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Abstract. This article is a survey of the author’s results in algebraic topol-

ogy and its applications. It considers questions in the classification of simply-
connected smooth manifolds, the topological invariance of the rational Pon-

tryagin classes, the foundations of “Hermitian algebraic K-theory”, the cal-

culation of various types of bordism rings and the construction of a general
theory of bordism as an “extraordinary” homology theory, questions in the

topology of foliations on smooth manifolds, the construction of an analogue

of classical Morse theory for mappings of manifolds into a circle, and some
questions in the calculus of variations leading to “many-valued” functionals.

Bibliography: 67 titles.

§1. Historical notes

During of 1950’s the development of algebraic topology was particularly intense,
and there was a complete change in the nature of the problems being solved and the
techniques being used in this field. In algebraic homotopy theory we saw the intro-
duction and development of far-reaching apparatus, based upon homological algebra
discovered and developed here. It had effects in the theory of fibrations and certain
remarkable so-called “general categorical” properties of homology. This apparatus
made it possible to set up a system of standard methods for calculating the homol-
ogy and homotopy groups of various spaces, and to make considerable progress with
the classical problem of calculating (for example) the homotopy groups of spheres.
The new methods were successfully applied to the investigation of differentiable,
complex and algebraic manifolds; they created new branches of algebra, and ex-
erted widespread influence on analysis, especially complex analysis and the theory
of dynamical systems. Several of the important topological ideas of this period
arose in the publications of Soviet mathematicians of the 1940’s and early 1950’s
working in the Steklov Mathematical Institute of the Academy of Sciences of the
USSR.

We should mention here in the first place the work on the topology of mani-
folds and homotopy theory by L. S. Pontryagin and his students V. A. Rokhlin, M.
M. Postnikov, V. G. Boltyanskĭı and R. V. Gamkrelidze (the theory of characteristic
classes, the first deep results in the calculation of the homotopy groups of spheres,
the beginning of the theory of bordism, homotopy invariants, the study of obstruc-
tions to the extension of maps and of sections of fibrations, and the algebraicity of
characteristic cycles of algebraic manifolds). The topological activity of the Soviet
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school began to fall sharply in the first half of the 1950’s, as the leading specialists
moved on to other fields. The development of topology in that period was carried
on by a large group of research workers, in the front rank of whom we whould name
J. Leray, H. Cartan, J.-P. Serre, R. Thom. A. Grothendieck and A. Borel (France),
N. E. Steenrod, S. Eilenberg, R. Bott, J. W. Milnor, S. Smale, M. A. Kervaire and
S. S. Chern (USA), J. H. C. Whitehead, M. F. Atiyah and J. F. Adams (England),
F. Hirzebruch (West Germany) and a number of others.

In the period from 1956 to 1958 a great deal of work was done by topologists of
the Steklov Institute and the Faculty of Mechanics and Mathematics (“Mekhmat”)
of Moscow University, notably M. M. Postnikov, V. G. Boltyanskil and A. S.
Shvarts, in disseminating the new methods mentioned above. We remark that
the corresponding work in creating a new school of topology in Leningrad was
carried out in the 1960’s by V. A. Rokhlin in Mekhmat at Leningrad University;
the dissemination of the contemporaneous topological methods in algebraic geom-
etry took place at the end of the 1950’s and during the first half of the I960’ in
a seminar at the Steklov Institute and Moscow University under the direction of
I. R. Shafarevich.

Our object is solely to give a description of the key results of algebraic topology
which were obtained by members of the Steklov Institute and by their immediate
students or participants in their seminars, during the new period which began in the
late 1950’s. The Steklov Institute’s group of specialists in algebraic methods of ho-
motopy theory was founded in the 1958–1960 Mekhmat seminar of M. M. Postnikov
at Moscow University, which grew out of the seminars of Postnikov, Boltyanskĭı and
Shvarts mentioned above. Its participants (in addition to the present author) were
L. N. Ivanovskĭı, B. G. Averbukh, and D. V. Anosov, who was also actively work-
ing in topology. The first well-known results of topology in the new period were
obtained by participants in this seminar: the author and B. G. Averbukh.

§2. Bordism

The elements of bordism groups are equivalence classes of oriented (respectively,
arbitrary) closed smooth manifolds with respect to oriented (arbitrary) “cobor-
dism”. A manifold is said to be equivalent to zero if it bounds an oriented (ar-
bitrary) film, i.e. a manifold with boundary; the sum is induced by the union of
manifolds. The absence of p-torsion in these groups for p > 2 was proved by Aver-
bukh [1], who began applying the algebraic-topological methods of Cartan, Serre
and others to the theory of Thom. It is worth remarking here that the 2-torsion
of the oriented bordism groups was determined by Rokhlin and Wall [37], [60] by
geometrical methods. As we know, the theory of bordism was founded by Pon-
tryagin and Rokhlin, and subsequently greatly advanced by Thom, who completely
solved the problem in the unoriented case (see the survey [21]). The first inves-
tigation of the p-components of the stable homotopy groups of spheres for p > 2,
which was carried out in the winter of 1958/59 using the new “Adams spectral se-
quence” method which had appeared in 1958 [39], was the first scientific activity of
the author. This proved a theorem about the existence of arbitrarily long nonzero
compositions Sn → Sn−k1 → · · · → Sn−

∑
kj , kj > 0, in the homotopy groups of

spheres; the main part, however, was a purely algebraic construction of a new ana-
logue of the Steenrod operations in the cohomology of the so-called graded “Hopf
algebras with symmetric diagonal” which are used in the process of calculation
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[18]. The superiority of Adams’ new method, which was specifically designed for
the calculation of stable homotopy, over the more classical Cartan–Serre method of
calculating homotopy groups was not immediately apparent. The Adams spectral
sequence is based upon the very same “building blocks”, namely Steenrod oper-
ations, Eilenberg–Mac Lane complexes, and the Leray spectral sequence induced
by a filtration of the space. However, for the determination of “stable” homotopy
classes of maps it is possible to use “Adams resolutions” in a natural and beauti-
ful way in place of the very simple decomposition of a space into Eilenberg–Mac
Lane complexes using a so-called Postnikov tower, and to organize everything into
a more beautiful and invariant algebraic scheme based upon successive applica-
tion of the ideas of homological algebra. The view which first arose was that the
Adams method could, in principle, only give the same results in the calculation
of stable homotopy groups as the Cartan–Serre method. The error of this opinion
was exposed quickly enough when the method was applied to bordism theory: in
addition to solving the questions posed earlier, it showed that it was natural and
necessary to widen the class of problems being posed here. The author and Milnor
introduced the new bordism rings of stably almost complex (unitary), symplectic,
special unitary and other classes of manifolds with group structures. (These rings
have the union of manifolds as sum, and the direct product of manifolds as multipli-
cation.) The group structure is imposed upon the stable tangential fibration (more
precisely, the normal fibration to the manifold in Rn), the group being G = U(n),
G = Sp(n), G = SU(n), etc., whereas the classical bordism theories relate to the
groups G = O(n) and G = SO(n) (corresponding to the bordism theories of ar-
bitrary and oriented smooth manifolds). The corresponding cobordism rings are
denoted by ΩG =

∑
ΩG

i , G = O, SO, U, SU, Sp, 1. If the group G is the identity,
the corresponding bordism ring represents a reinterpretation of earlier results of
Pontryagin, and coincides with the direct sum of the stable homotopy groups of
spheres: Ω(1)

i = πn+i(Sn), i < n− 1, the multiplication operation in the ring being
induced by composition of maps of spheres into spheres.

In addition to the proof of the absence of p-torsion (p > 2) in most of these rings
(G 6= 1), a method of investigating the 2-torsion was obtained, and the multiplica-
tive structure of the bordism rings ΩG was completely determined case by case.
The unitary bordism ring ΩU turned out to be particularly simple and (as became
apparent later) important for a variety of purposes: it proved to be isomorphic to
a polynomial ring with one polynomial generator in every even positive dimension
(see [19]; for more detailed proofs and generalizations, see [20]).

It subsequently became clear that a significant portion of these results of the
author’s and the above-mentioned result of Averbukh had also been obtained by
Milnor, who had these ideas somewhat earlier but first published them in the pa-
per [50], contemporary with [19], and even then only in part. Although Milnor’s
paper, like [19], is based upon Adam’s method, they are substantially different in
technique. Milnor’s program for computing the multiplicative structure of the fun-
damental bordism rings ΩSO and ΩU was based upon a geometrical idea and was
not completed by him in [50]. On the other hand, the author’s paper [19], based
upon a reduction to algebra, completed this calculation very simply within the
framework of Adams’ method. Milnor’s program was completed in 1965 by Stong
and Hattori, using K-theory [57].
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By using these results and a method of Thom, sufficient conditions were obtained
in [19] for the realizability of an integral k-dimensional homology class as the con-
tinuous image of a closed smooth oriented manifold (the Steenrod problem). For
example, it is sufficient for realizability that in the homology groups of dimension
less than k in a manifold there should be no p-torsion for primes p > 2. A precise
form of this result was indicated in [20]: it is sufficient for the realizability of a cycle
that there should be no p-torsion in the homology of the manifold in dimensions of
the form k− 2q(p− 1)− 1 for q > 1 and p > 2. We recall that for mod 2 cycles the
problem was solved by Thom [58].

In the period 1960–1965 the important new concept of “generalized” homology
(and cohomology), also called “extraordinary” homology, arose in algebraic topol-
ogy and bore important fruit. This development began from work of Grothendieck,
Atiyah and Hirzebruch on K-theory, which had its origin in algebraic geometry.
For any polyhedron X, the elements of the group K̃(X) are the stable equivalence
classes of complex vector bundles over X. Let K0(X) = Z + K̃(X). By definition
we set K−i(X) = K̃(EiX∗), i > 0, where EiX∗ is the i-fold suspension of the
disjoint union X∗ = X + point. Then by the Bott periodicity theorem we have
Kj(X) = Kj+2(X). This extends the definition of the collection of groups Kj(X)
to all positive numbers j. The “relative” groups Kj(X, Y ) = Kj(X/Y,P), where
P is a point, are introduced analogously.

According to a theorem of Eilenberg and Steenrod, ordinary cohomology (ho-
mology) theories are uniquely determined axiomatically as homotopy invariant con-
travariant (covariant) functors Hj(X, Y ) of pairs X, Y of complexes such that a)
Hj(X, Y ) = Hj(X/Y,P) and Hj(X) = Hj(X∗,P), b) the exact sequence of a pair
X, Y holds and is functorial, and c) if X is contractible, then Hj(X) = 0 for j 6= 0
(the “axiom on homology of a point”, as X is homotopy equivalent to a point).

For K-theory Kj(X, Y ) all these conditions hold except the last one; the groups
Kj of a point P are nontrivial in nonzero dimensions:

Kj(P) =

{
Z, j even;
0, j odd.

The full collection K∗(X, Y ) =
∑

j Kj(X, Y ) is even a cocommutative graded
associative ring, and a module over K∗(P), where K∗(P) = Z[t, t−1].

The dimension of the generator t is equal to 2. It is known as the “Bott period-
icity operator”.

As a consequence of work of Atiyah and Adams, the methods of K-theory yielded
a succession of results in homotopy theory. There began to be general consideration
of other possible and useful “extraordinary” homology or cohomology theories with
complicated homology of a point (see the survey [21]).

The author developed a series of algebraic-topological methods in bordism the-
ory, where the bordism of a point coincides with one of the cobordism rings ΩG

considered above for G = SO, U, SU, Sp. The theory of “unitary” bordism, with
G = U , proved to be the most successful and effective as a new tool in algebraic
homotopy theory.

The definition of bordism groups of arbitrary complexes is a natural combination
of the Steenrod problem and the concept of bordism. Bordism is a very simple and
important form of “nonlocalized” homology, which cannot be calculated as the
homology of a chain complex.
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By a “closed G-bordism” (or cycle) in a complex X we shall mean a pair con-
sisting of a closed manifold Mn with normal G-structure, as above, together with
a map f : Mn → X.

Films [nonclosed G-bordisms] are defined analogously: they are manifolds Wn+1

with boundary, normal G-structure and a map g : Wn+1 → X.
The sum of cycles, the notion of boundary and so on are defined in a natural

way. So there arises the G-bordism group

ΩG
n = cycles//boundaries.

If X lies in the sphere SN and Y = SN \ X, then by definition (Alexander
duality) we set

Ωk
G(Y ) = ΩG

N−k(SN , X).

This gives a definition of “cobordism” which is dual to “bordism”. The cobordism
and bordism Ω∗G(X, Y ) and ΩG

∗ (X, Y ) of pairs are defined in a natural way using
manifolds with boundary, where the image of the boundary lies in Y . Thus there
arises an important extraordinary homology theory for which, when G = SO or U ,
the bordism groups ΩG

∗ =
∑

j ΩG
j of a point were calculated in the above-mentioned

theorems of Milnor and the author. For example, ΩU
∗ is a graded polynomial ring

having one polynomial generator in every even positive dimension. For the case G =
O the groups ΩO

∗ (X) reduce to ordinary homology. The O and SO bordism theory
was first considered as a homology theory by Atiyah. Some beautiful applications
to a problem about fixed points of smooth maps of finite order were discovered by
Conner and Floyd (see [44]). For smooth closed quasicomplex manifolds Mn an
operation of “intersection” of cycles is defined, converting the full bordism group
into a ring ΩU

∗ (Mn) =
∑

ΩU
j (Mn). For arbitrary spaces X the object dual to

bordism, which is the cobordism Ω∗U (X), always forms a graded ring, and the
cobordism of a point is a ring of polynomials Z[t1, t2, . . . ] having one generator in
every negative even dimension, dim tj = −2j. The Poincaré–Atiyah duality law for
quasicomplex manifolds of real dimension 2n states that, as usual

ΩU
j (M2n) = Ω2n−j

U (M2n).

(For a point, we have n = 0.)
Among the natural operations in bordism theory (where naturality means com-

mutativity with continuous maps, i.e. functoriality) there arise some whose ana-
logues in classical homology theory are completely trivial. These are the operations
of “multiplication by a scalar”: x → λx, x ∈ Ω∗(X), λ ∈ Ω∗(P) = Λ, where P is
a point. Here, however, the role of the ring of “scalars” is played by the nontrivial
bordism ring Λ of a point.

The general name for arbitrary additive maps θ : Ω∗(X) → Ω∗(X), which are
defined for all complexes and which commute with continuous maps and with the
operation of suspension, is “stable cohomology operations” or “endomorphisms of
the stable theory” Ω∗ as an additive group. The algebra of all such operations θ
for the bordism theory ΩG

∗ is denoted by AG. The similar object in the theory
of classical Zp-homology was calculated by Serre and Cartan, and was called the
“Steenrod algebra” Ap: it played a very important part in the machinery of alge-
braic homotopy theory considered above. The analogues of natural operations in
K-theory are constructed from series of representations of unitary groups, which
enable one to construct new stable classes of vector bundles from old ones: they
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were first considered by Grothendieck and Atiyah. The most important of these
were discovered and actively applied by Adams.

A program for constructing a sequential algebraic-topological method, based
upon extraordinary homology, for calculating stable homotopy groups was formu-
lated in the first instance by Adams and others for the case of K-theory in about
1962. However, this program based upon K-theory simply failed to become reality.
It is now clear that ordinary K-theory will, in principle, not do for this purpose.

A program of this kind, based upon unitary bordism theory, was completely re-
alized by the author in [22] and [23]. The ring AU of stable cohomology operations
for this theory was completely calculated, and an “extraordinary” analogue of the
above-mentioned Adams spectral sequence was discovered. This made is possible
to calculate stable homotopy groups by proceeding from methods of homological
algebra, and incorporated (as it turned out) everything attainable by K-theory.
In comparison with its previous analogue based upon ordinary Z-homology, this
method gave a whole sequence of new results in a series of problems, and in partic-
ular in the classical problem of computing this stable homotopy groups of spheres,
though it quickly became clear that this method offers no chance of a complete
solution of that.

Lying at the foundation of these results is the construction of a unitary analogue,
with values in Ω∗U (X), of the ordinary Chern classes of complex vector bundles with
base X, and of an analogue of Steenrod operations. The full ring S of the latter,
together with the ring of multiplications by “scalars” λ ∈ Λ = Ω∗U (P) mentioned
above, generates the whole ring of operations AU : if a ∈ AU , then a =

∑
λisi,

so AU = ΛS (the factors do not commute, and this difference from the classical
theory has fundamental significance). Without going into the somewhat involved
concepts and properties which arise here, we mention one very interesting matter
which was first revealed and applied by the author and A. S. Mishchenko (see [22],
Applications 1 and 2). One-dimensional complex bundles with fiber C1 and group
U1 have a unitary analogue of the Chern class

σ1(η) ∈ Ω2
U (X),

where X is the base of the bundle η. How can we calculate the class w = σ1(η⊗ ξ)
in terms of u = σ1(η) and v = σ1(ξ)? In classical cohomology theory, the class
c1(η ⊗ ξ) is simply the sum; in algebraic geometry, when X is an algebraic variety
and η is a holomorphic bundle, the “holomorphic” classes c1 of these form an abelian
Lie group—the Picard variety.

In U -bordism theory a so-called commutative “formal group” arises. A formula

w = f(u, v) = u + v +
∑

i>1,j>1

λiju
ivj

holds where f(u, v) = f(v, u), f(d(u, v), w) = f(u, f(v, w)), and the elements λij

lie in the coefficient ring Λ, the cobordism ring of a point Λ = Ω∗U (P).
Mishchenko obtained the following expression for f(u, v):

f(u, v) = g−1(g(u) + g(v)),

where

g(u) =
∑
n>0

[CPn]
n + 1

un+1, [CP 0] = 1



ALGEBRAIC TOPOLOGY AT THE STEKLOV INSTITUTE 7

and [CPn] are the unitary cobordism classes of the complex projective spaces.
These facts and a series of applications of them were published in [22] and [23].

Important progress was made in a paper of Quillen [53], which substantially
developed the technique introduced in [22] of applying formal groups to homotopy
theory. In a series of papers of the author, Kasparov, Mishchenko, Bukhshtaber, Bo-
gomolov, Gusĕın-Zade, Krichever, Musin, and others, applications of formal groups
were developed to problems in the theory of finite and compact groups of smooth
transformations of manifolds (see [10] and [11]). In a joint paper of the author
and Bukhshtaber [10], examples of some new “many-valued” analogues of formal
groups [9] were discovered. A deep theory of two-valued formal groups was created
later by Bukhshtaber [6], [7], and a series of topological applications of this was
developed by him in collaboration with Panov, Nadiradze, and Shokurov [8].

§3. Simply-connected differential manifolds. The problem of
classifying these in dimensions n > 5

The application of contemporary methods of algebraic topology to a profound
investigation of the properties of smooth manifolds was begun in the work of Thom,
as mentioned in §2, and then was continued by Hirzebruch in connection with prob-
lems arising from algebraic geometry (theorems of Riemann–Roch type). Important
formulas were obtained for the signature τ(M4k) of the quadratic form defined by
“intersection of cycles” in the middle homology group H2k(M4k, R): this extended
the original insight gained by Thom and Rokhlin in the early 1950’s. It follows from
bordism theory that τ(M4k) can be expressed in terms of the higher-dimensional
Pontryagin characteristic classes (the Pontryagin numbers) of the closed smooth
manifold. In particular, for k = 1 there was the well-known Thom–Rokhlin for-
mula τ = 1

3p1(M4); for k = 2 the following formula holds:

τ =
1
45

(p2
1 − 7p2)

where pi is the 4i-dimensional Pontryagin class. We shall not state Hirzebruch’s
general formula. The structure of this formula for k = 2 stimulated Milnor to an
important discovery in 1956: among the fiber bundles in the sense of Steenrod with
base S4, fiber S3 and structural group SO(4) there is a family of “fibrations of Hopf
type”, depending upon an integer α, in which the total space M7

α of the fibration
is homotopy equivalent to the sphere S7 and bounds a smooth manifold E8

α with
boundary M7

α. The manifold E8
α is itself a fibration, but with a different fiber,

namely the disc D4.
The Pontryagin class of the total space E8

α of the fibration can be any multiple
having the form p1 = (4α+2)a, α = 0,±1,±2, . . . , of the cohomology class a which
generated H4(E8

α, Z) = Z. By definition of the “Euler class”, the selfintersection
index is such that a∗ ◦ a∗ = 1, where (a∗, a) = 1. Starting from the formula

p2 =
1
7
(p2

1 − 45τ),

one can deduce that if the manifold M7
α is diffeomorphic to the sphere S7 then

the expression 1
7 (p2

1 − 45τ) must necessarily be an integer. Here τ = 1 and p2
1 =

(4α + 2)2a2, where the cohomology class a2 generates H8(E8
α,M7

α; Z). In fact, if
the manifold M7

α is diffeomorphic to S7, then one can glue the manifold E8
α to the

disc D8 and obtain a smooth closed manifold with the same quantities (p1, τ), but
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necessarily having an integral class p2. By constructing a smooth function f which
clearly had two nondegenerate critical points on M7

α, Milnor further showed that
M7

α was topologically (and even piecewise linearly) homeomorphic to S7. From
this follows the remarkable result that different smooth structures can exist on
manifolds: for example, M7

α for α = 1 gives a new smooth structure on S1. After
this work, the field known as differential topology took definitive shape [51].

In the early 1960’s, as a result of work of Milnor and Kervaire, a theory of smooth
structures on manifolds homotopy equivalent to spheres of dimension n > 5 (the
theory of homotopy spheres) was developed. All of these are homeomorphic to
ordinary spheres (Smale, Stallings, Wallace). Important general theorems were also
proved about other simply-connected manifolds, such as Smale’s theorem on the
existence of a specific function for which the Morse inequalities become equalities
(1960). These theorems of Smale soon proved extremely important in justifying the
classification theory of closed smooth manifolds of dimension n > 5 (devised by the
author at the end of 1961 and first published in [24]; detailed exposition in [25]).
In fact, the method developed by the author allows one to classify manifolds up to
what is known as h-cobordism, and in this sense some of the results hold also for
n = 4; however, for n > 5 this is the exact classification. According to the author’s
method, one considers a class of manifolds having the same homotopy type and
the same homotopy class of stable tangential (or normal) fibrations. This means
that for any manifolds Mn

1 and Mn
2 of the given class, there exists a “tangential”

or “normal” homotopy equivalence

f : Mn
1 → Mn

2 , f∗ν(Mn
2 ) = ν(Mn

1 ),

transforming the stable tangential fibration ν(Mn
2 ) into ν(Mn

1 ). Such a class of
manifolds can be absolutely effectively described by means of a homotopy group
of an auxiliary space which we shall now describe. We take one of the manifolds
Mn in this class, and embed it in a Euclidean space of sufficiently large dimension:
Mn ⊂ Rn+N , N > n + 1. For small ε > 0, a smooth ε-neighborhood Uε of
this manifold forms the total space of a normal fibration over Mn with the N -
dimensional disc DN as fiber. For large N , this fibration is uniquely defined by the
manifold itself, since all smooth embeddings Mn ⊂ Rn+N are equivalent.

We denote by TN (Mn) the quotient space in which the entire complement of the
neighborhood Uε in Rn+N is identified together into a single point:

TN = TN (Mn) = Rn+N/V̄ε, V̄ε = Rn+N \ Uε.

It is easy to see that the manifold Mn itself defines a certain “preferred” element in
the homotopy group πn+N (TN ). In fact, a mapping of the sphere g : Sn+N → TN

is defined by the very process of identifying to a point the complement V̄ε of the
neighborhood Uε, which occurs in the definition of the space TN .

It is easy to see, using results of Cartan and Serre, that the group πn+N (TN ) has
the form πn+N (TN ) = Z + A, where A is a finite abelian group. Here the element
1 = [g] ∈ πN+n(TN ) constructed from the original manifold Mn, gives a generator
of the group Z. We consider the elements of the form 1 + x ∈ πN+n(TN ), where
x ∈ A. Otherwise stated, these are the homotopy classes of all possible maps of
the sphere gx : SN+n → TN which are homologous (but possibly not homo topic)
to the map g = g0, x = 0, constructed above.
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We can now apply some very important ideas which evolved as bordism theory
was developed. According to the definition of the space TN (Mn), the manifold Mn

itself lies therein, together with a smooth neighborhood: TN ⊃ Mn.
We shall assume that the map gx : SN+n → TN is transverse regular to the

submanifold Mn. The full inverse image g−1
x (Mn) is a smooth closed submanifold

Wn of the sphere Sn+N , and a normal fibration ν̄(Wn) is embedded with it. On
account of its transverse regularity, the map gx induces a mapping g∗x : ν̄(Wn) →
ν̄(Mn) of normal fibrations. The other important fact is that the map gx : Wn →
Mn has degree +1. These are all “trivial” inferences which can be deduced from
transverse regularity. In fact, suppose given an arbitrary closed manifold Wn ⊂
Sn+N with normal fibration ν̄(Wn), and a mapping g̃ : Wn → Mn of degree +1
which extends to a map ˜̃g of normal fibrations ν̄(Wn) → ν̄(Mn). Any such entity
determines a mapping Sn+N → TN (Mn) of the sphere, and the homotopy class of
this mapping has the form 1 + x ∈ πn+N , where x is an element of finite order.

However, the properties of these “normal” maps of degree 1 prove to be extremely
fruitful. One can say that in some intuitive sense such maps of degree 1 behave
very much like retractions, or projections onto a direct summand, in which the
complementary kernel is “like” a parallelizable manifold. This opens the prospect
of adapting an analogue of Milnor and Kervaire’s technique to the kernels of maps.

In every case, the following theorem can be proved:
1. In dimensions n 6= 4k+2, n > 5, every homotopy class of the form 1+x in the

group πn+N (TN ) has a t-regular representative, which is a map gx : SN+n → TN

having the property that the full inverse image g−1
x (Mn) = Wn is a manifold which

is normal homotopy equivalent to the original manifold Mn.
For n = 4k + 2, this holds either for all the elements of the form 1 + x or for

half of them, i.e. for a subgroup of index 2 in the finite component A of the group
πn+N (TN ) = Z + A.

For n = 6 or 14 exactly half of the elements are of this form.
2. Suppose we already have two homotopic maps, g

(1)
x and g

(2)
x for which the full

inverse images g
(i)−1

x (Mn) = Wn
i are normal homotopy equivalent to the manifold

Mn. Then:
a) Wn

1 is diffeomorphic to Wn
2 if n is even and n > 6; and

b) Wn
1 is obtained from Wn

2 by the addition of a Milnor “exotic” sphere which
bounds a parallelizable manifold, for odd values of n > 5.

There are a finite number of non-trivial Milnor spheres of this kind; there is none
for n = 5 or 13; there is never more than one for n = 4k+1; there are rather a large
number of them for n = 4k + 3, which has been calculated by Milnor and others;
this number is equal to 27 for n = 7.

3. On the homotopy group πn+N (TN ) there is a natural action of the group of
homotopy classes of automorphisms of the pair consisting of the manifold Mn and
its normal fibration ν̄ in Rn+N . The orbits of this group on the set of elements of
the form 1 + x correspond to manifolds which are tangentially homotopy equivalent
to Mn, under the conditions detailed in statements 1 and 2.

For n = 4, in statement 2 one has to change the word “diffeomorphic” into
“h-cobordant.” In addition, the analogue of the result of W. Browder and the
author, which is formulated below and which gives conditions under which a simply-
connected complex K is homotopy equivalent to a smooth manifold, is known not
to be true for n = 4.
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The method of proving this theorem consists essentially of an elaboration of
the technique, initiated by Milnor and Kervaire, of “killing” homotopy groups of
manifolds by means of Morse modifications. However, even in the special case
of manifolds of the homotopy type of the sphere Sn, which had been previously
investigated by Milnor and Kervaire, the essential geometrical idea of the author’s
approach differs from the geometrical basis of theirs in that it identifies the smooth
structures on spheres by means of the homotopy groups of another space.

One of the most significant consequences of this theorem is the following. A
simply-connected smooth manifold of dimension n > 5 is determined to within a
finite number of possibilities (for which one can easily give an upper bound) by its
homotopy type and the integrals of its Pontryagin classes over cycles.

By using the same technique, one can settle the problem of determining in which
cases a pair consisting of a simply-connected complex K and a vector bundle ν̄ over
K with fiber RN is homotopy equivalent to a closed smooth manifold f : Mn → K
such that the bundle f∗ν̄ over Mn is the normal bundle to Mn in Rn+N (due to the
author, when K is a smooth or PL-manifold, and to W. Browder in a much more
general form: see the author’s short communication to the International Congress
of Mathematicians at Stockholm, August 1962; and Browder’s report to the Aarhus
colloquium on algebraic topology, August 1962).

An improved exposition of all the proofs, together with various applications and
a series of further problems, appeared in [25]. The generalization of this technique
to the case of piecewise linear (PL) manifolds, which presented no problems, is also
discussed there. The generalization to manifolds with boundary was given by Golo
[12] and Wall [63].

Subsequently, this technique was applied by various authors to a series of prob-
lems. It was also generalized to non-simply-connected manifolds (the author [27],
[28], Wall [61], [62], and others). In particular the reader will find important ap-
plications of this technique, generalized to manifolds with free abelian fundamental
group, in the following section. The subject there will be the proof of the topological
in variance of the rational Pontryagin classes.

§4. Pontryagin classes and the fundamental group. Topological
invariance of the rational classes. Hermitian K-theory for rings

with involutions

As we know, for complexes and in particular for closed smooth manifolds there
are four fundamental equivalence relations which enter into problems of topol-
ogy. They are: smooth homeomorphism with smooth inverse, or diffeomorphism;
piecewise-smooth (PL)-homeomorphism; continuous homeomorphism; and, finally,
homotopy equivalence. The appearance of homotopy equivalence, and its role in
topology, are occasioned by the fact that all the classical topological invariants—
homology and the fundamental group, and all the homotopy groups as well—turned
out to be homotopy invariants. The only exception was the so-called Reidemeister
torsion, discovered in the 1930’s. This is a strange invariant which is associated with
the fundamental group and allows one to prove that certain non-simply-connected
homotopy equivalent manifolds (for example, lens spaces) are not smoothly or
piecewise linearly equivalent. In the three-dimensional case, Moise proved in the
1950’s the so-called Hauptvermutung der Topologie: topological manifolds always
admit one and only one PL structure (and even smooth structure, as became clear
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later). Therefore examples were known of three-dimensional closed smooth mani-
folds (lens spaces) which had been proved topologically nonhomeomorphic although
they were homotopy equivalent. For simply-connected manifolds, however, this
question (the Hurewicz problem) remained open. Since the topological invariance
of Reidemeister–Whitehead (et al.) torsion had not been established in dimensions
n > 3, the question of the relationship between homotopy type and topological
homeomorphism of closed manifolds was also open in the mid-1960’s for all non-
simply-connected manifolds for n > 3.

Again, in the mid-1950’s, Thom and Dold showed that as a consequence of
Serre’s theorem on the finiteness of homotopy groups of spheres there exist very
many simple homotopy equivalent but nondiffeomorphic smooth closed manifolds
even among fiber bundles with spheres of unequal dimension as fiber and base,
these examples having different Pontryagin classes. Thus the failure of homotopy
invariance for the integrals of Pontryagin classes over cycles (or, as one usually says,
for the rational classes) was generally known. In 1957 Thom, Rokhlin and Shvarts
proved the combinatorial (or PL) invariance of the rational classes (see [59] and
[30]). Since the method of these papers was applied by the author in 1965 to prove
the topological invariance of the integrals of Pontryagin classes over cycles, we shall
explain the idea of it here.

According to the general formula of Hirzebruch for the signature τ(M4k) of the
natural quadratic form on the homology group H2k(M4k, R), which we considered
before at the beginning of §3, there exists for each number k = 1, 2, . . . a canoni-
cal graded “Hirzebruch polynomial” Lk(p1, . . . , pk) in the Pontryagin classes, with
rational coefficients, such that

τ(Mk) = (Lk,M4k) =
∫

M4k

Lk,

where L1 = 1
3p1, L2 = 1

45 (p2
1− 7p2), . . . . Here the class pk occurs in the expression

Lk with nonzero coefficient (this is important!), Lk = αkpk + . . . , αk 6= 0. We note
that the Pontryagin–Hirzebruch number (Lk,M4k) is a homotopy-invariant expres-
sion in the rational Pontryagin classes, in view of its equality with the signature
τ(M4k). This number turns out to be the unique homotopy-invariant expression in
the rational Pontryagin classes for all simply-connected manifolds of dimension 4k.

We now transfer from the basis (p1, p2, . . . ) for the rational classes to the mul-
tiplicative basis (L1;L2, . . . ). This is possible in view of the properties of the
polynomials Lk indicated above.

Let us consider a smooth manifold MN and a cycle z ∈ H4k(MN , Z) therein. It
is easy to reduce matters to the cycles of codimension N − 4k > N/2 which can be
realized by smooth submanifolds with trivial normal bundle M4k ×RN−4k ⊂ MN ,
[M4k] = z. Using the Hirzebruch formula, we define the class Lk(MN ) to be the
cohomology class whose integral over the cycle z is equal to τ(M4k):

(Lk(MN ), z) = τ(M4k).

It is easily proved that such a definition is combinatorially invariant. That is
the idea of Thom, Rokhlin and Shvarts. It is curious that the analogue of this
construction of the classes pk in mod q cohomology for prime numbers q is not
valid for all q, but only for sufficiently large q > q0, where q0 depends upon k. This
analogue was discovered later, in 1966, by Rokhlin and the author (see the author’s
survey [29]). It is based upon an extension of the concept of the signature τ(M4k)
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to oriented manifolds with boundary in which the boundary ∂M4k = V1 ∪ · · · ∪ Vq

is nonempty, since mod q cycles are realized by manifolds with V1 = · · · = Vq.
Of course, in the foregoing, the quantity τ(M4k) is the difference between the
numbers of positive and negative squares in the “intersection of cycles” form on
the space H2k(M4k, R). Now, however, the form may be degenerate; but that has
little significance. What is most important from our point of view is the additivity
property of the signature for manifolds with boundary:

τ
(
M4k

1 ∪w M4k
2

)
= τ(M4k

1 ) + τ(M4k
2 ),

where the gluing takes place along a whole connected component of their bound-
aries: ∂M4k

1 = W ∪ W̃ and ∂M4k
2 = W ∪ ˜̃W . This is necessary for the validity of

the definition of the classes. The additivity property of the signature in this sense,
for 4k-dimensional manifolds with boundary, under the operation of gluing along a
whole component of the boundary, links the signature with the Euler characteristic.
This property attracted the attention of a number of authors. It can be made into
the basis of an axiomatization which singles out these two invariants.

We note in passing that for k = 2 we have the formula

p2 =
1
7
(9L2

1 − 45L2).

As Milnor and Kervaire showed in 1962, the factor 1
7 is there “by no accident”: the

Pontryagin class p2 as an integral cohomology class (that is, its 7-torsion), or the
class p2 in modulo 7 cohomology, turns out not to be a PL invariant (see Milnor’s
plenary address to the International Congress of Mathematicians in Stockholm,
August 1962, [64]).

Thus the class Lk(M4k) is homotopy invariant, and there are no other homotopy
invariant expressions for closed simply-connected manifolds. However, the class
Lk(M4k+1) is only of significance for non-simply-connected manifolds, for which
H1(M4k+1, R) = H4k(M4k+1, R). In the autumn of 1964 the author obtained a
homotopy invariant formula for the integral of the class Lk(M4k+1) over an integer
homology cycle z in terms of the cohomology ring of an infinite-sheeted covering
M̂

p−→ M4k+1, (Im p∗, z) = 0. The construction of the covering space M̂ is this: the
cycle z is realized by a closed submanifold M4k ⊂ M4k+1. By cutting the manifold
M4k+1 along the cycle M4k, we obtain a manifold W with two identical boundary
components isomorphic to M4k:

∂W = M4k
1 ∪M4k

2 .

The covering space M̂ is obtained by gluing an infinite number of copies of W to
one another: M̂ =

⋃
Wi, Wi = W , where the second boundary component of the

copy Wi is glued to the first boundary component of the copy Wi+1. There is a
cycle ẑ ∈ H4k(M̂) which is realized by the same manifold M4k ⊂ M̂ , the first
boundary component of the copy W0. On the linear space H2k(M̂, R) (which is
infinite-dimensional in general) there is a form of finite rank which depends upon
the cycle ẑ:

〈x, y〉 = (xy, ẑ), x, y ∈ H2k(M̂, R).
The signature of the form 〈x, y〉, which is denoted by τ(ẑ), is finite and coincides
with the integral of the class Lk(M4k+1) over the cycle z (see [26]). The number
τ(ẑ) is clearly a homotopy invariant of the manifold M4k+1. Thus in non-simply-
connected manifolds there sometimes are cycles over which the integrals of the
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Pontryagin–Hirzebruch classes Lk are homotopy invariant. The cycles of codimen-
sion one are the simplest cycles of this kind. Cycles of codimension two are generally
not of this kind: for instance, in simply-connected manifolds they never are, even
for the very simple manifold S2 × S4.

The following approach to proving the topological invariance of the rational
classes pk or Lk, which uses the fundamental group as an auxiliary device, was
proposed and completely carried out by the author. Suppose that, as previously, we
are considering cycles z ∈ H4k(MN , Z) which are realized by smooth submanifolds
with trivial normal bundle M4k×RN−4k ⊂ MN , [M4k] = z. In the original smooth
structure we have a direct product and a formula

(Lk(MN ), z) = τ(M4k).

Let us change to a completely arbitrary new smooth structure on the manifold MN .
A new smooth structure on the whole manifold directly induces a smooth structure
on each open set in MN , and in particular on the set M4k × RN−4k ⊂ MN . In
M4k ×RN−4k it is possible to find a “toric” open subset

M4k × TN−4k−1 ×R ⊂ M4k ×RN−4k,

where T j is a torus of dimension j. Here TN−4k−1 ⊂ RN−4k is any standard
embedding whatsoever of the torus in Euclidean space of dimension one greater.
Without loss of generality, it can be assumed that the manifold M4k is simply-
connected, and that k > 1. The set M4k × T j × R (where j = N − 4k − 1) has
a free abelian fundamental group. In the new smooth structure, it is a priori not
necesesarily a direct product in the smooth sense.

Nevertheless, by generalizing to non-simply-connected manifolds a technique of
smooth topology which had been worked out during the development of manifold
classification theory (see §3) and subsequent progress, by W. Browder and J. Levine
in particular, the author proved the following [27], [28].

1. A smooth manifold W of high dimension, which is topologically homeomorphic
to the direct product of a closed manifold V with a line (W ≈ Ṽ × R), is actually
diffeomorphic to a smooth direct product if π1(W ) is a free abelian group W = Ṽ×R,
where Ṽ is homotopy equivalent to V .

2. If a smooth closed manifold W of high dimension is homotopy equivalent to
a product with a circle, i.e. W ∼ V × S1, then the natural Z-covering Ŵ → W is
diffeomorphic to a direct product with a line: Ŵ = Ṽ × R, where Ṽ is homotopy
equivalent to V . It is also assumed here that π1(W ) is a free abelian group.

By applying these assertions directly to the non-simply-connected open set M4k×
TN−4k−1×R ⊂ MN which we introduced in an apparently artificial way, we obtain
in any smooth structure an equality expressing the integral of the L-class over the
cycle z in terms of a homotopy invariant of the open set M4k × TN−4k−1 ×R:

(Lk(MN ), z) = τ(M4k).

This proves the topological invariance of the rational Pontryagin classes. The gen-
eral idea of this argument recalls the idea of “étale topology”, which was introduced
by Grochendieck at the end of the 1950’s in order to define the homology of alge-
braic varieties over fields of finite characteristic by using a novel structure involving
coverings of non-simply-connected open sets in the Zariski topology.

We note that from the above lemmas one can also obtain the homotopy invariance
of certain integrals of the classes Lk over cycles. If the manifold W 4k+m is closed and
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is homotopy equivalent to a product M4k × Tm, then the inner product (integral)
Lk(W ) with the cycle z = [M4k] coincides with τ(M4k).

In a series of papers of the author, Rokhlin, Kasparov, Hsiang and Farrell, topo-
logical methods have been used to prove a theorem on the homotopy invariance of
the integrals (Lk, z) over all cycles which have the form of an intersection of cycles
of codimension one. An analytical proof was found by Lusztig (see the survey [16]).

The general “higher signatures conjecture” consists of the following. Let us con-
sider a closed manifold Mn and a cycle z ∈ Hn−4k(Mn, Z). Let π = π1(Mn). We
consider the natural mapping into an Eilenberg–Mac Lane complex which induces
the identity isomorphism of fundamental groups

f : Mn → K(π, 1), f∗ : H∗(π,R) → H∗(Mn, R).

Suppose that the cycle z lies in the image of the mapping f∗ (i.e. it “lives” on the
fundamental group, as one says, and is induced from its homological algebra).

Conjecture. The integrals (Lk(Mn), z) over such cycles are homotopy invariants.
There are no other homotopy invariant integrals of Pontryagin classes.

Results proving this conjecture in particular cases of nonabelian groups π have
been obtained by Lusztig, Mishchenko, Yu. P. Solov’ev, Cappell, Kasparov and
others (see [16] and [14]). In its general form, however, the conjecture has as yet
been neither proved nor disproved. The generalization of classification techniques
to non-simply-connected manifolds is closely connected with the theory of stable
invariants of Hermitian or skew-Hermitian forms V ∗ = ±V which are nondegenerate
(i.e. are given by invertible matrices V ) and have elements in the group rings Z[π],
regarded as rings with involution. The involution is defined by the equation ±σ̄ =
σ−1 where the sign depends upon the orientation of σ ∈ π. This theory was first
considered in 1966 by the author [28], in connection with problems on the invariance
of Pontryagin classes, and by Wall [61], working independently; a generalization of
this kind, in the form of a reduction of the surgery problem to algebraic objects of
an unimaginable degree of complexity, was completed by Wall in 1970 (see [62]).
The invariants of these forms, as the author showed in his papers on the topological
invariance problem, are closely connected with characteristic classes. It was in this
connection that “Hermitian algebraic K-theory” over rings with involution was later
developed in [30]–[32]. It turned out that the Hermitian analogue of K-theory, in
particular, possessed remarkable formal properties.

From a purely classical point of view, this algebraic theory is required to give
an effective classification of the stable invariants of nondegenerate Hermitian or
skew-Hermitian forms, i.e. of invertible Hermitian matrices V such that ±V ∗ = V ,
whose elements belong to some given ring with an involution a → ā, ab = b̄ā, such
as for example the group ring in the theory of non-simply-connected manifolds,
with σ̄ = ±σ−1, σ ∈ π. In creating this branch of stable algebra the author made
use of the algebraic analogies, which proved to be extremely natural, with the well-
known Hamiltonian formalism of analytical mechanics and symplectic geometry. It
emerged that in this particular theory, but not in the general algebraic K-theory
of Quillen, Volodin and others, there is (if it is permissible to divide by two in the
ring) an analogue of the so-called Bott periodicity of classical K-theory; thus the
topology of manifolds is to some extent echoed in the case of group rings, though the
algebrization of these “echoes” proved difficult. In fact, this theory must contain
the key to the conjectured relationship between the Pontryagin classes of closed



ALGEBRAIC TOPOLOGY AT THE STEKLOV INSTITUTE 15

manifolds and the homological algebra which is associated with the fundamental
group (see [32]). Lusztig, Mishchenko, Solov’ev (see [16]) and Kasparov [15] applied
the methods of functional analysis to solve the problem in particular cases, but the
latent algebraic mechanism of the connections which exist here still remains obscure.

Returning to problems in topology, we note that it is strange how in the subse-
quent work of Kirby, Siebenmann and others, which is devoted to the solution of
a series of classical problems in the topology of continuous homeomorphisms, they
continue to use and develop the seemingly artificial method of introducing “toric”
open sets and reducing purely continuous problems to techniques in the smooth
topology of manifolds with free abelian fundamental group. The only exception
is Reidemeister–Whitehead torsion, the topological invariance of which was later
successfully proved by more direct and elementary means (Edwards and Chapman).

Also closely related to the family of questions under consideration is the “Browder–
Levine problem”: under what conditions is an open manifold the interior of a
compact manifold with boundary? If every component of the boundary is simply-
connected (this is easily formulated in terms of the open manifold itself) then the
problem is amenable to the classification technique of Browder and the author (see
§3), as was first shown by Browder, Levine and others in 1964. A special case of
the general boundary problem is the question about decomposing a manifold as a
smooth product W = V ×R of a closed manifold with a line, which was also solved
for simply-connected manifolds by Browder and Levine. We recall (see above) that
a generalization of this last result to the case of a free abelian group π1 played a
vital technical role in the proof of the topological invariance of the rational Pontrya-
gin classes. In this, unlike the papers of Browder and Levine written in 1964, the
author was obliged to take steps to search out effective algebraic tests for coverings
of compact manifolds: if n > 6, the discrete group Z acts by smooth or topological
transformations on the manifold Wn with compact quotient Wn//Z, the group
K0(π1) is trivial and the manifold Wn has the homotopy type of a finite complex,
then Wn = V × R. For example, the group K0(Z × · · · × Z) = 0 on account of a
classical theorem of Hilbert. This program of enquiry was carried on by V. L. Golo,
who constructed beautiful examples of manifolds Wn not admitting a product de-
composition, with cyclic π1 = Zp, where K0(Zp) 6= 0, by using classical results of
Kummer and others in the theory of numbers [13]. A. M. Brakhman investigated
the general problem of the “compactification”, by means of a boundary, of man-
ifolds Wn which are covering spaces of compact closed manifolds: he obtained a
number of substantial results (see [4]). The general problem of boundaries for open
manifolds was investigated, from 1965 onwards, by Siebenmann. His results, first
published in [56] and [48], seem to us to be insufficiently effective.

§5. Qualitative theory of foliations. Critical points and level
surfaces of many-valued functions

By definition, a foliation (without singularities) consists of an integrable dis-
tribution which assigns, in a smooth fashion, to every point of an n-dimensional
manifold some k-dimensional plane tangential at that point. Integrability of the
distribution means that through every point of the manifold one can construct a
k-dimensional surface (a leaf) to which the distribution is tangential at every one
of its points. The integrability conditions for a foliation with k = n − 1 are called
the “conditions for solvability of the Pfaffian equations” in classical textbooks (the
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Frobenius condition). For k = 1, on the other hand, there are no integrability
conditions: they are always satisfied. One-dimensional foliations (k = 1) again
arise because many properties in the qualitative theory of trajectories in dynami-
cal systems (for example, existence of periodic trajectories, integral manifolds, the
property of remaining indefinitely in a compact set, boundary sets, etc.) depend
upon the dynamical system only through its “foliation” and do not depend upon
the parametrization of the trajectories. The case k = 2 arises for holomorphic (com-
plex) dynamical systems with complex time, where the integrability conditions is
again always satisfied. A series of beautiful and important examples of foliations
arises even on three-dimensional manifolds, and they play a large part in the er-
godic and qualitative theory of so-called strongly hyperbolic (Anosov) systems. For
every trajectory γ(t) in such a system there are two families of trajectories κ±(t)
such that

κ+(t) → γ(t), t → +∞
κ−(t) → γ(t) t → −∞

(the speed of approach of κ±(t) to γ(t) as t → ±∞ is exponential). The families
κ±(t) lie on the leaves of foliations α± of dimensions k±, where k+ + k− = n + 1.
The intersections of leaves α+∩α− consist of trajectories: a pair of leaves intersects
in precisely one trajectory. In addition, an arbitrary perturbation of the system
has similar foliations (Anosov [2]).

The simplest examples of such systems are:
a) The geodesic flow on n-dimensional manifolds of negative curvature, which

gives a dynamical system on the (2n − 1)-dimensional manifold of unit linear ele-
ments: here k+ = k− = n.

b) We consider the linear mapping of the torus Tn → Tn given by a unimodular
matrix A with integer elements whose eigenvalues λj(A) are such that |λj | 6= 1. Let
k+ − 1 be the number of values of j for which |λj | < 1, and k− − 1 the number of
values of j for which |λj | > 1. We can construct a dynamical system with continuous
time from the mapping A by a standard method: we consider the manifold

Mn+1 = Tn ×R/{(x, p) ∼ (A(x), p + 1)},

where x ∈ Tn and p ∈ R. We note that Mn+1 is a twisted product, with base S1

and fiber Tn. The trajectories of the dynamical system are (x0, t), −∞ < t < ∞.
One says that systems have “discrete time” if they are induced by a single map, as
the system in the case just given is induced by the map A : Tn → Tn.

A series of nontrivial examples of C∞-smooth foliations with k = 2 on the three-
dimensional sphere S3 was constructed by Reeb [55]. It was observed by Zieschang
and the author in [33], and also by Lickorish, that Reeb’s methods allow one to
construct C∞-smooth foliations on an arbitrary three-dimensional manifold. Later,
direct constructions of this kind (and more complicated ones) were brought to a
virtuoso standard of perfection, and after important intermediate results by vari-
ous authors they enabled Thurston and others to prove the existence of foliations
without singularities on arbitrary closed manifolds, in any homotopy class of dis-
tributions.

It seems that the first observations of the qualitative topological properties of
foliations are due to Reeb. For example, the concept of a “limit cycle” generalizes
in a natural way to foliations, and links up with the differential-geometric concept
of holonomy. Similar ideas were evolved independently and at the same time by
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I. G. Petrovskĭı, who wished to apply them to the well-known problem of the number
of limit cycles of systems in the plane with rational right-hand side: however, this
program of research, which he and E. M. Landis were jointly attempting to carry
out, proved not to be feasible.

It is interesting to note that research into the theory of foliations in the USSR
was to a large extent initiated through the influence of this very work. In 1961
V. I. Arnol’d took the initiative by reviewing the work of Petrovskĭı and Landis in
his seminar, although he did not succeed in making much progress with it then.
Through his influence, and also that of Smale’s ideas on dynamical systems, discus-
sion and propaganda began concerning certain problems in the theory of foliations,
and propaganda about them. There soon appeared papers of Anosov and Sinăı
about structural stability and the metric theory of dynamical systems which pos-
sess pairs of foliations as considered above. The author’s work on the closed leaf in
foliations of codimension one was carried out at the end of 1963.

In the winter and spring of 1964 Anosov and the author, having gained ex-
perience in working with foliations, examined in detail a new text prepared by
Landis. It soon became clear that there was a definite inaccuracy in the proof that
the fundamental invariant which they introduced, the “genus”, was unaltered by
change of parameters in the system; and the calculation of it for small perturba-
tions of concrete systems was to a lesser degree unclear. After some consideration
by the author and Landis, this was acknowledged, and in 1964 Petrovskĭı and Lan-
dis announced in print that their work was unproved. In the autumn of 1964, the
celebrated mathematician and scientific administrator Ivan Georgievich Petrovskĭı
invited the present author, then a Candidate in the physico-mathematical sciences,
to his rectorial office in the Lenin hills. He said persuasively and with conviction
that the problem of limit cycles should be tackled and an attempt made to carry
it through to a conclusion. I, however, expressed the opinion that there seemed
to be no “hold” on the problem with the present range of methods, and that it
was unlikely to be solved in less than 50 years. (It was typical of the rare qualities
of the man that Petrovskĭı thereafter supported all by scientific and pedagogical
undertakings.) Was this an accurate estimate? A few years afterwards, in 1969, a
student of Landis, Yu. S. Il’yashenko, who apparently had taken part in the anal-
ysis in 1964 of the criticisms put forward, by Anosov and the author, published a
paper in which he proved rigorously that the “genus” does not have values which
are bounded (with respect to the degree of the polynomials). Most importantly,
he later refuted the proof given by Dulac in 1923 of the finiteness theorem for the
number of cycles of an individual equation. Only most recently, through new ideas
of students of Arnol’d (Varchenko and Petrov), have proper results been obtained
about the finiteness of the number of cycles for small perturbations of Hamiltonian
systems (a problem posed by Arnol’d in 1976).

Let us consider an arbitrary k-dimensional foliation without singularities on a
manifold Mn. In this foliation we choose a leaf α ⊂ Mn and a point x0 ∈ α. At x0

we construct Dn−k normal to the leaf. An arbitrary closed path γ(t) in the leaf α,
beginning and ending at x0 (γ(0) = γ(1) = x0), defines a mapping of some finite
neighborhood U of x0:

U ⊂ Dn−k, σγ : U → Dn−k.

This “holonomy map” does not change under homotopy of the path within its class
in π1(α, x0). Thus there is defined a “holonomy representation” σ : π1(α, x0) → G,
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where G is the group of germs of diffeomorphisms of a neighborhood of zero x0 ∈
Dn−k.

Those paths γ in the leaves α which determine nontrivial holonomy are called
“limit cycles”.

In the case of foliations of codimension one, in which k = n − 1, we have a
mapping into the group of germs of diffeomorphisms of the line. In the important
case of “orientable” foliations, all the transformations σγ for all the leaves preserve
the orientation of the disc Dn−k. In this case, if k = n− 1, the map σγ determines
separately germs around zero of mappings of the half-lines, R+ on the right and
R− on the left:

σ+ : π1(α, x0) → G+, σ− : π1(α, x0) → G−,

where G+ are the groups of germs about zero of mappings of the half-lines R± into
themselves preserving the origin of coordinates, 0 → 0. Thus there are “right” and
“left” limit cycles, with σ+γ 6= 1 and σ−γ 6= 1 respectively. For a C∞ foliation
it can happen that σ+γ 6= 1 and σ−γ = 1 (a one-sided limit cycle). For real ana-
lytic foliations, σ+γ = 1 always implies σ−γ = 1 and vice versa. Reeb conjectured
that any C∞ foliation of codimension one on S3 has a one-sided limit cycle. In
particular, on S3 there are no analytic two-dimensional foliations without singular-
ities. Haefliger [46] proved that conjecture in the following form: if on any manifold
Mn there is a real analytic foliation without singularities of codimension one, then
there is an element of infinite order in the group π1(Mn). Every C∞ foliation on a
simply-connected closed manifold has a one-sided limit cycle on some leaf.

The key idea of the paper [33] on the theory of foliations of codimension one
concerns an application, not of limit cycles, but of the “vanishing” cycles on leaves
which the author introduced. In [33] the author called them “paths which as limits
are homotopic to zero”.

Suppose given an element γ ∈ π1(α, x0) for some leaf, such that σ+γ = 1 (a
nonlimit cycle “on the right”). We say that γ is a vanishing cycle if an arbitrary
displacement γτ (t) of it onto a nearby leaf on the right (for sufficiently small τ ,
where γ0 = γ) is homotopic to zero in that leaf. Any one of the conditions listed
below guarantees the presence of leaves with nontrivial vanishing cycles (we are
considering either foliations on closed manifolds Mn or foliations on manifolds with
boundary in which every component of the boundary is a whole leaf).

a) π1(Mn) is finite.
b) π2(Mn) 6= 0, but π2(α) = 0 for any leaf α. For n = 3, π2(α) implies α = S2

or α = RP 2. In this case all the leaves are compact.
c) There is a leaf α such that the map π1(α) → π1(Mn) has a nontrivial kernel.

For example, the leaf α might be the boundary of Mn. An important example is
n = 3, Mn = D2 × S1 (the solid torus).

The closed leaf theorem is obtained from a combination of this assertion and
the following theorem: if n = 3 and α is a leaf with a nontrivial vanishing cycle,
then the leaf α is compact, is diffeomorphic to a torus T 2, and bounds a solid torus
D2 × S1 inside which the foliation is homeomorphic to a certain standard “Reeb
foliation”. In particular, on any three-dimensional manifold M3 whose universal
covering space is noncontractible, any C∞ 2-foliation has a closed leaf which is a
torus T 2 (or S2).

Some other applications of the concept of vanishing cycle are the following:
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1) If there exists an analytic foliation on M3, then there also exists a smooth
foliation in which the leaves do not have vanishing cycles. Consequently, either
π1(M3) is infinite and π2(M3) = 0, or all the leaves are compact and the covering
of M3 is S2 ×R.

2) If on Mn we are given a system of strongly hyperbolic type in which one of
the foliations has codimension 1 (see above), then π1 is infinite and π2 = 0. Later,
Margulis proved that for n = 3 the group π1 has exponential growth.

3) The topological types of analytic foliations on the solid torus D2×S1, in which
the boundary is a leaf, are easily classified by means of so-called closed braids, which
are conjugacy classes in the Artin braid groups.

Apart from these results, there is the following theorem of Sacksteder and the
author: if the leaves have no limit cycles, then all the leaves are identical, and the
manifold Mn is obtained as follows:

Mn = (α×R)//Z× · · · × Z,

where α is a leaf, and the group Z × · · · × Z operates freely on the covering space
α×R.

Thus foliations without limit cycles look like the level surfaces of closed 1-forms
without singularities. If the leaf is Rn−1, then the manifold Mn has the homotopy
type of Tn. This is the actual situation for Anosov systems with discrete time,
if one of the foliations has codimension one. However, here one has to consider
nonsmooth foliations. The necesesary supplementary research was carried out by
Brakhman [5], who eliminated thereby a deficiency from the proof of this theorem
in the author’s paper [33]. The situation is considered in detail by Anosov [3].

We now consider some properties of foliations which are defined on closed smooth
manifolds Mn by a general closed 1-form, i.e. by a Pfaffian equation ω = 0, where
dω ≡ 0. If the form ω has no singular points, we obtain a foliation without singu-
larities and without limit cycles. If k is the number of pairwise incommensurable
periods (integrals of the form ω over 1-cycles) then we have, as above,

Mn = (α×R)//Z× · · · × Z (k factors),

and α is the leaf. It is not hard to prove that in this case the leaf α is a regular
covering of some compact manifold with group Z× · · · ×Z (k− 1 factors); see [35],
§6. As for the topology of the manifold M , one can only say that it is a twisted
product whose base is a circle, for any k > 1.

Far more difficult, interesting and extremely comprehensive from the viewpoint
of analysis is the situation when the closed form ω has nondegenerate (and therefore
isolated) critical points; these are just like the critical points of smooth functions.
Foliations of this kind were formerly not studied. Some results, and a discussion
of a number of problems, can be found in [35], §6. We note the simplest special
case k = 1, when all the integrals of the form co over 1-cycles are commensurable:
suppose that they are all integers. Then there is a mapping into the circle, or a
complex function modulo 1:

f = exp
(

2πi

∫ x

x0

ω

)
: Mn → S1.

The level surfaces here are all compact, but there arises the question of estimating
the number of critical points of given index. Let us consider the ring of (formal)



20 S. P. NOVIKOV

Laurent series with integer coefficients having any finite number of negative terms:

q ∈ K̂+, q =
∑

i�−N

nit
i.

This ring is the completion of the group ring of the group Z. We consider the
Z-covering M̂ which converts f into a single-valued real function

M̂ → Mn,
1

2πi
ln f : M̂ → R.

We denote by mi(f) the number of critical points of index f . The group Z operates
on M̂ ; we denote a generator of it by t. Therefore the chain complex of M̂ becomes
a Z[t, t−1]-module. We can consider the homology of M̂ with coefficients in the ring
K̂+ ⊃ Z[t, t−1]. The ring K̂+ is a principal ideal ring. Therefore in the homology of
M̂ with coefficients in K̂+ we can introduce the analogues of the “Betti numbers”
(the ranks) and the “torsion coefficients”. We denote them respectively by bi(Mn, a)
and qi(Mn, a), where a = [ω] ∈ H1(Mn, Z) is the cohomology class of the form ω.
The following inequalities have been established in [34] and [35]:

mi(f) > bi(Mn, a) + qi(Mn, a) + qi−1(Mn, a).

As has already been stated, the level surfaces of closed forms on finite-dimensional
manifolds for k > 2 are extremely complicated. For k = 2 there are initial results;
they are considered in [35]. The necessity of constructing analogues of Morse theory
for the critical points of 1-forms (many-valued functions) arose initially, as was
shown in [35], from problems of mechanics, on infinite-dimensional manifolds of
curves.

Variational principles leading to “many-valued” functionals are of great interest
in this context and in the theory of so-called chiral fields, which are considered in
[35], §5. These fields play an essential role in the theory of elementary particles.
The “quantization condition” is the requirement that the corresponding closed 1-
form on the space of fields (the variational functional) should define an integral
1-dimensional cohomology class.

As I. Shmel’tser and the author showed [35], when one considers problems in me-
chanics concerning the motion of a solid body in an ideal fluid or in a gravitational
field about a stationary point, one obtains after “reduction of order” variational
principles involving “many-valued” or nonpositive functionals on spaces of directed
closed curves or spaces of curves joining two points of the sphere S2. A specific
analogue of Morse theory for many-valued or nonpositive functionals has success-
fully been constructed only for periodic boundary conditions (on spaces of closed
curves) (see [35] and [29]). As simple examples show, in the classical problem with
two end-points there is no analogue of the principle of Morse theory (i.e. topological
estimates of the numbers of critical points). In a system arising from problems in
mechanics, periodic trajectories of the system after reduction of order to one de-
gree of freedom give, in a natural way, two-dimensional invariant tori of the initial
system. In fact, the existence of a large number of such 2-tori is proved in this way
in our papers.

Finally, it should be noted that the author’s papers [65] and [66], which were
considered in detail in the survey [35], contain some inaccuracies. In particular,
for problems which are not reversible with respect to time, there is no generaliza-
tion of the two-dimensional Lyusternik–Schnirelmann theory of nonselfintersecting
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extremals. This carries over to many-valued functionals as well: they are always
nonreversible. An idea of Arnol’d for proving the existence of one nonselfintersect-
ing extremal, which was discussed in the author’s survey [35], §5 appears also to be
invalid in this case. The point is that in the closure of the set of nonselfintersecting
curves there may be closed C1-curves of the following kind. The curve consists of
several parts, some of which are extremals of the functional itself, whilst others,
alternating with these, are extremals of the symmetrization of this functional with
respect to time. Each piece of the “symmetrized part” must be traversed twice,
forward and back, among the components into which the curve is dissected. The
different parts are connected together only in class C1.

Such curves are “boundary” extrema of the functional when it is restricted to the
subset of nonselfintersecting curves (or, more precisely, its boundary); they are not
extrema amongst all smooth curves. For reversible functionals, these “semi-extrema
with zero angles” are not encountered, as it is easy to see. Therefore all that remains
unconditionally true is the author’s geneiai theorem on the existence of one smooth
periodic extremal of index 1, arising from spanning a zero-dimensional cycle, for
many-valued or nonpositive functionals on the sphere S2. A second extremal of
index 3 may prove to be geometrically dependent upon this one. It is not yet
possible to say that these are nonselfintersecting.

Some results on nonselfintersecting or geometrically distinct extremals can be
obtained, nevertheless, essentially by applying special properties of two dimensions.
They will be published in a note by I. A. Tăımanov and the author [67].
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28 (1954), 17–86.
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