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I. According to [1] (see also [2]), to distinguish purely potential and real Schröd-
inger operators among those two-dimensional operators which are “finite-zone with
respect to a single energy level” it suffices to require that the collection of “data
of the inverse problem” [3]—a nonsingular Riemann surface Γ of finite genus g =
2h, a pair of labelled points P1 and P2 on it together with distinguished local
parameters w1, w2 near them, and also a divisor D consisting of g distinct points of
general position—possess the following symmetry. There is given the group Z2×Z2

generated by a holomorphic involution σ and an antiholomorphic involution τ : Γ →
Γ. The points P1 and P2 must be the only fixed points of σ where τ(P1) = P2,

(1)
τ(w1) = w̄2, σ(wi) = −wi, i = 1, 2,

τ(D) = D, D + σ(D) ∼ K + P1 + P2,

and K is the divisor of zeros of a holomorphic form on Γ. On the surface Γ0 = Γ/σ
of genus h the involution τ induces an antiholomorphic involution τ0. Condition:
the pair (Γ0, τ0) is an M -curve, i.e., to has the maximal number of fixed ovals h+1.
We assume that these conditions are satisfied everywhere below.

In [1] sufficient conditions are given for the positivity and smoothness of the
operator L thus obtained: it is necessary to require that the pair (Γ, τ) be an
M -curve; in this case there is exactly one σ-invariant connected oval which is fixed
relative to τ , and the points of the divisor D are situated one each on the remaining
2h = g ovals. When the σ-invariant oval degenerates into a point we obtain singular
curves corresponding to the base state ψ0 of the operator L where (Lϕ,ϕ) > 0 on
L2(R2) and Lψ0 = 0 (see [1]).

II. We consider the multiparameter function ψ(P, x, y, t1, . . . , tn, . . . ) constructed
on the basis of the collection of data (1) which, as a function of the point P , is
meromorphic everywhere except at the points P1 and P2 and has a fixed divisor of
poles D; for P → Pi there are the asymptotic expressions

(2)

ψ = exp

(
k1z +

∞∑
n=1

k2n+1
1 tn

)(
1 +

∞∑
i=1

ξik
−i
1

)
,

ψ = exp

(
k2z̄ +

∞∑
n=1

k2n+1
2 tn

)(
1 +

∞∑
i=1

ξ̄ik
−i
2

)
,

where ki = w−1
i , i = 1, 2, z = x+ iy and z̄ = x− iy.
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Theorem 1. A function ψ with the properties indicated exists, is unique, and
satisfies the equations

(3) Lψ = 0,
(

∂

∂tn
− (An − Ān)

)
ψ = 0, n = 1, 2, . . . ,

where L = ∂∂̄ + V , An = ∂2n+1 + a2n−1∂
2n−1 + · · ·+ a0,

∂ = ∂/∂z =
1
2
(∂/∂x− i∂/∂y), ∂̄ = ∂/∂z̄ =

1
2
(∂/∂x+ i∂/∂y),

and the coefficients V and ak are uniquely determined on the basis of the coefficients
of (2).

Corollary. Deformations of the operator L with respect to any variable tn are
described by L-A-B-triples [4] of the form

(4) ∂L/∂tn = [L,An + Ān] + (Bn + B̄n)L,

where An = P2n+1(∂) and Bn = Q2n−1(∂) are differential operators. The flows (4)
preserve the class of real potential Schrödinger operators L and their spectral data
corresponding to the zero energy level.

Main Example. n = 1. In this case A1 = ∂3+u∂, where u is determined from the
condition ∂̄u = 3∂V , and B1 + B̄1 is the operator of multiplication by the function
f = ∂u+ ∂̄ū. The corresponding equation has the form

(5) Vt = ∂3V + ∂̄3V + ∂(uV ) + ∂̄(ūV ).

The coefficient u is found from V up to a function depending analytically on z.
This fact is general for the entire hierarchy; it is related to the conformal invariance
of the equation Lψ = 0. We have

(6) u =
1
πi

∫∫
dz′ dz̄′

z − z′
∂V

∂z′
+ ϕ(z, t), ∂̄ϕ = 0.

a) If V decreases faster than any power r−n as r2 = x2 +y2 →∞, then the func-
tion uV has the same property if ϕ is a polynomial in z. Hence, this is an invariant
class of functions for the system (5) which is determined by the z-polynomial ϕ(z, t)
as a parameter.

b) If V decreases like r−α while the derivatives of order k of V decay like r−α−k,
α > 0, then (6) correctly determines the system (5) on this class if ϕ = c(t).

Remark. In the absence of dependence on y, (5) reduces to the Korteweg–de Vries
(KdV) equation in the unusual representation (4). Thus, (5) is a new integrable
two-dimensionalization of KdV which with regard to its physical menaing may be
no less important than the familiar Kadomtsev–Petviashvili equation.

III. Before giving formulas for the potentials and Bloch functions in theta func-
tions of Prym varieties, we present the necessary facts regarding the latter in the
case we require (see, for example, [5]). Suppose that on the curve Γ of genus g there
is an involution σ with two fixed points P1 and P2; in this case g = 2h, where h
is the genus of the curve Γ0 = Γ/a. On Γ it is possible to choose a basis of cycles
a1, . . . , ag, b1, . . . , bg such that σ(ai) = −ai+h and σ(bi) = −bi+h, i = 1, . . . , h, and
also a corresponding basis of holomorphic differentials ω1, . . . , ωg normalized by the
conditions ∫

aj

ωk = 2πiδjk, j, k = 1, . . . , g.
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The columns of the matrix Bij =
∫

bj
ωi together with the vectors 2πiej (ej is a

basis in the space Cg) define a lattice T in Cg, Cg/T = J(Γ).
Let A(Q1, . . . , Qg) ∈ J(Γ), Qi ∈ Γ, be the image of the Abel mapping:

A(Q1, . . . , Qg) =
g∑

i=1

A(Qi), A(Q) =
g∑

i=1

∫ Q

P1

ωi,

where one of the fixed points of σ, say P1, is chosen as the initial point of the
integtation (this explains a certain lack of symmetry in the following formulas with
respect to P1 and P2). The Prym variety (the “Prymian”) Prσ(Γ) is distinguished
in J(Γ) by the equation σ∗(x) = −x, where σ∗ is the natural action of the involution
of J(Γ). In our case Prσ(Γ) is given by points of the form (z1, . . . , zh, z1, . . . , zh).
This is an Abelian variety Ch/Tσ where the lattice Tσ is generated by the vectors
2πifk (fk is a basis in Ch) and the columns of the matrix Π: Πij =

∫
bj
ηi, ηi =

ωi +ωi+h, i = 1, . . . , h, are normalized Prym differentials. The natural imbeddings
i : Prσ(Γ) → J(Γ) and π∗ : J(Γ0) → J(r) are defined as is the mapping η : Γ →
Prσ(Γ), where η(P )i =

∫ P

P1
ηi.

We introduce the Abelian differentials of second kind Ω1 and Ω2 normalized by
the condition

∫
aj

Ωi = 0 having a single pole at the points P1 and P1 respectively

of the form d(w−1
i ). Let

U i
1 =

∫
bi

Ω1, U i
2 =

∫
bi

Ω2, i = 1, . . . , h.

We note that by virtue of the normalization conditions Ω1 and Ω2 are Prym dif-
ferentials i.e., σ∗Ωk = −Ωk, while the vectors of their b-periods have the form
Ûk = (Uk, Uk). We denote by θ[α, β](z) the theta function with characteristics
(α, β) (see [5] and [6]) corresponding to the Prym variety, and by θ[µ, ν](w) the
theta function on J(Γ).

On the basis of the divisor D we define a point e ∈ Prσ(Γ) by

i(e) = A(D)−A(P2) + π∗(R),

where R is the vector of Riemann constants of the curve Γ0 (see [6] and [6]).

Theorem 2. For a divisor D of general position the function

(7) ψ(z, z̄, P ) =
θ(η(P ) + z1U + z̄U2 − e)θ(e)
θ(η(P )− e)θ(z1U + z̄U2 − e)

exp

[
z

(∫ P

P0

Ω1 − α

)
+ z̄

∫ P

P1

Ω2

]
has the required analytic properties on Γ and satisfies the equation Lψ = ε0ψ, where
L = ∂∂̄ + V ,

(8) V = 2∂∂̄ ln θ(zU1 + z̄U2 − e), ε0 =
j∑

i,j=1

Û i
1Û

j
2∂i∂j ln θ̂[ν](z)|z=A(P2).

Here the constant a is chosen so that (
∫ P

P0
Ω1 − α) ∼ 1/w1 + O(w1) for P ∼ P1,

and ν is an arbitrary nondegenerate odd half period, i.e., ν = (α, β), 2ν ∈ Z2g
2 ,

4
∑g

1 αiβj ≡ 1 (mod 2) and grad θ̂[ν](0) 6= 0.

Clarification. The integrals in the definition of η(P ) and in the argument of the
exponential functions are chosen in a consistent manner; this is achieved by fixing
some path from P0 to P1. It is just this path that is present in the definition of α
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whose introduction together with the point P0 is needed only to give meaning to
the expression

∫ P

P1
Ω1.

We now consider the simplest singular case corresponding to a base state: sup-
pose the singular curve Γ has one “double” point, while the involutions σ and τ of
Γ are the same as in Theorem 5 of [1] (see the beginning of the article). In this
case ψ0 = ψ(Q), where Q is the “double” point, corresponds to a base state:

(L− ε0)ψ0 = 0, (Lϕ,ϕ) > ε0‖ϕ‖2, ϕ ∈ L2(R2).

We present a formula for this eigenfunction. Let Γ̃ and Γ̃0 be the curves obtained
from Γ and Γ0 = Γ/σ by resolution of the singularity, and let the points Q1 and
Q2 of Γ̃0 correspond to the “double” point of Γ0. The genus of Γ̃ is equal to
g = 2h + 1, where h is the genus of Γ̃0. We choose a basis of cycles ai, bi on Γ̃ so
that σ(ai) = −ai+h, σ(bi) = −bi+h (i = 1, . . . , h), σ(ag) = −ag and σ(bg) = −bg;
the cycles ag and bg here “hang” over paths on Γ̃0 joining the points P1 and Q1 and
the points Q1 and Q2 respectively. The differentials ωi and Ωk on Γ̃ are defined as
in the nonsingular case; ηi = ωi + ωi+h, i = 1, . . . , h, and ηh+1 = ωg. The matrix
Π corresponding to the Prym variety of the singular curve Γ is defined as follows:
Πij =

∫
bj
ηi, i = 1, . . . , h + 1, j = 1, . . . , h, and Πi(n+1) = 1

2

∫
bg
ηi; the vectors U1

and U2 are defined similarly:

U i
k =

∫
bi

Ωk, i = 1, . . . , h, Uh+1
k =

1
2

∫
bg

Ωk, k = 1, 2.

Theorem 3. The ψ-function of the base stage has the form

ψ0(z, z̄) =
θ[0, β](zU1 + z̄U2 − e)θ(e)
θ[0, β](e)(zU1 + z̄U2 − e)

,

where β = (0, 0, . . . , 0, 1
2 ), and e belongs to the corresponding real component of the

Prymian described above. The potential V and the energy of the base state are given
by (8), where θ̂[ν](z) corresponds to the Jacobian of the curve Γ̃.

We note that ψ0 is real and has the same group of periods as the potential V .
In the case g = 3, h = 1 they are both doubly periodic.

In conclusion we discuss the question of the position of the “finite-zone” operators
under study among all potential Schrödinger operators.

Conjecture. Any smooth, real, doubly periodic potential V (x, y) can be approxi-
mated by potentials which are finite-zone with respect to one energy level.

At the intuitive level this conjecture is quite clear. Suppose there is given a
uniformly convergent sequence Vn(x, y) → V (x, y) of smooth, real, doubly periodic
potentials which are finite-zone with respect to the zero energy level, where the
genus gn = g(Γn) → ∞. Then outside any fixed neighborhoods of the points P1

and P2 (we identify them for all n) the collection of data of the inverse problem
converges, including the finite parts of the surfaces Γn, the involutions σ and τ and
the poles of ψ. With the exception of the finite part, which does not grow with n
as n→∞, the entire collection of fixed ovals of the anti-involutions τ and στ and
the position of the poles are the same as in Theorem 5 of [1]; the size of the ovals
of the involution τ decrease with the index of the oval, while their positions can
asymptotically be computed precisely near the points P1 and P2.
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