SOME PROPERTIES OF (4% + 2)-DIMENSIONAL MANIFOLDS

S. P. NOVIKOV

This paper is related to the writer’s work in [8] on diffeomorphism of simply-connected mani-
folds and to Kervaire’s work on the existence of aonsmoothable manifolds of dimension 10 [4]. The
main part of the paper, which is devoted to properties of 10-dimensional manifolds, will also make
essential use of ideas due to Milnor and to the present write
We recall (see [8]) that in studying the homotopy group . (TN) of the Thom space Ty of the
normal bundle of a manifold M" (n = 4k + 2), we single out the subser 4 C 7
those a € A such that H(a) = #[M"], where b: H, (") —
and H: ﬂj(X ) — H]-(X ) is the Hurewicz homomorphism,

t [5:9] on generalized cobordism rings.

N+n(Ty) consisting of
Hy +p(Ty) is the Thom isomorphism,
We proved that a t-regular representative
for SN *R Ty of an element @€ A can be chosen such that the manifold f_ 1 (M) = M} has the
following properties:

L fou: H;(MD) — H;(M™) is an isomorphism for i £ 2% + 1.

2. Ketfou=Z+ ZCHyy (M)

3. The Hurewicz homomorphism H: Ker fx — Ker fox C Hy, +1 (M) is an isomorphism.

4. If a cycle x € Ker fox is realized by an embedded sphere $25+1 ¢ M? and n# 6, 14, then

the normal bundle v (§25+1 MZ) of S%%*1 in the manifold M7 depends only on the element x, be-

longs to the group Z,, and defines a mapping ¢: Ker f, — Z, such that

B+ y)=b(x) + S(y) + %+ y mod 2,
If x, y is a basis for the group Kerf ., then we let & (a) = P é(y) € Z,.

Theorem 1. The invariant $(a) is independent of the choice of the representative f, satis-
fying conditions 1-4 above.

If n=6, 14, the definition of the invariant has to be modified. Instead of using the normal
bundle of $2%*1 j M} (under heading 4 above), we use the “framed’’ * structure of the embedded
sphere, and refer to [10], for the exact formulation of the definition. In this case we denote the in-
variant by ¢ (a) € ZZ‘ All algebraic properties of ¢(a) carry over to ¥ (a) in the cases n = 6, 14.

Theorem 1'. The invariant ¥(a) is singlevalued and well-defined.

The proof of Theorem 1’ is identical to that of Theorem 1.

We let Z C A4 denote the subset of 4 C ”N+n(TN) which consists of those a € ’/\f such that
é(a) =0 (n#6, 14), or Y(a) =0 (n=6, 14). The following results are easy corollaries of the
definitions of ¢ and ¢ and Theorem 1.

Corollary 1. When n=6, 14, the set A contains exactly half of the elements of A (for any
manifold Y"). N N

Corollary 2. If Y* = MIFE M5, then A coincides with A for M™ if and only if A coincides
with A for M} and M.

* Translator’s note: See the gloss on this term in Soviet Mathematics 4 (1963), p. 27 (footnote).
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Now we want to study the distribution of the values of the invariant ¢ on the set A. For
simplicity we assume that Y" satisfies B2, 2)® Z,=0and n=4k+2, k40,1, 3.

We note that 7y, (Tp) = Z + 7, where 7 is a finite group. The set A consists of all ele-
ments of the form 1+y, where 1 € Z and y € 7. Let us assume from now on that a particular
direct sum decomposition of my +n(TN) has been chosen,

Theorem 2. The following formula holds:
¢(L+y+0) =¢(1L+y)+P(1+3) +H(1+0), where y, Ser.

The proof is simple and depends on writing 1+ + & = (1+9) +(1+8)-(1+0), which allows
one to realize 1+y + 8 by a “‘good’’ representative map f: sN+n _, Ty and then use modifica-
tions on the complete preimage [~ L.

In our case we can choose the splitting 7y, = Z + 7 in such a way that ¢ (1 + 0) =0, so that
by putting ¢ (y) = (1 +y) we get a homomorphism ¢: 7 — Z,. This gives

Corollary 3. If H2EY Ly, Z) ®Z, =0, then the set A either contains half of A or coincides
with A

What we have done so far gives us enough information about the relations between 4 and 4 in
dimensions 7 = 4% + 2 for k=1, 3, and we also have a certain amount of information on higher di-
mensions. The first really nontrivial case is k=2 (n = 10), which we now concentrate on. One can
see that this case is nontrivial from the fact that, on the sphere of this dimension 4 and 4 coin-
cide, and it is totally unclear what the situation is for other manifolds. Our goal will be to gener-
alize the invariant ®(M10) € Z, defined for 4-connected 10-dimensional manifolds by Kervaire (4],
and then to apply this invariant to solve some problems.

Since the cohomology operation Sq2sq*: H>(X, Z) — HN(X, Z,) is identically zero (thanks
to the relation Sq?Sq* = Sq® + Sq°Sql), there is a ‘‘secondary’” cohomology operation ®: KerSq¥—
CokerSq? which is defined on Ker sqt C H3 (X, 2Z).

Lemma 1. The operation ® has the property:
B(x+y)=0(x) + D(y) + xy.

The proof is quite simple.

Lemma 2. If m, M%) =0 and w, (M%) = 0 for a topological manifold M0, then the operation
®: H5 (MO, Z2) — HIOMO, Z,) = Z, is always defined and singlevalued.

Lemma 3. Under the conditions of Lemma 2 the operation @ defines a singlevalued homo-
morphism @: Tor H> (M0, Z) — H10 ()10, ZZ)'

This lemma follows easily from Lemmas 1and 2.

From now on we shall restrict ourselves to manifolds which satisfy the following conditions:

L 7 (M9 =o.

2. w,(U'9 = 0.

3. The homomorphism ®: Tor H> (MO, Z) — HLO (1O, Z,) is wuivial.

We now define the ‘‘generalized Kervaire invariant’’ for topological manifolds satisfying condi-
tions 1—3: a) let x;,-+, %, be a basis for the group H3 (M0, Z)/Torsion such that x,;_;%,;# 0
for 1<i< !l and x;x; = 0 otherwise; b) by condition 3, the operation ® is defined on the group
H3(M10, Z)/Torsion and takes values in Z,; the sum oY = Ef=1 ®(xy; 1)@ (x,,) is independ-

ent of the above basis and is called the ‘‘generalized Kervaire invariant’’; c¢) the invariant (D(Mlo)
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is a homotopy invariant of the manifold.

We now have the following important lemma,

Lemma 4. If M0 is a smooth manifold and is the boundary of a smooth oriented manifold Wl
with w, (W) = 0, then ®(M'%) =0

In analogy with [5,9], we consider the spinor cobordism ring Vspin =3 Vépm’ Vépxn =
"N+i(M Spin V), where M Spin N is the Thom complex of the spinor group. As is well known, the
tangent bundle (or stable normal bundle) of a manifold can be reduced to the spinor group if wl(M”) =

w, (M™) = 0. Lemma 4 therefore implies the following lemma.

Lemma 5. The Kervaire invariant defines a singlevalued homomorphism @ : yio. Z,, where

Spin
Proof. The invariant @ is obviously additive. If a manifold determines the zero element of
lem, then the manifold must be the boundary of something in the next dimension, Wll, such that
w, (wily = 0, and therefore @ = 0. However, on account of restriction 3, the invariant ® may pos-
s1b1y not be defined for all elements of the group Végm The lemma is proved.
We shall now give without proof a number of results on the ring VSpin 3 Vgp int

I. The groups Vépin for i < 10 are as follows:

i =01 234567 8 9 10

spm ZZ Z OZOOOZ+ZZ+Z Z+Z+Z

II. Generators for the groups VSpin for £ < 10 can be chosen as:

0 i 1 2 /2
1€ VSpim X1 € VSpirn X1 € VSpin: X4 € V4Spin:
8 8 2
%3 € Vspin,  Ys € Vspin, 4ys=1x3, x1%5 € Vipin,
9 2 10 2 10
X1Ys € VSpin’ X1Xg € VSpim X1Ys € VSpim Zlo € VlS?Jin-

OI. The element x; € Vé is represented by a circle S C RV *1 with nontrivial framed

structure,

IV. The group VS in 1S generated by the following manifolds: a) the quaternion projective
plane P2((Q); b) Milnor’s 8-dimensional 3-connected almost parallelizable manifold M8 of index
1(M8) = 8- 28.

V. The generatot Z, € VSpm

pin

is represented by a manifold !0 which has wwg (M10) £ 0.

1
The subgroup V. Spm VSpm Spin
The results in I~V can be proved as in the papers by Milnor [5] and the author [9] on gener-

alized cobordism rings; the main tools are the Adams spectral sequence [1] and the A-genus [2].

VSpm is determined by the condition w w = 0.

Lemma 6. The homomorphism ®: V10. _, Z, is zero on the subgroup Vépin VSpln Vspm

Spin
Végm

The proof of this lemma is nontrivial and makes essential use of the information in heading IV
above on the geometrical generators of the group Vgp in = Z + Z. The hardest part is the analysis
of the element represented by the manifold P2(() x S! x S1. Essentially what one has to do is carry
out explicit Morse modifications over one-dimensional cycles in the manifolds M8 x S x S and

P2(Q) x St x St.

The following is an easy consequence of these lemmas:
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Theorem 3. The invariant ®(M'0) is a singlevalued function of the residue w4w6(M10), and
oM =0 if wywe (M19) =0, for a smooth manifold Mo,

Thus @ = ®(w w), for smooth manifolds.

Remark. The author conjectures that fI)(w4w6) - 0 for smooth manifolds. To prove this, it
would be sufficient to construct a smooth manifold MO with wywg (M%) £0 and ®(M') = 0.

Iheorem 4. If the invariant ® (419 is defined on a smooth manifold M0, then this manifold
has A= A4, i.e., #(a) =0 forall A€ A

Proof. Let o be such that ¢(a) = 1. Pick a representative MGIL0 = f(:l (M19) having properties
1—4 as indicated at the beginning of this paper. Clearly qS(MolLO) = ¢(M0) + 1, and w4w6(M01L0) =
w 41,4)6(M 10)., Since Mall0 is a smooth manifold, this contradicts Theorem 3.

Let M9 be a topological manifold (or, more generally, a polyhedron satisfying Poincaré
duality). Proceeding along the lines of [8] and Browder’s paper [3], one can prove the following
assertion:

Theotem 5. If the invariant @ is defined for the polyhedron M0, then the following two condi-
tions are necessary and sufficient for MO to have the homotopy type of @ smooth manifold:

a) O(M10) = (wywe); b) there is an SOy-bundle v over MO such that MO € Hy o qo(Ty) is
a spherical cycle, where Ty is the Thom complex of the bundle v. (v is the normal bundle of the
desired smooth manifold.)

Note that in [4] Kervaire constructed a 4-connected manifold satisfying b) but not a). Thus both
conditions are essential. In the range 5 <n < 17, the only dimension which preseats any difficulty
is n =10 (the cases n =6, 14 are simple). When n = 4k + 2 with k> 4, new difficulties arise. The
author conjectures that when % is even the invariant ® can be generalized on the basis of the rela-
tion SqZSqZk = SqZk+2 + SqZI"HSq1 in the Steenrod algebra, and an appropriate study of the ring
VSpin'

We shall now give some results on spinor cobordism.
Lemma 7. If m; (M™) = 0 and w, (M™) =0, then the stable normal SON-bundle (tangent bundle)

can be reduced to the group Spin N, and in a unique way. If n>3, then every element of the group
n
Spin ,

Consider the natural homomorphism (“‘removing the frame”) p: G, — VtSpin’ where G; =

is represented by a simply-connected manifold.

"N+i(SN)' The following important lemma holds.

Lemma 8. If 3<i<8, the image of the homomorphism p: G; — VI’Spin is zero. For i=9, 10,
the image of p is isomorphic to Z,.

For the proof, one takes the Milnor manifold Mg mentioned above, and makes modifications in
the manifolds Mg x St, for i=9, and M% « S x S1, for i= 10, carrying over the nontrivial
“spinor frames.” As a result, the corresponding elements of the groups Vgpin and Végin will be
realized by homotopy spheres.

Theorem 6. There are smooth manifolds of the homotopy types of the 9-sphere and the
10-sphere which are not boundaries of any smooth manifolds with vanishing Stiefel class
w, = 0.

Corollaty. In dimensions 9 and 10, membership of a smooth simply-connected manifold

in a spinor cobordism class is not a combinatorial invariant (in contrast with cobordism

1771




with respect to the groups O and SO), and is not determined by the homotopy type and the tangent
bundle.
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