SOME PROPERTIES OF (4k+2)-DIMENSIONAL MANIFOLDS

S. P. NOVIKOV

This paper is related to the writer's work in [8] on diffeomorphism of simply-connected manifolds and to Kervaire's work on the existence of nonsmoothable manifolds of dimension 10 [4]. The main part of the paper, which is devoted to properties of 10-dimensional manifolds, will also make essential use of ideas due to Milnor and to the present writer [5,9] on generalized cobordism rings. We recall (see [8]) that in studying the homotopy group $\pi_{N+n}(T_N)$ of the Thom space T_N of the normal bundle of a manifold M^n (n=4k+2), we single out the subset $A \subseteq \pi_{N+n}(T_N)$ consisting of those $\alpha \in A$ such that $H(\alpha) = \phi[M^n]$, where $\phi: H_k(M^n) \to H_{k+N}(T_N)$ is the Thom isomorphism, and $H: \pi_j(X) \to H_j(X)$ is the Hurewicz homomorphism. We proved that a t-regular representative $f_\alpha: S^{N+n} \to T_N$ of an element $\alpha \in A$ can be chosen such that the manifold $f_\alpha^{-1}(M^n) = M_\alpha^n$ has the following properties:

- 1. $f_{\alpha*}: H_i(M_{\alpha}^n) \longrightarrow H_i(M^n)$ is an isomorphism for $i \neq 2k+1$.
- 2. Ker $f_{\alpha^*} = Z + Z \subset H_{2k+1}(M_{\alpha}^n)$.
- 3. The Hurewicz homomorphism $H \colon \operatorname{Ker} f_{\alpha^*} \to \operatorname{Ker} f_{\alpha^*} \subset H_{2k+1}(M_{\alpha}^n)$ is an isomorphism.
- 4. If a cycle $x \in \operatorname{Ker} f_{\alpha *}$ is realized by an embedded sphere $S^{2k+1} \subset M_{\alpha}^n$ and $n \neq 6$, 14, then the normal bundle $\nu(S^{2k+1}, M_{\alpha}^n)$ of S^{2k+1} in the manifold M_{α}^n depends only on the element x, belongs to the group Z_2 , and defines a mapping $\phi \colon \operatorname{Ker} f_{\alpha *} \to Z_2$ such that

$$\phi(x+y) = \phi(x) + \phi(y) + x \cdot y \mod 2.$$

If x, y is a basis for the group $\operatorname{Ker} f_{\alpha^*}$, then we let $\phi(\alpha) = \phi(x) \phi(y) \in \mathbb{Z}_2$.

Theorem 1. The invariant $\phi(\alpha)$ is independent of the choice of the representative f_{α} satisfying conditions 1-4 above.

If n=6, 14, the definition of the invariant has to be modified. Instead of using the normal bundle of S^{2k+1} in M_{α}^n (under heading 4 above), we use the "framed", structure of the embedded sphere, and refer to [10], for the exact formulation of the definition. In this case we denote the invariant by $\psi(\alpha) \in Z_2$. All algebraic properties of $\phi(\alpha)$ carry over to $\psi(\alpha)$ in the cases n=6, 14.

Theorem 1'. The invariant $\psi(\alpha)$ is singlevalued and well-defined.

The proof of Theorem 1' is identical to that of Theorem 1.

We let $\widetilde{A} \subset A$ denote the subset of $A \subset \pi_{N+n}(T_N)$ which consists of those $\alpha \in \widetilde{A}$ such that $\phi(\alpha) = 0$ $(n \neq 6, 14)$, or $\psi(\alpha) = 0$ (n = 6, 14). The following results are easy corollaries of the definitions of ϕ and ψ and Theorem 1.

Corollary 1. When n = 6, 14, the set A contains exactly half of the elements of A (for any manifold M^n).

Corollary 2. If $M^n = M_1^n + M_2^n$, then \widetilde{A} coincides with A for M^n if and only if \widetilde{A} coincides with A for M_1^n and M_2^n .

^{*} Translator's note: See the gloss on this term in Soviet Mathematics 4 (1963), p. 27 (footnote).

Now we want to study the distribution of the values of the invariant ϕ on the set A. For simplicity we assume that M^n satisfies $H^{2k+1}(M^n, Z) \otimes Z_2 = 0$ and n = 4k + 2, $k \neq 0, 1, 3$.

We note that $\pi_{N+n}(T_N) = Z + \widetilde{\pi}$, where $\widetilde{\pi}$ is a finite group. The set A consists of all elements of the form $1+\gamma$, where $1 \in Z$ and $\gamma \in \widetilde{\pi}$. Let us assume from now on that a particular direct sum decomposition of $\pi_{N+n}(T_N)$ has been chosen.

Theorem 2. The following formula holds:

$$\phi(1+\gamma+\delta)=\phi(1+\gamma)+\phi(1+\delta)+\phi(1+0), \text{ where } \gamma, \ \delta \in \widetilde{\pi}.$$

The proof is simple and depends on writing $1 + \gamma + \delta = (1 + \gamma) + (1 + \delta) - (1 + 0)$, which allows one to realize $1 + \gamma + \delta$ by a "good" representative map $f: S^{N+n} \longrightarrow T_N$ and then use modifications on the complete preimage $f^{-1}(M^n)$.

In our case we can choose the splitting $\pi_{N+n} = Z + \widehat{\pi}$ in such a way that $\phi(1+0) = 0$, so that by putting $\overline{\phi}(\gamma) = \phi(1+\gamma)$ we get a homomorphism $\overline{\phi} \colon \widehat{\pi} \to Z_2$. This gives

Corollary 3. If $H^{2k+1}(M^n, Z) \otimes Z_2 = 0$, then the set \widetilde{A} either contains half of A or coincides with A.

What we have done so far gives us enough information about the relations between \widetilde{A} and A in dimensions n=4k+2 for k=1,3, and we also have a certain amount of information on higher dimensions. The first really nontrivial case is k=2 (n=10), which we now concentrate on. One can see that this case is nontrivial from the fact that, on the sphere of this dimension \widetilde{A} and A coincide, and it is totally unclear what the situation is for other manifolds. Our goal will be to generalize the invariant $\Phi(M^{10}) \in Z_2$ defined for 4-connected 10-dimensional manifolds by Kervaire [4], and then to apply this invariant to solve some problems.

Since the cohomology operation $\operatorname{Sq}^2\operatorname{Sq}^4\colon H^5(X,Z)\to H^{11}(X,Z_2)$ is identically zero (thanks to the relation $\operatorname{Sq}^2\operatorname{Sq}^4=\operatorname{Sq}^6+\operatorname{Sq}^5\operatorname{Sq}^1$), there is a "secondary" cohomology operation $\Phi\colon \operatorname{Ker}\operatorname{Sq}^4\to \operatorname{Coker}\operatorname{Sq}^2$ which is defined on $\operatorname{Ker}\operatorname{Sq}^4\subset H^5(X,Z)$.

Lemma 1. The operation Φ has the property:

$$\Phi(x+y)=\Phi(x)+\Phi(y)+xy.$$

The proof is quite simple.

Lemma 2. If $\pi_1(M^{10}) = 0$ and $w_2(M^{10}) = 0$ for a topological manifold M^{10} , then the operation $\Phi \colon H^5(M^{10}, Z) \to H^{10}(M^{10}, Z_2) = Z_2$ is always defined and singlevalued.

Lemma 3. Under the conditions of Lemma 2 the operation Φ defines a singlevalued homomorphism $\Phi\colon \mathrm{Tor}\, H^5(M^{10},\,Z) \longrightarrow H^{10}(M^{10},\,Z_2).$

This lemma follows easily from Lemmas 1 and 2.

From now on we shall restrict ourselves to manifolds which satisfy the following conditions:

- 1. $\pi_1(M^{10}) = 0$.
- 2. $w_2(M^{10}) = 0$.
- 3. The homomorphism $\Phi \colon \operatorname{Tor} H^5(M^{10}, Z) \to H^{10}(M^{10}, Z_2)$ is trivial.

We now define the "generalized Kervaire invariant" for topological manifolds satisfying conditions 1-3: a) let x_1, \dots, x_{2l} be a basis for the group $H^5(M^{10}, \mathbb{Z})/\text{Torsion}$ such that $x_{2i-1}x_{2i}\neq 0$ for $1\leq i\leq l$ and $x_kx_s=0$ otherwise; b) by condition 3, the operation Φ is defined on the group $H^5(M^{10}, \mathbb{Z})/\text{Torsion}$ and takes values in \mathbb{Z}_2 ; the sum $\Phi(M^{10})=\sum_{i=1}^l\Phi(x_{2i-1})\Phi(x_{2i})$ is independent of the above basis and is called the "generalized Kervaire invariant"; c) the invariant $\Phi(M^{10})$

is a homotopy invariant of the manifold.

We now have the following important lemma.

Lemma 4. If M^{10} is a smooth manifold and is the boundary of a smooth oriented manifold W^{11} with $w_2(V^{11}) = 0$, then $\Phi(M^{10}) = 0$.

In analogy with [5,9], we consider the spinor cobordism ring $V_{\rm Spin} = \sum V_{\rm Spin}^i$, $V_{\rm Spin}^i = \pi_{N+i}(M \, {\rm Spin} \, N)$, where $M \, {\rm Spin} \, N$ is the Thom complex of the spinor group. As is well known, the tangent bundle (or stable normal bundle) of a manifold can be reduced to the spinor group if $w_1(M^n) = w_2(M^n) = 0$. Lemma 4 therefore implies the following lemma.

Lemma 5. The Kervaire invariant defines a singlevalued homomorphism $\Phi \colon \widetilde{V}^{10}_{\mathrm{Spin}} \to Z_2$, where $\widetilde{V}^{10}_{\mathrm{Spin}} \subset V^{10}_{\mathrm{Spin}}$.

Proof. The invariant Φ is obviously additive. If a manifold determines the zero element of V^{10}_{Spin} , then the manifold must be the boundary of something in the next dimension, V^{11} , such that $w_2(V^{11})=0$, and therefore $\Phi=0$. However, on account of restriction 3, the invariant Φ may possibly not be defined for all elements of the group V^{10}_{Spin} . The lemma is proved.

We shall now give without proof a number of results on the ring $V_{\text{Spin}} = \sum V_{\text{Spin}}^{i}$.

I. The groups V_{Spin}^{i} for $i \leq 10$ are as follows:

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$$

$$V_{\mathrm{Spin}}^i = Z \ Z_2 \ Z_2 \ 0 \ Z \ 0 \ 0 \ 0 \ Z + Z \ Z_2 + Z_2 \ Z_2 + Z_2 + Z_2$$

II. Generators for the groups V_{Spin}^k for $k \leq 10$ can be chosen as:

$$\begin{split} &1 \in V_{\mathrm{Spin}}^{0}, \quad x_{1} \in V_{\mathrm{Spin}}^{1}, \quad x_{1}^{2} \in V_{\mathrm{Spin}}^{2}, \quad x_{4} \in V_{\mathrm{Spin}}^{4}, \\ &x_{8} \in V_{\mathrm{Spin}}^{8}, \quad y_{8} \in V_{\mathrm{Spin}}^{8}, \quad 4y_{8} = x_{4}^{2}, \quad x_{1}x_{8} \in V_{\mathrm{Spin}}^{9}, \\ &x_{1}y_{8} \in V_{\mathrm{Spin}}^{9}, \quad x_{1}^{2}x_{8} \in V_{\mathrm{Spin}}^{10}, \quad x_{1}^{2}y_{8} \in V_{\mathrm{Spin}}^{10}, \quad Z_{10} \in V_{\mathrm{Spin}}^{10}. \end{split}$$

III. The element $x_1 \in V^1_{\mathrm{Spin}}$ is represented by a circle $S^1 \subseteq R^{N+1}$ with nontrivial framed structure

IV. The group $V_{\rm Spin}^8$ is generated by the following manifolds: a) the quaternion projective plane $P^2(Q)$; b) Milnor's 8-dimensional 3-connected almost parallelizable manifold M_0^8 of index $I(M_0^8) = 8 \cdot 28$.

V. The generator $Z_{10} \in V_{\text{Spin}}^{10}$ is represented by a manifold M^{10} which has $w_4 w_6 (M^{10}) \neq 0$.

The subgroup $V_{\mathrm{Spin}}^1 V_{\mathrm{Spin}}^1 V_{\mathrm{Spin}}^8 \subset V_{\mathrm{Spin}}^{10}$ is determined by the condition $w_4 w_6 = 0$.

The results in I-V can be proved as in the papers by Milnor [5] and the author [9] on generalized cobordism rings; the main tools are the Adams spectral sequence [1] and the A-genus [2].

Lemma 6. The homomorphism $\Phi\colon V^{10}_{\mathrm{Spin}} \to Z_2$ is zero on the subgroup $V^1_{\mathrm{Spin}} V^1_{\mathrm{Spin}} V^8_{\mathrm{Spin}} \subset V^{10}_{\mathrm{Spin}}$.

The proof of this lemma is nontrivial and makes essential use of the information in heading IV above on the geometrical generators of the group $V_{\mathrm{Spin}}^8 = Z + Z$. The hardest part is the analysis of the element represented by the manifold $P^2(Q) \times S^1 \times S^1$. Essentially what one has to do is carry out explicit Morse modifications over one-dimensional cycles in the manifolds $M_0^8 \times S^1 \times S^1$ and $P^2(Q) \times S^1 \times S^1$.

The following is an easy consequence of these lemmas:

Theorem 3. The invariant $\Phi(M^{10})$ is a singlevalued function of the residue $w_4w_6(M^{10})$, and $\Phi(M^{10}) = 0$ if $w_4w_6(M^{10}) = 0$, for a smooth manifold M^{10} .

Thus $\Phi = \Phi(w_A w_K)$, for smooth manifolds.

Remark. The author conjectures that $\Phi(w_4w_6)=0$ for smooth manifolds. To prove this, it would be sufficient to construct a smooth manifold M^{10} with $w_4w_6(M^{10})\neq 0$ and $\Phi(M^{10})\approx 0$.

Theorem 4. If the invariant $\Phi(M^{10})$ is defined on a smooth manifold M^{10} , then this manifold has $\widetilde{A} = A$, i.e., $\phi(\alpha) \equiv 0$ for all $\alpha \in A$.

Proof. Let α be such that $\phi(\alpha)=1$. Pick a representative $M_{\alpha}^{10}=f_{\alpha}^{-1}(M^{10})$ having properties 1-4 as indicated at the beginning of this paper. Clearly $\phi(M_{\alpha}^{10})=\phi(M^{10})+1$, and $w_4w_6(M_{\alpha}^{10})=w_4w_6(M^{10})$. Since M_{α}^{10} is a smooth manifold, this contradicts Theorem 3.

Let M¹⁰ be a topological manifold (or, more generally, a polyhedron satisfying Poincaré duality). Proceeding along the lines of [8] and Browder's paper [3], one can prove the following assertion:

Theorem 5. If the invariant Φ is defined for the polyhedron M^{10} , then the following two conditions are necessary and sufficient for M^{10} to have the homotopy type of a smooth manifold: a) $\Phi(M^{10}) = \Phi(w_4w_6)$; b) there is an SO_N -bundle ν over M^{10} such that $\Phi(M^{10}) \in H_{N+10}(T_N)$ is a spherical cycle, where T_N is the Thom complex of the bundle ν . (ν is the normal bundle of the desired smooth manifold.)

Note that in [4] Kervaire constructed a 4-connected manifold satisfying b) but not a). Thus both conditions are essential. In the range $5 \le n \le 17$, the only dimension which presents any difficulty is n=10 (the cases n=6, 14 are simple). When n=4k+2 with $k\ge 4$, new difficulties arise. The author conjectures that when k is even the invariant Φ can be generalized on the basis of the relation $\operatorname{Sq}^2\operatorname{Sq}^{2k}=\operatorname{Sq}^{2k+2}+\operatorname{Sq}^{2k+1}\operatorname{Sq}^1$ in the Steenrod algebra, and an appropriate study of the ring V_{Spin} .

We shall now give some results on spinor cobordism.

Lemma 7. If $\pi_1(M^n) = 0$ and $w_2(M^n) = 0$, then the stable normal SO_N -bundle (tangent bundle) can be reduced to the group $Spin\ N$, and in a unique way. If $n \geq 3$, then every element of the group V_{Spin}^n is represented by a simply-connected manifold.

Consider the natural homomorphism ("removing the frame") p: $G_i \to V_{\mathrm{Spin}}^i$, where $G_i = \pi_{N+i}(S^N)$. The following important lemma holds.

Lemma 8. If $3 \le i \le 8$, the image of the homomorphism $p: G_i \longrightarrow V_{\text{Spin}}^i$ is zero. For i = 9, 10, the image of p is isomorphic to Z_2 .

For the proof, one takes the Milnor manifold M_0^8 mentioned above, and makes modifications in the manifolds $M_0^8 \times S^1$, for i=9, and $M_0^8 \times S^1 \times S^1$, for i=10, carrying over the nontrivial "spinor frames." As a result, the corresponding elements of the groups $V_{\rm Spin}^9$ and $V_{\rm Spin}^{10}$ will be realized by homotopy spheres.

Theorem 6. There are smooth manifolds of the homotopy types of the 9-sphere and the 10-sphere which are not boundaries of any smooth manifolds with vanishing Stiefel class $w_2 = 0$.

Corollary. In dimensions 9 and 10, membership of a smooth simply-connected manifold in a spinor cobordism class is not a combinatorial invariant (in contrast with cobordism

with respect to the groups O and SO), and is not determined by the homotopy type and the tangent bundle.

V. A. Steklov Mathematical Institute, Academy of Sciences of the USSR Received 13/JUNE/63

BIBLIOGRAPHY

- [1] J. F. Adams, Comment. Math. Helv. 32 (1958), 180. MR 20 #2711.
- [2] A. Borel and F. Hirzebruch, Amer. J. Math. 80 (1958), 458. MR 21 #1586.
- [3] W. Browder, Colloquium on Algebraic Topology, Aarhus University, 1962.
- [4] M. Kervaire, Comment. Math. Helv. 34 (1960), 257. MR 25 #2608.
- [5] J. Milnor, Amer. J. Math. 82 (1960), 505. MR 22 #9975.
- [6] J. Milnor and M. Kervaire, Proc. Internat. Congr. Math., p. 454, Cambridge Univ. Press, New York, 1960. MR 22 #12531.
- [7] J. Milnor, Proc. Sympos. Pure Math. Vol. 3, p. 39, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #556.
- [8] S. P. Novikov, Dokl. Akad. Nauk SSSR 143 (1962), 1046 = Soviet Math. Dokl. 3 (1962), 540.
- [9] ----, Mat. Sb. (N.S.) 57 (99) (1962), 407.

Translated by: J. M. Beck