,f)

ψ, dψ = Ω.

If Ω is defined everywhere in R4 except for isolated singularities at the points
(x1, . . . , xk), then there is a set of integrals over small spheres S3

i (i = 1, . . . , k)
around these points

(24) κ1 =
∫
S3

i

Ω.

From the requirement that exp(iS) is single-valued it follows that (2π)−1κi is an
integer. This situation is similar to the “Dirac monopole”, but here it is more
natural to call the singular points xi “instantons”, since they are localized in R4.
If Ω → 0 sufficiently rapidly as |x| → ∞, then

∑
κi = 0.

The class of many-valued functionals for chiral fields introduced above can be
extended naturally. Let E

p−→ Nq be a smooth fibration (or a direct product) with
fiber Mn. In the case of a direct product, E = Mn × Nq. Let S0(f) be a single-
valued functional on the sections f : Nq → E, p ◦ f = 1, and let Ω be a closed
(q + 1)-form on the manifold E, dΩ = 0. The subsequent definition of the “many-
valued functional” S{f} = S0{f} +

∫
Nqf

d−1(Ω) is a word-for-word repetition of
(20)–(22) above with the obvious change that the Wα are domains on E. In the
special case mentioned above Ω was a form on the fiber Mn, and the Wα where
domains on Mn, which naturally generate “cylindrical” domains and forms on
E = Mn × Nq, independent of the basis Nq. The following interesting problem
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was solved in [54], [55]: let P (f) = 0 be a differential equation of the sections of
the fibration E, f : Nq p−→ E, p ◦ f = 1, such that the “local” expression P (f) is
formally the variational derivative of some functional. When is the operator P (f)
globally the variational derivative of a functional (which, of course, is assumed to
be single-valued), that is, P (f) = δS/δf?

In [54], [55] an “obstruction” α[P ] ∈ Hq+1(E,R), α[P1 + P2] = α1 + α2 was
constructed such that α = 0 is equivalent to the global existence of S{f}. By
comparing this with our construction of “many-valued functionals”, we obtain the
following proposition: all locally Lagrangian systems of differential equations re-
duce to the variational derivatives of many-valued functionals of the form S0{f}+∫
(Nq,f)

d−1(Ω), dΩ = 0.
For the direct product E = Nq ×Mn the simplest natural class of examples of

such “external fields”, that is, of (q + 1)-forms Ω, is given by products of closed
forms of the base and the fiber: x1, . . . , xq are local coordinates in the base Nq,
and ϕ1, . . . , ϕn in the fibre Mn;

(25) Ωk,l = Ω = ω′k ∧ ω′′l , k + l = q + 1,

dω′k = dω′′l = 0,

where ω′k is a form on Nq and ω′′l a form on Mn.

Example 1. Let l = 1, k = q, ω′′1 = dU(ϕ) (locally), and let ω′k =
√
g dx1 ∧ · · ·∧dxq

be the volume element on Nq. Then

(26) S = S0{f}+ λ

∫
(Nq,f)

U(ϕ)
√
g dnx.

An external field Ωq,1 of this kind reduces to a potential U(ϕ) on Mn or the
covering M̂ →Mn.

Example 2. Let k = 2, l = q − 1, ω′2 = dA, where A = Aα(x) dxα is a vector
potential. In this case

S{f} = s0{f}+ λ

∫
Nq

(Aαdxα) ∧ f∗ω′′q−1.

The field Ω′2,q−1 can represent a pair: the “magnetic field” Hα,β = ∂αAβ−∂′βAα
for q = 2, 3 and another field ω′′q−1 of ϕ, interacting with the chiral field f : Nq →
Mn.

Example 3. Let k = 1, l = q, ω′1 = Eα dx
α = dU(x). In this case Eα can be an

electrical field.
In the simplest interesting cases we have
a) Nq = Rq (the field f tends to f0 as |x| → ∞) or Nq = T q (periodic boundary

conditions), the metric is gαβ = δαβ .
b) Mn = S1 (the field f of “sine-Gordon” type) or, more generally, Mn = Sn.

Let ω′′q−1 be the element of area.
The magnetic field in Example 2 interacts with the chiral field of unit tangent

vectors for Nq = Rq, T q. The basic examples of the functionals S0 are as follows:

I. The Dirichlet integral on the sections (x, f(x)) ⊂ Nq × Mn. Let gαβ
be the metric in Nq and Gab in Mn. We put

(27) S0{f} =
∫
Nq

[
λ+ gαβ(x)Gab(f(x))

∂ϕa

∂xα
∂ϕb

∂xβ

]
√
g dnx.
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More generally, the Dirichlet integral plus a potential:

(28) S0{f} =
∫
Nq

[
gαβ(x)Gab(f(x))

∂ϕa

∂xα
∂ϕb

∂xβ
+ V (ϕ)

]
√
g dnx.

where V (ϕ) is a single-valued scalar (in Example 1 it can happen that dV (ϕ) is
closed, but not an exact 1-form).

II. Sectional volume. In the same notation

(29) S0{f} =
∫
Nq

√
h dnx, h = dethαβ(x),

where hαβ = gαβ +Gab(f(x))∂ϕ
a

∂xα
∂ϕb

∂xβ is the induced metric on the section f̃ : Nq →
Nq ×Mn generated by the map f : Nq →Mn.

For functionals S0{f} of type I and II on the set of null-homotopic maps Nq →
Mn the following proposition holds: f0 = const is a local minimum of the func-
tional S0{f}, then f0 is also a local minimum of the functional S{f} = S0{f} +
λ

∫
(Nq,f)

d−1(Ω). Let S{f0} = 0. If S{f} is essentially many-valued or single-
valued but non-positive (that is, S{f} < 0 for some null-homotopic f), then S{f}
has a “saddle” extremal. The proof of this statement is similar to that of the
corresponding theorem for closed curves, where q = 1.

§ 6. Many-valued functions on finite-dimensional manifolds.
An analogue of Morse theory

On the manifold Mn we specify a closed 1-form ω; there is an (infinitely-sheeted)
covering M̂

p−→ Mn such that the form p∗ω is the differential of a function (the
simplest example is ω = dϕ on R2 \ 0 = Mn, where M̂ is the Riemann surface of
the logarithm):

(1) p∗ω = dS.

We call S a “many-valued function” on Mn. In fact, we consider only the case
when all the critical points are either non-degenerate or form non-degenerate critical
manifolds (see § 3). We also assume that S has a well-defined “gradient discharge”
that is, on M any compact space under descent along the gradient ∇S either
approaches a critical point or passes successively “downwards” through all levels
of S.

Problem. To construct an analogue of Morse theory for an estimate of the number
of stationary points of a many-valued function S (that is, of a closed 1-form ω) of
any Morse index i. We denote the number of stationary points of Morse index i by
mi(S) (or mi(ω)), p∗ω = dS.

In the group H1(M,Z) we can choose a basis γ1, . . . , γk, γk+1, . . . , γN such that

(2)
∮
γj

ω =

{
0, j > k + 1,
κj 6= 0, j 6 k,

and the numbers κj for j = 1, . . . , k are rationally (or integrally) independent. The
number k− 1 is called the “degree of irrationality” of ω. The monodromy group of
the minimal covering p : M̂ → Mn, turning ω into a differential of a single-valued
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function dS = p∗ω is precisely equal to Zk the free Abelian group with k generators
t1, . . . , tk acting by shifts on M̂ :

tj : M̂ → M̂.

In fact, the irrationality exponent is a point of the projective space

κ = (κ1 : κ2 : · · · : κk) ∈ RPk−1.

A particularly simple and interesting case is k = 1, when ω (possibly after mul-
tiplication by a factor) gives an element of the first integral cohomology group
[ω] ∈ H1(Mn,Z). In this case, exp(2πiS) is a well-defined complex-valued function
of modulus 1, that is,

(3) f = exp(2πiS) : Mn → S1.

The problem of constructing an analogue of Morse theory for the critical points
of such maps appears to be absolutely classical; this problem has never previously
(up to 1981) been studied in the literature. We consider the following case. If there
are no critical points, then the map f defines a fibration with base B = S1. A
cyclic Z-covering M̂

p−→ Mn is constructed as follows: we realize the cycle D[ω] ∈
Hn−1(Mn,Z) by the submanifold Nn−1, where D is the Poincaré duality operator.
By cutting the manifold along the cycle Nn−1 we obtain a membrane Wn with
two edges ∂W = Nn−1∪Nn−1

1 , diffeomorphic to Nn−1. We take infinitely many of
copies of this membrane W ≈Wi with boundaries ∂Wi = Ni,0∪Ni,1, diffeomorphic
to Nn−1. We paste them to each other along the boundary and according to the
number of components of the boundary

(4) M̂ =
⋃
Wi, Ni+1,0 = Ni,1, −∞ < i <∞.

The manifold Nn−1 = Nn−1
0 may be assumed to be a level surface of the function S

(or the complete inverse image of a point under the map f = exp(2πiS)). The
monodromy operator acts as follows:

(5) t : Wi →Wi+1, Ni,0 → Ni,1 = Ni+1,0.

In accordance with general principles, S must generate a cell complex (see § 3).
However, in our case the most important requirement on which the usual Morse
theory is based is not satisfied: this theory requires that the domains of lesser
values S 6 a are relatively compact, both in the finite-dimensional and infinite-
dimensional case. In our case this is not true. However, in our case from each critical
point of index ; the “surface of most rapid descent” (or, if necessary, its smallest
displacement) which can naturally be regarded as a “cell”, emerges “downwards”
through the levels. However, this “cell” can be pulled through the levels of S as
far as −∞; infinitely many such “cells” of dimension i − 1 can be contained in its
algebraic boundary. Under the shift t : M̂ → M̂ the functions S goes over into itself
with the addition of a constant, taking critical points into critical points. Thus, we
conclude that a) every critical point determines a free generator in the complex in
question; b) the boundary of a cell can be an infinite linear combination of cells of
this complex, lying “lower” in the levels of S, that is, emanating from ∞ only to
one side in M̂ ; c) all the “cells” are obtained from finitely many of all possible base
shift through elements tm of Z acting on M̂ .
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We introduce the ring of Laurent series of the form

(6)
∑

j>const>−∞
mjt

j ∈ K

with integer coefficients mj that vanish for sufficiently large negative j. We denote
this ring by K = Ẑ+[t, t−1]. We regard the cell complex generated by a many-
valued function on the manifold Mn or a function S on the covering M̂ →Mn as a
free complex of finitely generated K-modules C (since the number of critical points
is finite). The complex C has the form

0 → Cn
∂−→ Cn−1

∂−→ . . .
∂−→ C1

∂−→ C0 → 0.

where ∂ is a K-module homomorphism. We note that in contrast to the usual
Morse theory it can happen that C0 = Cn = 0. Furthermore, on any manifold Mn

there is a closed 1-form of any non-trivial cohomology class [ω] ∈ H1(Mn,R) such
that there are no local minima and maxima at all (that is, C0 = Cn = 0).

For the skew products of Mn with the base S1 there is a form ω without critical
points, that is, Cn = Cn−1 = · · · = C1 = C0 = 0.

Lemma. The homology of the complex of K-modules C, generated by any smooth
closed 1-form ω is homotopy invariant.

Without proving this simple lemma, we see that the invariants of these homology
groups can be used to obtain analogues of the Morse inequalities for the case of
many-valued functions generating maps into the circle

exp(2πiS) : Mn → S1.

The ring K is homologically one-dimensional (if the coefficients mj of the series
are elements of a field, then the corresponding analogue of K is also a field). Con-
sequently, submodules of free modules are always free. This enables us to choose
free bases in the groups (modules) of “cycles” Zk = Ker ∂ ⊂ Cn and “boundaries”
Bk = Im ∂ ⊂ Cn. The difference in rank of these modules is called the “Betti
number” and is denoted by bk(Mn, a) where a = [ω] ∈ H1(Mn,Z).

The analogues of the torsion numbers qk(Mn, a) are defined as follows: we can
choose free bases of the module Zk(e1, . . . , eN ) and the submodule Bk(e′1, . . . , e

′
L),

where N − L = bk, such that:

(7) e′j =
(
nj +

∑
k>1

njkt
k

)
ej +

∑
i>L

qij(t)ei,

moreover:
1) the number nj is divisible by nj+1;
2) the degrees of all the terms qij(t) of the series are non-negative;
3) the numbers qij(0) 6= 0 are also divisible by nj for all i and j (if the series

does not vanish identically).
The total number of indices j such that nj 6= 1 is called the torsion number and

is denoted by qk(Mn, a). The number qk + bk coincides with the minimal number
of generators of the module Hk = Zk/Bk.

Theorem. The following analogues of the Morse inequalities hold for the numbers
mi(S) (or mi(ω)) of critical points of index i for a map in the neighbourhood of
exp(2πiS) or for a closed 1-form ω, where [ω] = a ∈ H1(Mn,Z):

(8) mi(S) > bi(Mn, a) + qi(Mn, a) + qi−1(Mn, a).
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The proof of this theorem is easily deduced from the preceding.
We note that these analogues of the Morse inequalities are similar to the classi-

cal ones, but the topological invariants in them have a more complex geometrical
meaning.

For manifolds with π1(Mn) = Z it makes sense to ask when there is equal-
ity in (8), which resembles the familiar Smale theorem on single-valued functions
on simply-connected manifolds. One can construct without difficulty a level sur-
face Nn−1 that is dual to the class a = [ω] ∈ H−1(Mn) and is connected and
simply-connected (in any case, for n > 6). Next, by using the Smale function on
the membrane Wn with two boundaries ∂W = Nn−1

0 ∪ Nn−1
1 , which is obtained

from Mn by a section, a level surface Nn−1 can be “minimally” continued (by using
the Smale function on W ) to the whole manifold Mn resulting in a form on Mn and
a function S on the covering M̂ . However, this form (or many-valued function) can
be far from minimal in its number of critical points. The construction of a minimal
1-form ω requires the choice of an initial manifold Nn−1 ⊂ Mn that is “minimal”
in a certain sense if this choice is at all possible. It would be interesting to analyse
to the end this problem for manifolds with the group π1 = Z.

We make a few remarks concerning the more complicated case k > 1, that is when
the form ω has at least two rationally independent integrals over one-dimensional
cycles κi =

∮
γi
ω, γi, . . . , γk, where γk+1, . . . , γN is a basis of H1(Mn,Z), κi 6= 0,

i 6 k,
∑
miκi 6= 0, and the mi are arbitrary integers. Here we have the covering

M̂
p−→Mn, where pω = dS, and the monodromy group is free Abelian. We introduce

the ring Kκ of series b ∈ Kκ with integer coefficients

(9) b =
∑

m=(m1,...,mk)

bmt
m1
1 · . . . · tmk

k .

Here
1. bm = 0 if

∑
miκi is sufficiently large in modulus and negative.

2. “Stability”, that is, for any series b there are numbers ε > 0 and N such that
bm = 0 if

(10)
∑

miκ∗i < −N,
∑

|κ∗i − κi| < ε.

The closed 1-form ω defines a cell complex, regarded as a complex ofKκ-modules.
The homology of this complex is homotopy invariant and can serve as a basis for
constructing inequalities of Morse type. It is interesting to study the way in which
the complexes and homology that arise here depend on κ if ω is altered slightly
and the critical points remain essentially as before. If ω has no critical points at
all, then the manifold Mn has the form

Mn = M̂/Zk = (N̂ ×R)/Zk,

where N̂ is a typical fiber of the fibration ω = 0. All the fibers in this case are
identical. From an approximation of ω by closed forms ωj → ω with rational
integrals over cycles without critical points it is clear that Mn is a skew product
with circular base. The fibers of these skew products are compact manifolds Nn−1

j

that are factors of N̂ :
N̂ → Nn−1

j ,

That is, N̂ is a regular covering over Nj with monodromy group Zk−1.
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Any Riemannian metric on Mn together with a form ω without critical points
generate a discrete “dynamical system”, namely, the action ρ of Zk on Mn, con-
serving the fiber: the transformations ρ(tj) ∈ Zk on M̂ are constructed by inversely
transferring to the initial fiber N̂ ⊂ M̂ the image tj(N̂) of the monodromy map
tj : M̂ → M̂ along the normals to the fibers in the given metric. In the group ρ(Zk)
there are subgroups isomorphic to Zk−1 that act discretely on the fibers with a
compact factor; their action can be everywhere dense on Mn, as shown by the very
simple example M2 = T 2, ω = κ1 dϕ1 + κ2 dϕ2, κ1/κ2 is irrational. The whole
group ρ(Zk) acts non-discretely even on the fibers. What are the ergodic properties
of the action of ρ(Zk) on Mn? Do they depend on the Riemannian metric? Can
we assert that in the “typical” case the orbits of ρ(Zk) are everywhere dense on the
fibers? The optimal Riemannian metric that can be used here naturally must be
such that the distance between neighbouring fibers is constant.

For forms with critical points the geometrical picture becomes substantially more
complicated. Let us assume that all the critical points are non-degenerate, there-
fore, that there are finitely many of them. For simplicity we may assume that
the form has no local minima and maxima (such closed forms are always in any
cohomology class). Apparently, in the “typical” case the non-singular fibers are ev-
erywhere dense. It is an interesting problem to describe the topological properties
of non-singular fibers. In a certain natural sense it is a “quasi-periodic manifold”.

The simplest non-trivial case is k = 2; here the minimal covering M̂
p−→Mn that

turns the form ω into the differential of a single-valued function p∗ω = dS has the
monodromy group G = Z2; the fibers (that is, the surfaces S = const) in the cover-
ing M̂ are in a certain sense similar to Z-coverings over compact (n− 1)-manifolds.
In any case, these fibers extend to infinity in two directions, topologically speak-
ing, they have two “ends” (±∞) if they are connected around ±∞. The simplest
model of a quasi-periodic manifold that can occur is as follows: there is a finite
set of manifolds Win− 1 with boundaries ∂Wn−1

i = V n−2
0i V n−2

1i (i = 1, 2, . . . ,m).
Let α = (. . . , i−2, i−1, i0, i1, i2, . . . ) be a doubly infinite sequence of m symbols. If
this sequence is “admissible”, then we can construct an open manifold Wα in the
following natural way;

(11) Wα = (· · · ∪Wi−2 ∪Wi−1 ∪Wi0 ∪Wi1 ∪ . . . )

with the pastings

(12) V n−2
1,ij

= V n−2
0,ij+1

, −∞ < j <∞.

Admissibility indicates that the pastings (12) are possible.
For k = 2 the proposition is that the non-singular fibers ω = 0 (the level surfaces

of the many-valued function) can all be obtained by this construction. The singular
points, of which there are finitely many, can also be constructed, but in the pasting
(11) one of the elements Wis is replaced in just one place by a manifold with the
simplest Morse singularity of index i.

On the covering M̂ the fibers S = const are singular for a countable everywhere
dense set of values, (in the “typical” case), and on each singular fiber there is only
one critical point of S. Let S = c, c+ ε be non-singular fibers and ε > 0 sufficiently
small; we can achieve that all the non-singular fibers are pasted together from one
and the same elementsWi, but possibly relative to distinct sequences α = αc, S = c.
The transition c→ c+ ε in the set αc gives rise to a change in the subset of indices
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γ ⊂ αc at the expense of the Morse reconstruction of critical points in the domain
(c, c+ ε). The sequence γ ⊂ αi has “on average” finitely many elements n(γ) on an
interval of order 1/ε. The relevant “density” n̄(γ) = εn(γ) determines the average
number of reconstructions of a level surface in the interval (c, c + ε). It is natural
to introduce the quantities n̄i(γ): the densities of the number of Morse reconstruc-
tions of a given index i in the interval (c, c + ε), n(γ) =

∑n−1
i=1 n̄i(γ) (we recall

that by assumption there are no minima and maxima). Thus, for all non-singular
fibers S = c the function αc, together with an indication of the places and type of
replacements in an everywhere dense countable set of singular fibers cj , determines
a series of quantities that characterize the family of level surfaces of a many-valued
function for k = 2, a function that has so far only been studied on the covering M̂ .
The transition to Mn, that is, the factorization over Z2 with the generators (t1, t2)
causes new difficulties. We can achieve that the representations of fibers in the
form (11) are consistent with a single shift t1. This has the following significance:
the whole manifold M̂ is constructed, beginning with a single fiber represented in
the form (11), by the sequence of Morse reconstructions of the pieces Wj , according
to the combinatorial scheme described above. Here the partition can be made so
that under the shift tq11 : M̂ → M̂ for some integer q1 6= 0 (N̂c → N̂c+q1κ1) the rep-
resentation of the fiber N̂q1κ1+c in the form (11) is obtained from a representation
of the fiber N̂c by some shift of the sequences α = αc by an integer s1:

(13) αc+q1κ1 = s1(αc),
ij → ij + s1.

Into the topological arbitrariness of this construction there enters yet another ele-
mentwise diffeomorphism ψ(1) : N̂c → N̂c, where ψ(1)

m : Wjm →Wjm and the diffeo-
morphisms ψ(1)

m are compatible at the boundaries. One can choose another parti-
tion of the fiber {W ′

l }, where N̂c = W ′
β , β = (. . . , l−1, l0, l1, . . . ), and construct the

whole manifold M̂ by analogy with preceding but adapted to the shift t2: for some
integer q2 6= 0 the fiber N̂c+q2κ2 is obtained after a series of reconstructions from a
representation of the fiber N̂c in the form

(14) N̂c+q2κ2 = W ′
s2(β) = W ′

βc+q2κ2
,

and tq22 : N̂c → N̂c+q2κ2 , where s2(βc) is a shift of the sequences β = βc by an
integer and possibly an elementwise diffeomorphism ψ(2):

ψ(2) : N̂c → N̂c, ψ(2) =
⋃
ψ(2)
m , ψ(2)

m : W ′
lm →W ′

lm .

The fact that these two partitions can be consistent is plausible, but not proved:
can we choose them so that Wj = W ′

j ? Undoubtedly of great interest is the ques-
tion when the “quasi-periodic manifold” (11) can be realized as a non-singular
everywhere dense fiber: the level surface of a closed 1-form is on the compact man-
ifold Mn. All the constructions easily generalized to the case k > 2: the manifolds
Wn−1
j must be given together with maps into the cube ϕj : Wn−1

j → Ik−1 in such a
way that the complete inverse images of the faces of the cube give the correspond-
ing partition of the boundary ∂Wn−1

j = ϕ−1
j (∂Ik−1). The sequences of symbols

a must be “admissible” functions on a (k − 1)-dimensional lattice j(n1, . . . , nk−1)
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with value in the set of symbols (j) numbering the manifolds Wn−1
j . The pasting

(15) Wα =
⋃

(n1,...,nk−1)

Wn−1
j(n1,...,nk−1)

, α = {(j(n1, . . . , nk−1)},

can be defined as in (11), if a is an admissible distribution of indices (of course, the
complete inverse images ϕ−1

j are pasted together from the adjacent faces of cubes
according to the numbering on the lattice). All the problems raised here naturally
become more complicated for k > 2.

By analogy with the forms without critical points (above), for forms ω with Morse
singularities one can also define “almost everywhere” the action of a somewhat
smaller group ρ(Zk) as follows. Let a and b be integers such that

|aκ1 + bκ2| < ε,

where ε → 0 is sufficiently small. The transformation ta1t
b
2 is such that the image

of any fiber N̂c on M̂ turns out to be equal to N̂c+aκ1+bκ2 , and so is uniformly
distributed close to N̂c for any c everywhere on M̂ . The map ρ(t21t

b
2) : N̂c → N̂c is

constructed by means of the composition ta1t
b
2 with a translation along the normals

to the fibers in the given Riemannian metric on Mn. This map is not defined on the
set of measure zero consisting of the intersection of fibers “of surfaces of most rapid
descent” emerging on both sides from critical points lying between the fibers N̂c
and N̂c+aκ1+bκ2 . (We recall that by assumption the form ω has no minima and
maxima, therefore, the set where the map and its inverse are not defined is of
measure zero on the fibers; moreover, the critical points between these fibers are
“sectionally” distributed as ε → 0.) The map ρ(ta1t

b
2) and its inverse are defined

on Mn and are everywhere smooth, except at critical points and those parts of their
“surfaces of most rapid volume decrease” that fall into ε-neighbourhoods of critical
points. Of course, to define the whole group ρ(Zk) one would have to eliminate
entirely all these surfaces from Mn.

A closer investigation of the family or level surfaces of closed 1-forms seems to the
author to be an extremely interesting (purely topological) problem. Incidentally,
in the Hamiltonian formalism, as we have seen, the Hamiltonian is not necessarily
single-valued on the symplectic manifold on which the Poisson brackets are defined,
but only a closed 1-form. The simplest example of this is the motion of a classical
particle in space under the influence of a periodic potential (for some lattice Γ) plus
a constant strong field. In this case the Hamiltonian

(16)

H =
p2

2m
+ eU(x) + eEix

i,

Ei = const, U(~x+ ~Γi) = U(~x),

Γ = (n1
~Γ1 + n2

~Γ2 + n3
~Γ3)

is a 1-form on T ∗(T 3) = R3
(p)×T

3
(x). If p are the so-called “quasi-momenta”, periodic

with the inverse lattice Γ∗ and ε(p) is the “dispersion law”, then the Hamiltonian,
after the inclusion of a (“weak”) external electric field, can have the form

(17) H = ε(p) + eEix
i + eU(x),

where U(x) is periodic with the lattice Γ or one of its sublattices Γ′ ⊂ Γ, and ε(p)
is periodic for Γ∗. Here Mn = T 3

(p)×T
3
(x). Of course, these examples are somewhat

artificial, but we have given them to illustrate the fact that the study of the level
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surfaces of 1-forms can be useful from various points of view. It is also possible to
include a weak magnetic field where the Hamiltonian of the form (17) is modified
and becomes

(18) H = ε
(
p− e

c
A(x)

)
+ e(Eixi + U(x)),

where Aj(. . . , xi + Γi, . . . ) = Aj(x) + ∂jfi the fi being a single-valued function.
It is easy to see that the term ε(p − e

cA) determines a single-valued function on
the torus T 6 (or on a finite covering of it) if and only if the flows of the magnetic
field Hij = ∂iAj − ∂jAi across all two-dimensional elementary cells of the lattice Γ
are rational multiples of the unit of magnetic flow 2πce−1 (~ = 1). The additional
distorted potential U(x) is not, as a rule, considered. The “electrical part” of the
Hamiltonian Eix

i gives a closed, but not-exact 1-form dH on the torus T 3 × T 3,
which in general has 3 non-commensurable non-zero periods:

(19) dH =
∂ε

∂pi
dpi + e

(
Ei +

∂U

∂xi
− 1
c

∂ε

∂pj

∂Aj
∂xi

)
dxi.

The symplectic 2-form has the usual shape Ω = dpi ∧ dxi and determines the
Poisson brackets and the Hamiltonian systems. A classical dynamical system with
Hamiltonian (18), where ε(p) is derived from quantum theory, can in principle be
of considerable interest in solid state theory whereas the system with the Hamilton-
ian (16) is interesting only after quantization, where its properties are non-trivial
even in the one-dimensional case because of the presence of the 1-form Eidx

i (of
“constant force”).

Remark. In 3-dimensional space, in the absence of a constant electric field and weak
external periodic potential Ei = 0, U = 0 we have the semiclassical Hamiltonian
H = ε(p− e

cA) oi a particle with momentum p = p′ + e
cA, p′ ∈ T 3

(p′) in a constant
(homogeneous) magnetic field H̄: strictly speaking, the field H̄ is a 2-form

H̄ = H1 dy ∧ dz +H2 dz ∧ dx+H3 dx ∧ dy

such that dH̄ = 0. In the absence of local currents we have rot H̄ = 0 or d(∗H̄) = 0.
Of course, this is satisfied for a homogeneous field. The semiclassical “motion” of
a particle occurs in the p′-space T 3 under the influence of the field H̄ by virtue
of the equation ṗ′ = e

c [v × H̄] or ṗ′j = e
cv
kHkj , v = ẋ = ∂ε/∂p′; where p′ =

p − e
cA. This is the “old momentum” to within inclusion of the field H̄; the

particle moves along the surfaces ε(p′) = const orthogonally to H̄. Thus, the
motion is along the level surfaces of the 1-form (ω = 0) on the 2-dimensional
manifolds ε(p′) = const, provided that the vector H has two or three pairwise
incommemsurable coefficients of inclination with respect to the initial lattice in
which ω = H1 dp

′
1 + H2 dp

′
2 + H3 dp

′
3. Although the fiber ω = 0 is, in general,

not connected, transitions are possible from one trajectory to another on the same
fiber ω = 0 near the critical points. Thus, it is natural to regard the fiber ω = 0
as a single integer and to study (in the irrational case) its quasiperiodic structure
discussed above.

Here we have the following proposition:

If the Fermi surface ε(p) = ε0 in the torus T 3 has the genus g 6 1, then the
form co has the degree of irrationality k − 1 6 0; if the genus is g = 2, then k 6 2;
if the genus is g > 3, then k 6 3. Here ω is the restriction of the form ∗H̄ to the
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Fermi surface and k is the rank of the monodromy group of the covering M̂
p−→M2

such that p∗ω = dS.

The proof uses the fact that ε(p) is a smooth single-valued function on the
torus T 3. Therefore, any Fermi surface ε(p) = ε0 bounds a membrane in T 3: and so,
the inclusion j : M2 → T 3 is such that j∗[M2] = 0. The covering over M2 is induced
by a Z3-covering over T 3. The restriction of the cohomology j∗ : H1(T 3,Z) →
H1(M2) has an image on which the multiplication of cohomology is trivial, since
j∗[M2] = 0. Hence, the rank of the image j∗H1 ⊂ H1(M2) does not exceed the
genus g (but also never exceeds 3), since ω = j∗(∗H̄), and the proof is complete.

Therefore, if the genus of the Fermi-surface is 6 1, then the trajectories of a
semiclassical motion are always closed (compact) in R3 for the quasi-momenta,
although for g = 1 the covering itself over the Fermi-surface in R3 may be an open
covering of cylinder type (it cannot be R2). If the genus is g = 2, then k = 2 is
possible. In this case the level surfaces ω = 0 (orthogonal to the field H̄, as a vector
in R3) may be “quasi-periodic” manifolds and extend to ±∞ in two “asymptotic”
directions. We recall that according to Morse theory the function ε(p) on the
torus T 3 must have no less than

(
l
3

)
= bl(T 3) critical points of index l (if they

are non-degenerate), and their number increases in the pressence of a non-trivial
finite group of symmetries, which (in general) occurs in crystals. Consequently,
Fermi-surfaces of high genus are possible.
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