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Introduction

Integrable systems which do not have an “obvious” group symmetry, beginning
with the results of Poincaré and Bruns at the end of the last century, have been per-
ceived as something exotic. The very insignificant list of such examples practically
did not change until the 1960’s. Although a number of fundamental methods of
mathematical physics were based essentially on the perturbation-theory analysis of
the simplest integrable examples, ideas about the structure of nontrivial integrable
systems did not exert any real influence on the development of physics.

The situation changed radically with the discovery of the inverse scattering
method. The ever-growing interest in this method is connected with the fact that
it has proved to be applicable to a number of nonlinear equations of mathematical
physics which, as became clear in the mid-sixties, possess a remarkable universal-
ity property. They arise in the description (in the simplest approximation after
the linear one) of the most diverse phenomena in plasma physics, the theory of
elementary particles, the theory of superconductivity, in nonlinear optics and in a
number of other problems which are reducible to spatially one-dimensional ones.
Among the equations referred to are the Korteweg–de Vries equation, the nonlinear
Schrödinger equation, the sine-Gordon equation and many others.

The inverse scattering method allowed people for the first time to discover and
to understand a number of principally new effects which had not become apparent
in any way in the theory of perturbations. The most striking and important of them
are connected with the concept of solitons and their periodic analogues (which will
be the topic of discussion to a significant degree later on). The concept of solitons
has become one of the fundamental ones in contemporary nonlinear physics.

Although after the papers [54], [59] it subsequently became clear that the equa-
tions to which the inverse scattering method is applicable are Hamiltonian and,
what is more, are the field analogues of completely integrable Hamiltonian systems,
the integration of these equations within the framework of the inverse scattering
method does not make use of the Hamiltonian theory. The Hamiltonicity of these
equations, the construction for them of variables of the action-angle type turn out
to be essential during the following stages—in the construction of a theory of per-
turbations and of diverse versions of the averaging methods, in the construction
of the quantum analogue of the inverse scattering method. These sections remain
outside the scope of the present article.

The goal of the present survey is the presentation of the modern theory of
integrable systems as a constituent part of the inverse scattering method. Just
as in classical analytical mechanics, special emphasis is laid on finite-dimensional
systems.

The finite-dimensional dynamical systems to which the inverse scattering method
is applicable and to which, basically, this article is devoted (and among them
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2 INTRODUCTION

are contained all the known classical completely integrable systems) are finite-
dimensional in their original physical formulation or they arise during the con-
struction of particular classes of exact solutions of the field-theoretic equations as
restrictions of the latter to finite-dimensional invariant submanifolds.

One should especially stress the significantly greater effectiveness of the inverse
scattering method as compared with the classical methods of integrating Hamil-
tonian systems. For completely integrable systems, in contrast to the ineffective
integration procedure given by Liouville’s theorem, the inverse scattering method
allows one to explicitly produce solutions of the equations of motion, as well as
canonical action-angle variables, in terms of special classes of functions.

In the first chapter of the survey the modern views of the Hamiltonian formal-
ism of both finite-dimensional and field-theoretic systems are presented. Also set
forth are the methods, going back to the classical ones, of integrating Hamilton-
ian systems which have an explicit symmetry or which admit of separation of the
variables.

The second chapter is the nucleus of the present survey. In it the paramount
concept of the commutation representation of evolution systems is introduced,
which is the starting point of all the integration schemes which are unified by
the ideas of the inverse scattering method. A scheme based on the application of
the methods of classical algebraic geometry has proven to be the most fruitful one
in the theory of integrable finite-dimensional systems. This scheme, and also its
numerous applications, are presented in the second chapter.

It needs to be noted that naturally abutting on the present survey there will
be a survey “Integrable systems II” by A.M. Perelomov, M.A. Ol’shanetskij, and
M.A. Semenov-Tyan-Shanskij, which will be published in one of the following vol-
umes of the present series. Its first chapter is devoted to group-theoretic methods
of integration of some special finite-dimensional systems. The second chapter is
devoted to geometric quantization of the open Toda lattice and its generalizations.



CHAPTER 1

Hamiltonian Systems.
Classical Methods of Integration

1. The General Concept of the Poisson Bracket.
The Principal Examples

From the modern point of view, the concept of the Poisson bracket (S. D. Pois-
son) lies at the basis of the Hamiltonian formalism. Let yi, i = 1, . . . , N be local
coordinates on a manifold Y—the phase space. The Poisson bracket of two functions
f(y) and g(y) is given by a tensor field hij(y),

{f, g} = hij(y)
∂f

∂yi
∂g

∂yj
(1.1)

(here and further on the summation over repeated indices is implied). Here it is
required that the following properties be fulfilled:

a) bilinearity

{λf + µg, h} = λ{f, h}+ µ{g, h}, λ, µ = const, (1.2)

and skew-symmetry
{g, f} = −{f, g}; (1.3)

b) the Leibniz identity (G. W. Leibniz)

{fg, h} = g{f, h}+ f{g, h}; (1.4)

c) the Jacobi identity (C. G. J. Jacobi)

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0. (1.5)

Let us note that
hij(y) = {yi, yj}, (1.6)

and the definition (1.1) can be written in the form

{f, g} =
∂f

∂yi
∂g

∂yj
{yi, yj}. (1.7)

Hamiltonian systems by definition have the form:

ẏi = {yi,H}, i = 1, . . . , N, (1.8)

where H = H(y) is an arbitrary function, called the Hamiltonian. The vector field
ξH = (ξiH) corresponding to the Hamiltonian system (1.8) has the form:

ξiH(y) = hij(y)
∂H(y)
∂yj

= {yi,H(y)}, i = 1, . . . , N. (1.9)

Such vector fields are called Hamiltonian. The commutator of two Hamiltonian
fields is connected with the Poisson bracket by the relation

[ξH , ξF ] = −ξ{H,F}. (1.10)

3



4 1. HAMILTONIAN SYSTEMS. CLASSICAL METHODS OF INTEGRATION

It is clear that the derivative of an arbitrary function f = f(y) by means of the
Hamiltonian system (1.8) has the form

ḟ = {f,H} = ξiH
∂f

∂yi
. (1.11)

The flow of (1.8) preserves the Poisson bracket:

{yi(t), yj(t)} = {yi(0), yj(0)}. (1.12)

(Transformations which preserve the Poisson bracket are called canonical. Any one-
parameter group of canonical transformations for non-degenerate brackets det(hij) 6=
0 has the form (1.8), where the Hamiltonian is possibly defined locally [42] (see also
the second chapter of the article by V. I. Arnol’d and A. B. Givental’).

It is possible that there are nontrivial functions fq(y) (maybe given locally on
the manifold) such that

{fq, g} = 0 (1.13)

for any function g(y). In this case the Poisson bracket is called degenerate: the
matrix hij(y) is degenerate. (For a degenerate matrix hij(y) of constant rank the
functions fq(y) of (1.13) locally always exist.) If all such quantities fl(y) have been
found, then on their common level surface

fl(y) = const (l = 1, 2, . . . ) (1.14)

the Poisson bracket no longer stays degenerate.
Let zq be coordinates on the level surface (1.14). The restriction of the tensor

hqr to this surface is no longer degenerate, and there is an inverse matrix

hqph
pr = δrq . (1.15)

The inverse matrix defines a 2-form

Ω = hqp(z) dzq ∧ dzp. (1.16)

From property (1.5) it follows that the form Ω is closed,

dΩ = 0, i. e.
∂hqp
∂zr

+
∂hrq
∂zp

+
∂hpr
∂zq

= 0. (1.17)

If the Poisson bracket was non-degenerate right from the start, then the closedness
condition (1.17) turns out to be equivalent to the Jacobi identity (1.5) [42]. Thus
phase spaces with a non-degenerate Poisson bracket are symplectic manifolds.

Let us examine the basic types of phase spaces.
Type I. Constant brackets and Lagrangian variational problems. Let the ma-

trix hij be constant and skew-symmetric. The Jacobi identity is automatically
fulfilled in this case: on a plane where the matrix hqr becomes non-degenerate the
corresponding 2-form Ω = hqr dy

q ∧ dyr has constant coefficients and is therefore



1. THE GENERAL CONCEPT OF THE POISSON BRACKET. THE PRINCIPAL EXAMPLES 5

closed. By a linear transformation constant brackets can be reduced to the form

(hij) =



0 1
−1 0

. . .
0

0 1
−1 0

0

0
. . .

0


(1.18)

Locally any Poisson brackets of constant rank can be brought into this form (the
Darboux theorem (G. Darboux)). In the non-degenerate case coordinates (y) =
(x1, . . . , xn, p1, . . . , pn) may be introduced such that

hij = −hij =


0

1 0
. . .

0 1
−1 0

. . .
0 −1

0


(1.19)

The coordinates (x, p) are called canonical ones.
The equations (1.8) take on the form:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, i = 1, . . . , n. (1.20)

These are the canonical Hamilton equations (W. R. Hamilton). They can be ob-
tained from the variational principle δS = 0, where

S =
∫
L(x, ẋ) dt, (1.21)

(x) belongs to the configuration space and L(x, ẋ) is the Lagrangian, if one performs
a Legendre transformation (A. M. Legendre)

pi =
∂L

∂ẋi
, i = 1, . . . , n

H(x, p) = piẋ
i − L(x, ẋ)

(1.22)

(it is assumed that the equations pi = ∂L/∂ẋi can be solved in the form ẋi =
ẋi(x, p).

Conversely, if H(x, p) is a Hamiltonian, then we have a Lagrangian L(x, ẋ)
defined from the equations

ẋi =
∂H(x, p)
∂pi

, L(x, ẋ) = piẋ
i −H(x, p). (1.23)

It is assumed that one can solve the equations ẋi = ∂H/∂pi for the variables pi.
Similar variational problems with higher derivatives [42]

δS = 0, S =
∫
L(x, ẋ, . . . , x(k)) dt (1.24)
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can be brought into the form (1.20) with the aid of M. V. Ostrogradskij’s transfor-
mation1

qj = x(j−1), pj =
k−j∑
s=0

(−1)s
ds

dts
∂L

∂x(j+s)
, j = 1, . . . , k; (1.25)

−H(q, p) = L− p1q
2 − · · · − pk−1q

k − pkx(k),

q̇j = ∂H/∂pj , ṗj = −∂H/∂qj , j = 1, . . . , k,

(1.26)

if the equations (1.25) can be solved uniquely in the form

x = x(q, p), ẋ = ẋ(q, p), . . . , x(2k−1) = x(2k−1)(q, p). (1.27)

Type II. Lie–Poisson brackets. Let us now consider the second case in order
of complexity, when the tensor hij is not constant, but depends linearly2 on the
coordinates (y)

hij = cijk y
k, cijk = const. (1.28)

Let us consider the set L of all linear functions on the phase space, which we shall
denote by L∗. For the basis linear forms—the coordinates yi—the bracket defines
a “commutation” operation

[yi, yj ] = cijk y
k = {yi, yj}. (1.29)

The requirements (1.3), (1.5) imply that the operation (1.29) turns the linear
space L into a Lie algebra (S. Lie) whose dual space L∗ is the phase space for
the Poisson bracket (1.28). The bracket of this form was first examined by Lie
[93]. It was rediscovered by F. A. Berezin [14] and used by A. A. Kirillov and
B. Kostant [67] (in the less convenient language of symplectic manifolds) in the
theory of infinite-dimensional representations of Lie groups. The bracket (1.28) is
in general degenerate.

Example 1. The fundamental example of the Hamiltonian formalism of type 1
is the phase space T ∗M—the space of covectors (with lowered indices) on a mani-
fold M (the configuration space). On T ∗M there are local coordinates xi (on M )
and conjugate momenta pj (on the fibre) with Poisson brackets

{xi, xj} = {pi, pj} = 0, {xi, pj} = δij (1.30)

and with the form
Ω = dpi ∧ dxi. (1.31)

Example 2. It is useful to consider also a Poisson bracket of the form (1.30)
which in addition is distorted by an “external field” Fij = −Fji(x):

{xi, xj} = 0, {xi, pj} = δij , {pi, pj} = Fij(x), (1.32)

where the 2-form F = Fijdx
i ∧ dxj is closed, dF = 0. The corresponding 2-form Ω

has the form:
Ω = dpi ∧ dxi + Fijdx

i ∧ dxj . (1.33)
The equations of motion with a Hamiltonian H(x, p) and the Poisson bracket (1.32)
represent (for n = 2, 3) the equations of motion of a charged particle in the external

1Note that in these equations the qj and pj are vectors, and j essentially indexes the deriva-

tives of different orders of the vector x, not the coordinates of x as in (1.20)–(1.23).
2The third case in order of complexity, when the tensor hij(y) depends quadratically on y,

is also very interesting and has recently begun to be studied [129].
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magnetic field (n = 2, 3) Fij (or electromagnetic field for n = 4). In a region where
F = dA the bracket (1.32) can be reduced to the standard form (1.30). As a rule
one can reduce to the form (1.32) (globally) non-degenerate Poisson brackets on
the space T ∗M which satisfy the following requirement: any two functions f, g on
the base space M (not depending on the variables on the fibre, which consists of
all the covectors) have a vanishing Poisson bracket: {f, g} = 0 (see [112]).

Let us turn now to examples connected with the Lie–Poisson brackets.

Example 3. Let L be the Lie algebra of the rotation group SO(3). The Killing
metric (W. Killing) on L is Euclidean and it allows us not to distinguish between
L and L∗ (all indices will be considered to be lower ones). The Poisson bracket of
the basis functions Mi on L∗ has the form:

{Mi,Mj} = εijkMk, (1.34)

where

εijk = cijk =


the signum of the permutation (i, j, k),

if i, j, k are all different;
0, if there is a pair of coinciding indices i, j, k.

(1.35)

The function M2 =
∑
M2
i is such that

{M2,Mi} = 0, i = 1, 2, 3. (1.36)

On the level surfaces M2 = const (spheres) the bracket (1.34) becomes non-
degenerate. The Hamiltonian systems on L∗ have the form:

Ṁ = {Mi,H(M)}. (1.37)

Let ωi = ∂H/∂Mi; the Killing metric allows us not to distinguish between upper
and lower indices. The equations (1.37) reduce to the form of the “Euler equations”
(L. Euler)

Ṁ = [M,ω], (1.38)
where the square brackets denote the commutator in L. (When H = 1

2 (a1M
2
1 +

a2M
2
2 +a3M

2
3 ) the equations (1.37) coincide with the equations of motion of a rigid

body fixed at its centre of gravity). The derivation of the equations (1.38) is valid
for all compact (and semisimple) Lie groups on which there is a Killing metric—a
Euclidean (pseudo-Euclidean) metric on the Lie algebra which is invariant with
respect to inner automorphisms

L→ gLg−1, (1.39)

where g is an element of the Lie group, and L is the Lie algebra. Such systems
on the groups SO(N) are called the “many-dimensional analogue of a rigid body”,
in accordance with V. I. Arnol’d, if the Hamiltonian has the aspect of a quadratic
form on the space of skew-symmetric matrices M = (Mij), where

H(M) =
∑
i<j

dijM
2
ij , dij = qi + qj , qi > 0. (1.40)

Example 4. With the Lie algebra L of the group E(3) of motions of three-
dimensional Euclidean space some important systems arising in hydrodynamics are
connected. This algebra is no longer semisimple. On the phase space L∗ there are
6 coordinates {M1,M2,M3, p1, p2, p3} and the Poisson brackets

{Mi,Mj} = εijkMk, {Mi, pj} = εijkpk, {pi, pj} = 0. (1.41)
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The bracket (1.41) possesses two independent functions f1 =
∑
p2
i , f2 =

∑
piMi

such that
{fq,Mi} = {fq, pi} = 0, q = 1, 2, i = 1, 2, 3. (1.42)

On the level surfaces f1 = p2, f2 = ps the bracket (1.41) is non-degenerate. The
substitution σi = Mi − (s/p)pi sets up an isomorphism of these level surfaces with
the tangent bundle T ∗S2 of the sphere,

∑
σipi = 0. (We identify the tangent

bundle with the cotangent bundle by means of the standard Riemannian metric on
the sphere.) On these level surfaces the restriction of the Poisson bracket (1.41) is
no longer degenerate (when p 6= 0). It turns out that the brackets which arise on
T ∗S2 can be reduced globally to the form (1.32). The appropriate substitution (see
[112]) has the form:

p1 = p cos θ cosψ, p2 = p cos θ sinψ, p3 = p sin θ,
σ1 = pψ tan θ cosψ − pθ sinψ, σ2 = pψ tan θ sinψ − pθ cosψ,

σ3 = −pψ,
(1.43)

where −π/2 ≤ θ ≤ π/2, 0 ≤ ψ ≤ 2π, σi = Mi − sp−1pi. It is easy to deduce from
formula (1.43) that

{θ, ψ} = {pθ, ψ} = {pψ, θ} = 0, {θ, pθ} = {ψ, pψ} = 1,

{pθ, pψ} = s cos θ.
(1.44)

The corresponding 2-form Ω takes on the form (1.33),

Ω = dpθ ∧ dθ + dpψ ∧ dψ + s cos θ dθ ∧ dψ = dξi ∧ dyi + F, (1.45)

where y1 = θ, y2 = ψ, ξ1 = pθ, ξ2 = pψ, F = s cos θ dθ ∧ dψ. The integral of the
form F (and Ω) over the basis cycle [S2] ∈ H2(T ∗S2) = Z has the form∫∫

S2
F =

∫∫
[S2]

Ω = 4πs = 4πf2f
−1/2
1 . (1.46)

Thus we obtain the standard Poisson bracket on T ∗S2, supplementarily distorted
by an effective magnetic field F . When s 6= 0 the effective magnetic field is always
different from zero and represents a “Dirac monopole” (non-quantized).

Let H(M,p) be a Hamiltonian. Let us introduce the notation ui = ∂H/∂pi,
ωi = ∂H/∂Mi. The Hamilton equations will assume the form of “Kirchhoff’s
equations” (P. Kirchhoff)

ṗ = [p, ω], Ṁ = [M,ω] + [p, u] (1.47)

(the square brackets denote the vector product). The equations (1.47) coincide (for
quadratic Hamiltonians H(M,p)) with Kirchhoff’s equations for the motion of a
rigid body in a fluid—in a fluid which is perfect, incompressible, and at rest at
infinity [107]. The motion of the fluid itself is considered to be potential. In this
case H is the energy, M and p are the total angular momentum and the momentum
of the body-fluid system in a moving coordinate system rigidly connected with the
body. The energy H(M,p), quadratic in M,p and positive definite, can be given in
the form

2H =
∑

aiM
2
i +

∑
bij(piMj +Mipj) +

∑
cijpipj . (1.48)
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One can reduce to the form (1.47) the equations of motion of a rigid body
with a fixed point in an axially symmetric force field with a potential W (z). The
corresponding Hamiltonian has the form:

H =
1
2

∑
aiM

2
i +W (lipi), (1.49)

where li is the constant vector giving the position of the centre of mass relative
to the principal axes and the point of attachment. The quantities pi here are
dimensionless and do not have the physical meaning of momenta. They are the
direction cosines of a unit vector, i. e. one always has fi = p2 = 1. The equations
of the dynamics of the spin in the A-phase of superfluid 3He can also be reduced
to the form (1.47) (see [112]).

On the surface f1 = p2, f2 = ps the Hamiltonians H of the form (1.48) or
(1.49) can be written as follows in the variables (y, ξ):

H =
1
2
gab(y)ξaξb +Aa(y)ξa + V (y). (1.50)

Here for the Hamiltonian (1.48) we shall have∑
aiσ

2
i = gabξaξb, σi = Mi − sp−1pi, (1.51)

Aaξa = s(
∑

aipip
−1σi) + p

∑
bij(σipjp−1 + σjpip

−1), (1.52)

2V = s2
∑

aip
2
i p
−2 + 2ps

∑
bijpipjp

−2 + p2
∑

cijpipjp
−2. (1.53)

In view of homogeneity, the Hamiltonian H depends only on sp−1. For the top
(1.49), the Hamiltonian can also be written on the level surface f1 = 1, f2 = s in
the form (1.50), where the metric gab again has the form (1.51), but

Aaξa = s
∑

aiσipi, (1.54)

2V = s2
∑

aip
2
i + 2W (lipi). (1.55)

Deduction ([112]). The equations of the Kirchhoff type reduce to a system
which is mathematically equivalent to a classical charged particle moving on the
sphere S2 with the Riemannian metric gab(y), gabgbc = δac , in a potential field
U(y),

U(y) = V (y)− 1
2
gabA

aAb, (1.56)

and also in an effective magnetic field F̃ab(y),

F̃ab = s cos θ − ∂1A2 + ∂2A1, Aa = gabA
b, s = f2f

−1/2
1 . (1.57)

The form Aady
a is globally defined on the sphere S2, therefore∫∫

S2
F̃12dθ ∧ dψ =

∫∫
S2
F = 4πs (1.58)

by virtue of (1.46).

Remark. It has recently become clear that on SO(4) there arise systems which
in certain cases describe the motion of a rigid body with cavities filled with a
fluid. The integrable cases here were found by V. A. Steklov [133] and have been
rediscovered in a number of modern papers (see, for example, [19], [138]).
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A number of other applications of Euler equations on Lie algebras in problems
of mathematical physics have been found just lately by O. I. Bogoyavlenskij together
with the integrable cases in these problems (see [18]).

Now let us consider infinite-dimensional examples of phase spaces—spaces of
fields u = (u1(x), . . . , un(x)) of some type, where x = (x1, . . . , xm) is one of the
indices in the formulas. The Poisson bracket is given by a matrix

{ui(x), uj(y)} = hij(x, y) (1.59)

of functions hij(x, y) (generalized functions), which in general depend on the fields.
For two “functions” (functionals) F [u], G[u] the Poisson bracket can be computed
by the formula

{F,G} =
∫∫

δF

δui(x)
hij(x, y)

δG

δuj(y)
dmx dmy. (1.60)

Here δF/δui(x) are variational derivatives, defined by the equalities

δF =
∫

δF

δui(x)
δui(x) dmx. (1.61)

Example 1. The local field-theoretic brackets of Lagrangian variational prob-
lems. There are two sets of fields u = (q1(x), . . . , qn(x), p1(x), . . . , pn(x)) with
pairwise Poisson brackets of the form

{qi(x), qj(y)} = {pi(x), pj(y)} = 0,

{qi(x), pj(y)} = δijδ(x− y), i, j = 1, . . . , n.
(1.62)

The Poisson bracket of two functionals F and G has the form:

{F,G} =
∫ [

δF

δqi(x)
δG

δpi(x)
− δF

δpi(x)
δG

δqi(x)

]
dmx. (1.63)

Hamilton’s equations can be written in the form

q̇i(x) = {qi(x),H} =
δH

δpi(x)
,

ṗi(x) = {pi(x),H} = − δH
δqi(x)

,

(1.64)

where H = H[p, q] is the Hamiltonian. They arise, in particular, from the field
variational principle

δS

δqi
≡ ∂Λ
∂qi
− ∂x

∂Λ
∂qix
− ∂t

∂Λ
∂qit

= 0, i = 1, . . . , n, (1.65)

S =
∫
dt

∫
dmxΛ(q, qx, qt), (1.66)

where Λ(q, qx, qt) is the density of the Lagrangian, with the aid of the field-theoretic
version of the Legendre transformation

pi =
∂Λ
∂qit

, H =
∫
dmx(pi(x)qit(x)− Λ) (1.67)

(it is assumed, just as above in the finite-dimensional case, that the equations
pi = ∂Λ(q, qx, qt)/∂qit, can be solved for qit).
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One can also consider, by analogy with the finite-dimensional case, the distor-
tion of the brackets (1.62) by a “magnetic field”—a closed 2-form on the space of
fields q(x). Let us analyze an example connected with the inclusion of “external
fields” in the theory of chiral fields. As is well-known (see, for example, [115]), the
definition of a nonlinear chiral field is as follows: one has arbitrary Riemannian
manifolds Nq and Mn; let there be defined a functional S0(f) on the mappings
f : Nq → Mn. The functional S0(f) has the form of a Dirichlet functional, qua-
dratic in the derivatives of the mapping f , possibly with some additional terms.
Thus the standard “chiral Lagrangian” for a principal chiral field, where Mn = G
is a Lie group with a two-sided invariant metric, has the form:

S0(f) =
1
2

∫
Nq

tr(gµνAµAν)
√
g dqy, (1.68)

where gµν is the metric of Nq, Aµ = f−1(y)∂f(y)/∂yµ.
If the manifold Nq is presented in the form of a product Nq = P q−1 × R,

where R is the axis of the time t and y = (x, t) (for example, Nq is the Minkowski
space Nq = R

q−1,1), then the Euler–Lagrange equations for the action (1.68) can
be brought into the Hamiltonian form by means of the Legendre transformation
(1.67), q(x) = f(x).

Now let us define the procedure for including an external field. Let us note
beforehand that an arbitrary differential form ω of degree q + r on the manifold
Mn defines a differential r-form Ωr on the space of mappings {Nq f−→Mn} via the
formula

Ωr(δ1f, . . . , δrf)|f =
∫
Nq

f∗(iξ1 . . . iξrω), (1.69)

where
ξk(y) = δkf(y), k = 1, . . . , r (1.70)

are “tangent vectors” to the space of mappings (vector fields on Mn at the points
f(y)), iξω is the inner product of the form ω = (ωi1...iq+r ) with the vector ξ = (ξi),

(iξω)i2...iq+r = ξiωii2...iq+r . (1.71)

If the form ω is closed, dω = 0, then the form Ωr on the infinite-dimensional space
of mappings is also closed [112].

On Mn let us fix a closed (q+ 1)-form ω (the “external field”). Then it defines

a closed 1-form Ω1 on the space of mappings Nq f−→ Mn in the way cited above.
The closed 1-form

δS = δS0 + Ω1, (1.72)

where the functional S0 is of the type (1.68), defines a so-called “multi-valued
functional” S of the chiral field f in the external field ω [112]. The extremals
of this functional can be determined, as usual, from the Euler–Lagrange equations
(L. Euler–J. L. Lagrange)

δS = 0. (1.73)

It turns out that for Nq
y = P q−1

x ×Rt the inclusion of an external field is equivalent
to distortion of the Poisson brackets by a “magnetic field” F—a closed 2-form on
the space of fields {P q−1 f−→Mn}—without changing the Hamiltonian. This 2-form
F = Ω2 can be defined via (1.69) with Nq replaced by P q−1.
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Example 2. More generally, the field-theoretic brackets (1.59) are called local
if the generalized functions hij(x, y) present themselves as finite sums of the delta
function δ(x−y) and its derivatives with coefficients which depend on the values of
the field variables and their derivatives at the points x, y. For these brackets and
for local Hamiltonians of the form

H =
∫
h(u, ux, . . . , u(s))dmx (1.74)

the Hamilton equations u̇ = {u,H} can be written in the form of partial differential
equations.

Important Example. The case m = 1, n = 1. Here one has a bracket (the
C. Gardner–V. E. Zakharov–L. D. Faddeev bracket) which arises in the theory of
the Korteweg–de Vries equation (D. J. Korteweg–G. de Vries) (KdV)

{u(x), u(y)} = δ′(x− y). (1.75)

The Poisson bracket of two functionals has the form:

{F,G} =
∫

δF

δu(x)
∂

∂x

δG

δu(x)
dx (1.76)

The skew-symmetry of the brackets (1.75), (1.76) is obvious; the correctness of the
Jacobi identity follows from the fact that the “tensor” hij is constant here (it does
not depend on the field variables). The bracket (1.75) is degenerate; the functional
I−1 =

∫
u dx has vanishing bracket with any other functional F :

{F, I−1} = 0. (1.77)

On a subspace I−1 =
∫
u dx = c (for example, c = 0) the bracket (1.75), (1.76) is

no longer degenerate. The KdV equation itself is given by the Hamiltonian

I1 = H =
∫ (

u2
x

2
+ u3

)
dx, (1.78)

ut =
∂

∂x

δH
δu(x)

= 6uux − uxxx. (1.79)

The quantity

I0 =
∫
u2

2
dx, {u(x), I0} = ux(x), (1.80)

plays the rôle of the momentum (the generator of the translations in x). It is
curious that one of the manifestations of the integrability of the KdV equation (by
the inverse scattering method, see Chap. 2 below) is the presence of another local
bracket [94] of the form

{F,G} =
∫

δF

δu(x)
A

δG

δu(x)
dx,

A = − d3

dx3
+ 2

(
u
d

dx
+

d

dx
u

)
.

(1.81)

There is even a family of brackets: one can replace the operator A by A+ λ(d/dx)
(λ is an arbitrary constant). In the new Hamiltonian structure the KdV itself has
the form

ut = A
δI0
δu(x)

. (1.82)
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Example 3. Now let us consider continuous examples of the Lie–Poisson brack-
ets, connected with infinite-dimensional Lie algebras L. The starting point for
the subsequent constructions will be the Lie algebra L of vector fields on an m-
dimensional space. The commutator of two fields vi(x), wi(x) has the form:

[v, w]i(x) = vj(x)
∂wi(x)
∂xj

− wj(x)
∂vi(x)
∂xj

. (1.83)

The rôle of the index is played here by pairs (x, i)—a point x and an index i. The
operation (1.83) should be written in terms of “structure constants” in the form

[v, w]i(x) =
∫
dmy dmzcijk(x, y, x)vj(y)wk(x). (1.84)

By comparing (1.83) with (1.84) we obtain

cijk(x, y, x) = δijδ(z − x)∂(y)
k δ(y − z)− δikδ(y − x)∂(z)

j δ(z − y), (1.85)

∂
(x)
j =

∂

∂xj
,

∫
f(z)∂(z)

j δ(z − x) dm(z) = −∂f(x)
∂xj

. (1.86)

The variables pi(x) conjugate to the velocity components, on the dual space L∗ to
the vector fields vi(x), must be such that the quantity∫

pi(x)vi(x) dmx (1.87)

is scalar with respect to change of variables. This means that the variables pi(x)
are covector densities, which under changes of variables are additionally multiplied
by the Jacobian determinant (we shall call them momentum densities). By (1.85)
the Poisson bracket has the form:

{pj(y), pk(z)} =
∫
cijk(x, y, z)pi(x) dmx

= pk(y)∂(y)
j δ(y − z)− pj(z)∂(z)

k δ(z − y). (1.88)

In the important special case m = 1 we get

{p(y), p(z)} = p(y)δ′(y − z)− p(z)δ′(z − y). (1.89)

The substitution p = u2 reduces this bracket to the bracket (1.75).

In the algebra L of vector fields on Euclidean space (where there is a distin-
guished Euclidean metric and the volume element is the mass density, which is
considered to be constant) a subalgebra L0 of divergence-free fields

∂iv
i = 0 (1.90)

is given. The dual space L∗0 can be obtained by factoring by the gradients

L∗0 = L∗/(∂iφ). (1.91)

In other words, momentum densities pi(x) give trivial linear forms on L0 if pi(x) =
∂iφ(x): ∫

piv
i dmx =

∫
vi∂iφd

mx = −
∫
φ∂iv

i dmx = 0. (1.92)

The Euler equations for the hydrodynamics of a perfect incompressible fluid can be
written as a Hamiltonian system [7], [112] on the space L∗0 with the Hamiltonian

H =
∫
ρv2

2
dmx, ρ = const, ∂iv

i = 0, pi = ρvi (1.93)



14 1. HAMILTONIAN SYSTEMS. CLASSICAL METHODS OF INTEGRATION

and the Poisson brackets (1.88). One always writes these equations on the full space
L∗, which is equivalent to the space of velocities in the given case{

ρvit = {pi,H}+ ∂ip,

∂iv
i = 0.

(1.94)

The terms ∂ip have arisen because of the transition from L∗0 to the space L∗, where
quantities of the form ∂ip are equivalent to zero. The pressure p is only defined
up to a constant here. The Poisson bracket on the space L∗0 may be written in the
form

{vi(x), vj(y)} =
1
ρ

(∂ivj − ∂jvi)δ(x− y),

pi = ρvi, ρ = const.
(1.95)

The Hamiltonian formalism for a perfect compressible fluid cannot be realized
on the algebra L; it represents a special case of the Hamiltonian formalism for fluids
with internal degrees of freedom. Even the ordinary compressible fluid has such
internal degrees of freedom-the mass density ρ and the entropy density s, whose
inclusion requires the extension of the Lie algebra L of vector fields. Besides the
vector fields vi, we shall add another pair of fields vρ and vs with commutators of
the form

[(v, vρ, vs), (w,wρ, ws)] = ([u,w], vi∂iwρ − wi∂ivρ, vi∂iws − wi∂ivs). (1.96)

We shall denote the algebra (1.96) by Lρ,s. The corresponding variables in the dual
space L∗ρ,s we shall denote by ρ (the mass density) and s (the entropy density).
The Poisson brackets in L∗ρ,s have the form:

{pi(x), ρ(y)} = ρ(x)∂iδ(y − x),

{pi(x), s(y)} = s(x)∂iδ(y − x),

{ρ(x), ρ(y)} = {s(x), s(y)} = {ρ(x), s(y)} = 0,

{vi(x), vj(x)} =
1
ρ

(∂ivj − ∂jvi)δ(x− y)

(1.97)

(the velocities are here the covectors vi = piρ
−1). The Hamiltonian H =

∫
[p2/2ρ+

ε(ρ, s)] dmx is just the energy. The quantities M =
∫
ρ dmx and S =

∫
s dmx

have vanishing Poisson brackets (the trivial conservation laws). Essentially the
Poisson brackets (1.97) were appropriately chosen so that mass and entropy would
be transported together with the particles, in contrast to the energy, which is
conserved only as a whole. Other examples of Lie–Poisson brackets which arise in
hydrodynamics can be found in [112].

Example 4. General brackets of hydrodynamic type. The Poisson brackets and
Hamiltonians considered in the previous example have the following properties:

1) The Hamiltonians have the form:

H =
∫
h(u) dmx, (1.98)

where the densities h(u) depend only on the fields u = (u1, . . . , un) and not on their
derivatives.

2) The Hamilton equations

uit(x) = {ui(x),H} (1.99)
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are first-order quasilinear equations

uit = vij(u)ujx, i = 1, . . . , n. (1.100)

The most general form for Poisson brackets which lead to the equations (1.100) for
Hamiltonians (1.98) is as follows:

{ui(x), uj(y)} = gijα(u(x))
∂δ(x− y)
∂yα

+ bijαk (u(x))
∂uk(x)
∂xα

δ(x− y). (1.101)

The form of equations (1.100), the Hamiltonians (1.98) and the brackets (1.101) is
invariant with respect to local changes of field variables

u = u(w). (1.102)

Let us consider here the one-dimensional case m = 1:

{ui(x), uj(y)} = gij(u(x))δy(x− y) + bijk (u(x))ukx(x)δ(x− y) (1.103)

In this case the symmetric matrix gij(u) = gji(u) behaves under the changes (1.102)
like a metric (with upper indices) on the space of fields u. If it is non-degenerate,
then the quantities Γijk, defined by the equalities

bijk = −gisΓjsk, (1.104)

transform under the changes (1.102) like Christoffel symbols (see [48]). It turns out
[48] that the expression (1.103) gives a Poisson bracket if and only if the connection
Γijk is symmetric, compatible with the metric gij and has zero curvature. This
means that by local coordinate changes (1.102), the metric gij can be reduced to
the Euclidean (or a pseudo-Euclidean) one, the connection to zero, and the bracket
(1.103), by the same token, to a constant one:

{wi(x), wj(y)} = ±δijδ′(x− y). (1.105)

It should be noted that the natural “physical” variables ui in which the equations
(1.100) and the brackets (1.103) arise are essentially “curvilinear”, i. e. the metric
gij(u) is nontrivial in the coordinates ui.

In the multidimensional case m > 1 a family of metrics gijα, α = 1, . . . ,m
actually arises. If they are non-degenerate, then the connections Γiαjk, where bijαk =
−gisαΓjαsk , are compatible with these metrics, symmetric, and have zero curva-
ture. However all the metrics gijα cannot as a rule be reduced to a constant
form by a single transformation. The obstruction to such a reduction are the
tensors T ijkαβ = bijαl glkβ − bkjβl gliα. For example, for the brackets (1.88) when
m > 1 such a reduction is impossible. Let us also note that for m > 2 the metrics
gijα = ps(δisδjα − δjsδiα) corresponding to the brackets (1.88) are always degen-
erate. For non-degenerate metrics gijα the conditions under which the expression
(1.101) gives a Poisson bracket can be written as a set of relations on the tensors
T ijkαβ that we shall not discuss here (see [49]).

The set of relations in [49] is incomplete and incorrect for N ≤ 2. The complete
set of relations can be found in [Mo].

In any case, the following theorem is true: if the metric gij,1 is non-degenerate
and is reduced to a constant metric, then all other metrics gij,α are linearly depen-
dent on the coordinates (ui) (see [49] for N > 2 and [Mo] for N = 2). Thus, the
classification of Poisson brackets of hydrodynamic type is reduced to certain ques-
tions in the theory of special infinite dimensional Lie algebras. These questions are
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discussed below. Poisson brackets of hydrodynamic type play a fundamental role
in the theory of the Hamiltonian systems of hydrodynamic type and, in particular,
in the study of the effective integrability of such systems in the case of one spatial
variable (see Appendix below).

As was mentioned at the beginning of §1, if the coefficients of the Poisson brack-
ets are linearly dependent on the “fields-coordinates” {u(x)}, then the “small” Lie
algebras form a background of a “big” algebra of Poisson brackets. Such brackets
are called the Lie–Poisson–Beresin–Kirillov–Kostant brackets and the systematic
development of their theory was initiated in [GDo] and [BN].

We now restrict our attention to the spatially one-dimensional case (m = 1)
and, following [BN], consider hydrodynamic type Poisson brackets of the form (1.103)

gij = Cijk u
k, Cijk = bijk + bjik , bijk = const.

Let B be an algebra with a basis e1, . . . , eN and multiplication

eiej = bijk e
k.

Then the structure of an infinite dimensional Lie algebra LB on the space of B-
valued vector-functions of a single variable x is defined as follows:

[p(x), q(x)] = p′q − q′p, p(x), q(x) ∈ LB , x ∈ S1,

where p(x) = eipi(x), q(x) = eiqi(x), and the multiplication law is induced by the
multiplication in B. This is a general form of spatially one-dimensional translation-
invariant Lie algebras of the first order (i. e. depending only on the first derivatives
w. r. t. x). The Jacobi identity for LB is equivalent to the Jacobi identity for the
Poisson bracket of hydrodynamic type (1.103) with m = 1 and gij = Cijk u

k. In par-
ticular, if the metric gij is non-degenerate at the point u = u0, i. e., det(gij(u0)) 6= 0,
then this metric is flat. Moreover, the Jacobi identity is equivalent to the following
two identities in the algebra B:

[La, Lb] = 0, [Rb, Rc] = Rbc−cb,

where La(b) = Rb(a) = ab.
Such finite-dimensional algebras B over R or C cannot be simple for N > 1

(see [Z]). Lie algebras LB have large families of central extensions

O → R→ L̂B → LB → 0

defined by cocycles of the form

〈p, q〉 =
∮
S1
γij(k)p

(k)
i (x)qj(x) dx,

where (k) is the number of differentiations w. r. t. x and γij(k) = const.
In the case B = R there is only one non-trivial “Gelfand–Fuks” cocycle for k = 3

(see [GF]). In the general case, there are many non-trivial cocycles for k = 0, 1, 2, 3
([BN]), but their general theory has not been developed. In the important case
bijk = bjik we obtain commutative associative algebras B. If det gij 6= 0, we obtain
Frobenius algebras ([BN]). In this case, it seems that the only non-trivial cocycles
are cocycles of order 3 at some point (u0), i. e., γij(3) = Cijk u

k
0 . This is the only

case where the flat coordinates for the metric gij = Cijk u
k have been effectively

constructed. In general, this problem is solved only in a number of special cases
connected with topological quantum field theories [D1], where the theory of Poisson
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brackets and systems of hydrodynamic type recently began to play an interesting
role (see [D1] and Appendix to [N1]).

Non-local Poisson brackets of hydrodynamic type have the form ([MF], [F]):

{ui(x), uj(y)} = gij(u(x))δ′(x− y) + bijk (u)ukxδ(x− y)

+
L∑
α=1

(wα)iku
k
x∂
−1[(wα)js(u)usxδ(x− y)]

Here the metric gij is no longer required to be flat. If L = 1 and (w1)ij = cδij , then
the curvature is constant. Such brackets are important for the theory of integrable
systems of hydrodynamic type (see Appendix). Also see [F] for general theorems.

There is also a higher order analogue of Poisson brackets of hydrodynamic type.
These brackets are called “homogeneous differential-geometric brackets of order k”
and they have the following form (see [N2]):

{ui(x), uj(y)} = gij(u(x))δ(k)(x− y) + bijk (u)ukxδ
(k−1)(x− y)

+ [cijukxx + dijklu
k
xu

l
x]δ(k−2)(x− y) + . . .

+ [eijs u
k
x...x + . . . ]δ(x− y),

where the functions g, b, c, d depend only on u. The theory of such brackets for
k = 2 was constructed in [P1]. The connection Γijk = gjse

is
k has zero curvature and

zero torsion (see the result of Potemin in [N2], also see [D]). For k = 2, we have the
following result: if det(gij(u)) 6= 0, then the form gijdu

i ∧ duj is closed if and only
if the Poisson bracket can be reduced to a constant bracket.

We would also like to make the following remark about the Important Ex-
ample (above). The theory of integrable systems led to the generalizations of the
Gardner–Zakharov—Faddeev bracket (1.75) and the second “Magri bracket” (1.81).
Recall that these brackets appear in the study of the KdV hierarchy.

The higher order analogue of the bracket (1.75) has the form [34]:3

{ui(x), uj(y)}1 = M ij ◦ δ(x− y).

where M ij is defined by the relation

n−1∑
i,j=0

M ijηj∂
i
s = ([Xη, L])+

for

Xη =
n−1∑
s=0

∂−s−1
x ◦ ηs, L = ∂nx +

n−1∑
k=0

uk∂kx ,

and is equal to

M ij =
n∑

k−i+j−1

[(
k − j − 1

i

)
uk∂k−i−j−1

x −
(
k − i− 1

j

)
(−∂k−i−j−1

x ) ◦ uk
]
.

3The notation ( )+ will be explained below (Insertion 2).
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The higher order analogue of the bracket (1.81) has the form [2]:

{ui(x), uj(y)}2 = Kij ◦ δ(x− y), where
n−1∑
i,j=0

(Kijηj)∂ix = L(XηL)+ − (LXη)+L,

and this must be satisfied for any η = (η0, . . . , ηn−1).
It is remarkable that the higher order analogues of the second bracket turned

out to play an important role in the conformal field theory. They can be interpreted
as classical limits of “Zamolodchikov W -algebras” [FL]. Because of this connection
with two-dimensional conformal quantum field theories, these Poisson algebras are
often called “classical W -algebras”.

Example 5. Consider one more fundamental class of Poisson brackets related
to the theory of integrable systems—The Yang–Baxter brackets. Let the tensor
r : V ⊗ V → V ⊗ V satisfy the “linearized Yang–Baxter equation”:

[r12, r13] + [r12, r23] + [r13, r23] = 0,

where r12 = r : V ⊗ V ⊗ 1 → V ⊗ V ⊗ 1 and r13, r23 are defined similarly. Then
on a space with coordinates tij one can define a Poisson bracket by the following
formula:

{tik, t
j
l } = rijabt

a
kt
b
l = tiat

j
br
ab
kl .

These brackets are very useful for the integration of certain integrable systems in
the soliton theory. See [FT] for the detailed discussion on the connection between
the theory of the linearized Yang–Baxter equation and the soliton theory and for a
large list of references on the subject. Some useful information and references can
be found in [DN1].

The connection between the linearized Yang–Baxter equation and another class
of Poisson brackets—difference analogues of Poisson brackets of hydrodynamic
type—was studied in [D2]. A summary of the results of [D2] can also be found
in [DN1].

2. Integrals and Reduction of the Order of Hamiltonian Systems.
Systems with Symmetry

A function F (y) is called an integral of the Hamiltonian system (1.8) if its
bracket with the Hamiltonian H(y) is equal to zero:

{F,H} = 0. (1.106)

Taking (1.11) into account, we get: the quantity F is conserved along the trajec-
tories of the Hamiltonian system (1.8). In particular, the Hamiltonian H itself (if
it does not depend on time) is always a conserved quantity. The trajectories of the
system (1.8) lie entirely on a level surface F = const. If the Poisson bracket is de-
generate, then there are always “trivial” integrals (1.13), which commute with any
Hamiltonian. We have looked at an example of the reduction of the Hamiltonian
formalism with the help of trivial integrals in §1 in connection with equations of
the Kirchhoff type. Hamiltonian systems with one degree of freedom (N = 2) with
a time-independent Hamiltonian can always be integrated by quadratures. The
presence of non-trivial integrals when N > 2 which do not depend on the “energy”
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H 4 allows one to reduce the order of the Hamiltonian system (1.8) by two all
at once. Let us give the appropriate construction (see also vol. 3 of the current
publication and Chap. 3, §3 of the article by V. I. Arnol’d and A. B. Givental’).
Let F (y) be an integral of a Hamiltonian system with Hamiltonian H, where the
vector (ξiF (y)) = (hij(y)(∂F (y)/∂yj)) is independent of ξH . Let us consider a level
surface Mc:

F (y) = c, (1.107)
and on it the Hamiltonian flow defined by the Hamiltonian F (y),

yiτ = {yi, F (y)}, i = 1, . . . , N. (1.108)

The flow (1.8) with Hamiltonian H permutes the trajectories of the flow (1.108)
by virtue of the commutation (1.106), and therefore defines a dynamical system on
the set of trajectories of the flow (1.108). The trajectories of the flow (1.108) lying
on the level Mc are “indexed” by the points of a surface M0

c (in general defined
locally) transversal to these trajectories. Let us define the “reduction operation”
of the original Poisson bracket hij(y) onto M0

c . Let us consider the subalgebra of
all functions z(y) which commute with F (y),

{F (y), z(y)} = 0. (1.109)

Let the independent functions z1(y), . . . , zN−2(y) satisfy (1.109) and not function-
ally depend on F (y). They are constant along the trajectories of the flow (1.108)
and together with F (y) and τ they define local coordinates in a neighbourhood of
the transverse surface M0

c . By the same token, the quantities z1, . . . , zN−2 give
local coordinates on the transverse surface M0

c . We obviously have

{τ, F} = 1, {τ, zq} = fq(z, F ), {zp, zq} = h̃pq(z, F ). (1.110)

Therefore we may impose on the choice of coordinates z1, . . . , zN−2 the useful ad-
ditional conditions

{τ, zq} = 0, q = 1, . . . , N − 2. (1.111)
The reduced Poisson bracket on M0

c has by definition the form

{zp, zq}red = {zp(y), zq(y)} = h̃pq(z, c), p, q = 1, . . . , N − 2. (1.112)

Obviously, the right-hand side depends only on the coordinates on M0
c (and on c),

and does not depend on the choice of the surface M0
c . By virtue of (1.106) the

Hamiltonian has the form

H(y) = H̃(z1, . . . , zN−2, F ), (1.113)

and therefore the original Hamiltonian system has a well-defined restriction to M0
c :

żq = {zq, H̃(z, c)}red, q = 1, . . . , N − 2. (1.114)

Thus, integration of the original system (1.8) is reduced to the integration of the
Hamiltonian system (1.114), whose order has been lowered by two. After this
the dependence of the coordinate τ on time can be determined from the equation
(taking (1.110), (1.111) into account)

τ̇ = {τ, H̃(z, F )} =
∂H̃(z, F )

∂F
(1.115)

(by one quadrature).

4With the aid of the energy integral H the order of the system can also be reduced by two,
but the Hamiltonian of the reduced system will depend explicitly on time [7].
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Whether it is possible to carry out the reduction procedure globally requires
a supplementary investigation. It is sufficient, for example, to suppose that c is a
regular value of the function F (y) and the one-parameter group Gt of translations
along the trajectories of the system (1.108) is compact and has no fixed points. In
the practical realization of the procedure described above the main difficulty lies in
the construction of the “transversal” coordinates z1, . . . , zN−2.

Example 1. Let H = H(x, p) be a Hamiltonian on the phase space R2n with
canonical coordinates (x1, . . . , xn, p1, . . . , pn) of the form (1.19). Let us suppose
that H(x, p) is invariant with respect to “spatial translations”

xi 7→ xi + a, pi 7→ pi, (1.116)

i. e.
n∑
i=1

∂H

∂xi
= 0. (1.117)

For this it is sufficient that the Hamiltonian have the form

H(x1 . . . , xn, p1, . . . , p
n) = Ĥ(x1 − xn, . . . , xn−1 − xn, p1, . . . , pn). (1.118)

Then, obviously, the quantity (“total momentum”)

F =
n∑
i=1

pi (1.119)

commutes with H, {H,F} = 0. The coordinates z = (z1, . . . , z2n−2) = (x̃q, p̃q) on
the reduced phase space have the form

x̃q = xq − xn, q = 1, . . . , n− 1,
p̃q = pq, q = 1, . . . , n− 1.

(1.120)

The reduced Hamiltonian H̃(x̃, p̃; c) on the surface

p1 + · · ·+ pn = c (1.121)

has the form

H̃(x̃, p̃; c) = Ĥ

(
x̃1, . . . , x̃n−1, p̃1, . . . , p̃n−1, c−

n−1∑
q=1

p̃q

)
. (1.122)

The reduced brackets are the canonical ones:

{x̃q, x̃r}red = {p̃q, p̃r}red = 0, {x̃q, p̃r} = δqr ,

q, r = 1, . . . , n− 1,
(1.123)

and the original Hamiltonian system reduces to the system on R2n−2

˙̃xq =
∂H̃

∂p̃q
, ˙̃pq = − ∂H̃

∂x̃q
, q = 1, . . . , n− 1. (1.124)

The dependence of the quantity τ = xn on the time t can be found from the
equation

τ̇ = H̃c. (1.125)
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Now let us suppose that the Hamiltonian system (1.8) with the Hamiltonian
H possesses several integrals. Let us note, first of all, a simple but important
assertion: the integrals of the system (1.8) form a subalgebra with respect to the
Poisson bracket. The proof is obvious from the Jacobi identity (1.5).

The presence of nontrivial pairwise commuting integrals F1(y), . . . , Fk(y),

{Fi,H} = 0, {Fi, Fj} = 0, i, j = 1, . . . , k, (1.126)

allows one, according to the scheme described above, to reduce the order of the
Hamiltonian system by 2k. In particular, if the initial Poisson bracket was non-
degenerate, N = 2n, then the presence of n pairwise commuting integrals for the
Hamiltonian system allows one, in principle, to integrate this system by quadra-
tures. We shall discuss the properties and examples of such systems in §3.

A set of non-commuting integrals also allows one to reduce the order of the
original Hamiltonian system; however, here the reduction algorithm is more com-
plicated. Let us first analyze a simple example.

Example 2. Let H(x, p) = (|p|2/2m) + U(|x|) be a spherically symmetric
Hamiltonian on R

6, x = (x1, x2, x3), p = (p1, p2, p3). Here one has the three
“angular momentum integrals”

M1 = x2p3 − x3p2, M2 = x3p1 − x1p3, M3 = x1p2 − x2p1 (1.127)

with pairwise brackets
{Mi,Mj} = εijkMk. (1.128)

(In fact, the whole angular momentum vector

M = [x, p] (1.129)

is conserved.) Here there are three integrals, but because of their non-commutativity
the reduced phase space will have dimension 2. Let us fix a value of the angular
momentum

M = m 6= 0. (1.130)

Without loss of generality we may assume that m = (µ, 0, 0), and the conditions
(1.130) can be written in the form

x2p3 − x3p2 = µ, x3p1 − x1p3 = 0, x1p2 − x2p1 = 0. (1.131)

From the last two equations it follows when µ 6= 0 that x1 = p1 = 0, i. e. the
motion takes place in the (x2, x3) plane. The flow with the Hamiltonian M1, which
represents a rotation in the (x2, x3) and (p2, p3) planes by the same angle, thus acts
on the three-dimensional surface x1 = p1 = 0, x2p3−x3p2 = µ. If we factor by this
flow, we obtain the desired reduced phase space. For the factorization it is most
convenient to use polar coordinates r, φ in the (x2, x3) plane, putting

x2 = r cosφ, x3 = r sinφ (1.132)

and introducing the conjugate momenta

p2 = pr cosφ− pφ
r

sinφ,

p3 = pr sinφ+
pφ
r

cosφ.
(1.133)
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Then r, pr serve as canonical coordinates on the reduced phase space; the reduced
Hamiltonian has the form

H̃(r, pr) =
p2
r

2m
+

µ2

2mr2
+ U(r). (1.134)

The dependence of φ on time is obtained separately from the equation pφ = µ, from
which we get

φ̇ =
µ

mr2
=
∂H

∂pφ
. (1.135)

The construction of example 2 admits of obvious generalizations, which go back
to Jacobi and H. Poincaré and have been formulated in the language of symplectic
manifolds in a number of works in the last decades (see also vol. 3 of the present
publication and Chap. 3, § 3 of the article by V. I. Arnol’d and A. B. Givental’).

Suppose the Hamiltonian system (1.8) possesses integrals F1, . . . , Fr whose pair-
wise brackets can be expressed as linear combinations of these same functions,

{Fi, Fj} = ckijFk. (1.136)

the coefficients ckij being constants (this is the next case in order of complexity after
commuting integrals; compare the formulas (1.128) of example 2). Thus the space
of linear combinations

L = {aiFi(y)}, a1, . . . , ar are constants, (1.137)

is closed with respect to the Poisson bracket and for this reason forms a finite-
dimensional Lie algebra. The functions F1(y), . . . , Fr(y) form a basis of L, and the
ckij are the structure constants. Let G be the corresponding Lie group. Then G
acts locally on the phase space by canonical transformations (ones which preserve
Poisson brackets): the one-parameter subgroups of G which correspond to the basis
vectors Fi of the Lie algebra L are the Hamiltonian flows

yjτ = {yj , Fi}, j = 1, . . . , N. (1.138)

For a fixed y the collection of numbers (F1(y), . . . , Fr(y)) = F (y) may be
considered as the coordinates of a linear form on the Lie algebra L: if (a1, . . . , ar)
is a vector in L, then

F (y)(a) = aiFi(y). (1.139)
Thereby we have defined the momentum mapping

y 7→ F (y) ∈ L∗. (1.140)

Let us fix some element c = (c1, . . . , cr) ∈ L∗ and let us consider the momentum
level surface (the simultaneous level surface of the integrals F1, . . . , Fr)

F (y) = c↔ (F1(y) = c1, . . . , Fr(y) = cr). (1.141)

Let us suppose that this surface Mc is a manifold. The Hamiltonian flow corre-
sponding to the Hamiltonian fa(y) = aiFi(y) preserves the level surface Mc if the
vector a = (a1, . . . , ar) satisfies the linear relations

{fa, Fj}|Mc
= aickijck = 0, j = 1, . . . , r. (1.142)

Such vectors a form a Lie subalgebra Lc ⊂ L. Let l be the dimension of this
subalgebra; a basis of it is constituted by the functions

fs(y) = aisFi(y), s = 1, . . . , l, (1.143)
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where (ais) is a fundamental system of solutions of the equations (1.142). (The
subgroup Gc ⊂ G with the Lie algebra Lc ⊂ L is just the isotropy subgroup of
the element c ∈ L∗ in the coadjoint representation Ad∗. In example 2 (above) the
subgroup Gc coincided with the rotations about the c = (µ, 0, 0) axis.)

If we factor Mc by the action of the flows with the Hamiltonians fa out of the
subalgebra Lc, we obtain the reduced phase space M0

c (of codimension r + l). (All
Mc is fibred (locally) over M0

c with fibre Gc). As coordinates on M0
c one may take

functions zq = zq(y) such that

{zq, Fj}|Mc
= 0, j = 1, . . . , r, (1.144)

which do not depend on the functions f1, . . . , fl (1.143) (the gradients of the func-
tions zq and fs must generate the whole tangent space to Mc). As above, we define
the reduced brackets on M0

c by the equality

{zq, zp}red = {zq(y), zp(y)}. (1.145)

The Hamiltonian also restricts to M0
c in a well-defined way. We obtain the reduced

Hamiltonian system

żq = {zq, H̃(z, c)}red, q = 1, . . . , N − l − r. (1.146)

It is clear that in the commutative case ckij = 0 the subalgebra Lc coincides with
the whole Lie algebra L, i. e. l = r and the order of the system is reduced by 2r.

We have not yet discussed the mechanisms by which integrals of Hamiltonian
systems arise. The best known of these mechanisms is a symmetry of the Hamilton-
ian system, i. e. the presence of a continuous group G of canonical transformations
of the phase space, preserving the Hamiltonian:

H(gy) = H(y), g ∈ G. (1.147)

Let L be the Lie algebra of the group G, let e1, . . . , er be a basis of L, and let the
commutators in L have the form:

[ei, ej ] = ckijek (1.148)

Each one-parameter subgroup exp(tei) of transformations of the phase space has a
Hamiltonian Fi(y) (defined perhaps locally), i. e. the transformations y 7→ exp(τei)y
are translations along the trajectories of the system

yjτ = {yj , Fi(y)}, j = 1, . . . , N. (1.149)

The functions Fi(y) are integrals of the Hamiltonian system (1.147). Indeed,

{H(y), Fi(y)} =
d

dτ
H(exp(τei)y)τ=0 = 0.

The functions Fi(y) are called generators of the canonical action of G.
A canonical Lie group action is called Poisson if the functions Fi(y) are defined

globally and their Poisson brackets have the form (1.136), where the ckij are the
structure constants (1.148) of the Lie algebra L.

Example. Let the phase space have the form of the cotangent bundle T ∗M of
a smooth n-dimensional manifold M with the standard brackets (1.30) and let G
act on M as a group of diffeomorphisms. The corresponding action of G on T ∗M is
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canonical. Let us construct the functions Fi(y), where y = (x, p) are the canonical
coordinates on T ∗M (locally). Let

Xk
i (x) =

d

dτ
(exp(τei)x)kτ=0, k = 1, . . . , n. (1.150)

Let us put
Fi(x, p) = pkX

k
i (x), i = 1, . . . , r. (1.151)

The functions Fi(x, p) are defined globally on T ∗M and are generators of the action
of G. Their Poisson brackets, as is easy to see, have the form (1.136). Thus the
action of G on T ∗M is Poisson.

For an arbitrary phase space a canonical action of G might not be Poisson. In
the first place, even if the Poisson bracket is non-degenerate, the integrals Fi(y)
might not be globally defined (and single-valued); only their differentials dFi are
well-defined. Let us suppose further that the functions Fi are defined globally (up
to a constant). It is not difficult to show that then their Poisson brackets have the
form:

{Fi, Fj} = ckijFk + bij , (1.152)

where the ckij are the structure constants of the Lie algebra L, and the bij = −bji
are certain constants. The skew-symmetric matrix bij defines a bilinear form on
the Lie algebra L, B(ξ, η) = bijξ

iηj , which is a (two-dimensional) cocycle:

B([ξ, η)], ζ) +B([ζ, ξ], η) +B([η, ζ], ξ) = 0 (1.153)

(a consequence of the Jacobi identity (1.5)). For the action of the group G to be
Poisson it is necessary that the matrix bij should have the form (βk are certain
constants):

bij = βkc
k
ij (1.153′)

(the cocycle bij is cohomologous to zero). In this case, by substituting Fj 7→ Fj+βj
we obtain a Poisson action.

If the action of the group G on the phase space is Poisson, then the reduction
procedure described above for the Hamiltonian formalism can be carried out glob-
ally under certain additional restrictions. It is sufficient, for example, to suppose
that c is a regular value for the momentum mapping (1.140) (i. e., Mc is a mani-
fold), the isotropy subgroup Gc of the element c ∈ L∗ with respect to the coadjoint
representation Ad∗ is compact, and its elements act on Mc without fixed points.
Thus, for the case T ∗M , where the group G acts on M , the reduced phase space
has the form T ∗(M/G), if of course the quotient manifold M/G is defined.

Example 3 ([112]). A. J. Leggett’s equations for the dynamics of the “order
parameters” in the B-phase of superfluid 3He. In the state of hydrodynamical rest
and with non-zero spin a state in the B-phase is defined by a pair—a rotation
matrix R = (Rij) ∈ SO(3) and s = (si), i = 1, 2, 3,—the “magnetic moment”.

The variables si represent coordinates on the dual space to the Lie algebra of
the group SO(3), analogously to the angular momenta Mi. In the variables (si, Rjk)
the standard Poisson brackets on T ∗SO(3) are written thus:

{si, sj} = εijksk, {Rij , Rkl} = 0, {si, Rjl} = εijkRkl. (1.154)

The Hamiltonian of the Leggett system in the B-phase and in an external magnetic
field has the form:

H = 1
2as

2 + b
∑

siFi + V (cos θ), (1.155)
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where a, b are constants, F = (Fi) is the external field,

V (cos θ) = const( 1
2 + 2 cos θ)2; (1.156)

here Rij is the rotation by the angle θ about the axis of the vector (ni),
∑
n2
i = 1:

Rij = cos θδij + (1− cos θ)ninj + sin θεijknk, (1.157)

1 + 2 cos θ = Rij = trR. (1.158)

After the substitution

asi = ωi, Ωjk = εjkiωi = (ṘR−1)jk (1.159)

we will obtain a Lagrangian system in the variables (Rij , Ṙij) on T ∗SO(3), where
the kinetic energy is defined by a two-sided invariant Killing metric, and the po-
tential V (cos θ) is invariant with respect to inner automorphisms

R 7→ gRg−1, s 7→ gs, g ∈ SO(3). (1.160)

If the field F = (Fi) is constant, then the whole Hamiltonian is invariant with
respect to the one-parameter group of transformations (1.160), where g belongs to
the group of rotations around the axis of the field F . Suppose, further, F = (F, 0, 0).

With zero flux F = 0 the system admits the group SO(3) of transformations
(1.160) and is completely integrated in [95]. The transformations (1.160) generate
the vector, conserved when F = 0:

A = (Aj) = (1− cos θ)
[
n, cot

θ

2
S + [n, S]

]
, (1.161)

where the Poisson brackets are the same as for the ordinary angular momentum
{Ai, Aj} = εijkAk,

{Ai, 1
2as

2 + V (cos θ)} = 0.
(1.162)

The variables s2 and θ which enter into the Hamiltonian when F = 0 generate the
closed Poisson bracket algebra {s2, s‖, θ} [112], where

s‖ =
∑

sini, (1.163)

{s2, θ} = 2s‖, {s‖, θ} = 1, {s2, s‖} =
1 + cos θ

sin θ
(s2 − s2

‖). (1.164)

The quantity A2 =
∑
A2
i = (1 − cos θ)(s2 − s2

‖) has zero Poisson bracket with
everything in this subalgebra

{A2, s2} = {A2, s‖} = {A2, θ} = 0. (1.165)

In a non-zero magnetic field (F, 0, 0) there remains only one integral (besides the
energy)

{A1,H} = 0. (1.166)
In the present case it proves to be possible to carry through the reduction procedure
for the Hamiltonian formalism to the end (globally) and to reduce the system to
two degrees of freedom.

The integral A1 generates a group (1.160), where g is a rotation around the
first axis, that of n = (1, 0, 0). Variables which are invariant with respect to this
subgroup are the following:

s2, s‖, θ, n1, s1, τ = s2n3 − n2s3 (1.167)
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with a constraint of purely geometric origin

s2τ2 = (s2 − s2
1)(s2 − s2

‖)− (s2n1 − s1s‖)2. (1.168)

It is not hard to work out that the variables (1.167) form a closed Poisson bracket
algebra which contains the Hamiltonian H (1.155) and has functional dimension 5.
The quantity A1, which lies in this algebra, has vanishing bracket with all the
variables

0 = {A1, s
2} = {A1, s‖} = {A1, θ} = {A1, n1} = {A1, s1} = {A1, τ}. (1.169)

Therefore, if we impose the condition A1 = const it is possible as before to make
use of the formulas for the Poisson brackets of the quantities (1.167) which follow
from (1.164). With the condition A1 = const, we shall choose the following as basis
variables:

A2, s‖, θ, n1 = n. (1.170)
Their brackets have the form:

{s‖, θ} = 1, {θ, n} = 0,

{A2, s2} = {A2, θ} = {A2, s‖} = 0,

{A2, n} =
√

1
2 (1− n2)A2 − 1

4A
2
1.

(1.171)

Thus, the canonical variables can be chosen in the form

x1 = θ, p1 = pθ = s‖,

x2 = n, p2 = pn =

√
2A2

1− n2
− A2

1

(1− n2)2
.

(1.172)

The Hamiltonian takes on the form:

H =
1
2
a

[
p2
θ +

1− n2

2(1− cos θ)

(
p2
n +

A2
1

(1− n2)2

)]
+ bF

(
npθ +

1− n2

2
sin θpn +A2

1

2− sin2 θ

2(1− cos θ)

)
+ V (cos θ). (1.173)

Now let us introduce spherical coordinates

θ = 2χ, n = n1 = sinφ (1.174)

and let us pass over to the Lagrangian formalism. We will obtain

L = 2a(χ̇2 + sin2 χφ̇2)− Ã1ẏ
1 − Ã2ẏ

2 − U(y), (1.175)

where y1 = χ, y2 = φ,

Ã1 = 2b sinφ, Ã2 = 8bF cosφ sin3 χ cosχ,

U = V (cos θ) +
aA2

1

4 sin2 χ cos2 φ
+ bF

A1(1− sin2 χ cos2 χ)
2 sin2 χ

− 1
2
b2F 2(sin2 φ+ 4 cos2 φ sin2 χ cosχ).

Thus we have obtained a system on a region of the sphere S2 with the usual metric,
where there is an effective magnetic field and a scalar potential. When A1 6= 0 this
system cannot be extended onto the whole sphere, since it has a singularity for
φ = 0, π.



2. INTEGRALS AND REDUCTION OF THE ORDER OF HAMILTONIAN SYSTEMS 27

Now let us consider examples of continuous systems with spare integrals. Let us
first consider the case of Lagrangian field-theoretic systems (1.65), described in the
Hamiltonian form with the aid of the transformation (1.67). In the case when the
density of the Lagrangian Λ(q, qx, qt) does not depend explicitly on the space-time
coordinates xα, t, α = 1, . . . ,m, there hold laws of conservation of the total energy

Ė = 0, E = H =
∫
dmx(piqit − Λ) (1.176)

and of the total momentum vector

Ṗα = 0, Pα =
∫
pi
∂qi

∂xα
dmx. (1.177)

The functionals Pα are generators of the translations in the spatial variables, i. e.

{pi(x), Pα} =
∂pi(x)
∂xα

, {qi(x), Pα} =
∂qi(x)
∂xα

, (1.178)

{Pα, Pβ} = 0, α, β = 1, . . . ,m. (1.179)

Let us stress that the generators of the spatial translations are local field integrals.
The conservation laws (1.176), (1.177) are often written in infinitesimal form, by
introducing the energy-momentum tensor

T ab = qixb
∂Λ
∂qixa

− δabΛ, (1.180)

where a, b = 0, 1, . . . ,m, x0 = t. We have [142]

E =
∫
T 0

0 d
mx, Pα =

∫
T 0
α d

mx, (1.181)

∂T ab
∂xa

= 0, b = 0, 1, . . . ,m. (1.182)

More generally, one can consider variational problems of the form

δS = 0, S =
∫

Λ(x, q, qx) dm+1x (1.183)

(here, as above, we put x = (xa), a = 0, 1, . . . ,m, x0 = t) which are invariant with
respect to more general one-parameter groups of transformations Gτ (x, q) of the
form

xaτ = Xa(x), a = 0, 1, . . . ,m,

qiτ = Qi(x, q), i = 1, . . . , n.
(1.184)

To each such group there corresponds a “conserved current”

Ja = ΛXa +
∂Λ
∂qia

(Qi − qixbX
b), (1.185)

∂Ja
∂xa

= 0 (1.186)

(Noether’s theorem (E. Noether) [17]). The quantity∫
x0=const

J0 dmx (1.187)
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is conserved. If the transformations (1.184) do not affect time, i. e. X0 = const, then
they define a family of canonical transformations on the space of fields (p(x), q(x)),
whose generator is a local field integral with the density

J0 = pi(Qi − qixαXα) (1.188)

The second Noether theorem concerns variational problems which admit symme-
tries with functional parameters (as, for example, in the theory of gauge fields [53]).
The equations for the extremals (1.65) are not independent in this case, but satisfy
some system of differential relations. We shall not discuss this theorem here.

3. Liouville’s Theorem. Action-Angle Variables

In this section we shall restrict ourselves to the consideration of phase spaces
with a non-degenerate Poisson bracket. The important theorem of Liouville (J. Li-
ouville) studies the case of Hamiltonian systems with n degrees of freedom (i. e. on
a 2n-dimensional phase space) where there are exactly n functionally independent
integrals F1 = H, F2, . . . , Fn whose pairwise Poisson brackets are equal to zero,
{Fi, Fj} = 0, j = 1, . . . , n. People often call such systems completely integrable. In
this case the level surfaces of the integrals

F1 = c1, . . . , Fn = cn (1.189)

are quotient groups of Rn by lattices of finite rank ≤ n; in particular, compact non-
singular level surfaces are n-dimensional tori. If the level surface (1.189) is compact,
then in a neighbourhood of it one can introduce coordinates s1, . . . , sn, φ1, . . . , φn
(0 ≤ φi < 2π) (“action-angle” variables) such that:

a)
{si, sj} = {φi, φj} = 0, {φi, sj} = δij ; (1.190)

b) si = si(F1, . . . , Fn), φj are coordinates on the level surfaces (1.189);
c) in the coordinates (si, φj) the initial Hamiltonian system has the form:

ṡi = 0,

φ̇i = ωi(s1, . . . , sn)

}
i = 1, . . . , n. (1.191)

Let us give the idea of the proof of this theorem (see, for example, [42]). A
level surface Mc of the form (1.189) is a smooth manifold by virtue of the inde-
pendence of the integrals F1, . . . , Fn (i. e. the independence of their “gradients”
(ξi)j = hjk(∂Fi/∂yk). The group Rn of the flows with the Hamiltonians F1, . . . , Fn
acts on this manifold. Let us choose an initial point x0 = xo(c) ∈Mc and let us pick
out a lattice in Rn: a vector d ∈ Rn belongs to the lattice if d, acting on x0, yields
x0 again. A subgroup {d} ⊂ Rn arises. This subgroup is discrete and is therefore
isomorphic to a lattice spanned by k vectors of Rn, where k < n. Obviously, only
for k = n will we obtain a compact manifold (a torus Tn).

Now let us construct the action-angle variables. On the given level surface Mc

one may put together linear combinations of the fields ξi:

ηi = bji ξj , i = 1, . . . , n, (1.192)

such that the coordinates introduced with their help on the group Rn acting on the
torus Tn = Mc coincide with the angles 0 ≤ φj < 2n (φi = 0 is just the point x0).
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The coefficients bji will depend on the collection c1, . . . , cn in a neighbourhood of
the chosen level surface. Thus we have

ηi = bji (F1, . . . , Fn)ξj . (1.193)

This introduces coordinates φ̃1, . . . , φ̃n on a whole region around the given Mc.
In this region we have coordinates (F1, . . . , Fn, φ̃1, . . . , φ̃n) and a non-degenerate
matrix of Poisson brackets (

{Fi, Fj} = 0 {Fi, φ̃j}
{φ̃i, Fj} {φ̃i, φ̃j}

)
, (1.194)

where det{Fi, φ̃j} 6= 0. Now let us introduce the action variables. For the phase
space R2n with the canonical coordinates (x1, . . . , xn, p1, . . . , pn) the action vari-
ables have the form:

si =
1

2π

∮
γi

pk dx
k, i = 1, . . . , n. (1.195)

Here γi is the i-th basis cycle of the torus Tn,

γi : 0 ≤ φ̃i ≤ 2π, φ̃j = const for j 6= i. (1.196)

We get:
{φ̃j , sj} = δij , i, j = 1, . . . , n. (1.197)

On an arbitrary phase space with a form Ω = hij dy
i ∧ dyj of the type (1.17) one

must do the following: the form Ω vanishes on the tori Tn = Mc. Therefore on
some neighbourhood of the given torus Tn = Mc this form is exact:

Ω = dω.

The action variables have the form, analogous to (1.195):

si =
1

2π

∮
γi

ω, i = 1, . . . , n. (1.198)

Now let us set

φi = φ̃i + bi(s1, . . . , sn), i = 1, . . . , n. (1.199)

Let us select the bi according to the condition {φi, φj} = 0. This can always be
done by virtue of (1.197). On each level surface Mc the coordinates φ1, . . . , φn
coincide up to a translation with the angles φ̃1, . . . , φ̃n chosen earlier. The matrix
of Poisson brackets takes on the form (1.190), and the Hamiltonian H = F1 can be
written in the form

H = H̃(s1, . . . , sn). (1.200)

The equations of motion will have the form (1.191). This is conditionally periodic
motion along an n-dimensional torus with the frequencies

ωi(s1, . . . , sn) =
∂H̃(s1, . . . , sn)

∂si
. (1.201)

Example 1. Let the level surface H(x, p) = E of a system with one degree of
freedom be compact. Then we have the canonical action-angle coordinates

s(E) =
∫
H=E

p dx, {s, φ} = 1. (1.202)



30 1. HAMILTONIAN SYSTEMS. CLASSICAL METHODS OF INTEGRATION

Now let us consider some examples of completely integrable systems with two
degrees of freedom. Here, according to Liouville’s theorem, it is sufficient for “com-
plete integrability” to know one integral not dependent on the energy H.

Example 2. The equations of the rotation of a heavy rigid body with a fixed
point can be represented, in accordance with § 1, in the form of a Hamiltonian
system on E(3) with the Hamiltonian

H(M,p) =
M2

1

2I1
+
M2

2

2I2
+
M2

3

2I3
+ γ1p1 + γ2p2 + γ3p3. (1.203)

Here the axes of the coordinate system coincide with the principal axes of the body,
the origin is at the point of attachment, I1, I2, I3 are the principal moments of
inertia of the body, γ1, γ2, γ3 are the coordinates of the centre of mass. The Poisson
brackets have the form (1.41). The phase space is six-dimensional here, but the rank
of the matrix of Poisson brackets is equal to 4. Therefore for integrability according
to Liouville it is enough to know one integral (besides the energy integral). Well
known are the following cases of integrability.

a) The Euler case: γ1 = γ2 = γ3 = 0. The extra integral is the square of the
total angular momentum M2 = M2

1 +M2
2 +M2

3 .
b) The Lagrange case: I1 = I2, γ1 = γ2 = 0. Here there is an axial symmetry

(with respect to the third axis). This gives the extra integral M3 = const.
c) S. V. Kovalevskaya’s case I1 = I2 = I3/2, γ3 = 0. Here the appearance of

the spare integral

F = |I1(M1 + iM2)2 − 2(γ1 + iγ2)(p1 + ip2)|2 (1.204)

is not connected with a symmetry of the system (see Chap. 2 below).

Example 3. The problem of the motion of a rigid body in a perfect fluid (see
above § 1) is far richer in integrable cases. The simplest of them is the Kirchhoff
case, where the Hamiltonian has the form (1.48), with a1 = a2, b11 = b22, bij = 0
for i 6= j, c11 = c22, cij = 0 for i 6= j. Here, just as in the Lagrange case, there
is an axial symmetry, and the extra integral is M3. More complicated integrable
cases (with a “hidden symmetry”) have the following form.

a) The Clebsch case (R. Clebsch). Here the coefficients of the Hamiltonian
(1.48) are like this:

bij = 0, cij = ciδij , (1.205)
where the coefficients ai and cj satisfy the relation

c2 − c3
a1

+
c3 − c1
a2

+
c1 − c2
a3

= 0. (1.206)

The supplementary integral has the form

M2
1 +M2

2 +M2
3 − (a1p

2
1 + a2p

2
2 + a3p

2
3). (1.207)

b) The Lyapunov–Steklov–Kolosov case: bij = biδij , cij = ciδij , where

bj = µ(a1a2a3)a−1
j + ν, cj = µ2a1(a2 − a3)2 + ν′, . . . (1.208)

(µ, ν, ν′ = const). The supplementary integral is∑
j

[M2
j − µ(aj + ν)Mjpj ] + µ2[(a2 − a3)2 + ν′′]p2

1 + . . . (1.209)

(the parameters ν, ν′, ν′′ are unessential).
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4. The Hamilton–Jacobi Equation.
The Method of Separation of Variables—The Classical

Method of Integration and of Finding Action-Angle Variables

The theory of completely integrable Hamiltonian systems set forth in the pre-
ceding section arose as a generalization of the Hamilton–Jacobi method of integrat-
ing the canonical equations.

We shall consider here the phase space R2n with the canonical coordinates
(x1, . . . , xn, p1, . . . , pn) (see (1.19)). The Hamiltonian system with the Hamiltonian
H = H(x, p) has the form:

ẋi =
∂H

∂pi
,

ṗi = −∂H
∂xi

 i = 1, . . . , n. (1.210)

Let us consider a canonical transformation (i. e. one preserving the Poisson brackets
(1.19)) of the coordinates (x, p) to coordinates (X,P ) of the form

pi =
∂S

∂xi
, Xi =

∂S

∂Pi
, S = S(x, P ), (1.211)

dS = pi dx
i +Xi dPi, dpi ∧ dxi = dPi ∧ dXi. (1.212)

In the new coordinates the system (1.210) can be written in the form

Ẋi =
∂K

∂Pi
,

Ṗi = − ∂K
∂Xi

 i = 1, . . . , n. (1.213)

where the Hamiltonian K = K(X,P ) has the form

K(X,P ) = H(x(X,P ), p(X,P )). (1.214)

The idea of the Hamilton–Jacobi method consists in choosing the transformation
(1.211), (1.214) appropriately so that in the new coordinates the Hamiltonian K
does not depend on X: K = K(P ). In this case the variables P1, . . . , Pn will
obviously be variables of action type, and the conjugate variables X1, . . . , Xn will
be the corresponding angles, i. e. the system (1.213) can be written in the form
(1.191)

Ẋi =
∂K(P )
∂Pi

,

Ṗi = 0

 i = 1, . . . , n. (1.215)

Thus, the problem of integrating the canonical equations (1.210) reduces to finding
a function S(x, P ) satisfying the Hamilton–Jacobi equation

H

(
x,
∂S

∂x

)
= K, (1.216)

depending on n parameters P1, . . . , Pn (it is necessary that the function S =
S(x1, . . . , xn, P1, . . . , Pn) be a general integral of equation (1.216), i. e. that det(∂2S/∂xi∂Pj) 6=
0 [7]).
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The only method of integrating the Hamilton-Jacobi equation employed with
success in classical analytical mechanics is the method of separation of variables.
Namely, suppose the Hamilton–Jacobi equation (1.216) can be written in the form

h

(
f1

(
x1,

∂S

∂x1

)
, . . . , fn

(
xn,

∂S

∂xn

)
,K

)
= 0, (1.217)

where the fi(xi, pi) are certain functions. In this case its general integral may be
sought in the form

S = S1(x1; c1) + S2(x2; c2) + · · ·+ Sn(xn; cn), (1.218)

where the equations for the functions S1, . . . , Sn will be written in the form

fi

(
xi,

∂S

∂xi

)
= ci, i = 1, . . . , n, (1.219)

and in an obvious manner can be integrated by quadratures. The dependence of
the Hamiltonian on the new variables H(x, p) = K(c1, . . . , cn) is determined by the
equation

h(c1, . . . , cn,K) = 0. (1.220)
The variables

ci = φ(xi, pi), i = 1, . . . , n, (1.221)
if they are globally defined, will be variables of action type. The corresponding
variables of angle type can be computed by formulas (1.211).

Example 1. Geodesics on an ellipsoid (Jacobi, 1839). Let the ellipsoid have
the form:

x2
1

a1
+
x2

2

a2
+
x2

3

a3
= 1, a1 > a2 > a3 > 0. (1.222)

The elliptical coordinates λ1, λ2, λ3 in space are defined as the roots of the equation

x2
1

a1 − λ
+

x2
2

a2 − λ
+

x2
3

a3 − λ
= 1, (1.223)

where λ3 < a3 < λ2 < a2 < λ1 < a1. The ellipsoid (1.222) is obtained for λ3 = 0.
The Hamiltonian of the free motion of a unit point mass on the surface of the
ellipsoid coincides with the kinetic energy (the metric) and has the form

H =
2

λ1 − λ2

[
(a1 − λ1)(λ1 − a2)(λ1 − a3)

λ1
p2

1

+
(a1 − λ2)(a2 − λ2)(λ2 − a3)

λ2
p2

2

]
, (1.224)

where

pj = (−1)j+1(λ1 − λ2)
λj λ̇j

4(a1 − λj)(a2 − λj)(a3 − λj)
, j = 1, 2. (1.225)

The variables have been separated. It is not hard to show [120] that integration of
the equations of motion reduces to the hyperelliptic quadratures (of genus 2)

dλ1√
R(λ1)

=
dt

λ1 − λ2
,

dλ2√
R(λ2)

=
dt

λ2 − λ1
, (1.226)

where

R(λ) =
(λ− α)(λ− a1)(λ− a2)(λ− a3)

λ
, (1.227)
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and a3 < α < a1 is an arbitrary constant. These equations were integrated in
1861 by K. Weierstrass in theta functions of two variables: The solution of the
Hamilton–Jacobi equation has the form:

S(λ1, λ2;α,E) =
√
E√
2

∫
λ1 − α√
R(λ1)

dλ1 +
√
E√
2

∫
λ2 − α√
R(λ2)

dλ2, (1.228)

where E = H is the energy. From this the variables of angle type are found by the
formulas (1.211)

φα =
∂S

∂α
, φE =

∂S

∂E
. (1.229)

The change of variables (1.229) (λ1, λ2) 7→ (φα, φE) is an Abel map, corresponding
to the hyperelliptic Riemann surface of the root

√
λ(λ− α)(λ− a1)(λ− a2)(λ− a3)

(of genus 2; see Chap. 2 below). Therefore the invariant tori here can be extended
to the complex domain and are abelian.

The question of separation of variables for Hamiltonian systems was studied
intensively in the second half of the last century (see the bibliography in [92]).
The following criterion was established (by T. Levi-Civita, [91]): the system with
Hamiltonian H(x, p) is integrable by the method of separation of variables in a
given coordinate system if and only if the function H satisfies the following system
of equations

∂H

∂pj

∂H

∂pk

∂2H

∂xj∂xk
− ∂H

∂pj

∂H

∂xk
∂2H

∂xj∂pk
− ∂H

∂xj
∂H

∂pk

∂2H

∂pj∂xk
+
∂H

∂xj
∂H

∂xk
∂2H

∂pj∂pk
= 0,

(1.230)
1 ≤ j < k ≤ n (there is no summation over repeated indices). The application
of this criterion to the investigation of the integrability (via Hamilton–Jacobi) of
Hamiltonian systems is a non-trivial problem; advances in certain special classes of
Hamiltonians were obtained in [27], [32].

To conclude this section let us note that the system of S. V. Kovalevskaya
mentioned above cannot be integrated by the method of separation of variables,
and action-angle variables for it were found very recently (see below Chap. 2).



CHAPTER 2

Modern Ideas on the Integrability
of Evolution Systems

1. Commutational Representations of Evolution Systems

The algebraic mechanism lying at the foundation of the procedure for inte-
grating the KdV equation with initial conditions rapidly decreasing in x which
was proposed in the famous paper of C. S. Gardner, J. Green, M. Kruskal and
R. M. Miura [60] was cleared up in P. D. Lax’s paper [89]. It was observed that
this equation

4ut = 6uux + uxxx (2.1)

is equivalent to the commutation condition[
L,

∂

∂t
−A

]
= 0 ⇐⇒ ∂L

∂t
= [A,L] (2.2)

for the auxiliary linear differential operators

L =
∂2

∂x2
+ u(x, t); A =

∂2

∂x3
+

3
2
u
∂

∂x
+

3
4
ux. (2.3)

Beginning with this paper, all schemes for producing new equations to which
the inverse scattering method is applicable were based on various generalizations
of the commutation equation (2.2).

The first and most natural step is the generalization of equation (2.2) to the
case when L and A are arbitrary differential operators

L =
n∑
i=0

ui(x, t)
∂i

∂xi
; A =

m∑
i=0

vi(x, t)
∂i

∂xi
(2.4)

with matrix (l × l) or scalar coefficients.
New physically important equations to which the inverse scattering method is

applicable were discovered along just this path in the papers of V. E. Zakharov–
A. B. Shabat [125], [126] and G. L. Lamb [88].

Let un and vm be constant non-degenerate diagonal matrices with distinct
entries on the diagonals. By conjugating with a suitable matrix function g(x, t):
L → gLg−1 and A → gAg−1 one can always achieve that uααn−1 = 0, vααm−1 = 0,
α = 1, . . . , l. The equations (2.2) form a system of n + m matrix equations in the
coefficients of the operators L and A. It turns out that from the first m equations,
obtained by equating to zero the coefficients of the ∂k/∂xk, k = n, . . . , n+m− 1,
one can successively find the vj(x, t), the matrix entries of which are differential
polynomials in the matrix entries uαβi (x, t) and certain constants hαj ; α, β = 1, . . . , l.
If we substitute the expressions obtained into the remaining n equations, we obtain
a system of evolution equations only in the coefficients of the operator L, and these

34
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are called equations of Lax type. There exist a great number of schemes (see, for
example, [1], [34], [75], [106], [115], [126], [127]) which by one method or another
realize a reduction of the general equation (2.2) to equations in the coefficients of
the operator L.

The system (2.2) represents a family of Lax equations, parametrized by the
constants hαj . For example, if (l = 1)

L = ∂2 + u, A = ∂3 + v1∂ + v2, ∂ = ∂/∂x, (2.5)

then
v1 = 3

2u+ h1, v2 = 3
4ux + h2 (2.6)

and equation (2.2) is equivalent to the family of equations

4ut = uxxx + 6uux + 4h1ux. (2.7)

Let us give a few simplest examples of equations of Lax type.

Example 1 ([142]). If (l = 1)

L = ∂3 + 3
2u(x, t)∂ + w(x, t), A = ∂2 + u(x, t), (2.8)

then equation (2.2) leads to the system
3
2ut = wx − 3

4uxx, (2.9)

wt = wxx − uxxx − 3
2uux. (2.10)

If we eliminate w from these equations, we arrive for u(x, t) at the Boussinesq
equation (J. V. Boussinesq)

3utt + (uxxx + 6uux)x = 0. (2.11)

Two-dimensional systems which admit a representation of the Lax type (2.2)
were first discovered in [37], [126]. An important example of such systems is the
“two-dimensionalized” KdV equation—the Kadomtsev–Petviashvili (KP) equation{

3
2uy + 3

2uxx − 2wx = 0,

wx − ut + uxxx + 3
2uux − wxx = 0.

(2.12)

In this case

L = −∂y + ∂2
x + u(x, y, t), A = ∂2

x + 3
2u(x, y, t)∂x + w(x, y, t). (2.13)

Remark. A number of authors have shown that the usual Lax representation
for two-dimensional systems is possible only for operators which involve differentia-
tion of no higher than first order with respect to one of the variables. For example,
for the two-dimensional Schrödinger operator L = ∂2

x + ∂2
y + u(x, y) there is not a

single non-trivial equation of Lax type. The correct (non-trivial) analogue of the
equations of Lax type for 2+1-systems was found later in the works [98], [43], [117].

A review of two-dimensional integrable systems, their algebraic-geometrical
solutions, spectral theory of two-dimensional operators and their applications is
given in the Appendices.

Example 2 ([125]). The non-linear Schrödinger equation (NLS±)

irt = rxx ± |r|2r. (2.14)
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The operators L and A in this case are matricial and are equal to

L =
(

1 0
0 −1

)
∂

∂x
+
(

0 r
q 0

)
, q = ∓r̄, (2.15)

A = i

[(
1 0
0 −1

)
∂2

∂x2
+

1
2

[(
0 r
q 0

)
∂

∂x
+

∂

∂x

(
0 r
q 0

)]
+
(
rq 0
0 −rq

)]
. (2.16)

Example 3. The equations of three-wave interaction

u13t + v13u13x = iεu12u23; u12t + v12u12x = iεu13ū23,

u23t + v23u23x = iεu13ū12; uij = uij(x, t), vij = const.
(2.17)

The operators L and A are matricial (3× 3) and are equal to

L = I
∂

∂x
+ [I,Q], A = J

∂

∂x
+ [J,Q],

Iij = aiδij , ai+1 > ai, Jij = biδij , (2.18)

Qij = Q̄ji = −iuij
√
aj − ai, j > i,

vij =
aibj − biaj
ai − aj

. (2.19)

Example 4. The Toda lattice ((M. Toda) [96], [55], [56]) and the difference
analogue of the KdV equation [96], [109]. The inverse scattering method is also
applicable to certain differential-difference systems. If L and A are difference oper-
ators of the form

Lψn = cnψn+1 + vnψn + cn−1ψn−1, (2.20)

Aψn =
cn
2
ψn+1 −

cn−1

2
ψn−1, (2.21)

then equation (2.2) leads to the equations

2ċn = cn(vn+1 − vn), , (2.22)

v̇n = c2n − c2n−1, (2.23)

which, if one sets cn = exp( 1
2 (xn+1 − xn)), vn = ẋn, coincide with the equations of

motion of the so-called Toda lattice—the Hamiltonian system of particles on the
line with the Hamiltonian

H = 1
2

∑
n

p2
n +

∑
n

exp(xn+1 − xn). (2.24)

If in (2.20) one sets vn ≡ 0 and for A one chooses

Aψn = 1
2 [cncn+1ψn+1 − cn−1cn−2ψn−2], (2.25)

then (2.20) leads to the difference analogue of the KdV equation

d

dt
c̃n = c̃n(c̃n+1 − c̃n−1), c̃n = c2n. (2.26)

With each operator L there is connected a whole hierarchy of Lax-type equa-
tions, which are the reduction to equations in the coefficients of L of the equations
(2.2) with operators A of different orders. One of the most important facts in the
theory of integrable equations is the commutativity of all the equations which enter
into the general hierarchy.
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For the KdV equation the corresponding equations are called the “higher-order
KdV equations”. They have the form

uτ =
n∑
k=1

hkQk(u, . . . , u(2k+1))

and are the commutativity condition for the Sturm–Liouville operator with the
operators ∂/∂t−A, where A has order 2n+ 1.

In the paper [111] a representation of a different type than (2.2) for the higher-
order KdV equations was used for the first time—a representation of Lax type in
matrix functions depending on an additional spectral parameter.

For the general equation (2.2) such a λ-representation can be constructed in
the following manner.

The equation

Ly = λy (2.27)

is equivalent to the first-order matrix equation[
∂

∂x
− UL(x, t, λ)

]
Y (x, t, λ) = 0, (2.28)

where UL is an nl× nl matrix (n is the order of L, and the matricial coefficients of
L are l× l). The vector Y is the column composed of the vectors (∂i/∂xi)y(x, t, λ),
i = 0, . . . , n− 1.

The matrix UL has the following block structure

UL = u−1
n


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

λ− u0 −u1 . . . −un−2 −un−1

 . (2.29)

If we act with the operator A on the coordinates of the vector Y and use (2.27)
to express the (∂n/∂xn)y in terms of lower-order derivatives and the parameter λ,
we obtain that on the space of solutions of (2.27) the equation(

∂

∂t
−A

)
y(x, t, λ) = 0 (2.30)

is equivalent to an equation(
∂

∂t
− VA(x, y, λ)

)
Y (x, t, λ) = 0 (2.31)

The matrix entries of VA depend polynomially on λ, the matrix entries of the
ui(x, t), and their derivatives.

The compatibility of equations (2.27) and (2.30) implies the compatibility of
(2.28) and (2.31). Hence [

∂

∂x
− UL,

∂

∂t
− VA

]
= 0. (2.32)
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For the KdV equation the matrices UL, VA have the form [111]:

UL =
(

0 1
λ− µ 0

)
, (2.33)

VA =

 −ux
4

λ+
u

2

λ2 − uλ

2
− u2

2
− uxx

4
ux
4

 . (2.34)

Subsequently, equation (2.32), where U and V were now arbitrary rational
functions of the parameter λ, was proposed in [127] as a general scheme for the
production of one-dimensional integrable equations. The beginning of this program
goes back to the paper [1], in which for the integration of the sine-Gordon equation
an example of a rational family was first introduced.

Let U(x, t, λ) and V (x, t, λ) be arbitrary matrix functions depending rationally
on the parameter λ:

U(x, t, λ) = u0(x, t) +
n∑
k=1

hk∑
s=1

uks(x, t)(λ− λk)−s,

V (x, t, λ) = v0(x, t) +
m∑
r=1

dr∑
s=1

vrs(x, t)(λ− µr)−s.

(2.35)

The condition of compatibility of the linear problems(
∂

∂x
− U(x, t, λ)

)
Ψ(x, t, λ) = 0,(

∂

∂t
− V (x, t, λ)

)
Ψ(x, t, λ) = 0

(2.36)

is represented by the equation of zero curvature

Ut − Vx + [U, V ] = 0, (2.37)

which must be fulfilled for all λ. This equation is equivalent to a system of
1 +

∑
k hk +

∑
r dr matrix equations in the unknown functions uks(x, t), vrs(x, t),

u0(x, t), v0(x, t). These equations arise when one equates to zero all the singular
terms on the left-hand side of (2.37) at the points λ = λk, λ = µr, and also the
absolute term, equal to u0t − u0x + [u0, v0].

The number of equations is one matrix equation fewer than the number of
unknown matrix functions. This underdeterminacy is connected with a “gauge
symmetry” of the equations (2.37). If g(x, t) is an arbitrary non-degenerate matrix
function, then the transformation

U → gxg
−1 + gUg−1,

V → gtg
−1 + gV g−1,

(2.38)

called a “gauge transformation”, takes the solutions of (2.37) over into solutions of
the same equation.

A choice of conditions on the matrices U(x, t, λ), V (x, t, λ) compatible with the
equations (2.37) and destroying the gauge symmetry is called a setting of the gauge.
The simplest gauge is the pair of conditions u0(x, t) = v0(x, t) = 0.
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Just as in the above-considered case of commutation equations for differential
operators, the equations (2.37) are essentially generating equations for a whole fam-
ily of integrable systems. If the poles of U and V coincide, then these equations can
be reduced to a family of equations, which are parametrized by arbitrary constants,
in the coefficients only of U(x, t, λ). Here, by changing the multiplicity of the poles
of V , we will obtain a hierarchy of commuting flows associated with U(x, t, λ).

In singling out some particular equations from (2.37), an important issue is sin-
gling out the invariant submanifolds for the equation (2.37). This problem reduces
to describing the orbits of the coadjoint representation of the current algebra [2],
in the framework of which the Hamiltonian theory of equations of zero curvature
can naturally be introduced (see [30], [36], [52], [124]).

Leaving aside the further analysis of the questions of reduction and gauge equiv-
alence of systems, which may be found in the papers [2], [36], [52], [106], [126], let
us cite the two simplest examples.

Example 5. If U and V have one pole each, which do not coincide,

U =
u(ξ, η)
1− λ

, V =
v(ξ, η)
λ+ 1

, (2.39)

then the equations (2.37) (after the substitution x → ξ = x′ − t′; t → η = x′ + t′)
lead to the equations of a principal chiral field ([106], [122])1

uη + 1
2 [u, v] = 0, vξ = 1

2 [u, v]. (2.40)

Here u(ξ, η), v(ξ, η) are the currents of the chiral field

u = GξG
−1; u = GηG

−1. (2.41)

Equation (2.40) yields

2Gξη = GξG
−1Gη +GηG

−1Gξ. (2.42)

The last equations are Lagrangian with Lagrangian (1.68) (the currents Aµ in
the notation of (1.68) correspond, as is evident from (2.41), to u and v).

As was remarked in [135], the representation (2.37), where U and V are given
by the formulas (2.39), simultaneously gives the solutions of the equations of motion
of a principal chiral field with a “multi-valued additional term”. If in the definition
of the corresponding Lagrangian (1.72) one introduces a coupling constant κ, i. e.

δS = δS0 + κΩ1,

then the equations of motion can be written in terms of the currents in the form

∂ξv =
1 + κ

2
[v, u], ∂ηu =

1− κ
2

[v, u]. (2.43)

In the inverse scattering-method, as will be stressed repeatedly in the following,
the road to constructing solutions of the equations (2.37) goes via the construction
with the aid of various schemes (“dressing”, algebraic geometric schemes, etc.) of
functions Ψ(ξ, η, λ) which by their construction satisfy the equations (2.36) with
some U, V (which will automatically satisfy (2.37)). In the case under consideration,
after the function Ψ(ξ, η, λ) has been constructed by one means or another, the
desired solutions of the equations of motion are defined by the formula

G(ξ, η) = Ψ(ξ, η, κ).

1It is interesting that this example was first brought to the open together with the notion of
zero curvature in a remarkable (but forgotten) classical paper by René Garnier [61].
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Example 6. As another example let us cite the Sine-Gordon equation [134],
[1]

uξη = 4 sinu, (2.44)
which arose in the theory of surfaces of constant negative curvature. By the number
of applications (in the theory of superconductivity, in the theories of quasi-one-
dimensional conductors, of film-formation processes on crystalline substrates, in
the theory of fields) leading to equation (2.44), this equation belongs to the most
important in contemporary mathematical physics.

As in the general case of a principal chiral field, the matrices U and V have
one pole each

U(ξ, η, λ) =

 iuξ
2

1

λ−1 − iuξ
2

 , (2.45)

V (ξ, η, λ) =
(

0 λeiu

e−iu 0

)
. (2.46)

It should be noted that an automatic generalization of equations (2.37) to the case
of matrices U and V whose spectral parameter is defined on an algebraic curve Γ
of genus greater than zero (the case of rational families corresponds to g = 0) is
obstructed by the Riemann–Roch theorem (G. F. B. Riemann–G. Roch).

Indeed, let U(x, t, λ) and V (x, t, λ) be meromorphic functions on Γ having poles
of total multiplicity N and M . By the Riemann–Roch theorem [131] the number
of independent variables (i. e. the dimension of the space of matrix functions with
the same poles as U and V ) equals l2(N − g + 1) for U and l2(M − g + 1) for V .
The commutator [U, V ] has poles of total multiplicity N +M . Hence the equations
(2.37) are equivalent to l2(N + M − g + 1) equations. With gauge equivalence
taken into account the number of equations is always greater than the number of
variables.

There are two ways of circumventing the obstacle mentioned. One of them
was proposed in the papers [84], [86], where the matrices U and V were allowed
to have, besides poles stationary with respect to x and t, gl poles depending on x
and t in a definite fashion. It was shown that here the number of equations with
gauge equivalence taken into account is equal to the number of the independent
variables, which (just as in the rational case) are the singular parts of U and V at
the stationary poles.

Example 7. An example of such an equation is

ct =
1
4
cxxx +

3
8cx

(1− c2xx)− 1
2
Q(c)c2x. (2.47)

(so-called Krichever–Novikov equation).
Here the quantity Q = ∂Φ/∂c+ Φ2 is defined through

Φ(c, y) = ζ(−2c) + ζ(c− y) + ζ(c+ y)

and does not depend, as is easy to verify, on y (ζ is Weierstrass’s ζ-function [11]).
This equation together with the following pair with an elliptic spectral param-

eter (an elliptic family) was obtained in [85], [86]. The matrix U equals

U = A1ζ(λ− γ1) +B1ζ(λ− γ2) +
(

0 0
1 0

)
ζ(λ) +A1ζ(γ1) +B1ζ(γ2) +

(
0 1
−u 0

)
,
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where

A1 =
1

α1 − α2

(
0 0
α1 1

)
, B1 =

1
α1 − α2

(
0 0
α2 1

)
.

For V we have the formulas

V = A2ζ(λ− γ1) +B2ζ(λ− γ2) +
(

0 0
1 0

)
℘(λ) +

(
0 1
−u

2
0

)
ζ(λ) +D,

where

A2 =


α1α2

α1 − α2

α2

α1 − α2
α1u

2(α1 − α2)
u

2(α1 − α2)

 , B2 =


α1α2

α2 − α1

α1

α2 − α1
α2u

2(α2 − α1)
u

2(α2 − α1)


and

D = A2ζ(γ1) +B2ζ(γ2) +

(
w1

u

2
w2 −w1

)
.

The equations (2.37) are equivalent to a system of equations in the functions
γi, αi, wi, u. By successively eliminating from this system the variables wi, which
equal

w1 =
1

2(α1 − α2)
(℘(γ1)− ℘(γ2))− ux

4
,

w2 = w1x −
u2

2
+ ℘(γ1) + ℘(γ2),

and afterwards the αi, (the formulas for which we shall omit here) and u (see
(2.48)), we shall arrive finally at equation (2.47), where

γ1 = c(x, t) + y, γ2 = y − c(x, t) + c0.

Each solution of equation (2.47) defines by the formula

8u(x, y, t) = (c2xx − 1)c−2
x + 8Φcxx + 4c2x

(
∂Φ
∂c
− Φ

)
− 2cxxxc−1

x (2.48)

a rank 2 genus 1 solution of the Kadomtsev–Petviashvili equation (KP).
Equation (2.47) also describes the deformation of commuting linear differential

operators of orders 4 and 6. Such an operator of order 4 has the form:

L = (∂2 + u2) + cx(℘(γ2)− ℘(γ1))
d

dx
+

d

dx
(cx(℘(γ2)− ℘(γ1)))

− ℘(γ2)− ℘(γ1). (2.49)

Equation (2.47), as is shown in [130], is the only one of the equations of the form

ct = const · cxxx + f(c, cx, cxx)

possessing a “hidden symmetry” which cannot be reduced to the ordinary KdV by
transformations of “Miura type” w = w(c, cx, . . . ).

By the substitution v = ζ(c) equation (2.47) reduces to the algebraic form

vt =
1
4
vxxx +

3
8vx

(v2
xx − P3(v)),

P3(v) = 4v3 − g2v − g3.

(2.50)
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Example 8. The second way of introducing a non-rational spectral param-
eter is based on the choice of a special form for the matrices U and V and has
been successfully realized only in certain examples on elliptic curves Γ (g = 1).
The physically most interesting example of such equations is the Landau–Lifshitz
equation

St = S × Sxx + S × JS, (2.51)
where S is a three-dimensional vector of unit length, |S| = 1, and Jαβ = Jαδαβ is
a diagonal matrix. As has been shown in the papers [22], [128], equation (2.51) is
the compatibility condition for the linear equations (2.35), (2.36), where the (2×2)
matrices U and V are

U = −i
3∑

α=1

wα(λ)Sα(x, t)σα,

V = −i
∑
α,β,γ

wα(λ)σαSβSγxεαβγ − 2i
∑
α

aα(λ)Sασα,
(2.52)

where the σα are the Pauli matrices (W. Pauli), and

w1 =
ρ

sn(λ, k)
, w2 = ρ

dn(λ, k)
sn(λ, k)

, w3 = ρ
cn(λ, k)
sn(λ, k)

,

a1 = −w2w3, a2 = −w3w1, a3 = −w1w2,

(where sn(λ, k), cn(λ, k), dn(λ, k) are Jacobi’s elliptic functions [11]).
The parameters Jα are given by the relations

k =
√
J2 − J1

J3 − J1
, ρ =

1
2

√
J3 − J1, 0 < k < 1. (2.53)

Example 9. Another interesting example are the equations of an anisotropic
O(3)-field [29]

uξ = [u, Jv], vη = [v, Ju], (2.54)
where u and v are currents: u = gηg

−1, v = gξg
−1.

The Lagrangian of this model is equal to

L = −1
2

∫
tr(gξg−1Jgηg

−1) dx. (2.55)

The equations (2.54) are equivalent to (2.37), where U and V are closely con-
nected with the pair for the Landau–Lifshitz equation and, just as this latter pair,
contain an elliptic dependence on the spectral parameter.

Example 10. For a long time the commutational representation

L̇ = [M,L] (2.56)

of Lax type for the equations of motion of the Moser–Calogero system2 (J. Moser–
F. Calogero) appeared to be a special case.

This is a system of particles xn on the line with the Hamiltonian

H =
1
2

N∑
n=1

p2
n + 2

∑
i<j

℘(xi − xj), (2.57)

2Recently this system and its discrete versions has attracted a special interest due to its deep

relations to two- and four-dimensional gauge theories and relations with quantum groups [KBBT],
[KZ], [KLWZ].
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where ℘ is the Weierstrass function. For this system L and M are matrices generally
not depending on a spectral parameter, and have the form:

Lij = piδij + (1− δij)φ(xi − xj), (2.58)

Mij =

∑
l 6=i

z(xi − xj)

 δij − (1− δij) y(xi − xj), (2.59)

y(ξ) = φ′(ξ), z(ξ) = −φ
′′

2φ
, φ(ξ) =

1
sn(ξ, k)

.

The representations (2.56) are sufficient for the construction of integrals of the
system (2.57), equal to Jk = (1/k) trLk, but they are insufficient for the explicit
construction of angle-type variables and the integration of the equations of motion
in terms of theta functions.

As will be shown in § 5, the matrices L and M admit the introduction of a
spectral parameter on an elliptic curve, but here the matrix entries turn out not to
be meromorphic functions, but to have an exponential essential singularity.

The examples which have been brought by far do not exhaust all systems to
which the inverse scattering method is applicable. A series of important examples
will be cited and analyzed in detail in the following sections. Meanwhile, to conclude
this section let us underline once more those basic features which are characteristic
for systems to which the inverse method is applicable.

First, all such (1 + 1) systems are equivalent to the compatibility condition
(2.37) for the pair of linear problems (2.36), where U(x, t, λ) and V (x, t, λ) are
meromorphic functions of the “spectral parameter λ” (defined in the basic examples
on a rational or elliptic curve). Second, each such equation is included in a whole
hierarchy of flows which commute with it. The commutativity of the flows allows
one to restrict the original system to the set of stationary points of any other flow
which enters into the same hierarchy.

Restriction of the KdV equation to the stationary points of the “n-th higher-
order analogue” of the KdV equation served as the starting point in the construction
of the theory of finite gap Sturm–Liouville operators and in the further develop-
ment of algebraic-geometric integration methods which are applicable to all systems
admitting commutational representations [111], [45].

Surveys of the various stages in the development of the theory of finite gap or
“algebraic-geometric” integration can be found in [40], [41], [76], [83], [86], [113],
[115].

The stationary points of the “n-th higher-order analogue of the KdV equation”
are described by the ordinary differential equation

n∑
k=1

hkQ2k+1(u, . . . , u(2k+1)) = 0, (2.60)

which is equivalent to the condition of commutation of the Sturm–Liouville operator
L and an operator L1 of order 2n+ 1

[L,L1] = 0. (2.61)

These equations, as was shown in [111], are a completely integrable Hamiltonian
system. An important corollary of this result is that the generic solution of the



44 2. MODERN IDEAS ON THE INTEGRABILITY OF EVOLUTION SYSTEMS

purely algebraic problem (2.61) turns out to be periodic and quasiperiodic in the
variable x. It defines “finite-gap” Schrödinger Operators in the sense of Spectral
Theory on the line. This discovery made by S. P. Novikov in 1974 became an initial
point of the periodic soliton theory.

For general Lax equations (2.2) the condition which picks out the algebraic-
geometric solutions of these equations also has the form (2.61), where L is the
operator (2.4) which enters into the original Lax pair and L1 is an auxiliary op-
erator. Equation (2.61) describes an invariant submanifold of the initial equation
(2.2). When we increase the order of L1 we obtain an ever-ascending family of such
submanifolds, which in a number of cases (for example, for the KdV equation) are
everywhere dense in the space of periodic solutions.

Remark. The problem of classifying commuting linear differential operators
with scalar coefficients was considered from a purely algebraic point of view in the
papers of J. Burchnall and T. Chaundy [26]. It was shown by them that for such
operators there can be found a polynomial Q(λ, µ) in two variables such that

Q(L,L1) = 0. (2.62)

In the case of operators of relatively prime orders, to each point of the curve Γ
given by the equation Q(λ, µ) = 0 there corresponds a joint eigenfunction ψ(x, P ),
P = (λ, µ), unique up to proportionality, of the operators L and L1, i. e.

Lψ(x, P ) = λψ(x, P ), L1ψ(x, P ) = µψ(x, P ). (2.63)

The logarithmic derivative ψxψ−1 is a meromorphic function on Γ which generically
has g poles γ1(x), . . . , γg(x), where g is the genus of the curve Γ (the remaining poles
do not depend on x).

In the paper [26] it was shown that commuting operators of relatively prime
orders are uniquely determined by the polynomial Q and the assignment of the
generic points γ1(x0), . . . , γg(x0), although finite formulas were not obtained. A
program for effectivization of these results was proposed by H. Baker [9]. Unfortu-
nately, Baker’s program was never realized and in the course of a long time these
papers were undeservedly forgotten.

As has already been said, the equations (2.61) describe the invariant subman-
ifolds of equations of Lax type. These equations were considered from this point
of view in the papers [74], [75], in which the results of the twenties were made
significantly more effective and were generalized to the case of operators with ma-
trix coefficients. For the coefficients of commuting scalar operators of relatively
prime order, explicit expressions in terms of Riemann theta functions were found
in these papers which showed that the general solutions of the equations (2.61) in
this case are quasi-periodic functions. In 60s Dixmier wrote explicitly a pair of
commuting operators of the orders 4 and 6 with polynomial coefficients connected
by the equation of the nonsingular elliptic curve. No theta-functions! Investigation
of the higher rank problem was started in [35] as a continuation of [74], [75]. A
classification was obtained in [78]. For the effective classification (i. e. calculation
of coefficients) new method of “the KP deformations of Tyurin parameters” was
developed in [84]–[86]. All problems were solved for genus 1, rank 2 and 3 (see [86],
[GR?], [MO?])

In the general case the solutions of (2.63) form an r-dimensional linear space,
where r is a divisor of the orders of the operators L and L1. It has been shown that
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a ring of commuting operators A is determined by a curve Γ and a matrix divisor
of rank r. The reconstruction of the coefficients of the operators from these data
comes down to a linear Riemann problem.

In individual cases, as was shown in [85], it is possible to eliminate the necessity
of solving a Riemann problem and to obtain explicit formulas for the operators L
and L1 (the formula for an operator L of order 4 which commutes with an operator
of 6th order was quoted above (2.49)).

Let us give a general definition of finite gap solutions for the equations of zero
curvature (2.37), which generalizes condition (2.61) in a natural way.

We shall speak of “finite gap” or algebraic-geometric solutions of equations
admitting a commutational representation to mean solutions for which a matrix-
valued function W (x, t, λ) can be found, depending meromorphically on the pa-
rameter λ (which is defined on the same curve as the parameter in U and V ) such
that [

∂

∂x
− U(x, t, λ),W (x, t, λ)

]
= 0, (2.64)[

∂

∂t
− V (x, t, λ),W (x, t, λ)

]
= 0. (2.65)

The equations (2.64), (2.65), which in a definition like this one play only an auxiliary
role in the process of integrating the original equation (2.37), are also of independent
interest, as will be evident in the sequel. To them one can reduce practically all
interesting examples of finite-dimensional Hamiltonian systems which are integrable
by the inverse scattering method.

2. Algebraic-Geometric Integrability of Finite-Dimensional λ-Families

The basic goal of this section is the presentation of a procedure for integrating
equations (2.64) and (2.65).

Let us denote by Ψ(x, t, λ) the fundamental solution matrix of the equation(
∂

∂x
− U(x, t, λ)

)
Ψ(x, t, λ) = 0,(

∂

∂t
− V (x, t, λ)

)
Ψ(x, t, λ) = 0,

(2.66)

normalized by the condition
Ψ(0, 0, λ) = 1. (2.67)

It follows from (2.64) that

W (x, t, λ) Ψ(x, t, λ) (2.68)

is also a solution of equation (2.66). Any solution of (2.66) is uniquely determined
by its initial conditions and has the form Ψ(x, t, λ)G(λ), where G does not depend
on (x, t). Taking the normalization condition (2.67) into account, we get that

W (x, t, λ) Ψ(x, t, λ) = Ψ(x, t, λ)W (0, 0, λ). (2.69)

Consequently, the coefficients of the characteristic equation

Q(λ, µ) = det(W (x, t, λ)− µ · 1) = 0 (2.70)
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are integrals of the equations (2.64), (2.65). They are polynomials in the matrix
entries of W , or, as was explained in the preceding section, they are differential
polynomials of the basic phase variables—the matrix entries of U(x, t, λ).

Generically equation (2.70) defines a nonsingular algebraic curve Γ (i. e. a com-
pact Riemann surface), to each point of which (i. e. pair (λ, µ)) there corresponds
an eigenvector h, unique up to proportionality, of the matrix W

W (x, t, λ)h(x, t, γ) = µh(x, t, γ); γ = (λ, µ) ∈ Γ. (2.71)

Remark. The notion of genericity in the question at hand is not completely
trivial. Although the levels of the integrals of equation (2.64) for which the eigen-
values of W are r-fold degenerate identically in λ (r is obliged to be a divisor of
l, where W is an l × l matrix) unconditionally have nonzero codimension, in the
procedure for reconstructing the matrices U and V from these data additional func-
tional parameters appear, as is shown by the results of the papers [36], [78]. The
elaboration of this direction, which has led to the construction of finite gap solu-
tions of rank r > 1 for two-dimensional equations of the Kadomtsev–Petviashvili
type depending on functional parameters (see [84], [85], [86]), can be found here
in the example 7 above for the special case r = 2, g = 1 where this problem was
solved effectively.

Let us normalize the vector h by requiring, for example, that h1(x, t, γ) = 1
or
∑
hi(x, t, γ) = 1. In both cases all of the coordinates hi(x, t, γ) are rational

functions of λ and µ, i. e. meromorphic functions on the curve Γ.
If Ψj(x, t, λ) are the columns of the matrix Ψ(x, t, λ), then it follows from (2.69)

and (2.71) that the vector function

ψ(x, t, γ) =
∑
j

hj(0, 0, γ) Ψj(x, t, λ); γ = (λ, µ), (2.72)

simultaneously satisfies the equations(
∂

∂x
− U(x, t, λ)

)
ψ(x, t, γ) =

(
∂

∂t
− V (x, t, λ)

)
ψ(x, t, γ) = 0, (2.73)

W (x, t, λ)ψ(x, t, γ) = µψ(x, t, γ). (2.74)

The curve Γ l-foldly covers the curve Γ̂ on which the parameter λ is defined.
Outside the poles λi of the matrices U and V the matrix Ψ(x, t, λ) is a holomorphic
function of the parameter λ. Consequently, the vector function ψ(x, t, γ) is mero-
morphic on Γ outside the points Pα—the preimages of the poles λi of the matrices
U and V . (We observe that above the points λ the curve Γ may branch). The
poles of ψ(x, t, γ) coincide with the poles of h(0, 0, γ) and therefore do not depend
on x, t.

Let us further restrict ourselves to the case of a rational family (i. e. λ is de-
fined on the ordinary complex plane). Let us consider the matrix H(x, t, λ) whose
columns are the vectors h(x, t, γi), where the γui = (λ, µi) are the preimages of the
point λ on Γ under the natural projection Γ→ C, (λ, µ)→ λ.

The function
r(x, t, λ) = (detH(x, t, λ))2 (2.75)

does not depend on the numbering of the γi and is therefore a well-defined function
of λ. Since the hi(x, t, γ) are meromorphic on Γ, r(x, t, λ) is a rational function
of λ. It has double poles at the images of the poles of h(x, t, γ) and zeroes at the
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points above which Γ branches. The number of poles of r is equal to the number
of zeroes. Hence

2N = ν, (2.76)

where ν is the number of branch points with multiplicities counted. A formula is
well-known which connects the genus g of a smooth curve Γ l-foldly covering C with
the number of branch points [131]

2g − 2 = ν − 2l. (2.77)

Consequently, the number of poles of h(x, t, γ) and hence also of ψ is equal to

N = g + l − 1. (2.78)

Now let us find the behaviour of ψ(x, t, γ) in the neighbourhood of the points
Pα—the preimages of the poles of U(x, t, λ), V (x, t, λ).

It follows from (2.71) and (2.74) that the vectors h and ψ are proportional

ψ(x, t, γ) = f(x, t, γ)h(x, t, γ). (2.79)

Let us denote by Ψ̃(x, t, λ) the matrix whose columns are the vectors ψ(x, t, γi),
γi = (λ, µi), and by F (x, t, λ) the diagonal matrix Fij(x, t, λ) = f(x, t, γi)δij . Then
one can write (2.79) in the form

Ψ̃(x, t, λ) = H(x, t, λ)F (x, t, λ). (2.80)

We have
U(x, t, λ) = Ψ̃xΨ̃−1 = HxH

−1 +HFxF
−1H−1,

V (x, t, λ) = Ψ̃tΨ̃−1 = HtH
−1 +HFtF

−1H−1,
(2.81)

Without loss of generality we may suppose thatH is regular and non-degenerate
at the points λi. From this we get that FxF−1 coincides modulo O(1) with the
eigenvalues of the singular part of U(x, t, λ) at λi; and similarly for F, F−1.

Thus, in a neighbourhood of Pα

f(x, t, γ) = exp(qα(x, t, kα))fα(x, t, γ). (2.82)

Here k−1
α (P ) is a local parameter in the neighbourhood of Pα, k−1

α (Pα) = 0,
qα(x, t, k) is polynomial in k, and fα is a regular function in the neighbourhood
of Pα.

Summing up, we come to the following assertion.

Theorem 2.1. The vector function ψ(x, t, γ)
1◦. is meromorphic on Γ outside the points Pα. Its divisor of poles does not

depend on x, t. If W is nondegenerate, then generically the curve Γ is nonsingular.
The number of poles of ψ (counting multiplicity) is equal to g + l − 1, where g is
the genus of the curve Γ.

2◦. in a neighbourhood of the points Pα the function ψ(x, t, γ) has the form:

ψ(x, t, γ) =

( ∞∑
x=0

ξsα(x, t)k−1
α

)
exp(qα(x, t, kα)), (2.83)

where the first factor is the expansion with respect to the local parameter k−1
α =

k−1
α (γ) of a holomorphic vector, and qα(x, t, k) is a polynomial in k.
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The basic idea of the algebraic-geometric version of the inverse problem con-
sists in reconstructing the vector ψ(x, t, γ) from the enumerated analytic properties.
The specific nature of these properties guarantees the existence of U(x, t, λ) and
V (x, t, λ),W (x, t, λ) such that (2.66) and (2.69) hold. A consequence of the com-
patibility of these systems are the equations (2.37), (2.64), (2.65).

As has already been said, the development of the fundamental stages of the
theory of finite gap integration is mirrored in detail in [115] and in the surveys [40],
[41], [44], [45], [76], [83], [86], [113].

Before going over to the procedure for reconstructing ψ, let us quote what we
need to know from the classical algebraic geometry of Riemann surfaces and the
theory of theta functions.

An arbitrary compact Riemann surface can be given by an equation

R(λ, µ) =
∑

aijλ
iµj , (2.84)

where i, j run through some finite set of integers. Generically this curve will be
nonsingular. The genus of this curve can be found conveniently with the aid of the
so-called Newton polygon, which is what one calls the convex hull of the integer
points with the coordinates i, j for which aij 6= 0 in (2.84). The genus of the curve
is equal to the number of integer points lying within the Newton polygon.

A basis of the holomorphic differentials (of the first kind) on a nonsingular
curve has the form

ηij =
λiµj

Rµ(λ, µ)
dλ, (2.85)

where the i, j belong to the interior of the Newton polygon.
On the curve Γ one can choose a basis of cycles a1, . . . , ag, b1, . . . , bg with the

following intersection numbers

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij . (2.86)

By taking suitable linear combinations, we obtain a canonical basis of the holo-
morphic differentials

ω1, . . . , ωg (2.87)

normalized by the conditions∮
ak

ωi = δik, i, k = 1, . . . , g. (2.88)

The matrix

Bik =
∮
bk

ωi (2.89)

is called the period matrix of the Riemann surface Γ. It is symmetric and has
a positive definite imaginary part. The unit basis vectors in Cg and the vectors
Bi with the coordinates Bik generate a lattice in Cg, the quotient by which is a
2g-dimensional torus T 2g = J(Γ), called the Jacobi variety (or Jacobian) of the
curve Γ.
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The Riemann theta function of the surface Γ is constructed in terms of the
matrix B

θ(z) =
∑
N∈Zg

exp(πi〈BN,N〉+ 2πi〈N, z〉),

z = (z1, . . . , zg), N = (N1, . . . , Ng),

〈N, z〉 = N1z1 + · · ·+Ngzg, 〈BN,N〉 =
∑

BijNiNj .

(2.90)

This function is entire. Under translation of the argument by a vector of the lattice
it is transformed according to the law

θ(z +N +BM) = exp(−πi(〈BM,M〉+ 2〈z,M〉)) θ(z), N,M ∈ Zg. (2.91)

Also often used are theta functions with characteristics

θ[α, β](z) = exp(πi(〈Bα,α〉+ 2〈z + β, α〉)) θ(z + β +Bα), α, β ∈ Rg. (2.92)

Characteristics [α, β] for which all the coordinates of α, β equal 0 or 1/2 are called
half-periods. A half-period [α, β] is even if 4〈α, β〉 = 0 (mod 2), and odd otherwise.

The Abel map of a Riemann surface Γ into its Jacobi varietyA(P ) = (A1(P ), . . . , Ag(P ))
is given in the following way

Ak(P ) =
∫ P

Q

ωk, (2.93)

where Q is a fixed point on Γ.
A divisor on Γ is a formal integer combination of points on Γ,

D =
∑

niPi, ni ∈ Z. (2.94)

For any function f meromorphic on Γ there is defined the divisor (f) of its
zeroes P1, . . . , Pn and poles Q1, . . . , Qm (with multiplicities p1, . . . , pn, q1, . . . , qm
respectively)

(f) = p1P1 + · · ·+ pnPn − q1Q1 − · · · − qmQm (2.95)

(such divisors are called principal).
The divisors form an abelian group. The degree of a divisor is the number

degD =
∑

ni, (2.96)

The Abel map (N. H. Abel) (2.93) can be extended linearly to the group of all
divisors.

A divisor for which all ni > 0 is called a positive divisor D ≥ 0 (or an effective
divisor).

For any divisor D the linear space l(D) associated with it is the space of mero-
morphic functions f on Γ such that

(f) +D > 0.

The dimension of this space is given by the Riemann–Roch theorem [131]. For
a divisor of degree greater than or equal to g,

dim l(D) ≥ degD − g + 1. (2.97)

For generic divisors (2.97) is an equality. The corresponding divisors are called
non-special.
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Let us consider the Abel map3 of unordered sets P1, . . . , Pg of points of Γ, i. e.
of the g-th symmetric power of Γ

A : SgΓ→ J(Γ), A(P1, . . . , Pn) =
∑
i

A(Pi). (2.98)

The problem of inverting this map is known as the Jacobi inversion problem.
Its solution (Riemann) can be given in the language of theta functions. Namely, if
for the vector ζ = (ζ1, . . . , ζg) the function θ(A(P ) − ζ) is not identically equal to
zero on Γ, then it has on Γ exactly g zeroes P1, . . . , Pg, giving the solution of the
inversion problem

A(P1) + · · ·+A(Pg) = ζ −K, (2.99)
where K = (K1, . . . ,Kg) is the vector of Riemann constants [40], which depend only
on the Riemann surface, the choice of the basis of cycles on it, and the initial point
of the Abel map.

Now we are ready to pass over to the solution of the inverse problem of re-
constructing the “eigen”-vector ψ(x, t, γ) of the operators of (2.64), (2.65) from its
analytic properties.

The fundamental algebraic-geometric tool in the theory of finite gap linear op-
erators and in the algebraic-geometric version of the inverse scattering method are
the so-called Baker–Akhiezer functions. The general definition of these functions,
including the multi-point ones, was given in [75] on the basis of a generalization
of the analytic properties of Bloch eigenfunctions of operators with periodic and
almost periodic coefficients [38], [45], [64]. Multipoint functions are functions which
have essential singularities of exponential type at several points. Single-point func-
tion of this kind (of the exponential type) appears as a joint eigenfunction of a pair
of scalar commuting operators of relatively prime order as it was pointed out by
A. Baker in the work [9]. He mentioned that it can be computed through the theta-
functions using material of the book [8] but his program never has been carried out.
The theta-functional formula for this special case was obtained first by A. Its in
1976 (see Appendix in [45]). N. I. Akhiezer [5] stated examples of interpretation of
such functions in the spectral theory of operators on the half-line. The connection
with periodic problem was not known until 1974.

Definition. Let P1, . . . , Pn be points on a Riemann surface Γ of genus g; let
k−1
α (P ) be local parameters in the neighbourhood of these points, k−1

α (Pα) = 0,
α = 1, . . . , n; let q1(k), . . . , qn(k) be a set of polynomials; and let D be a divi-
sor on Γ. An n-point Baker–Akhiezer function given by these data is a function:
a) meromorphic on Γ outside the points Pα, with the divisor of its poles and zeroes
(ψ) satisfying the condition (ψ) +D ≥ 0; and such that b) for P → Pα the product
ψ(P ) exp(−qα(kα(P ))) is analytic.

Theorem 2.2. For a non-special divisor D of degree N the dimension of the
linear space of functions with the enumerated properties is equal to N − g + 1. In
particular, if D is a generic set of g points, then ψ is uniquely determined up to a
factor. It has the form:

ψ(P ) = c exp

(
n∑
α=1

∫ P

Q

Ωqα

)
θ
(
A(P ) +

∑
α U

(qα) − ζ
)

θ(A(P )− ζ)
. (2.100)

3Also often called the Jacobi map (translator’s note).
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Here Ωqα is a normalized abelian differential of the second kind with a principal
part at the point Pα of the form dqα(kα(P )) (normalization means∮

a1

Ωqα = 0; (2.101)

with this condition Ωqα exists and is unique); the vector 2πiU (qα) the vector of
b-periods of the differential Ωqα ; ζ = A(D) +K.

The proof of formula (2.100) amounts to checking that it correctly defines a
function on Γ. Changing the path of integration from Q to P leads to a translation
of the arguments of the theta functions by a vector of the period lattice, N +BM .
The exponent of the exponential is translated by 2πi

〈∑
α U

(qα),M
〉
.

From (2.91) it follows that the value of ψ(P ) does not depend on the choice of
the path of integration. From (2.100) it follows that the function possesses all the
necessary analytic properties. �

By virtue of theorem 2.1, to each finite gap solution of rank 1 of the equations
(2.37), i. e. solution of the system (2.64), (2.65), there is associated a Riemann sur-
face Γ, which generically can be considered to be nonsingular, a set of polynomials
qα(x, t, k) and a non-special divisor of degree g + l − 1, where g is the genus of
the curve Γ. Let us make use of theorem 2.2 for the construction of the inverse
mapping.

So, let there be given the set of data enumerated above. In the linear space
of Baker–Akhiezer functions corresponding to these data let us choose an arbitrary
basis ψi(x, t, P ) (the polynomials qα(x, t, k) depend on x and t as parameters; the
ψi also will obviously depend on the same parameters).

By theorem 2.2 one may choose for the ψi the functions given by formula
(2.100), in which ζ has been set equal to

ζi =
g−1∑
s=1

A(Ps) +A(Pg−1+i) +K. (2.102)

Theorem 2.3. Let ψ(x, t, P ) be the vector function whose coordinates are
the ψi(x, t, P ) constructed above. There exist unique matrix functions U(x, t, λ),
V (x, t, λ), W (x, t, λ), rational in λ, such that

∂xψ = Uψ, ∂tψ = V ψ, Wψ = µψ, P = (λ, µ). (2.103)

For the proof of the theorem it is enough to consider the matrix Ψ̃(x, t, λ)
whose columns are the vectors ψ(x, t, Pj), Pj = (λ, µj). This matrix depends on
the numbering of the columns (i. e. of the points Pj); however, the matrices

(∂xΨ̃)Ψ̃−1, (∂tΨ̃)Ψ̃−1, Ψ̃µΨ̃−1 (2.104)

are already well-defined (i. e. do not depend on this numbering) and by virtue
of the analytic properties of ψ they are rational functions of λ. These matrices
are designated by U, V,W respectively. Here µ̂ is the diagonal matrix equal to
µ̂ij = µiδij .

By using the path of the proof of equation (2.78) in the opposite direction, we
get that det Ψ̃ 6= 0 if λ is not a branch point. From this it follows that U and V
have poles only at the projections of the distinguished points Pα, and W only at
the projections of the points on Γ where µ has poles.
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Corollary. The matrices U, V,W constructed by the formulas (2.104) satisfy
the equations (2.37), (2.64), (2.65).

Remark. The formulas (2.104) give the most economical way of proving the
theorem in general, relating to arbitrary rational families. However in a majority
of cases, especially those corresponding to reductions of equations, the explicit
computation of the matrices U, V,W can be carried out from the requirement that
in the neighbourhoods of the Pα there should hold the congruences:

∂xψ(x, t, P ) ≡ U(x, t, λ)ψ(x, t, P ) (mod O(1) exp qα(x, t, kα))

(and the analogous congruences for V and W ). Here the matrix entries of U, V,W
turn out to be differential polynomials in the ξsα(x, t) the expansion (2.83) of the
regular part of ψ at the point Pα. This path will be traced in detail later on in
examples of the construction of finite gap solutions of equations of the Lax type
(see [40], [74], [75], [76]).

In the construction of the vector ψ(x, t, P ) from the set of data given before
theorem 2.3 there is an arbitrariness connected with the possibility of choosing
different bases ψi, in the linear space of Baker–Akhiezer functions corresponding to
the polar divisor D.

To this arbitrariness, under which ψ(x, t, P ) goes over into g(x, t)ψ(x, t, P ),
where g is a nondegenerate matrix, there corresponds a gauge symmetry (2.38) of
the equations (2.37), (2.64), (2.65) (the matrix W goes over under such a transfor-
mation into

W → gWg−1 ). (2.105)

Let us consider two vector functions ψ(x, t, P ), ψ̃(x, t, P ), corresponding to two
equivalent divisors D and D̃. The equivalence of these divisors means that there
exists a meromorphic function f(P ) such that its poles coincide with D and its
zeroes with D̃. From the definition it follows that the components of fψ̃ possess
the same analytic properties as the components of the vector function ψ(x, t, P ).
Hence

ψ(x, t, P ) = g(x, t) f(P ) ψ̃(x, t, P ), (2.106)

and the functions ψ and ψ̃ define gauge-equivalent solutions.
We shall consider both the equations (2.37), (2.64), (2.65) and their solutions

up to gauge transformations (2.38), (2.105). From (2.105) and the definition of Γ
(2.70) it follows that the gauge transformations leave the curves Γ invariant.

Theorem 2.4. The set of finite gap solutions (considered up to gauge equiva-
lence) corresponding to a nonsingular curve Γ is isomorphic to a torus—J(T )—the
Jacobi variety of this curve.

The assertion of the theorem follows from the fact that by virtue of the well-
known theorem of Abel two divisors are equivalent if and only if

degD = deg D̃, A(D) ≡ A(D̃).

The congruence sign means congruence modulo periods of the Jacobian of the
curve Γ.

The coefficients of the polynomial Q(A, p) are integrals of the equations (2.37),
(2.64). The theorem just formulated means that the level set of these integrals is
generically a torus.
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For special values of the integrals, for which the surface Γ has singularities, the
level manifold of these integrals is isomorphic to the generalized Jacobian of the
curve, which is the product of a torus with a linear space.

To multisoliton and rational solutions of the equations (2.37) correspond ra-
tional curves with singularities. To the different singularity types there also cor-
respond different solution types. For example, in the case of singularities of the
self-intersection type multisoliton solutions are obtained (see, for example, for the
KdV equation § 3, [115]), and in the case of singularities of the “cusp” type rational
solutions are gotten.

Let us consider at greater length a number of examples connected with hyper-
elliptic curves. As has already been said, finite gap solutions of the KdV equation
are the restriction of this equation to the stationary points of one of the higher-
order analogues of the KdV equation. They satisfy an ordinary differential equation
equivalent to the operator equation

[L,An] = 0, (2.107)

where An is a differential operator of order 2n + 1. As was shown above, this
equation admits the λ-representation (2.32), where UL has the form (2.33), and

WA =
(

0 λn

λn+1 0

)
+O(λn−1). (2.108)

Hence the characteristic equation (2.70),

det(µ · 1−WA(x, t, λ)) = µ2 −R2n+1(λ) = 0, (2.109)

gives a hyperelliptic curve Γ. The coefficients of the polynomial

R2n+1 = λ2n+1 +
2n+1∑
i=1

riλ
2n+1−i

are polynomials in u, u′, . . . , u(2n+1) and, in the proved fashion, integrals of the
equation (2.107).

The curve Γ may be represented as being glued together out of two copies of
the λ plane along cuts joining the Ei—the zeroes of the polynomial R2n+1—and
the point at infinity E =∞.

For real u(x) the Ei are the simple points of the spectrum of the periodic and
antiperiodic problems for the Sturm–Liouville operator (J. C. F. Sturm–J. Liouville)

L = − d2

dx2
+ u(x), (2.110)

the segments [E2i−1, E2i] are the allowed bands of the spectrum of L on the entire
axis, and the [E2i, E2i+1], i = 1, . . . , n are the forbidden bands4. (For more details
about the spectral theory of finite gap operators see § 6.)

As the a-cycles it is convenient to choose the cycles situated above the forbidden
bands, and as the b-cycles, cycles encompassing the segment [E1, E2i] of the real
axis.

4In English, the allowed and forbidden bands are often called the stable and unstable bands
respectively (translator’s note).
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E1 E2 E3 E4 E5 E6 E2n+1
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Figure 1

Let ψ(x, t, P ) be the Baker–Akhiezer function having n poles (n is the genus
of Γ) γ1, . . . , γn, and in a neighbourhood of P0 =∞ the form

ψ(x, t, P ) = exp(kx+ k3t)

(
1 +

∞∑
s=1

ξs(x, t)k−s
)
, (2.111)

k =
√
λ.

By theorem 2.2 it exists and is unique. Let u(x, t) = 2ξ′1. Then a straight
substitution of (2.111) gives

(−∂2
x + u(x, t) + λ)ψ(x, t, P ) = ekx+k3tO(k−1). (2.112)

The function ψ̃(x, t, P ), equal to the left-hand side of (2.112), satisfies all the re-
quirements defining ψ except one. Its expansion (2.111) in the neighbourhood of
P0 begins with ξ̃1k

−1 + . . . . From the uniqueness of ψ it follows that ψ̃ = 0.
Analogously, there exist unique functions v1(x, t) and v2(x, t) such that

Aψ − ∂tψ = O(k−1)ekx+k3t, (2.113)

where
A = ∂3

x + v1∂x + v2. (2.114)

From (2.113) we have
v1 = −3ξ′1 = 3

2u.

The compatibility of (2.113) and (2.112) is equivalent to the KdV equation.
The normalized abelian differentials of the second kind having poles at P0 of

second and fourth order are representable in the form:

Ω(2) =
λn +

∑n
i=1 riλ

n−i√
R2n+1(λ)

dλ, (2.115)

Ω(4) =
λn+1 − s1λ

n +
∑n
i=1 r̃iλ

n−i√
R2n+1(λ)

dλ, (2.116)

where R2n+1(λ) =
∏2n+1
i=1 (λ− Ei), s1 =

∑2n+1
i=1 Ei.

The coefficients ri, r̃i are determined by the normalization conditions∫ E2i+1

E2i

Ω(2) =
∫ E2i+1

E2i

Ω(4) = 0, i = 1, . . . , n. (2.117)
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By theorem 2.2

ψ(x, t, P ) = c exp

(
x

∫ P

E1

Ω(2) + t

∫ P

E1

Ω(4)

)
θ(A(P ) + Ux+ V t− ζ)

θ(A(P )− ζ)
, c = c(x, t),

(2.118)
where

πiUk =
∫ E2k

E1

Ω(2), (2.119)

πiVk =
∫ E2k

E1

Ω(4). (2.120)

If we choose E1 as the initial point for the Abel mapping, then after an explicit
calculation of the vector of Riemann constants we get

ζk =
n∑
i=1

∫ γi

E2i

ωk. (2.121)

In the neighbourhood of P0 we have

A(P ) = −Uk−1 +O(k−2) (2.122)

and by expanding (2.118) we arrive finally at the Matveev–Its formula [64] for the
finite gap solutions of the equation

u(x, t) = −2∂2
x ln θ(Ux+ V t− ζ) + const. (2.123)

Remark 1. The above construction of finite gap solutions of the KdV equation
was carried out with the aid of the original commutational representation without
an explicit transition to the λ-representation (2.32) in (2 × 2) matrices. For a
comparison with theorems 2.1, 2.2 let us indicate only that the components of the
vector ψ which figures in their formulation are given by ψ(x, t, λ) and ψx(x, t, λ).
The divisor of poles of ψ coincides with the divisor of poles of ψ(x, t, λ) together
with the point P0.

Let us also indicate that theorem 2.3 associates with the algebraic-geometric
spectral data Γ, γ1, . . . , γg, besides the operators L and A, a matrix W which is
WAn = the λ-representation of the operator An of (2.107). The operator An itself
can be recovered from these data in an analogous way to the construction of the
operator L.

Its coefficients can be determined uniquely from the congruence

Anψ ≡ µψ (mod ekx+k3tO(k−1)), µ = k2n+1 + a1k
2n−1 + . . . .

From the congruence there follows the exact equality

Anψ(x, t, P ) = µ(P )ψ(x, t, P ); (µ, λ) = P.

Remark 2. In a number of applications the equations of motion of the zeroes
γi(x, t) of the Bloch function ψ(x, t, P ), which were first obtained in [38], turn out
to be useful.

For this let us consider the functions ψxψ−1 and ψtψ
−1. The function ψxψ

−1

has poles at the points γi(x, t) and the form k + O(k−1) in the neighbourhood of
P0. Hence it is representable unambiguously in the form

ψx
ψ

=

√
R(λ) + P (x, t, λ)∏n
i=1(λ− γi(x, t))

,
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where P (x, t, λ) is a polynomial of degree (n− 1). It is uniquely determined by the
fact that ψxψ−1 has a pole over λ = γi only for one sign of

√
R (for example, for

the sign plus). Hence

P (x, t, γi(x, t)) =
√
R(γi(x, t)).

In the neighbourhood of a pole of ψxψ−1 we have

ψx
ψ

=
γ′i(x, t)

λ− γi(x, t)
+O(1), γ′i =

∂

∂x
γi.

Comparing the preceding equalities, we finally find that

γ′i(x, t) =
2
√
R(γi(x, t))∏

j 6=i(γi(x, t)− γj(x, t))
.

Analogously
ψt
ψ

=
λ
√
R(λ) + P1(x, t, λ)∏
i(λ− γi(x, t))

,

and, repeating the derivation of the equations for the γ′i, we get

γ̇i(x, t) =
2γi
√
R(γi(x, t))∏

j 6=i(γi(x, t)− γj(x, t))
, γ̇i =

∂

∂t
γi.

The Abel isomorphism (2.98) linearizes these equations on the Jacobian J(Γ).

As a second example let us consider the construction of finite gap solutions of
the sine-Gordon equation (2.44), which were first obtained in [68].

It follows from (2.64), (2.65) that W (ξ, η, 0) commutes with the singular part
of U at λ = 0; W (ξ, η,∞) commutes with the singular part of V at the point
λ = ∞. Hence the hyperelliptic curve Γ corresponding to a finite gap solution of
the sine-Gordon equation has branching at the points λ = 0, λ =∞.

Without retracing word for word the course of the proof of theorem 2.1, let us
give the form of the Baker–Akhiezer vector functions for this equation. The com-
ponents ψi(ξ, η, P ) have n poles γi outside the branch points P+ and P−, situated
above λ = 0, λ =∞. In a neighbourhood of these points

ψ±1 = ek(x±t)

( ∞∑
s=0

χ±s1(ξ, η)k−s±

)
, (2.124)

ψ±2 = ek(x±t)k±1

( ∞∑
s=0

χ±s2(ξ, η)k−s±

)
, (2.125)

ξ = x+ t, η = x− t, k± = λ∓1/2.

The functions ψi are determined uniquely by the normalization χ+
0i ≡ 1. (The

divisor D of degree n+ l − 1 = n+ 1 is equal to γ1 + · · ·+ γn + P+.)
It follows from the definitions of ψ1 and ψ2 that ∂ηψ1 and λψ2 have the same

analytic properties. So they are proportional. For the computation of the con-
stant of proportionality one must compare the coefficients of the term λ1/2 in the
expansions of these functions at P+. We have

∂ηψ1 = e−iuλψ2, e−iu =
χ−01

χ−02

. (2.126)



2. ALGEBRAIC-GEOMETRIC INTEGRABILITY OF FINITE-DIMENSIONAL λ-FAMILIES 57

Analogously,
∂ηψ2 = eiuψ1. (2.127)

In the same way it can be shown that

∂ξψ1 =
iuξ
2
ψ1 + ψ2, (2.128)

∂ξψ2 = λ−1ψ1 +
iuξ
2
ψ2, (2.129)

Corollary. The function u(ξ, t) defined out of (2.126) is a solution of the
sine-Gordon equation.

Let us find its explicit appearance. It can be shown analogously to theorem 2.2
that

ψn(x, t, P ) = rn(ξ, η) · exp

(
ξ

∫ P

Q

Ω(2)
+ + η

∫ P

Q

Ω(2)
− + n

∫ P

Q

Ω+−

)

× θ(A(P )− ζ + U+ξ + U−η + V n)
θ(A(P )− ζ)

. (2.130)

Here the Ω(2)
± are normalized abelian differentials with poles of second order at

the points P±, Q+− is a differential of the third kind with the residues ±1 at P±,
2πiU±, 2πiV are the vectors of b-periods of these differentials.

The factor rn(ξ, η) is chosen via the condition that the multiplier in front of
the exponential be equal to one at the point P+. Then χ−0n equals the value of this
multiplier at P−.

After simple computations we finally arrive at the following expression for the
finite gap solutions

eiu = const
θ2(U+ξ + U−η − ζ)

θ(U+ξ + U−η − ζ + V )θ(U+ξ + U−η − ζ − V )
. (2.131)

Let us note that the vector V is equal to a half-period, since by virtue of the
Riemann relations and Abel’s theorem

2V = 2(A(P+)−A(P−)) ≡ 0

(the last congruence holds inasmuch as the divisors 2P+ and 2P− are equivalent,
being the zeroes and the poles of λ on Γ).

Until now we have been talking about the construction of complex solutions
of nonlinear equations which admit a commutational representation of one of the
enumerated forms. Picking out the real nonsingular solutions among them turns
out to be comparatively easy in those cases in which the auxiliary linear problem

Lψ = λψ (2.132)

for the Lax representation, or(
∂

∂x
+ U(x, t, λ)

)
ψ = 0, (2.133)

in the case of the general representation (2.37), is self-adjoint. However for al-
most all nonlinear equations (the nonlinear Schrödinger equation, the sine-Gordon
equation, the equations of the nonlinear interaction of wave packets etc.) the cor-
responding linear problems are not self-adjoint.
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The typical conditions which select physically interesting real solutions have
one of the following types

U(x, t, λ) = JU+(x, t, σ(λ))J−1, (2.134)

U(x, t, λ) = JŪ(x, t, σ(λ))J−1, (2.135)

where the cross denotes the Hermitian adjoint, σ(λ) is an antiholomorphic involu-
tion of the λ plane (e. g., λ→ λ̄, λ→ λ̄−1) and J is a diagonal matrix with entries
εk = ±1.

Since one can also subject the matrix W (x, t, λ) to the same realness conditions,
the curves Γ, given by equation (2.70), which arise in the construction of real finite
gap solutions are real, i. e. there is an antiholomorphic involution defined on them

τ : Γ→ Γ,

which leaves the distinguished points Pα fixed, or permutes them in a well-defined
fashion.

The description of real curve types and, what is the most difficult and inter-
esting part, the distribution on them of the poles γi of Baker–Akhiezer functions
leading to real solutions, pose problems of real algebraic geometry which until com-
paratively recently had not been worked out at all. (The first serious progress in
the solution of these problems in connection with the nonlinear Schrödinger equa-
tion and the sine-Gordon equation was made in [68] and [28], although the results
obtained in these papers are far from being effective).

A detailed exposition of recent achievements in real finite gap integration is
given in [13], [41], [44], [46]. Here let us describe on the basis of the two examples
analyzed above the two basic types of involutions on the set of divisors, whose
various combinations give all the realness conditions known at present.

Let Γ be a real hyperelliptic curve, i. e. a curve given by equation (2.109) with
a real polynomial R2n+1. It the set of points γi, . . . , γn is invariant with respect to
the antiholomorphic involution

τ : (λ, µ)→ (λ̄, µ̄)

and ψ(x, t, P ) is the Baker–Akhiezer function corresponding to them, then

ψ̄(x, t, τ(P )) = ψ(x, t, P ). (2.136)

since both the right and left-hand sides have the same analytic properties and are
equal to each other by virtue of the uniqueness of ψ. From this it follows at once
that the corresponding finite gap solution u(x, t) of the KdV equation is real.

Now let us suppose that τ has n + 1 fixed ovals a1, . . . , an+1 on Γ, on one of
which the point P0 =∞ lies. (In real algebraic geometry the curves of genus g with
g + 1 real ovals are called M -curves5.) In the case under consideration this means
that all the branch points Ei are real.

If the points γi are distributed one on each oval, γi ∈ ai, then u(x, t) has no
singularities. Indeed, as is evident from the construction of ψ, a pole of u(x, t)
arises only when one of the n zeroes of ψ hits P0 (here θ(Ux + V t − ζ) = 0). But
by virtue of (2.136) ψ is real on real ovals. Since ψ has a pole on each ai it also
has at least one zero. Since there are n zeroes in all, they are separate from P0.

5For some authors, M -curves are those with g + 1 components, which need not all be ovals
(translator’s note).
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For the finite gap solutions of the sine-Gordon equation to be real it is necessary
that the hyperelliptic curve Γ be real [68]. On it let us consider the anti-involution

τ : (λ, µ)→ (λ̄,−µ̄).

The action of this anti-involution on the local parameters k−1
± is such that

τ∗(k±) = −k̄±.

Let the polar divisor of ψn(ξ, η, P ) satisfy the condition

D + τ(D) ≡ K + P+ + P−, (2.137)

where K is the canonical class, i. e. the zero divisor of a holomorphic differential
on Γ.

Condition (2.137) means that D, τ(D) are the zeroes of a differential of the
third kind

ω =
dλ

λ

λn+1 + α1λ
n + · · ·+ αn+1√

R2n+1(λ)
(2.138)

with poles at the points P±.
Let us consider the differential

ψ1(ξ, η, P ) ψ̄1(ξ, η, τ(P ))ω. (2.139)

From (2.124) and (2.137) it follows that this is a meromorphic differential with its
only poles at the points P±. The residue of this differential at P+ is equal to 1.
Since the sum of the residues of any meromorphic differential is equal to zero, then

χ−01 · χ̄
−
01 = 1. (2.140)

Analogously, if we consider the differential

λψ2(ξ, η, P ) ψ̄2(ξ, η, τ(P ))ω,

we get
χ−02 · χ̄

−
02 = 1.

Hence, by (2.126),
|e−iu| = |χ−01|/|χ

−
02| = 1

and u(ξ, η) is real.

3. The Hamiltonian Theory of Hyperelliptic λ-Families

In this section, following [116], [118], we shall present the Hamiltonian theory
of systems which are connected with hyperelliptic curves (see the examples of the
preceding and the following sections). These systems usually come from systems of
the form (2.64), (2.65), where the matrices are (2× 2).6

The equations (2.64) are ordinary differential equations.
The initial “physical” coordinates on the finite-dimensional space of their solu-

tions are the values of the matrix entries of U and W at some initial point x = x0

(or rather the values of the matrix entries of the singular parts of U and W at their
poles).

6A generalisation of this theory for general systems which are connected with arbitrary curves
and its relations N = 2 supersymmetric gauge theories was obtained in [KP].
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For example, for the “higher-order KdV equations” the space of solutions of
the commutativity equations for the Sturm–Liouville operator L and an operator
An of order 2n+ 1 has dimension 3n+ 1. Coordinates on it are given by

u(x0), . . . , u(2n+1)(x0), h2, . . . , hn,

where the constants hj arise in expressing the coefficients of the operator An in
terms of u and its derivatives.

In the preceding section an isomorphism was set up between this space and the
space

(Γ, P1, . . . , Pk) = Nn+k,

where Γ is a hyperelliptic curve, given in the form

w2 =
2g+1∏
i=1

(λ− λi)

(as for the KdV equation, the sine-Gordon equation, where λ1 = 0), or in the form

w2 =
2g+2∏
i=1

(λ− λi)

(the nonlinear Schrödinger equation, the Toda lattice etc.). Coordinates in the
neighbourhood of Pj are given by λ(P )—the projections of the points onto the
λ plane. In the following (when this does not give rise to misunderstanding) the
points Pj will be denoted as γj = λ(Pj) without indicating εj = ±, the number of
the sheet of the surface Γ.

The space Nn+k is fibred over Mn, the manifold of hyperelliptic curves. Coor-
dinates on Mn are given by the λi. The fibre of this fibration

Nn+k →Mn

is SkΓ—the kth symmetric power of the curve Γ.
In the fundamental examples k = g (KdV, sine-Gordon) or k = g + 1 (NLS).

In the first case the fibre, by virtue of Abel’s theorem, is birationally isomorphic to
a complex torus—the Jacobian of the curve, J(V ).

Let us define analytic Poisson brackets on the phase space Nn+k of our systems.
a) Let A be some set of functions on Nn+k which depend only on the point

of the base space Mn, i. e. on the hyperelliptic curve. (In the sequel A will play
the rôle of the annihilator of the Poisson bracket, which becomes nondegenerate
on the manifolds NA given by the equations f = const for all f ∈ A; NA → MA,
MA ⊂Mn.)

b) Let a meromorphic 1-form Q(Γ) be given on the Riemann surface Γ or on a
covering of it Γ̂→ Γ. In local notation

Q(Γ) = Q(Γ, λ) dλ. (2.141)

The derivatives of Q(Γ) in all directions of the base space tangent to the mani-
folds MA are required to be globally defined meromorphic differential forms on the
Riemann surface Γ itself (and not on the covering).

c) In all of the major examples the form Q has turned out either to be mero-
morphic on Γ right from the start, or to be meromorphic on a regular covering Γ̂
with an abelian monodromy group, where the image of π1(Γ̂)→ π1(Γ) is generated
by a set of cycles with vanishing pairwise intersection numbers.
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Definition. If the closed 2-form

ΩQ =
∑

dQ(Γ, γj) ∧ dγj (2.142)

is nondegenerate at a “general” point of a region of the NA, where the pair (A,Q)
has the properties a), b), c), then it will be said that an analytic Poisson bracket
with annihilator A is given on an open region of Nn+k. The dimension of NA in
this case must be equal to 2k.

By definition, the Poisson bracket of (2.142) is given by the properties

{γi, γj} = 0, {Q(γi), Q(γj)} = 0,

{Q(γi), γj} = δij ,

{f, γj} = {f,Q(γk)} = 0, f ∈ A.
(2.143)

If λi are any coordinates on the manifold MA then it follows from (2.142) that
ΩQ contains only terms of the form dλi∧dγj in its expansion. This at once implies
the proposition:

Any two functions g, h which depend only on Γ ∈Mn are in involution

{g(Γ), h(Γ)} = 0. (2.144)

Let τ1, . . . , τk be the tangent directions to MA at a “point in general position”.
By the definition of an analytic Poisson bracket, ∇τiQ is a meromorphic differential.
Like any other differential, it can be decomposed uniquely (if a basis of a-cycles is
fixed (2.86)) as a sum of a holomorphic differential ωi and normalized (see (2.101))
differentials ω̃i and ˜̃ωi of the second and third kinds respectively:

∇τi = ωi + ω̃i +
∑

˜̃ωit, (2.145)

where ˜̃ωit has a pair of first-order poles at points (P ′t , P
′′
t ).

Without loss of generality, when k ≥ g one may assume that locally the coor-
dinates τi have been chosen so that the ωi for i ≤ g form a normalized∮

ai

ωj = δij

basis of the holomorphic differentials, and for j > g ωj = 0.
Let us consider the flows on Nn+k generated by Hamiltonians of the form H(Γ),

which by (2.144) commute with each other.

Theorem 2.5. Let the coordinates τi be as indicated above. Then at a point

(Γ0, γ1, . . . , γk)

in general position the complex variables

ψj =
k∑
i=1

∫ γi

P0

∇τjQ (2.146)

are independent and have dynamics linear with respect to time.

The proof can be obtained entirely analogously to the standard Liouville pro-
cedure.
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The definition of the ψj (2.146) depends on the choice of the paths between
P0 and the γi. Therefore these quantities are determined up to the lattice in Ck

generated by the 2g + l periods eq, e′q, ηs of the gradient ∇Q:

eiq =
∮
aq

∇τiQ = δiq, e′iq =
∮
bq

∇τiQ, ηis = resP ′s ∇τiQ. (2.147)

The transformation (2.146) allows one on the basis of an analytic Poisson
bracket (A,Q) satisfying the requirements enumerated above to construct a fibra-
tion

N(Q,A)
JQ(Γ)−−−−→MA

whose fibre is the quotient of Ck by the lattice generated, by the vectors (2.147).
Let κ be the number of functionally independent (modulo A) residues of the

form Q, κ ≤ l.
In general,

2g + κ ≤ 2k. (2.148)
The variables ψj form a compact torus T 2k only in the case when 2g+ κ = 2k.

By no means will one always get an abelian torus. For this it is necessary and
sufficient that k = g and that all the forms ∇τiQ be holomorphic.

Comparing (2.146) with the definition of the Abel map (2.93), we get the
following theorem.

Theorem 2.6. The Abel transformation SgΓ → J(Γ) linearizes the dynamics
of all Hamiltonians of the form H(Γ) for Poisson brackets given by generic pairs
(A,Q), if and only if the derivatives ∇τiQ in all directions tangent to MA give a
basis of the holomorphic differentials on Γ.

Only for the real theory does it make sense to discuss a special choice of the
vectors τi, corresponding to the differentiation of Q with respect to so-called “action
variables” canonically conjugate to the “angles” on tori, varying from 0 to 2π.

Let us consider real hyperelliptic curves Γ. These are curves with an antiholo-
morphic involution σΓ : Γ→ Γ, which is induced by an antiholomorphic involution
σ on the space Mn of all hyperelliptic curves.

The form Q and the annihilator A must also be compatible with σ, σΓ in a
natural way:

a) σ∗ΓQ = Q̄,

b) σ∗A = Ā.
(2.149)

The simplest example of real structures, which may be called the “elementary” ones
for the Hamiltonian systems which interest us, actually already appeared earlier in
the description of the real nonsingular finite gap solutions of the KdV equation.

Let σΓ have g + 1 or g fixed ovals on Γ. (Such curves are called M -curves or
(M − 1)-curves). In the first case k = g or k = g + 1. In the second case k = g.

Lemma 2.1. If the Poisson bracket (A,Q) has the properties (2.149) then sets
of points γi (i = 1, . . . , g + 1 or i = i1, . . . , ig) lying on pairwise distinct fixed ovals
ai of the anti-involution σΓ are invariant with respect to the dynamics generated by
the real Hamiltonians H(Γ), H(σ(Γ)) = H̄(Γ).

For M -curves and k = g the admissible sets of γi ∈ ai form g + 1 connected
components isomorphic to the real torus T g. For M -curves and k = g + 1 or for



3. THE HAMILTONIAN THEORY OF HYPERELLIPTIC λ-FAMILIES 63

(M − 1)-curves and k = g there is only one connected component—a real torus
T g+1 or T g.

An example of a non-elementary real structure arose in the description of the
real solutions of the sine-Gordon equation (§ 2).

The effective assignment of such a structure is possible only in terms of coor-
dinates on N connected with y by the transformation (2.146).

By a non-elementary real structure will be meant an anti-involution

τ : N(Q,A) → N(Q,A)

which is compatible with the fibration

N(Q,A)
JQ(Γ)−−−−→MA.

On the fibres of JQ(Γ) there must be a superposition of a translation and an auto-
morphism of JQ(Γ) as a real commutative group.

The real submanifolds in the phase space are picked out by the conditions

τ(η) = η̄ (2.150)

or
τ(η) = −η̄ + ηα0 . (2.151)

The case (2.151) is realized for the sine-Gordon and the NLS (2.14). For a given
curve the vector ηα0 may take on a finite number of values. Their computation for
the sine-Gordon equation was done for the first time in [46].

Theorem 2.7. For analytic Poisson brackets satisfying the elementary and
non-elementary realness conditions, the action variables Jj, canonically conjugate
to the coordinates on the tori T k varying from 0 to 2π, are given by the formula

Jj =
1

2π

∮
aj

Q(Γ, λ) dλ. (2.152)

The proof of the theorem follows in essence from the course of the proof of
Liouville’s theorem and from the fact that (2.152) represents the quantity

Jj =
1

2π

∮
ãj

p dq, (2.153)

where the ãj are the basis 1-cycles on the tori T k.
For the class of Poisson brackets under study the action variables Jj (2.153)

acquire an important interpretation as integrals over the elements aj of the group
H1(Γ\P,Z), where P is the set of poles of the form Q. This results in a signifi-
cantly greater effectiveness in the construction of action variables than in Liouville’s
theorem. In particular, for example, until [116] no explicit construction of action
variables for the Kovalevskaya case (see below) was known, since the only method
for constructing them known to the classical workers was the method of separation
of the variables in the Hamilton–Jacobi equation.

Theorem 2.6 gives necessary and sufficient conditions on the bracket (Q,A)
which guarantee the linearization by the Abel mapping of the Hamiltonian flows
generated by Hamiltonians H(Γ).

As is well known, the Abel mapping linearizes all the higher-order KdVs. Let
us express the Hamiltonians corresponding to these flows in terms of the form Q.
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Theorem 2.8. The coefficients of the expansion

Q(Γ, λ) =
∞∑
k=0

(z
2

)k
qk(Γ), z = λ−1/2, (2.154)

are such that the hl(Γ) = q2l+3(Γ) are the Hamiltonians of the higher-order KdVs
with the number l ≥ 0. The remaining coefficients qk belong to the annihilator A.

In conclusion let us enumerate a number of major examples.

Example 1. The Gardner–Zakharov–Faddeev bracket. From [56] one can ex-
tract

Q = 2ip(λ) dλ, A =

{
T1, . . . , Tg, ū = lim

T→∞

1
T

∫ T

0

u dx

}
(2.155)

p(λ) is the quasimomentum, where dp(λ) is a differential of the second kind with a
unique pole at λ = 0, ∮

aj

dp(λ) = 0, j = 1, . . . , g. (2.156)

The periods Tj of the quasiperiodic potential u(x) are defined as

1
2πi

∮
bj

dp = Tj . (2.157)

Example 2. The Magri bracket (F. Magri) [94]. In this bracket the higher-
order KdV equations have the form

u̇ =
(
al + b

∂

∂x

)
δH

δu
, l =

1
2
∂3

∂x3
+ u

∂

∂x
+

∂

∂x
u. (2.158)

Here we have
Q = 2ip(λ)(aλ+ b)−1dλ. (2.159)

For b = 0 the annihilator is

A = {T1, . . . , Tg, J},
where

J =
g+1∑
k=0

ckIg−k+1 (2.160)

is a linear combination of Kruskal integrals, and its extremals are given by the finite
gap solutions constructed over Γ.

Example 3. The Hamiltonian formalism of the stationary problem for the
higher-order KdV.

The commutativity equation (2.61) may be presented in the form

δJ = 0, (2.161)

where J is the same as in (2.160). This representation naturally gives rise to the
Hamiltonian formalism of the system (2.61) (see [18], [20]). From [6] one can extract

Q =
√
−R(λ) dλ, R(λ) =

∏
(λ− λi).

The annihilator of the bracket is generated by the first (g+1) symmetric polynomials
in the λi.
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Example 4. The Hamiltonian structure generated by the “hidden isomorphism
of Moser and Trubowitz” [136], [110] (for more details on which see the examples
of the next section) between the dynamics of the KdV on the space of finite gap
potentials and the Neumann systems (2.183), (2.184):

Q =
√
−R(λ)

∏
j

(λ− λ2j)−1dλ,

A = {λ0, λ2, . . . , λ2g}
(2.162)

Example 5. The integrable case of Goryachev–Chaplygin in the dynamics of
a rigid body with a fixed point [71].

Here

Q(Γ, λ) = arcsin
1
µ

(
λ2

2
− 1

2
H − 2G

λ

)
,

where H is the energy of the top, G is the Goryachev–Chaplygin integral, µ is a
parameter. The curve Γ is given by the equation

y2 = 4µ2λ2 − (λ3 −Hλ− 4G)2.

Example 6. In the well-known Kovalevskaya case the action variables formerly
could not be calculated. In the notation of [71] (and of the next section, see (2.174),
(2.181)) we have:

Q(Γ, λ) =
1

2
√
−λ

ln(
√
−λ(λ− 6h)2 − k4) +

v2

2
√
−λ

(λ− 8l2) +
√
−R5(λ),

where R5 is given by (2.181).
The curve Γ is given by the equation y2 = R5(λ). By integrating Q over the

“real” cycles aj , on which the γj = sj lie—the Kovalevskaya variables, we obtain
the action variables Jj .

4. The Most Important Examples of Systems Integrable
by Two-Dimensional Theta Functions

By the example analyzed in § 2, the hyperelliptic curve Γ of genus 2

y2 = R5(λ) =
5∏
i=1

(λ− λi) (2.163)

generates a pair of commuting operators

L =
∂2

∂x2
+ u(x), (2.164)

A5 = 16
∂5

∂x5
+ 20

(
u
∂3

∂x3
+

∂3

∂x3
u

)
+ 30u

∂

∂x
u− 5

(
u′′

∂

∂x
+

∂

∂x
u′′
)

+ h1

[
4
∂3

∂x3
+ 3

(
u
∂

∂x
+

∂

∂x
u

)]
+ h2

∂

∂x
. (2.165)

The commutativity equation (2.107) for the operators L and A5 on the function u
may be written in the Lagrangian form

δ

∫
Λ dx = 0 (2.166)
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with the Lagrangian

Λ =
u′′2

2
− 5

2
u′′u2 +

5
2
u′′ + h1

(
u′2

2
+ u3

)
+ h2u

2 + h3u. (2.167)

According to [115], the equation (2.166) is equivalent to a Hamiltonian system with
two degrees of freedom and with the Hamiltonian

H = p1p2 + V (q1, q2), (2.168)

q1 = u, q2 = u′′ − 5u2, p1 = q′2, p2 = u′,

V = −q
2
2

2
− 5

2
q2q

2
1 −

5
8
q4
1 +

h2

2
q2
1 + h3q1

(2.169)

(by a substitution u→ u+ const the constant h1 has been made zero in equations
(2.168), (2.169)).

The integrals of the system (2.168) in involution have the form J1 = H,

J2 = p2
1 + 2q1p1p2 + (2q2 − h2)p2

2 +D(q1, q2),

D = q5
1 + h2q

3
1 − 4q1q

2
2 + 2h2q1q2 + 2h3q2.

The integrals Ji define a curve (2.163). The corresponding polynomial R5 is equal
to

R5 = λ5 +
h2

2
λ3 +

h3

16
λ2 +

(
J1

32
+
h2

2

16

)
λ+

J2 − h2h3

256
. (2.170)

The results of § 2 indicate that coordinates on the level manifold J1 = const, J2 =
const are given by γ1, γ2—the locations of the poles of the corresponding Baker–
Akhiezer function. Their connection with the initial variables is given by means of
the so-called trace formulas

γ1 + γ2 =
u

2
, γ1γ2 =

1
8

(3u2 + u′′) +
1
2

∑
i 6=j

λiλj , (2.171)

where the λj are the zeroes of the polynomial (2.170).
The equations on the γi which are equivalent to the original system have, in

the given case, the form (see § 2)

γ′1 =
2i
√
R5(γ1)

γ1 − γ2
, γ′2 =

2i
√
R5(γ2)

γ2 − γ1
. (2.172)

These equations, as was already noted in § 2, are linearized by the Abel transfor-
mation. The two-gap potential u(x) equals

u(x) = 2
∂2

∂x2
ln θ(Ux− ζ) + const. (2.173)

Later a number of examples will be cited of systems leading to two-gap poten-
tials and integrable, as a consequence, by two-dimensional theta functions.

S. V. Kovalevskaya’s Problem. The equations of motion of a heavy rigid
body with a fixed point in Kovalevskaya’s case have the form:

2ṗ = qr,

2q̇ = −pr − µγ3,

ṙ = µγ2,


γ̇1 = rγ2 − qγ3,

γ̇2 = pγ3 − rγ1,

γ̇3 = qγ1 − pγ2, µ = const.
(2.174)

(A representation of the Lax type for this system was found in [121].)
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The equations (2.170) have the following integrals

H = 2(p2 + q2) + r2 − 2µγ1 (the energy),

L = 2(pγ1 + qγ2) + rγ3 (the angular momentum),

K = (p2 − q2 + µγ1)2 + (2pq + µγ2)2 (Kovalevskaya’s integral).

(2.175)

In addition there is fulfilled the constraint condition

γ2
1 + γ2

2 + γ2
3 = 1. (2.176)

Let us consider the combined level surface of these integrals

H = 6h2, L = 2l, K = k2. (2.177)

Under fulfillment of the constraint (2.176) these equations give a two-dimensional
invariant submanifold of the original system (2.174).

The Kovalevskaya variables—coordinates on this surface—are defined in the
following manner

s1,2 = 3h+
R(x1, x2)∓

√
R(x1)R(x2)

(x1 − x2)2
, (2.178)

where
x1,2 = p± iq, R(z) = −z4 + 6hz2 + 4µlz + µ2 − k2,

R(x1, x2) = −x2
1x

2
2 + 6x1x2h+ 2µl(x1 + x2) + µ2 − k2.

(2.179)

An easy computation shows that in the variables si the equations (2.174) have
the form:

ṡ1 =
i

2

√
R5(s1)
s1 − s2

, ṡ2 =
i

2

√
R5(s2)
s2 − s1

, (2.180)

R5 = (λ[(λ− 3h)2 + µ2 − k2]− 2µ2l2)((λ− 3h)2 − k2). (2.181)

These equations coincide up to a factor with the equations (2.172). Consequently,
they will be linearized by the Abel substitution.

The expressions for the original variables p, q, r, γ1, γ2, γ3 in terms of the Ko-
valevskaya variables are cited in [63]. As for the variables si, they, by the results of
§ 2, can be defined as solutions of the equations

θ(A(si) + Ut− ζ) = 0. (2.182)

Here A : Γ→ J(Γ) and Γ is given by equation (2.163) with R5 equal to (2.181).

The Neumann and Jacobi Problems. The General Garnier System.
The equations of motion of a particle on the (n− 1)-dimensional sphere

x2 =
n∑
i=1

x2
i = 1 (2.183)

under the action of a quadratic potential

U(x) =
1
2

n∑
i=1

aix
2
i , ai = const, (2.184)

have the form:
ẍi = −aixi + u(t)xi, (2.185)
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where u(t) is a Lagrange multiplier arising because of the imposition of the con-
straints (2.183). When n = 3 this system bears the name Neumann system.

The Neumann system may be obtained from the Hamiltonian flow on R6 with
the Hamiltonian

H =
1
2

3∑
i=1

aix
2
i +

1
2

(x2y2 − (xy)2) (2.186)

by restriction to the surface x2 = 1 (here xy =
∑
i xiyi). The functions

Fk(x, y) = x2
k +

∑
i 6=k

xkyi − ykxi
ai − ak

, k = 1, 2, 3, (2.187)

are a system of integrals in involution for (2.186). The Hamiltonian H itself has
the form:

H =
1
2

3∑
i=1

aiFi. (2.188)

The transformation

x̃ = y, ỹ = −x, H̃ =
1
2

3∑
i=1

Fi
ai

(2.189)

takes the constructed Hamiltonian flow over into a geodesic flow on the triaxial
ellipsoid (when ai > 0)

3∑
i=1

x2
i

ai
= 1

The problem of geodesies on a triaxial ellipsoid is called the Jacobi problem.
In the work [110] a trajectory isomorphism was established between the equa-

tions in x for the periodic n-gap potentials of the Sturm–Liouville operator and
the equations in t → x for the periodic trajectories of the system (2.183), (2.184).
The full phase isomorphism of the systems for n-gap potentials and the system
(2.183), (2.184) was proved in [136]. By the same token the general solutions of
the latter system can be expressed in n-dimensional theta functions, and those of
the Neumann system (and the solutions of the Jacobi problem) in two-dimensional
theta functions.

Let us remark that although these systems are trajectorially isomorphic, the
corresponding Hamiltonian structures (as was shown in the preceding section) are
different.

Let us consider a Baker–Akhiezer function ψ(x, P ) associated with a hyperel-
liptic curve Γ with real branch points λ1 < λ2 < · · · < λ2n+1. In § 2 it was shown
that it satisfies the equation

ψ′′(x, P ) = −λψ(x, P ) + u(x)ψ(x, P ), (2.190)

where P = (λ,
√
R) is a point of Γ. Let us denote ψ+(x, P ) = ψ(x, σ(P )), where

σ is the involution which exchanges the sheets of Γ. Its operation on the local
parameter is σ∗(k) = −k. Hence the function ψ(x, P )ψ+(x, P ) is regular at the
point at infinity P0. Besides, it does not depend on the choice of the sheet of Γ ,
and hence is a rational function of λ

ψ(x, P )ψ+(x, P ) =
∏n
i=1(λ− γi(x))∏n
i=1(λ− γi)

. (2.191)
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For an arbitrary polynomial P (λ) of degree n (whose coefficients may depend
on parameters) and for arbitrary points µi, i = 1, . . . , n+ 1, there holds the simple
identity

n+1∑
i=1

P (µi)∏
j 6=i(µi − µj)

≡ 1. (2.192)

Since at the branch points ψ(x, λi) = ψ+(x, λi), it follows from (2.191) and
(2.192) that the functions

φi(x) = ψ(x, λ2i+1)
∏
j

(
λ2i+1 − γj

λ2i+1 − λ2j+1

)1/2

(2.193)

satisfy the identity
n∑
i=1

φ2
i (x) ≡ 1. (2.194)

The equalities (2.190) and (2.194) coincide (after renaming x to t) with the
equations (2.185) and (2.183). The expressions in terms of theta functions for
ψ(x, P ) which were obtained in § 2 thereby give the solutions of the system (2.183),
(2.184).

For the Neumann system we get, in particular,

xi(t) = αi
θ[vi](tU + ζ)
θ[v0](tU + ζ)

, (2.195)

where

α1 = −θ[v1](0)
θ[v0](0)

, α2 = −i θ[v2](0)
θ[v0](0)

, α3 =
θ[v3](0)
θ[v0](0)

, (2.196)

and the characteristics [vi] of the theta functions equal

v0 = [(1/2, 1/2), (1/2, 1/2)], v1 = [(1/2, 0), (0, 1/2)],

v2 = [(0, 0), (0, 1/2)], v3 = [(0, 0), (1/2, 1/2)].
(2.197)

The system (2.183), (2.184) can be obtained from a more general system, dis-
covered by Garnier [61]

x′′i = xi(
∑

xiyi + ai),

y′′i = yi(
∑

xiyi + ai),
(2.198)

On the invariant plane xi = aiyi we exactly get the Neumann system on the sphere.
Another interesting case is the system of anharmonic oscillators, which is obtained
from (2.198) by restricting to the plane xi = yi, [62].

The Garnier system is equivalent (under a suitable choice of the parameter τ)
to the commutation conditions

dA(λ)
dτ

= [A(α), A(λ)]/(λ− α), (2.199)

where the matrix A = (Aij) has the form:

A11 = λ2 −
∑

xiyi,

A1i = xi−1λ+ x′i−1, Ai1 = yi−1λ− y′i−1,

Aij = xi−1yi−1 − ai−1δij , i, j ≥ 2.

(2.200)
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The Motion of a Body in an Ideal Fluid. Integration of the Clebsch
Case. As was already said in Chap. 1, the equations of motion of a rigid body in
an ideal fluid have the form:

ṗ = p× ∂H

∂M
, Ṁ = p× ∂H

∂p
+M × ∂H

∂M
, (2.201)

where H = H(M,p) is the Hamiltonian (1.48),

M = {M1,M2,M3}; p = {p1, p2, p3};
∂H

∂M
=
{
∂H

∂Mi

}
;

∂H

∂p
=
{
∂H

∂pi

}
.

(2.202)

Below we shall give the commutational representation of equations (2.201) in
the integrable cases of Clebsch and of Lyapunov–Steklov–Kolosov (see (1.205)–
(1.209)).

The commutational representation for the Clebsch system was found in [119].
The matrix L has the form:

L = λA+ L0 − λ−1P, (2.203)

L0 =

 0 M3 −M2

−M3 0 M1

M2 −M1 0

 , Pij = pipj ; Aij = aiδij . (2.204)

The matrix M equals

M = λC +

 0 a3M3 −a2M2

−a3M3 0 a1M1

a2M2 −a1M1 0

 , (2.205)

Cij = ciδij .
The Clebsch case is the limit under contraction of the group SO(4) to E(3) of

the integrable tops obtained in [97] as it was observed first in [112]. If one fixes a
basis of the algebra so(4) with the commutation relations

{Mi,Mj} = εijkMk; {Mi, pi} = εijkpk; {pi, pj} = εijkMk, (2.206)

then this contraction corresponds to a passage to a limit, under which

Mi = M ′i , pi → Np′i, N →∞.

The Lax pair (2.212) for tops on so(4) diverges under the contraction, although
its integrals hold out under this passage and coincide after it with the integrals
of the Clebsch case. On the other hand, the pair (2.203)–(2.205) will not endure
the deformation of so(4) to e(3). It is of interest to remark that not only the
tie indicated above exists between these systems. As was found in [10], [15], the
Kirchhoff equations for the Clebsch case go over into the Manakov equations for the
algebra so(4) (see below) after a suitable linear change of variables. An analogous
linear change takes the integrable case of Lyapunov–Steklov–Kolosov (see below)
over into the integrable case of Steklov [133] for the rotation of a rigid body with
an ellipsoidal cavity filled with a fluid [15]. The Clebsch case was integrated in [69],
[132], [140].
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The Lyapunov–Steklov–Kolosov Case. In this case the Hamiltonian, with
(1.208) taken into account, has the form:

2H =
3∑

α=1

bα(Mα − (b1 + b2 + b3 − bα)σpα)2 +A

3∑
α=1

p2
α +B

3∑
α=1

pαMα. (2.207)

Let us set
2zα = Mα − σ(b1 + b2 + b3 − bα)pα. (2.208)

The fourth integral has the form

2I =
3∑

α=1

bαp
2
α. (2.209)

The Lyapunov–Steklov–Kolosov case was integrated in the paper [70]. It is
curious that in this paper for this system there was practically used, between the
lines, a commutational representation with an elliptic spectral parameter.

F. Kötter’s representation for the equations of motion had the form:

d

dt
(z1 + σsp1) = 2(s− b2)(z2 + sσp2)

b3z3

s
− 2(s− b3)(z3 + sσp3)

b2z2

s

(the remaining equations have the same appearance up to a cyclic permutation of
the indices).

Here s is the “spectral parameter”. These equations, as is simple to verify, are
equivalent to the Lax equation L̇ = [L,M ], where

L =

 0
√
c3v3 −√c2v2

−√c3v3 0
√
c1v1√

c2v2
√
c1v10

 ,

M =
2
s

 0
√
c1c2b3z3 −√c1c3b2z2√

c1c2b3z3 0
√
c2c3b1z1√

c1c3b2z2 −√c2c3b1z1 0

 .

(2.210)

Here vi = zi + σspi, ci = s− bi.
Let us set ei = bi − 1

3 (b1 + b2 + b3), s = ℘(λ) + (b1 + b2 + b3)/3, where ℘ is the
Weierstrass function corresponding to the elliptic curve Γ with the branch points
ei. Then L,M are elliptic functions of λ, defined on Γ.

The Clebsch and Lyapunov–Steklov–Kolosov cases exhaust all the possibilities
when the system (2.201) with the Hamiltonian (1.48) has a fourth integral quadratic
in (M,p) [119]. Let us note that for general diagonal metrics, as was shown in [73],
for the equations of motion (with the exception of the Clebsch case) a splitting of
the separatrices occurs, i. e. they are non-integrable.

A Multidimensional Free Rigid Body. The equations of a multidimen-
sional rigid body have the form [7]:

Ṁ = [Ω,M ], M = JΩ + ΩJ (2.211)

and Jij = Jiδij is the inertia operator7 of the rigid body. The complete integrability
of this system for all n was proved in [97]8. As was remarked in this paper, the

7Often called the inertia tensor (translator’s note).
8For n = 4 in [108].
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system (2.211) is equivalent to the system

[A, V̇ ] = [[A, V ], [B, V ]], (2.212)

[B, V ] = Ω, A = J2, B = J. (2.213)

The commutational representation for (2.211) has the form:[
d

dt
− [B, V ] + λB, λA− [A, V ]

]
= 0.

By the results of § 2, the general solutions can be expressed via theta functions
of the Riemann surface Γ of the form

det(λA− [A, V ]− µ · 1) = 0. (2.214)

The rigorous and abstract exposition of the Manakov theory and the direct ver-
ification of the independence of the Manakov integrals constructed (the coefficients
of the characteristic polynomial (2.214)), without relying on the spectral theory of
operators, were realized in the paper [57]. A series of subsequent papers, of which a
survey is given in [58], were devoted to the transfer of this technique to some other
Lie algebras. An investigation of the dynamics of these systems not only on the Lie
algebra, but also on the whole Lie group was given in the paper [105].

The equations (2.212) were integrated (for arbitrary A and B) in the paper
[39]. As was remarked in [97], for general diagonal matrices A and B the equations
(2.212) coincide with the equations of a motion on SO(N) with the diagonal metric

ωij =
ai − aj
bi − bj

,

which for N = 4 go over under the contraction of SO(4) to E(3) into the integrable
case of Clebsch.

The solutions of the general equations (2.212):

vij =
λi
λj

θ(A(Pi)−A(Pj) + tU + ζ)
θ(tU + ζ) ε(Pi, Pj)

, i 6= j, (2.215)

ε(P,Q)−1 =

√
∂U(P )θ[v](0) ∂U(Q)θ[v](0)
θ[v](A(P )−A(Q))

,

λi = λ0
i exp

t∑
k 6=i

cki bk

 ,

cki = − ∂

∂P
ln ε(P, Pi)|P=Pi .

Here the λ0
i are arbitrary nonzero constants, the θ-function is constructed with

respect to a curve of the form (2.214); Pi are the points at infinity of this curve,
where µ/λ→ ai when P → Pi; the vector U has the form:

U =
∑
j

bjU(Pj),

U(P ) is the period vector of the differential Ω(2)
P with a double pole at P , [v] is an

arbitrary nondegenerate (grad θ[v](0) 6= 0) odd half-period.
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Waves in the Landau–Lifshitz Equation. Following [137], let us look at
solutions of the travelling-wave type

S(x, t) = q(x− at)

for the Landau–Lifshitz equation (2.51).
We have

−aq̇ = q × (q̈ + Jq). (2.216)

Taking the vector product of this equality with q and using the condition q2 = 1,
we get

q̈ + Jq = λq + aq̇ × q, λ = (q, Jq)− q̇2.

Let us introduce the variable

M = q̇ × q + aq.

Then equation (2.216) turns out to be equivalent to the already analyzed Clebsch
system (2.204)

Ṁ = M × Jq,
q̇ = q ×M.

In [16] finite gap solutions are constructed in terms of Prym theta functions,
starting from the Lax pair (2.52) for the Landau–Lifshitz equations (2.51). As a
special case they also contain solutions of the travelling-wave type.

A generalization of the Landau–Lifshitz equations is given by the equations

ut = u× (uxx + Jv),

vt = v × (vxx + Ju),
(2.217)

which were considered in [139] and which describe a two-sublattice system. In [139]
it is shown that the equations describing the travelling wave

u = u(x− at), v = v(x− at),

can be integrated. They correspond to the Hamiltonian system on E(3)+E(3) with
the Hamiltonian

H = 1
2 (M2 +N2 + 2(Jp, q)). (2.218)

Here p(ξ) = u(ξ), q(ξ) = v(ξ) and M = u × uξ + au, N = v × vξ + av. The pairs
p,M and q,N satisfy the commutation relations of E(3).

The matrices L and A which enter into the commutational representation for
the equations of motion of the system of (2.218) have the block form

L =
(

λM̂ λ2piqj + Jiδij
λ2qipj + Jiδij λN̂

)
,

A =
(

0 λpiqj
λqipj 0

)
.

Here M̂ and N̂ are skew-symmetric 3 × 3 matrices corresponding in a canonical
way to the vectors {Mi}, {Ni}.
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A Top in a Gravitational Field. Let us consider, following [19], the problem
of the rotation of a top, fixed at its centre of gravity, in the gravitational field being
created by an arbitrary body V . Let ρ(x) be the mass density of the body V at its
point x; let R(x) be the distance from the point x to the fixation point of the top.
Let us write the equations in a coordinate system S rigidly connected with the top,
where we shall orient the axes of this system along the principal axes of the inertia
operator, i. e. the inertia operator I of the top is diagonal, I = (Iiδij). We shall
suppose the dimensions of the top to be small in comparison with the distances
R(x) to the body V . In this approximation the equations of the rotation of the top
can be written in the form

Ṁ = M × ω +
∫
V

3Gρ(x)R−3(x)γ(x)× Iγ(x) d3x, (2.219)

where γ(x) is the unit vector of the direction going from the point x of the body
to the top (written in the system S!), M and ω are the angular momentum and
angular velocity vectors, G is the gravitational constant. Let us supplement the
equations (2.219) with the obvious relation

γ̇(x) = γ(x)× ω. (2.220)

We shall show that the equations (2.219), (2.220) are integrable, and the integration
procedure does not depend on the body V .

Let us associate to the vectors γ(x) = (γi(x)), M = (Mi), ω = (ωi) skew-
symmetric matrices γ̂(x) = (γ̂i(x)), M̂ = (M̂ij), ω̂ = (ω̂ij), setting γ̂ij(x) =
εijkγk(x), and so on. Let us introduce, further, the matrix

u(x) =
∫
V

3Gρ(x)R−3(x)γ̂2(x) d3x.

The equations (2.219), (2.220) can be written in the form of the system{ ˙̂
M = [M̂, ω̂] + [u,C],

u̇ = [u, ω̂],
M̂ = Iω̂ + ω̂I. (2.221)

Here C = diag(C1, C2, C3). The system (2.221) is Hamiltonian on the Lie algebra
whose elements are pairs of 3 × 3 matrices (ω, u), where ω is a skew-symmetric
matrix and u is a symmetric matrix, and the commutators have the form:

[ω1, ω2] = ω1ω2 − ω2ω1, [ω, u] = ωu− uω, [u1, u2] = 0.

The Hamiltonian has the form H = tr(1
2M̂ω̂ + uC). The Lax representation for

the system (2.221), obtained in [19], has the form L̇ = [L,A], where

L(λ) = M̂ + λB + λ−1u, A(λ) = ω̂ + λC,

B = diag(B1, B2, B3), Bi = I1I2I3I
−1
i ,

(2.222)

where to simplify the formulas we assume that I1 + I2 + I3 = 0. From this it
follows that the system (2.221) can be integrated in theta functions of the Riemann
surface Γ given by the equation det(L(λ) − µ · 1) = 0. On the surface Γ of genus
4 an obvious involution of the form (λ, µ) 7→ (−λ,−µ) acts with six fixed points,
corresponding to λ = 0 and λ =∞. Therefore this surface doubly covers an elliptic
curve, and the phase variables of the system (2.221) can be expressed via the Prym
theta functions (of three variables) of this covering.



5. POLE SYSTEMS 75

Another application of systems of the form (2.221) is the proof of the integrabil-
ity of the problem of the rotation of a rigid body about a fixed point in a Newtonian
field with an arbitrary quadratic potential U = 2−1aijx

ixj [19] (the possibility of
applying L-A pairs of type (2.222) to a top in the field of a quadratic potential was
noted in [123]). Here the equations of motion can be written in the form (2.221),
where the matrix u is constructed as follows. Let Q be the transition matrix from
the S-system to the fixed system. Then u = QTaQ, where a = (aij).

5. Pole Systems

The program for research on the dynamics of poles of solutions of equations
to which the inverse scattering method is applicable goes back to the article [87].
In two-dimensional hydrodynamics the poles of the solutions correspond to the
dynamics of vortices. In the case of a finite number of vortices the corresponding
system turns out to be a finite-dimensional Hamiltonian system.

The connection of the dynamics of poles of rational and elliptic solutions of the
KdV equation to the equations of motion of the system (2.57) was first discovered
in the paper [4].

Let us remark that elliptic solutions of the KdV equation of the form

u(x, t) = 2℘(x− x1(t)) + 2℘(x− x2(t)) + 2℘(x− x3(t))

were first constructed without any connection to finite-dimensional systems in the
paper [47].

Originally the theory of the Moser–Calogero systems (2.57), integrable by the
method of L,A pairs, and of their generalizations, which will be discussed in de-
tail in the second part of this work, was developed without the use of a direct
connection with solutions of partial-differential wave equations of the KdV type to
which the inverse scattering method is applicable. The construction of solutions of
the equations of motion of these systems was based on the theory of Lie algebras.
For the system (2.57) in degenerate cases of the Weierstrass ℘-function—potentials
x−2 or sinh−2 x—it was shown that the coordinates of the particles xj(t) are the
eigenvalues of a matrix depending linearly on t, i. e.

const×
∏
j

(x− xj(t)) = det(At+B − x · 1) (2.223)

(the matrix entries of A and B can be expressed explicitly in terms of the initial
coordinates and momenta of the particles).

But in the elliptic case only the involutivity and independence of the integrals

Jk =
1
k

trLk (2.224)

was known, where L is given in (2.58), J2 = H.
In the paper [4] already mentioned above it was shown that the dynamics of

the poles xj(t) of solutions of the KdV equation rational in x, which are obliged to
have the form

u(x, t) = 2
N∑
j=1

(x− xj(t))−2, (2.225)

coincides with the Hamiltonian flow generated by the integral J3, restricted to the
fixed points of the original system, gradH = 0. The necessity of restricting the
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flow to the stationary points gradH = 0 leads also to a restriction on the number
of particles, which may have only the form N = d(d+ 1)/2.

The connection between the rational Moser–Calogero system and rational solu-
tions of nonlinear equations proves to be more natural in the case of two-dimensional
systems.

As was remarked in [77], all solutions rational in x of the KP equation

3
4
uyy =

∂

∂x

(
ut +

1
4

(uxxx − 6uux)
)

(2.226)

which subside as |x| → ∞ have the form u = 2
∑
j=1(x − xj(y, t))−2. Here the

dynamics of the poles of xj(y, t) in y and t correspond to the two commuting flows
J2 = H, J3 (2.224). The number N is arbitrary. Using this connection in [77],
it was shown that the construction of [77] gives all rational solutions of the KP
equation.

Rational multisoliton solutions for the KP equation were constructed within
the framework of the inverse scattering method in [99].

In the paper [31] the isomorphism of the two problems indicated in [77] was
carried over to the elliptic case as well. However till [80] both problems—the con-
struction of angle-type variables for the system (2.57) and the integration of its
equations of motion in terms of theta functions, but also the problem of construct-
ing elliptic solutions of the KP equation—remained completely unsolved (except
for the simplest, two-particle case).

At the basis of the paper [80], where these problems were solved, lay the com-
mutational representation found for the equations of motion

ẍi = 4
∑
j 6=i

℘(xi − xj) (2.227)

of the system (2.57). This commutational representation (in contrast to (2.58),
(2.59)) involves a spectral parameter defined on the elliptic curve Γ. Moreover
with respect to this parameter the matrix entries of U and V are Baker–Akhiezer
functions.

Let us define matrices

Uij = ẋiδij + 2(1− δij)Φ(xij , λ), (2.228)

Vij = δij

2
∑
k 6=i

℘(xik)− ℘(λ)

+ 2(1− δij)Φ′(xij , λ), (2.229)

where

Φ(z, λ) =
σ(z − λ)
σ(λ)σ(z)

eζ(λ)z, (2.230)

Φ′(z, λ) =
∂

∂z
Φ(z, λ) (2.231)

and xij(t) = xi(t)− xj(t).

Proposition. The equations (2.227) are equivalent to the commutational equa-
tion

Ut = [V,U ]. (2.232)
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It follows from (2.232) that the function

R(k, λ) = det(2k + U(λ, t)) (2.233)

does not depend on t. The matrix U , which has essential singularities for λ = 0,
can be represented in the form

U(λ, t) = g(λ, t) Ũ(λ, t)g−1(λ, t), (2.234)

where Ũ does not have an essential singularity at λ = 0, and gij = δij exp(ζ(λ)xi).
Consequently, ri(λ)—the coefficients of the expression

R(k, λ) =
n∑
i=0

ri(λ)ki, (2.235)

are elliptic functions with poles at the point λ = 0. The functions ri(λ) are rep-
resentable as a linear combination of the ℘-function and its derivatives. The coef-
ficients of such an expansion are integrals of the system (2.57). Each set of fixed
values for these integrals gives by means of the equation R(k, λ) = 0 an algebraic
curve Γn which n-foldly covers the original elliptic curve Γ.

Generically the genus of the curve which arises is equal to n. The Jacobian
of the curve Γn is isomorphic to the level manifold of the integrals rn, and the
variables on it are variables of the angle type.

A further putting to good effect of the solution-of equations (2.227) uses the
connection of equation (2.232) with the existence of solutions of a special form for
the non-stationary Schrödinger equation with an elliptic potential.

Theorem 2.9. The equation(
∂

∂t
− ∂2

∂x2
+ 2

n∑
i=1

℘(x− xi(t))

)
ψ = 0 (2.236)

has a solution ψ of the form

ψ =
n∑
i=1

ai(t, k, λ)Φ(x− xi, λ)ekx+k2t (2.237)

if and only if the xi(t) satisfy equations (2.227).

Here Φ(z, λ) is given by formula (2.230).
A function ψ of the form (2.237), as a function of the variable x, has simple

poles at the points xi(t). Substituting it into (2.236) and equating the coefficients
of (x − xi)−2 and (x − xi)−1 to zero, we get that ψ satisfies (2.236) if and only if
the vector a = (a1, . . . , an) satisfies the equations

U(λ, t)a = −2ka, (2.238)(
∂

∂t
+ V (λ, t)

)
a = 0, (2.239)

where U and V are the same as in (2.228), (2.229).
The analytic properties of a on the Riemann surface Γn can be clarified analo-

gously to § 2. Let us formulate the final assertion.

Theorem 2.10. The eigenfunction ψ(x, t, γ) of the non-stationary Schrödinger
equation (2.236) is defined on the n-fold covering Γn of the original elliptic curve.
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The function ψ is a Baker–Akhiezer function with a unique essential singularity of
the form

exp(nλ−1(x− x1(0)) + n2λ−2t)
at an isolated preimage P0 on Γn of the point λ = 0.

The explicit expressions for ψ(x, t, γ) which were obtained in § 2 give that the
poles of ψ in x coincide with the zeroes of the function θ(U (2)x+U (3)t+ ζ). Com-
paring with theorem 2.9, we finally get

Theorem 2.11. Let Γn be given by the equation R(k, λ) = 0, where R is defined
in (2.233). Then the equation in x

θ(U (2)x+ U (3)t+ ζ) = 0 (2.240)

has n roots in the fundamental cell with periods 2ω, 2ω′—the xi(t) which satisfy
equation (2.227).

Here θ is a Riemann theta function corresponding to the surface Γn, and U (2),
U (3) are the periods of differentials of the second kind with poles of the second and
third order at the distinguished point P0. These quantifies can he expressed in terms
of the integrals ri of the equations (2.227). The vector ζ in (2.240) is arbitrary and
corresponds to variables of the angle type.

All of the parameters in (2.240) can be expressed by quadratures in terms of
xi(0) and ẋi(0).

In order to explain the ideas of [60] and show the effectiveness of the algebraic
Lax representation (2.5), we consider first the rapidly decreasing case. In this case
u(x)→ 0 fast enough as |x| → ∞. We introduce the following monodromy matrix
T̂ (λ). Let ψ±(x, λ), ϕ±(x, λ) be solutions of the equations

Lψ = λψ, Lϕ = λϕ,

such that
ψ± ∼ exp{±ikx}, k2 = λ, x→ −∞,
ϕ± ∼ exp{±ikx}, k2 = λ, x→ +∞.

Then, by definition, the monodromy matrix T̂ (λ) = (tij(λ)) is the transition matrix
from the basis ψ± to the basis ϕ±:

ϕ+ = t11(λ)ψ+ + t12(λ)ψ−,

ϕ− = t21(λ)ψ+ + t22(λ)ψ−.

Note that det(T̂ (λ)) = 1.
For real-valued functions u(x) and λ ∈ R, we have ϕ− = ϕ+, ψ− = ψ+. Thus,

in this case T̂ (λ) ∈ SU(1, 1):

T̂ (λ) =
(
a(λ) b(λ)
b̄(λ) ā(λ)

)
, |a|2 − |b|2 = 1.

The matrix T̂ (λ) should not be confused with the unitary scattering matrix S(λ)
from quantum mechanics. The entries (T,R) of the latter are defined by the solution
f(x, λ):

f(x, λ) ∼ eikx, x→ −∞,

f(x, λ) ∼ T (λ)eikx +R(λ)e−ikx, x→ −∞.
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Here T = 1/a, R = b/a are “transition” and “reflection” coefficients respectively.
Potentials for which b(λ) ≡ 0 for λ ∈ R are called “reflectionless potentials”. For
example, the famous multi-soliton potentials [60] are of this type. Their evolu-
tion with t generates multi-soliton solutions of the KdV equation. Such solutions
have the property that they can be written as a rational combination of exponen-
tial functions, the simplest example being moving wave type solutions (“solitons”)
decreasing as x→∞:

u(x, t) = − 4a2

ch2(2a(x− a2t))
.

In the general case b(λ) 6= 0 for λ ∈ R. The Lax equation Lt = [A,L] (see (2.6))
combined with the KdV equation implies

∂a

∂t
≡ 0,

∂b

∂t
≡ 8ik3b(λ)

for all λ ∈ C. From this, one can obtain (using the Gelfand–Levitan–Marchenko
integral equation for inverse scattering problems as in [115]) a procedure for solving
rapidly decreasing Cauchy problems for the KdV equation, construct exact multi-
soliton solutions, investigate asymptotic behavior of solutions, and so on. However,
these aspects of the soliton theory are beyond the scope of this paper.

Integrals of motion (Kruskal integrals) can be obtained in the following way
[60]. Consider a solution χ of the Ricatti equation

χ′(x, λ) = χ2 + u− λ

as a series in k−1 (recall that k2 = λ):

χ = k +O

(
1
k

)
= k +

∑
i≥1

χi(x)k−i.

The quantities χ2i are purely imaginary and are total derivatives. By definition,
put

const Ik =
∫
χ2k+3(x) dx, k = −1, 0, 1, 2, . . . .

Here χj are polynomials in u, u′, u′′. These formulae are not reduced, since one can
omit parts of χj(u, u′, u′′) that are total derivatives. A more compact definition
can be given with the help of the resolvent [34]. The right hand sides of the KdV
equation and its higher-order analogues can be written in the following form (the
Gardner form):

utk = ∂x
δIk
δu(x)

, I−1 =
∫
u dx, I0 =

∫
u2 dx, . . . .

As it was noted in [54, 59], this form leads to the Hamiltonian structure described
in the Important Example of the Poisson brackets (1.75). A general higher-order
KdV equation has the form

utk = ∂x
δ

δu(x)
(
Ik + c1Ik−1 + · · ·+ ckI0 + ck+1I−1

)
.

The right hand sides of the higher-order KdV equations can be recursively
obtained from each other with the help of the following relation ([59, 89]):

A
δIk
δu(x)

= ∂x
δIk+1

δu(x)
, A = ∂3

x + 2(u∂x + ∂xu).
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As it was shown in [89], all higher-order KdV equations admit the Lax type
representations (2.6):

∂uk
∂tk

= ∂x
δIk
δu(x)

⇐⇒ ∂L

∂tk
= [Ak, L]

with the same operator L = −∂2
x + u(x), but different operators Ak. We have (see

(2.6)):
A0 = ∂x, A1 = −4∂3

x + 3(u∂x + ∂xu).

Following [34], it is convenient to write down the general form of the operator
Ak using fractional powers of operators on the real line. To any formal operator
given by a series

Q = ∂mx + a1(x)∂m−1
x + · · ·+ am(x) +

∞∑
j=1

aj(x)∂−jx = (Q)+ +
∞∑
j=1

aj(x)∂−jx

one can uniquely put in correspondence its m-th root Q1:

Q = Qm1 , Q1 = ∂x + b0(x) +
∞∑
j=1

bj(x)∂−jx .

Therefore, one can define fractional powers

Qn/m = Qn1 , (n,m) = 1

and their “positive” parts (Qn1 )+ = (Qn/m)+. In [34, GD], it was shown that for
L = −∂2

x + u(x) the operators Ak have the form

Ak = ((−L)(2k+1)/2)+, k = 0, 1, 2, . . . .

This gives a higher-order KdV equation for each value of k. In [34], this approach
was generalized by changing the second order operator L to an arbitrary scalar
differential operator

Ln = ∂nx + a2(x)∂n−2
x + · · ·+ an(x).

Then one obtains analogues of the KdV hierarchy connected with the scalar oper-
ators of order greater than 2,

∂Ln
∂tk

= [Ak,n, Ln], (k, n) = 1, Ak,n = (Lk/nn )+.

The Hamiltonian property of such systems was proved from two different points
of view in [2] and [34]. See the end of § 1 for the discussion on two different Poisson
brackets generalizing the Important Example of § 1.

There is one more interesting feature of the theory of integrable systems induced
by scalar operators L. Since it is essentially the same for operators of different order,
we consider here the case of the second order operator L = −∂2

x +u. This operator
can be factored

L+ α0 = −(∂x + v)(∂x − v), vx + v2 = u+ α0.

The transformation
Bα0 : L→ L̃ = −(∂x − v)(∂x + v)

is called the Backlund–Darboux transformation depending on the parameter α0.
In the soliton theory, the change of variables from u(x) to v(x) is called the Miura
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transformation. If we put α0 = 0, it transforms the KdV equation into the MKdV
equation

vt = 6v2vx − vxxx
which drastically simplifies the second Poisson bracket (1.81).

Consider the following 2× 2 matrix operator

M = ∂x +
(
v 0
0 −v

)
+
(

0 1
−λ 0

)
.

It is easy to see that the operator L, when written in the matrix form

L = ∂x +
(

0 1
u− λ 0

)
,

is gauge equivalent to M , i. e., there exists a matrix V (x) such that(
v 1
0 −v

)
= V −1

(
0 1
u 0

)
V − V −1Vx.

Therefore, from the algebraic point of view, the Miura transformation is a transfor-
mation from the scalar operator L to M in the class of 2×2 matrix operators of the
first order (see [SS] for the case of n×n matrix systems and [DS] for the generaliza-
tions from the Lie algebras point of view). In the set of matrix operators of the first
order, this class is called “Shabat–Drinfeld–Sokolov” reduction (SDS-reduction).

Backlund–Darboux transformations Bα0 : L → L̃ allow us to construct new
solutions of the KdV equation from the known ones. For example, all multi-soliton
potentials u(x) and solutions u(x, t) of the KdV equations are obtained from the
zero potential (solution) by iteration of such transformations. It is also possible
to obtain multi-soliton solutions (potentials) on the background of the finite-gap
or algebro-geometric solutions (potentials) [Kri], but the problem of constructing
finite-gap solutions (whose theory will be considered below) cannot be reduced
to anything simpler. Also, in [W] it was suggested to consider cyclic chains of
Backlund–Darboux transformations. Main results were obtained in [SV]. All finite-
gap potentials can be obtained from the following cyclic condition on the odd-length
chains (proof of the conjecture of Weiss):

BαN ◦BαN−1 ◦ · · · ◦Bα0(L) = L, α =
N∑
j=0

αj = 0, N = 2K.

If
∑N
j=0 αj 6= 0 then solutions of the above cyclic conditions are oscillator-type

potentials u(x) with asymptotic behavior

u(x) ∼
(αx

2

)
+O(x), |x| → ∞,

and with discrete spectrum which consists of the union of N + 1 arithmetic pro-
gressions with the same difference. For N = 2, such operators have the form
L = −∂2

x + u and satisfy the algebraic relation

[L,A] = αA,

L = ∂2
x + u, A = ∂3

x +
αx

2
∂2
x + a∂x + b.

The two dimensional analogues of these results will be discussed in the Appendix.
Now let us consider the periodic case which focuses on the theory of finite-gap

(algebro-geometric) operators and corresponding solutions of the KdV equations.
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In the periodic case, the spectral theory is completely different and bears no
resemblance to the scattering theory. Before the appearance of the KdV theory,
inverse problems were not systematically considered. There were some examples of
completely integrable potentials (for example, Lame potentials), but since at that
time there was no relationship with Bloch or Hill spectral theory (in L2(R)), these
results remained unknown to the specialists.

We begin with general remarks.
Consider a linear ordinary differential operator with the periodic coefficients

L = ∂nx +
n∑
j=1

aj(x)∂n−jx , aj(x+ T ) = aj(x).

The spectral theory of such operators in the Hilbert space L2(R) is based on the
notion of Bloch–Floquet functions (or “Bloch waves”). Denote by T the monodromy
operator, Tψ(x) = ψ(x + T ). This operator commutes with L, LT = TL. By
definition, Bloch–Floquet functions are common eigenvectors of the operators L
and T

Tψ(x) = ψ(x+ T ) = µψ(x),

Lψ(x) = λψ(x).
The eigenvalues λ, µ must satisfy the relation Φ(λ, µ) = 0. In particular, we can
consider λ as a multivalued function on µ. This function is called a “dispersion
relation”. Below we show that Bloch–Floquet functions always appear in the spec-
tral theory of periodic linear differential operators. This is also true for difference
and multidimensional linear periodic operators.

To begin with, let us define the monodromy matrix T̂ (λ) w. r. t. some basis
in the space of solutions of the equation Lψ = λψ. For example, we can take
ψ = (ψ1, . . . , ψn) to be the standard basis satisfying

Lψj = λψj , ψk−1
j (x0) = δkj , j, k = 1, . . . , n.

The monodromy operator T , Tψ(x) = ψ(x+ T ), commutes with L. Hence it maps
solutions to solutions and its matrix T̂ in the basis ψ is defined by

T̂ (x0, λ)ψj =
∑
q

tjq(x0, λ)ψq(x, x0, λ).

The matrix T̂ satisfies the following equation (in x0):

∂T̂

∂x0
= [Q(x0, λ), T̂ (x0, λ)],

where the matrix Q(x0, λ) can be easily computed. The eigenvalues µj(λ) of the
matrix T̂ (x0, λ) are independent of x0 and we obtain an n-valued function µ =
µj(λ), j = 1, . . . , n. Denote by Γ the corresponding Riemann surface. Then on Γ
we have a complex-valued meromorphic function ψ(x, λ, µ) satisfying the following
relations:

Lψ = λψ, Tψ = µψ, ψ(x0, x0, λ) ≡ 1.

Definition 1. The Riemann surface Γ together with the set of poles of ψ is
called inverse spectral data.

Definition 2. An operator L is called a finite-gap or algebro-geometric oper-
ator if the genus of the Riemann surface Γ of its Bloch–Floquet function ψ is finite.
In this case the number of poles of ψ is equal to the genus of Γ.
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Strictly speaking, this definition is valid only for operators with periodic coef-
ficients. In the case of quasi-periodic coefficients aj(x), ψ is called a Bloch–Floquet
solution if (logψ)x is a quasi-periodic function with the same group of quasi-periods
as the coefficients of the operator L. If the complete Bloch–Floquet solution exists
for all λ ∈ C, then there is a Riemann surface Γ with the same analytic properties
as in the periodic case. This is always true for surfaces of finite genus.

An important and well-known class of examples is given by the second order
operators. It includes the differential Schrödinger operator of the form

L = −∂2
x + u,

2 × 2-systems of first order operators, difference operators, and λ-pencils whose
Riemann surfaces Γ are hyperelliptic (i. e., Γ is a ramified double cover of a Riemann
sphere CP 1 = S2 = C ∪ {∞}). In some cases the Riemann surface of a Bloch–
Floquet function is a double cover of a more complicated algebraic curve of a
spectral parameter λ ∈ Γ (the coefficients of L depend on x and λ). One interesting
example of such behavior for genus g = 1 was considered in [GN1] in connection
with the theory of commuting operators of rank 2. In this case Γ was a ramified
double cover of an algebraic curve of genus 1 and L was a scalar differential operator
of order 4.

For a self-adjoint Schrödinger operator

L = −∂2
x + u(x), u(x+ T ) = u(x), u(x) ∈ R,

we have the following property: away from branching points there is a solution ψ
such that

Lψ = εψ, Tψ = µ±ψ,

where µ± = exp(±ipT ).
For real ε the quantity p (“quasi-momentum”) can be real or purely imaginary.

Regions with p real are called allowed zones (or spectral zones) and regions with
purely imaginary p are called forbidden zones (or gaps). This terminology comes
from the spectral theory of operators in the Hilbert space L2(R), where periodic
operators are sometimes called Hill operators, and also from solid state quantum
physics where the state of an electron in the lattice is determined by Bloch waves and
corresponding zones are called allowed and forbidden energy bands. In mechanics
and stability theory (with x being a time variable), these zones are called stability
and instability zones.

In general, a typical Schrödinger operator L with Tr T̂ = 2 cos(pT ) = µ+ + µ−
will have infinitely many forbidden zones satisfying |Tr T̂ | > 1.

But there are some cases (for example, u = const) where the lengths of all
forbidden zones are contracted to zero, (|Tr T̂ | ≤ 1). For example, for the Lame
potentials, u(x) = n(n+1)℘(x) 9, all but the first 2n+1 states of a periodic problem
are doubly degenerate. Here x ∈ R+ iω2, where 2iω2 is an imaginary period.

Although it was known for a long time that the Lame potentials can be exactly
solved formally, it was not until around 1940 that some interesting features of their
spectra were noticed ([11]). This is all that was known before the development of
the KdV theory. The periodic KdV theory is based on the following fact. There is
a large class of periodic or quasi-periodic finite-gap (algebro-geometric) potentials

9℘(x) is the Weierstrass ℘-function. Classics considered only the case x ∈ R where the
spectrum is discrete, and Floquet function is meaningless.
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u(x) such that all but finitely many of their forbidden zones have length zero. Then
the Riemann surface Γ of the corresponding Bloch–Floquet function has genus g,
where g is the number of forbidden zones of finite length (any real potential will
also have one forbidden zone of infinite length). This theory was created in ([111,
38, 47, 102, 90, N]).

Finite-gap potentials are everywhere dense in the space of all periodic functions
[MO]. It is possible to generalize the theta function formulae for the infinite-genus
case [103]. This generalization is essentially a “topological closure” of the corre-
sponding formulae for the finite-gap potentials.

Finite-gap potentials generate finite-gap conditionally periodic solutions of the
KdV equation.

Below we sketch the theory in a somewhat simpler case of periodic difference
operators L. In this case L is always a finite-gap operator, but with a very large
number of zones—generically, the genus of the corresponding Riemann surface is
equal to the number N of lattice points (i. e., to the period). This “finite-gap”
property is not very interesting. It helps to justify general properties, but it is not
very useful in practice—explicit theta function formulae have a reasonable form only
for very small N . This motivates the following definition. A difference operator L
is called essentially finite-gap if the number of forbidden zones is much less than
the period N . However, even in cases g = 2, 3 the theta function formulae are very
complicated and they started being used in applications only after the development
of this theory.

Note the following property of finite-gap potentials (this is important for the
Peierls–Fröhlich model below). Finite-gap potentials are extrema for the Kruskal
functionals (defined above). Let I = In + c1In−1 + · · · + cnI0, where cj are some
constants. Then finite-gap potentials are periodic functions satisfying the Euler–
Lagrange equation

δI

δu(x)
= 0.

It is important that the functionals I actually depend only on the spectrum of L,
i. e. eigenvalues of L and periodic and anti-periodic boundary conditions on the
boundaries of the forbidden zones, and are independent of the remaining spectral
data.

It is easy to see that any functional of the potential u(x), depending only on
the spectrum of L = −∂2

x + u(x), admits an infinite-dimensional symmetry group
generated by the KdV system and its higher analogues. Then it is natural to expect
that the extrema of such functionals can be found explicitly. This is indeed the case,
and the problem of finding these extrema is closely connected with the theory of
finite-gap potentials. This idea was first applied in [12, 24] to the “Peierls jelly
model” (a well-known model in solid state physics originating in the 1930’s), and
it was successfully generalized in [51, 81] for a very important difference analogue
of the Peierls model. This analogue was developed by physicists in 1970’s for the
study of “charge density waves”. Such waves were experimentally observed in the
quasi-one-dimensional materials. This difference model is discussed below.

We now return to the notation of the previous sections.
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6. Integrable Systems and the Algebraic-Geometric Spectral Theory
of Linear Periodic Operators

The original approach to the construction of finite gap solutions of the KdV
equations, the nonlinear Schrödinger equation and a number of others was based
on the spectral theory of linear operators with periodic coefficients (see [38], [45],
[64], [90], [100], [102], [111], [115]). The term “finite gap solutions” is connected
with just this approach. Let us briefly point out the interconnection between this
approach and the algebraic-geometric one which was set forth in § 2.

Let U(x, t, λ) and V (x, t, λ) be solutions of the equations of zero curvature
depending periodically on x. Let us consider the matrix

W (x, t, λ) = Ψ(x+ T, t, λ)Ψ−1(x, t, λ), (2.241)

where T is the period and Ψ is a solution of the equations (2.36). This matrix
is called the monodromy matrix (describing the translation by a period of the
solutions of the linear equations (2.36)).

From the fact that Ψ(x+T, t, λ) is also a solution of equations (2.36) it follows
that

[∂x − U,W ] = [∂t − V,W ] = 0,

and we arrive at equations (2.64), (2.65).
The matrix W (x, t, λ) is analytic outside the poles of U and V , where it gener-

ically has essential singularities.
The vector function ψ(x, t, γ) defined by the equations (2.66)–(2.72) is an eigen-

function of the period-translation operator: ψ[x + T, t, γ) = µ(γ)ψ(x, t, γ). In the
theory of operators with periodic coefficients such functions are called Bloch func-
tions. The Riemann surface Γ on which a Bloch function becomes single-valued has
infinite genus in the general case (its branch points accumulate at the poles of U
and V ).

The finite gap periodic solutions are singled out by the condition that the genus
of the surface Γ is finite, which is equivalent to the existence of a solution W (x, t, λ)
which is rational in λ for equations (2.64), (2.65).

Thus, the periodic solutions of the equations (2.37), (2.64), (2.65) have the
property that their corresponding Bloch function is defined on a Riemann surface
of finite genus and coincides with the Baker–Akhiezer function.

It is clear that the finite gap notion can be carried over verbatim to an arbitrary
linear operator ∂x−U(x, λ) irrespective of nonlinear equations. The corresponding
matrices U are called finite gap potentials.

The spectral properties of a Sturm–Liouville operator with finite gap potentials
(properties obtained in the work presented in [45], [115]) were briefly cited in § 2.

Below we shall describe these properties in greater detail and shall give sketches
of the proofs of the fundamental assertions using the example of the spectral theory
of the Schrödinger difference operator (2.20)

Lψn = cnψn+1 + vnψn + cn−1ψn−1 (2.242)

(cn = cn+N 6= 0, vn = vn+N ), which enters into the Lax representation for the
equations of the Toda lattice and for the KdV difference equation (when vn ≡ 0).

Remark. In recent years there have been discovered new remarkable applica-
tions of the algebraic-geometric spectral theory to Peierls–Fröhlich problems, which
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are among the most fundamental ones in the theory of quasi-one-dimensional con-
ductors. In the continuous limit this model was investigated in the papers [12],
[24], where indeed a connection between the Peierls model and the theory of finite
gap Sturm–Liouville operators was discovered for the first time. This theory (the
formulas for the variational derivatives of Kruskal integrals, variation with respect
to the period group) was first applied to a full extent in [12]. The latter papers
served as a starting point for the subsequent investigations [23], [50], [51], [81], in
which these results were carried over to the discrete Peierls model and considerably
developed.

The Peierls-Fröhlich model (R. E. Peierls, H. Fröhlich) describes the self-
consistent behaviour of a lattice of atoms with coordinates xn < xn+1 and electrons.
There are two models. In the first the atom at each lattice site also possesses an
internal degree of freedom: vn. In the second model, vn ≡ 0.

The electronic energy levels are defined as the points E1 < E2 ≤ · · · ≤ EN of
the spectrum of the periodic problem for an operator L which has the form (2.242),
where cn = exp(xn − xn+1), cn = cn+N , vn = vn+N . The energy of the system
consists of the energy of the electrons, which at absolute zero occupy the m lowest
levels, and the elastic energy of the lattice:

H =
1
N

(
m∑
i=1

Ei +
N−1∑
n=0

Φ(cn, vn)

)
.

Here m is the number of electrons and Φ(cn, vn) is the elastic energy potential.
In [23] the case was considered of∑

n

Φ(cn, vn) =
∑
n

[κ(v2
n + 2c2n)− P ln cn]

and the more general one of ∑
n

Φ(cn, vn) =
l∑

k=1

κkIk,

where the Ik are integrals of the Toda lattice or the Langmuir lattice (J. Langmuir)
(vn ≡ 0).

In the first case it was shown that H(cn, vn) has a unique extremal, correspond-
ing to a one-gap operator L.

In the continuous limit this extremal goes over into the extremals obtained in
[13], [24], which proves that in these papers the ground state was found.

For the more general models the stability of the extremals was investigated and
the ground state was found. In addition, the speed of sound and of a charge density
wave were found.

The systematic construction of an algebraic-geometric Bloch–Floquet spectral
theory on L2(Z) for the Schrödinger difference operator (2.242) was first begun by
S. P. Novikov [45, Chap. 3, § 1] and by S. Tanaka–E. Date [33]. With the aid of the
trace formulas for the function χn = ψn+1/ψn formulas were obtained for vn. In
[45] the symmetric case vn = 0 was also studied. This theory was carried through
to the finish in [45], but only in the elliptic case. In the paper [33] the expressions
for vn were written in the form

vn =
∂

∂t
ln

θ(Un+ V t+ Z)
θ(U(n+ 1) + V t+ Z)

+ const. (2.243)
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(In [45] an insignificant error was committed, which was rectified in the book [115].)
In the case of the Toda lattice, by virtue of the condition ẋn = vn formula

(2.243) determines xn(t) up to a choice of the numbers xn(0), −∞ < n <∞. The
difference KdV was not considered in [33].

These investigations received their completion in [79], in which explicit expres-
sions were obtained for the xn and the solutions of the difference KdV. The idea
of [79] consists in using explicit expressions for the ψn in terms of theta functions
and analogues of the “trace identities” for the ψn, in contrast to [45], [33], where,
as has already been said, trace formulas for the χn were used, analogously to the
continuous case. In the later paper [82] “local trace identities” cn = cn(γ1, . . . , γn)
were explicitly obtained whose existence had been ineffectively proved in [45].

The basic contemporary approach to spectral problems for periodic operators
is the analysis of the analytic properties of the solutions of the equation

Lψn = Eψn (2.244)

(here L is the operator (2.242) with periodic coefficients) for all values, among them
also complex ones, of the parameter E.

For any E the space of solutions of equation (2.244) is two-dimensional. Having
given arbitrary values to ψ0 and ψ1, one can find the remaining values ψn in a
recursive manner. The standard basis φn(E) and θn(E) is given by the conditions
φ0 = 1, φ1 = 0, θ0 = 0, θ1 = 1. From the recursive procedure for computing φn(E)
and θn(E) it follows that (for n > 0) they are polynomials in E

φn(E) =
c0

c1 . . . cn−1

(
En−2 −

(
n−1∑
k=2

vk

)
En−3 + . . .

)
,

θn(E) =
1

c1 . . . cn−1

(
En−1 −

(
n−1∑
k=2

vk

)
En−2

+

(
n−1∑

0<i<j

vivj −
n−3∑
k=1

c2k

)
En−3 + . . .

)
, (2.245)

The matrix W (E) of the monodromy operator T̂ : yn → yn+N in the basis φn and
θn has the form:

W (E) =
(
φN (E) θN (E)
φN+1(E) θN+1(E)

)
. (2.246)

It easily follows from (2.244) that for any two solutions of this equation, in particular
for φ and θ, the expression (analogue of the Wronskian)

cn(φnθn+1 − φn+1θn) (2.247)

does not depend on n. Since c0 = cN , we have

detW = φNθN+1 − φN+1θN = φ0θ1 − θ0φ1 = 1. (2.248)

The eigenvalues w of the monodromy operator can be determined from the
characteristic equation

w2 − 2Q(E)w + 1 = 0, 2Q(E) = φN (E) + θN+1(E). (2.249)
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The polynomial Q has degree N and its highest-order terms have the form

2Q(E) =
1

c0 . . . cN−1

(
EN −

(
N−1∑
k=0

vk

)
EN−1

+

(∑
i<j

vivj −
N−1∑
k=0

c2k

)
EN−2 + . . .

)
(2.250)

The spectra E±i of the periodic and antiperiodic problems for L can be determined
from the equations Q(E±i ) = ±1, since when this holds w = ±1.

Let us denote by Ei, i = 1, . . . , 2q + 2, q ≤ N − 1, the simple points of the
spectrum of the periodic and antiperiodic problems for L, i. e. the simple roots of
the equation

Q2(E) = 1. (2.251)

For a point E in general position the equation (2.249) has two roots w and w−1.
To each root there corresponds a unique eigenvector normalized by the condition
ψ0 = 1

Lψn = Eψn, ψn+N = wψn (2.252)

This solution is called a Bloch solution.

Theorem 2.12. The two-valued function ψ±n (E) is a single-valued meromor-
phic function ψn(P ) on the hyperelliptic curve Γ, P ∈ Γ, corresponding to the
Riemann surface of the function

√
R(E)

R(E) =
2q+2∏
i=1

(E − Ei). (2.253)

Outside the points at infinity it has q poles γ1, . . . , γq. In the neighbourhood of the
points at infinity

ψ±n = e±xnE±n

(
1 +

∞∑
s=1

ξ±s (n)E−s
)
. (2.254)

Here the ± signs correspond to the upper and lower sheets of the surface Γ (by
the upper sheet will be meant the one on which at infinity

√
R ∼ Eq+1).

A Bloch solution, like any other solution of equation (2.244), has the form
ψn = ψ0φn +ψ1θn. The vector (ψ0, ψ1) is an eigenvector for the matrix W . Hence
ψ0 = 1, ψ1 = w−φN

θN
or

ψn = φn(E) +
w − φN (E)
θN (E)

θN (E). (2.255)

Let ej , j = 1, . . . , N − q − 1 be the double roots of the equation

Q2(E) = 1, i. e.

Q2(E)− 1 = C2r2(E)R(E), r(E) =
N−q−1∏
j=1

(E − ej),

C−1 = c0 . . . cN−1.

(2.256)
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At the points ej the matrix of the operator T̂ with respect to a Bloch basis is
equal to ±1. So it is equal to ±1 in any other basis. Hence

θN (E) = r(E)θ̃N (E), φN+1(E) = r(E)φ̃N+1(E),

φN (ej) = θN+1(ej) = w(ej) = ±1. (2.257)

From (2.257) it follows that Q(E)− φN (E) = r(E)Q̃(E).
Here θ̃N , φ̃N+1, Q̃ are polynomials in E. Substituting w = Q+Cr

√
R in (2.255)

and using the preceding equalities, we get

ψ±n = φn(E) +
Q̃(E)± C

√
R(E)

θ̃N (E)
θn(E). (2.258)

And this equality means in fact that the double-valued function ψ±n is a single-
valued meromorphic function of the point of Γ. The poles of ψ lie at points
γ1, . . . , γq, disposed one above each of the roots of the polynomial θ̃N (E). In-
deed, if θ̃N (E) = 0 then the two roots w1,2 are equal to φN (E) and θN+1(E)). In
addition φN (E) 6= θN+1(E). Consequently, for one of the roots w (i. e. on one of
the sheets of Γ over the root of θ̃N (E) = 0) the numerator of the fraction in (2.258)
vanishes. The pole of ψn lies on the second sheet.

To complete the proof of the theorem it remains to consider the behaviour of
ψ±n (E) when E → ∞. From (2.258) it follows that ψ1 has a simple pole at P+.
We immediately get from (2.244) that ψn has a pole at P+ of n-th order for all
n > 0. Similarly, ψ−n has a pole of n-th order at P−. This, together with the fact
that w has a pole of N -th order at P+ and a zero of multiplicity N at P−, implies
equation (2.254), where the xn are such that x0 = 0, cn = exp(xn − xn+1). �

The parameters γi, or rather their projections onto the E plane (which, as
earlier, we shall for brevity denote the same) have a natural spectral meaning.

Lemma 2.2. The set of points ei (the double points of the spectrum of the
periodic and antiperiodic problems for L) and {γi} are the spectrum for the problem
(2.244) with zero boundary conditions.

Proof. The surface Γ has two sheets above the points ej , on each of which w
takes on the same value 1 or −1.

As ψ̃n one may take

ψ̃n(ej) = ψ+
n (ej)− ψ−n (ej) =

2C
√
R(ej)

θ̃N (ej)
θn(ej). (2.259)

The points γi are zeroes of θN (E). As was already said above, when E = γi
then for one of the signs in front of

√
R in (2.258) the numerator of the second term

vanishes. Hence for the second it is different from zero. Let this, for example, be
the plus sign. Then

ψ̃n(γj) = (Q̃(γj) + C
√
R(γj)) θn(γj) (2.260)

is a non-trivial solution of equation (2.244), E = γj , with zero boundary conditions.
�

Let us consider the inverse problem. Let arbitrary distinct points Ei be given,
i = 1, . . . , 2q + 2, and points γ1, . . . , γq on the Riemann surface Γ of the function√
R(E), whose projections to the E plane are all different. In difference problems

the analogue of theorem 2.2 is the Riemann–Roch theorem [131]. In the given
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case it states that there exists a meromorphic function ψn(P ) on Γ, unique up to
proportionality, having poles at the points γ1, . . . , γq, an n-th order pole at P+ and
an n-th order zero at P−. The function ψn(P ) can be normalized up to sign by
requiring that the coefficients of E±n on the upper and lower sheets at infinity be
reciprocal. Having fixed the signs arbitrarily, we shall denote the corresponding
coefficients by e±xn . With this ψn will have the form (2.254) in a neighbourhood
of infinity.

Lemma 2.3. The constructed functions ψn(P ) satisfy equation (2.244), where
the coefficients of the operator L equal

cn = exn−xn+1 , vn = ξ+
1 (n)− ξ+

1 (n+ 1). (2.261)

Proof. Let us consider the function ψ̃n = Lψn(P ) − Eψn(P ). It has poles
at the points γ1, . . . , γq. From (2.254), (2.261) it follows that ψ̃n has an (n− 1)-st
order pole at P+ and an n-th order zero at the point P−. By the Riemann–Roch
theorem ψ̃n = 0.

The method of obtaining explicit formulas for the ψn and the coefficients of L
is completely analogous to the continuous case. As before, let us fix a canonical
set of cycles on Γ. Let us denote by i dp the normalized abelian differential of the
third kind with its only singularities at infinity

i dp =
Eq +

∑q−1
i=0 αiE

q−i−1√
R(E)

dE =
h(E) dE√
R(E)

. (2.262)

The coefficients αi are determined from the normalization conditions∮
ai

dp = 0, i = 1, . . . , q. (2.263)
�

Lemma 2.4. The function ψn(P ) has the form

ψn(P ) = rn exp

(
in

∫ P

e1

dp

)
θ(A(P ) + nU + ζ)

θ(A(P ) + ζ)
, (2.264)

where Uk = (1/2π)
∮
bk
dp, rn is a constant.

In a neighbourhood of the point at infinity on the upper sheet we have

exp

(
i

∫ P

e1

dp

)
= Ee−I0(1− I1E−1 + . . . ), P = (E,

√
R) ∈ Γ.

It follows from (2.254) that e2xn+2I0n equals the ratio of the values of the
multipliers attached to the exponential in (2.264) taken at the images A(P±) = ±z0.
From (2.264) and the fact that by the Riemann bilinear relations 2z0 = −U , we get

c2n = e2I0
θ((n− 1)U + ζ̃)θ((n+ 1)U + ζ̃)

θ2(nU + ζ̃)
(2.265)

where ζ̃ = ζ − z0.
In a neighbourhood of P+ we have

A(P ) = z0 + V E−1 + . . . ,

where the coordinates Vk of the vector V are defined by the equality

ωk = (Vk +O(E−1)) dE−1.
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By expanding (2.264) in a series in E−1, we get from (2.261)

vn =
d

dt
ln
θ((n− 1)U + ζ̃ + V t)
θ(nU + ζ̃ + V t)

∣∣∣∣
t=0

+ I1. (2.266)

Theorem 2.13. The formulas (2.265), (2.266) recover the coefficients of L
from the parameters Ei and γj.

It is important to note that in general formulas (2.265), (2.266) define quasiperi-
odic functions cn and vn. For cn and vn to be periodic it is necessary and sufficient
that for the corresponding differential dp the conditions be fulfilled:

Uk =
1

2π

∮
bk

dp =
mk

N
, the mk being integers. (2.267)

As follows from the definition of the ψn, the parameters Ei, γi determine them
up to sign.

Changes of the signs of the ψn result in a change of the signs of the cn. Op-
erators differing only in the signs of the cn need not be distinguished, since their
eigenfunctions can be trivially transferred into one another.

So far we have been talking about operators L with arbitrary complex coeffi-
cients. Now let cn and vn be real; then all of the polynomials θn(E), φn(E), Q(E)
introduced above will be real. In addition, the periodic and the antiperiodic prob-
lems for L are self-adjoint. Hence there are N real points in the spectrum for each
of these problems, i. e. the polynomial Q2 − 1 has 2N real roots. Hence at the
extrema of the polynomial Q(E), dQ/dE = 0, one has that |Q(E)| ≥ 1. The graph
of the polynomial Q has the form:

+1

−1

Figure 2

The intervals [E2i−1, E2i], on which |Q(E)| ≤ 1, are called the allowed bands10

In these intervals |w| = 1 and the many-valued function p(E) defined from the
equality w = eipN is real. It is called the quasimomentum. Its differential coincides
with (2.262), where in (2.263) the ai are the cycles situated above the forbidden
bands11 [E2i, E2i+1].

Lemma 2.5. The poles γi of the Bloch function ψn(P ) of a real operator L are
distributed one in each of the finite forbidden bands, E2i ≤ γi ≤ E2i+1.

10Or the stable bands (translator’s note).
11Or unstable bands (translator’s note).
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Proof. The poles γi are the zeroes of the polynomial θN (E). At these points

1 = detW = φN (γi)θN+1(γi),

Since φN and θN+1 are real, we have

|Q(γi)| = 1
2 |φ+N(γi) + θN+1(γi)| ≥ 1

and γi lies either in a forbidden band or in one of the collapsed bands—the points
ej . At the latter ψn(P ), as was shown above, has no singularities. �

Theorem 2.14. It the points E1, . . . , E2q+2 are real and the points γ1, . . . , γq
of the corresponding Riemann surface lie one above each of the forbidden bands
[E2i, E2i+1], then the coefficients vn and cn of the operator L determined by them
by virtue of theorem 2.13 are real.

Proof. The necessity of the conditions of the theorem within the class of
periodic operators is given by lemma 2.5.

Let the Ei be real. Complex conjugation induces an anti-involution τ on the
curve Γ, τ : P = (E,

√
R) → τ(P ) = (Ē,

√
R(E)). The fixed ovals of this anti-

involution are the cycles disposed above the intervals [E2i, E2i+1] and above the
infinite band which joins through infinity the points E2q+2, E1.

Let us consider ψ̄n(τ(P )). This function possesses all the analytic properties
of ψn. Since ψn is determined by these properties up to sign, we get

ψ̄n(τ(P )) = ±ψn(P ). (2.268)

From (2.262) it follows that the vn are real, and the cn are either real or pure
imaginary (i. e. c2n is real).

Let us prove that under the assumptions of the theorem cn 6= 0, cn 6=∞. The
negation of this assertion is equivalent to one or several of the zeroes γi(n) of the
function ψn(P ) finding themselves at infinity on the upper or the lower sheet of Γ.
From (2.268) it follows that on the cycles disposed above [E2i, E2i+1]ψn is either
real or pure imaginary. On each cycle there is one pole γi; therefore there is also
at least one zero. Since there are q zeroes in all, the γi(n) are distributed, like the
γi, one above each [E2i, E2i+1] and hence are separate from infinity.

By virtue of what has been proved, the sign of c2n does not change under
continuous deformations of Ei and γi for which the conditions of the theorem are
fulfilled. Let us deform them so that all the forbidden bands close up. Here it is
easy to check that the operator L is deformed into an operator L0 which has vn = 0
and c2n = const > 0. The theorem is proved. �

To conclude the section let us examine the conditions which pick out operators
L for which vn = 0, i. e.

Lψn = cnψn+1 + cn−1ψn−1. (2.269)

Theorem 2.15 ([45], Chap. 3, § 1). Necessary and sufficient conditions for the
operator L reconstructed by virtue of theorem 2.13 from the data Ei and γj to have
the form (2.269), i. e. to have vn = 0, are symmetry of the points Ei relative to
zero and invariance of the set {γj} with respect to the involution on Γ

(E,
√
R(E))→ (−E,

√
R(E)), R(E) =

q+1∏
i=1

(E2 − E2
i ).
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The necessity of the conditions follows from the fact that if ψn(P ) is a Bloch
solution for the operator (2.269), then for ψ̃n(E) = (−1)ψn(E) we have

Lψ̃n = −Eψ̃n, ψ̃n+N = (−1)Nwψ̃n.

The sufficiency of the conditions can be proved analogously to the proof of
theorem 2.14. �

Let us define a function ψn(t, P ) which is meromorphic on Γ outside P±, has
poles γ1, . . . , γq, and in a neighbourhood of P± has the form:

ψ±n (t, E) = e±xnE±n

(
1 +

∞∑
s=1

ξ±s (n, t)E−s
)
e∓t/2 (2.270)

It can be proved in the standard way that such a function satisfies the linear equa-
tions

Lψn = Eψn,
d

dt
ψn = Aψn, (2.271)

where L and A have the form (2.20), (2.21). Consequently, the xn = xn(t) satisfy
the equations of the periodic Toda lattice.

Analogously to lemma 2.4, it is possible to write out an explicit formula for the
ψn(t, P ) and to find explicit expressions for the xn(t).

Theorem 2.16. The functions

xn(t) = ln
θ(Un+ V t+ ζ)

θ(U(n+ 1) + V t+ ζ)
+ I1t− nI0 (2.272)

satisfy the equations of the Toda lattice.

(Here I1 is the average momentum, −I0 is the mean distance between particles.)
The parameters of the theta function, the vectors U, V, ζ, can be expressed by

quadratures in terms of the initial data −xn(0), xn(0).
To conclude the chapter, let us cite on the basis of this example one more aspect

of the theory of finite gap integration—its connections with variational principles
for functionals of the Kruskal type (M. Kruskal).

Let us define the functionals Ik = Ik{cn, vn} by the formula

ip(E) = lnE −
∞∑
k=0

IkE
−k, (2.273)

where p(E) is the quasimomentum. These functionals have the form:

Ik =
1
N

N∑
n=1

rk(cn+i, vn+i | |i| < k),

where the local densities rk are polynomials.
From (2.250) we have

I0 =
1
N

N∑
n=1

ln cn, I1 =
1
N

N∑
n=1

vn, I2 =
1
N

N∑
n=1

(
c2n +

v2
n

2

)
etc.
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Theorem 2.17. The operator L is q-gap if and only if its coefficients are ex-
tremals of the functional H,

H = Iq+2 +
q+1∑
k=0

αkIk. (2.274)

This assertion follows from the formula

iδp =
l0E

q+1 + · · ·+ lq+1√
R(E)

, li = li(δcn, δvn),

δ =
∑
n

(
∂

∂xc
δcn +

∂

∂vn
δvn

)
.

(2.275)

In fact, by expanding (2.275) in the neighbourhood of P+ and comparing with
the coefficients of (2.273), we get

l0 = −δI0, I1 = −δI1 +
s1

2
δI0, s1 =

∑
i

Ei,

l2 = −δI2 +
s1

2
δI1 +

(
s2

1

8
− s2

2

)
δI0, s2 =

∑
i<j

EiEj ,

lk = −δIk +
k−1∑
i=0

βikδIi. (2.276)

From the first q + 1 equalities the coefficients lk will be expressed via the δIk,
k ≤ q + 1. Equating the coefficients of E−q−2 in the expansion (2.273) and in
(2.275), we get that

δH = 0, (2.277)
where the αk are the symmetric polynomials in the Ei.

The proof of formula (2.274) can be obtained in an entirely analogous way to
the proof of its continuous version [38].
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tion, all algebraic curves, commuting ordinary differential operators—Krichever
(1975–1976). Krichever’s solutions and Novikov’s conjecture concerning classical
Riemann–Shottky problem. Results of Dubrovin (1981), Arbarello, de Conchini
(1984) and final solution by Shiota (1986).

2a. KdV and KP theory and poles systems—Airault, Moser, McKean (1977),
Krichever (1978), Choodnovski D., Chodnoovski G. (1978). Elliptic case—Krichever
(1980), Babelon, Biley, Talon, Krichever (1995), connection with quantum groups—
Krichever, Zabrodin (1995), Krichever, Lipan, Zabrodin, Wiegmann (1996–1997).

3. Soliton theory, algebraic geometry and 2-dim Schrödinger operators—Man-
akov (1976), Dubrovin, Krichever, Novikov (1976). Purely potential Schrödinger
operators and Prym Varieties—Novikov, Veselov (1984), Taimanov (1986). Novikov–
Veselov hierarchy and deformations of surfaces in 3-dim space preserving Wilmore
functional—Taimanov (1995–1996). Modified Novikov–Veselov hierarchy—Bog-
danov (1987). Difference 2-dim operators—Krichever (1985), Novikov (1996).

3a. Spectral theory of one energy level and approximation of the generic 2-d
potential Schrödinger operators by algebraic-geometrical—Krichever (1989). Com-
pactification of Bloch–Flouque manifolds of eigenfunctions for all energy levels Feld-
man, Knorrer, Trubowitz (1989). Theory of special solvable operators—Chalikh,
Veselov, Styrkas (1993), Novikov, Veselov, Taimanov (1996–1997), Etingof (1997).

4. KP hierarchy, Grassmanians and Representation theory—Sato, Miwa, Jimbo
(1979), Segal, Wilson (1980).
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5. KP hierarchy and deformations of semi stable vector bundles over algebraic
curves. Solutions of rank l ≥ 2, elliptic cases, commuting ordinary differential
operators—Krichever, Novikov (1978–1980), Novikov, Grinevich (1982), Mokhov
(1983), Grinevich (1985–1986). Yang–Mills fields and their deformations—Hitchin
(1988). Hitchin’s hierarchy of deformations of stable holomorphic vector bundles
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6. Hamiltonian theory of the integrable systems (finite-dimensional and field
theoretical)—Bogoyavlenski–Novikov (1975), Flashka–McLughlin (1976), Gelfand–
Dikii (1977–1979), Adler (1978), Manin–Lebedev (1979), Veselov (1981), Dubrovin,
Novikov, Veselov (1982–1984). Connection to Seiberg–Witten solution of N = 2
supersymmetric gauge theories—Krichever, Phong (1996).

7. Hamiltonian hydrodynamic type systems, Riemanian Geometry and integra-
bility—Dubrovin, Novikov (1983–1984), Tsarev (1985), Krichever (1988), Potemin
(1989), Mokhov (1988–1990), Ferapontov (1990). Topological quantum field the-
ory and geometry—Krichever (1990–1992). Dubrovin (1990–1992). Solvable cases
of the associativity equations—Mokhov, Ferapontov, Nutku (1995). n-orthogonal
coordinate systems in Euclidean spaces and inverse scattering Zakharov (1996),
algebraic-geometrical solutions—Krichever (1996).

8. Soliton theory, bosonic strings and harmonic analysis on the Riemann
surfaces. Krichever–Novikov Fourier type basises and almost graded algebras—
Krichever, Novikov (1987–1990), Jaffe, Klimek (1988), Bonora (1988), Sadov (1990),
Schtihelmeier (1990).

9. Genus 1 surfaces (tori) of constant mean curvature in Euclidean 3-dim space
and finite-gap solutions—Wente, Valter (1986), Pinkal, Hitchin, Bobenko (1991–
1992).



APPENDIX A

Algebraic-Geometrical Integration
of (2 + 1)-Systems

Strange as it may seem, the algebraic-geometrical construction of periodic and
quasi-periodic solutions of multi-dimensional (2 + 1)-integrable systems is to some
extent “simpler” than the construction of the finite-gap solutions of one-dimensional
evolution integrable equations. This slightly exaggerated statement reflects the fol-
lowing inter-relations between spatially two- and one-dimensional integrable sys-
tems.

All one-dimensional evolution integrable equations can be considered as a re-
duction of their two-dimensional analogs. For example, the KdV equation (2.7) is
the reduction of the KP equation

3
4
uyy =

(
ut −

3
2
uux +

1
4
uxxx

)
x

. (A.1)

corresponding to the case where there is no dependence on the y variable. (Note that
the equation (A.1) is obtained from (2.12) by elimination of w.) The Boussinesq
equation (2.11) is the reduction of the KP equation as well. It corresponds to
solutions of KP that do not depend on t. Another example is the Toda lattice
(2.22), (2.23) which is the reduction of the 2d-Toda lattice equations

∂2
ξηϕn = eϕn−ϕn−1 = eϕn+1−ϕn . (A.2)

At the same time, the sine-Gordon equation may be considered as another reduction
of the same 2d-Toda lattice equations. Namely, it corresponds to N = 2 periodic
ϕn+N = ϕn solutions of (A.2).

From the “finite-gap” theory point of view, all these inter-relations are a corol-
lary of the fact that the Baker–Akhiezer functions, that are constructed for the
arbitrary Riemann surface with fixed local coordinates at neighborhoods of the
punctures, lead to solutions of “unrestricted” two-dimensional integrable systems.
The algebraic-geometrical solutions of the equations that are the reductions of
these two-dimensional equations correspond to reductions or specifications of the
algebraic-geometrical data.

We begin the presentation of the general algebraic-geometrical construction
with the definition of the most basic multi-point and multi-variable Baker–Akhiezer
function.

Let Γ be a non-singular algebraic curve of genus g with N punctures Pα and
fixed local parameters k−1

α (Q) in neighborhoods of the punctures. For any set of
points γ1, . . . , γg in general position there exists a unique (up to constant factor
c(tα,i)) function ψ(t, Q), t = (tα,i), α = 1, . . . , N ; i ≥ 1, such that:
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(i) the function ψ (as a function of the variable Q which is a point of Γ) is
meromorphic everywhere except for the points Pα and has at most simple poles at
the points γ1, . . . , γg (it all of them are distinct);

(ii) in a neighborhood of the point Pα the function ψ has the form

ψ(t, Q) = exp

( ∞∑
i=1

tα,ik
i
α

)( ∞∑
s=0

ξs,α(t)k−sα

)
, kα = kα(Q) (A.3)

Note that this is the same set of functions that was introduced in Section 2 of Chap-
ter 2 but with a special choice of a set of the external parameters t = {t1,i, . . . , tN,i}
(that are the coefficients of the polynomials qα).

In these new variables the theta-functional formula (2.100) becomes

ψ(t, Q) = exp

∑
i,α

ti,αΩi,α(P )

 θ(A(P ) +
∑
i,α Ui,αti,α + Z)

θ(A(P ) + Z)
, (A.4)

where:
a) θ(z) = θ(z|B) is the Riemann theta-function corresponding to the matrix B

of b-periods of normalized holomorphic differentials dωi, i = 1, . . . , g on Γ;
b) Ωi,α(P ) is an abelian integral

Ωi,α(P ) =
∫ P

dΩi,α, (A.5)

corresponding to the unique normalized∮
ak

dΩi,α = 0, (A.6)

meromorphic differential on Γ with the only pole of the form

dΩi,α = dkiα(1 +O(k−i−1
α )) (A.7)

at the puncture Pα;
c) 2πiUj,α is the vector of b-periods of the differential dΩj,α

Ukj,α =
1

2πi

∮
bk

dΩj,α; (A.8)

d) Z is an arbitrary vector (it corresponds to the divisor of poles of the Baker–
Akhiezer function).

From the uniqueness of the Baker–Akhiezer function it follows that for each
pair (α, n) there exists a unique operator Lα,n of the form

Lα,n = ∂nα,1 +
n−1∑
j=1

u
(α,n)
j ∂jα,1, (A.9)

(where ∂α,i = ∂/∂tα,i) such that

(∂α,i − Lα,n)ψ(t, Q) = 0. (A.10)

The idea of the proof of the theorems of this type which was proposed in [74, 75]
is universal.
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For any formal series of the form (A.3) there exists a unique operator Lα,n of
the form (A.9) such that

(∂α,i − Lα,n)ψ(t, Q) = O(k−1) exp

( ∞∑
i=1

tα,ik
i
α

)
. (A.11)

The coefficients of Lα,n are differential polynomials with respect to ξs,α. They can
be found after substitution of the series (A.3) into (A.9).

It turns out that if the series (A.3) is not formal but is an expansion of the
Baker–Akhiezer function in the neighborhood of Pα the congruence (A.11) becomes
an equality. Indeed, let us consider the function ψ1

ψ1 = (∂α,n − Lα,n)ψ(t, Q). (A.12)

It has the same analytical properties as ψ, with one exception. The expansion of
this function in the neighborhood of Pα starts from O(k−1). From the uniqueness
of the Baker–Akhiezer function it follows that ψ1 = 0 and the equality (A.10) is
proved.

Corollary A.1. The operators Lα,n satisfy the compatibility conditions

[∂α,n − Lα,n, ∂α,m − Lα,m] = 0. (A.13)

Remark. The equations (A.13) are gauge invariant. For any function g(t)
operators

L̃α,n = gLα,ng
−1 + (∂α,ng)g−1 (A.14)

have the same form (A.9) and satisfy the same operator equations (A.13). The
gauge transformation (A.14) corresponds to the gauge transformation of the Baker–
Akhiezer function

ψ1(t, Q) = g(t)ψ(t, Q). (A.15)

Example. One-puncture Baker–Akhiezer function.
In the one-puncture case the Baker–Akhiezer function has an exponential sin-

gularity at a single point P1 and depends on a single set of variables. Let us choose
the normalization of the Baker–Akhiezer function with the help of the condition
ξ1,0, i. e. an expansion of ψ in the neighborhood of P1 equals

ψ(t1, t2, . . . , Q) = exp

( ∞∑
i=1

tik
i

)(
1 +

∞∑
s=1

ξs(t)k−s
)
. (A.16)

In this case, the operator Ln has the form

Ln = ∂n1 +
n−2∑
i=0

u
(n)
i ∂i1. (A.17)

For example, for n = 2, 3 after redefinition x = t1 we have L2 = σL, L3 = A, where
L and A are differential operators (2.12) and

u(x, t2, . . . ) = 2∂xξ1(x, t2, . . . ). (A.18)

Therefore, if we define y = σ−1t2, t = t3 then u(x, y, t, t4, . . . ) satisfies the KP
equation (A.1).

It follows from (A.18) that in order to get the solution of the KP equation,
it is enough to take the derivative of the first coefficient of the expansion at the
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puncture of the ratio of theta-functions in the formula (A.4). The final formula for
the algebraic-geometrical solutions of the KP hierarchy has the form

u(t1, t2, . . . ) = 2∂2
1 ln θ

( ∞∑
i=1

Uiti + Z

)
+ const, (A.19)

(see details in [75]).
The formula (A.19) that was derived in [75] has lead to one of the most impor-

tant pure mathematical applications of the theory of non-linear integrable systems.
This is the solution of the famous Riemann–Shottky problem.

According to the Torrelli theorem the matrix of b-periods of normalized holo-
morphic differentials uniquely defines the corresponding algebraic curve. The Rie-
mann–Shottky problem is to describe symmetric matrices with positive imaginary
part that are the matrices of b-periods of normalized holomorphic differentials on
algebraic curves. Novikov conjectured that the function

u(x, y, t) = 2∂2
1 ln θ(Ux+ V y +Wt+ Z|B) (A.20)

is a solution of the KP-equation iff the matrix B that defines the theta-function is
the matrix of b-periods of normalized holomorphic differentials on an algebraic curve
and U, V,W are vectors of the b-periods of corresponding normalized meromorphic
differentials that have one pole at a point of this curve. This conjecture was proved
in [Shi].

Let us make a few comments about the multi-puncture case. For each a the
equation (A.13) up to gauge transformations, is equivalent to the KP hierarchy cor-
responding to each set of variables {tα,i}. One could ask, “What is the interaction
between two different KP hierarchies?”

As it was found in [43], for the two-puncture case a full set of equations can be
represented in the following form

[∂α,n − Lα,n, ∂β,n − Lβ,n] = Dα,β
N,mH

α,β . (A.21)

where Hα,β is the two-dimensional Schrödinger operator in a magnetic field

Hα,β =
∂2

∂α,1∂β,1
+ vα,β1 ∂α,1 + vα,β2 ∂α,2 + uα,β (A.22)

and operators Dα,β
N,m are differential operators in the variables tα,1, tβ,1.

The sense of (A.21) is as follows. For the given operator Hα,β any differential
operator D in the variables tα,1, tβ,1 can be uniquely represented in the form

D = D1H
α,β +D2 +D3, (A.23)

where D2 is a differential operator with respect to the variable tα,1 only and D3 is
a differential operator with respect to the variable tβ,1 only. The equation (A.21)
implies that the second and the third terms in the corresponding representation for
the left hand side of (A.21) are equal to zero. This implies n + m − 1 equations
on n + m unknown functions (the coefficients of operators Lα,n and Lβ,m). The
equations (A.21) are gauge invariant. That’s why the number of equations is equal
to the number of unknown functions. Therefore, the operator equation (A.21) is
equivalent to the well-defined system of non-linear partial differential equations.

We shall discuss multi-point case at a greater length in the next Appendix. In
this section we only consider the 2d Toda lattice as a basic two-point example.
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Let ψn(t,Q) be the Baker–Akhiezer type function that is defined by the follow-
ing analytical properties: a) ψ, as a function of the variable Q ∈ Γ, is meromorphic
on Γ outside two punctures P1, P2 and has at most simple poles at the points
γ1, . . . , γg; b) at the point Pα the function ψ has the form

ψn(t, Q) = ktα,0 exp

( ∞∑
i=1

tα,ik
i
α

)( ∞∑
s=0

ξs,α(n, t)k−sα

)
, kα = kα(Q). (A.24)

Here u = 1, 2 and t1,0 = n, t2,0 = −n. This function has the same representation
(A.4) through theta functions if we add one term in the arguments of the exponential
factor and theta-function. Namely,

ψn(t, Q) = exp(nΩ±+
∑
i,α

ti,αΩi,α(P ))
θ(A(P ) + nU +

∑
i,α Ui,αti,α + Z)

θ(A(P ) + Z)
, (A.25)

where dΩ± is the normalized differential with simple poles at the points P1 and
P2 with residues ±1 and 2πiU is a vector of b-periods of this differential. Let us
normalize this function with the help of the condition ξ0,1 ≡ 1 and denote ξ0,2(n, t)
by ξ0,2 = exp(ϕn(t)). From (A.25) it follows that

ϕn = ln
θ(A(P2) + nU +

∑
i,α Ui,αti,α + Z) θ(A(P1) + Z)

θ(A(P1) + nU +
∑
i,α Ui,αti,α + Z) θ(A(P2) + Z)

. (A.26)

If we denote the first “times” corresponding to the punctures by ξ = t1,1 and
η = t2,1, then the usual arguments prove that

∂ξψn(ξ, η,Q) = ψn+1(ξ, η,Q) + vn(ξ, η)ψn(ξ, η,Q), (A.27)

∂ηψn(ξ, η,Q) = cn(ξ, η)ψn−1(ξ, η,Q), (A.28)

where
cn = eϕn−ϕn−1 , vn = ∂ξϕn. (A.29)

The compatibility conditions of (A.27) and (A.28) are equivalent to (A.2). Hence,
the formula (A.26) gives solutions of the 2d Toda lattice equations.

Now let us consider the reduction problem. Let us assume that for the algebraic
curve Γ and fixed local coordinate k−1 in the neighborhood of the puncture P1 there
exists a meromorphic function E(Q) that is holomorphic on Γ outside the puncture
and has the form

E(Q) = kn +O(k−1) (A.30)

in the vicinity of P1. Then for the corresponding Baker–Akhiezer function the
following identity is fulfilled

ψ(t, Q) = eE(Q)tnψ(t, Q)|tn=0. (A.31)

For the proof of (A.31) it is enough to note that the right and the left hand sides of
it have the same analytical properties. Then the uniqueness of the Baker–Akhiezer
function implies that both sides coincide.

The equality (A.31) implies that the corresponding solution of the KP hierarchy
does not depend on the variable tn and the corresponding linear equation (A.10)
becomes

Lnψ(t,Q) = E(Q)ψ(t, Q). (A.32)
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Therefore, if Γ is a hyperelliptic curve that is defined by the equation

y2 =
2g+1∏
i=1

(E − Ei) (A.33)

and the puncture is the “infinity” E = ∞, then the formula (A.19) defines the
solution of the KdV equation. If we choose the curve given by the equation

y3 + En +
∑

ni+3j≤n−2

aijy
iEj = 0

then the formula (A.19) gives solutions of the Boussinesq equation.
Now let us consider, as another example, the periodic reductions of the 2d Toda

lattice. Let w(Q) be a function on the curve Γ such that it has a pole of order N
at the point P1 and a zero of order N at the puncture P2 and is holomorphic on Γ
except at P1. In that case the corresponding Baker–Akhiezer function satisfies the
relation

ψn+N (t, Q) = w(Q)ψn(t, Q). (A.34)
Again in order to prove (A.34) it is enough to check that the right and the left hand
sides of it have the same analytical properties. This equality implies that

ϕn+N = ϕn. (A.35)

For N = 2 we have that the corresponding curve has to be a hyperelliptic curve
that can be represented in the form

y2 = w
2∏
i=1

g(w − wi). (A.36)

Therefore, we conclude that if Γ is defined by the equation (A.36) and two punctures
are two branch points, P1 = ∞ and P2 = 0, then the formula (A.26) defines the
solution of the Sine-Gordon equation iu = ϕ1 − ϕ0 (this formula coincides with
(2.131)).



APPENDIX B

Two-Dimensional Schrödinger Operators
and Integrable Systems

Consider the general two-dimensional Schrödinger operator L for the electric
and magnetic fields on the Euclidean plane R2. After the standard identification of
R

2 with C, z = x+ iy, L can be written in the following complex form

2L = (∂̄ +B)(∂ +A) + 2V = (∂x + iA1)2 + (∂y + iA2)2 − 2U,

where ∂ = ∂x − i∂y, ∂̄ = ∂x + i∂y, and A,B,A1, A2, V, U are functions of x, y such
that

2iA1 = A+B, 2A2 = A−B6, 2U = Az̄ −Bz − 2V.

The function U(x, y) is called the potential and the function H such that

2H = Bz −Az̄,

is called the magnetic field. In the sequel, by the potential we mean the function
V (x, y). The operator L is defined up to the gauge transformations

L→ e−fLef , ψ → e−fψ.

The only invariants of L are the potential V and the magnetic field H. For real V
and H we usually choose a gauge in which

B = −Ā, A1x +A2y = 0

(i.e., A1, A2 are real and the Lorenz condition is satisfied).
In the two-dimensional case, there are no non-trivial Lax type equations Lt =

[Q,L] for differential operators L. The correct two-dimensional generalization was
first developed in [43, 98]. In [98], it was suggested to consider the equation

Lt = [Q,L] + PL,

where P and Q are differential operators. Then it was shown in [43] that the inverse
spectral problem for L can be solved from the data obtained from eigenfunctions
of a single energy level,

Lψ = 0.

Using the methods of algebraic geometry, it is possible to find a large class
of exactly solvable systems. This theory was developed in [30, 86, 117] for the
periodic case and in [GN2, GM, G] for the rapidly decreasing case. Certain related
problems, for example the theory of pole systems, were solved in [KZ, FN*]. Below
we outline the main ideas of the theory in the periodic case and consider some
interesting two-dimensional systems that can be integrated by these methods.

103
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The simplest and the most interesting example of a non-linear system is the
following two-dimensional analogue of the KdV equation from the so called com-
mutative Novikov–Veselov hierarchy [NV1]:

−∂W
∂t

=
(
∂3 + ∂̄3

8
+
u1∂ + u2∂̄

2

)
W, u1z̄ = 3Wz, u2z = 3Wz̄,

where in the real case we put u1 = u2.
This equation is equivalent to the Lax-type representation

∂L

∂t
= [Q,L] + PL

with L = ∆ +W , and where

P = u1z + u2z̄,
1
8

(∂3 + ∂̄3) +
1
2

(u1∂ + u2∂̄).

Note that this system is more fundamental than the usual KdV or KP equa-
tions, since its y-independent subsystem coincides with the usual KdV equation,
while the KP system can be obtained as a result of a special limiting procedure.
There is also an analogue of the Miura transformation [Bog]. The substitution

u2 = 3
(
∂̄−1∂(f̄f)− i ∂̄f

2

)
,

u1 = 3
(
∂̄−1∂(f̄f)− i∂f̄

2

)
,

W = ff̄ − i∂f
2

transforms this equation into the modified Novikov–Veselov equation

ft +
1
8

(∂3 + ∂̄3)f +
3
2

(∂f)∂̄−1∂(f̄f) +
3
2

(∂̄f)∂−1∂̄(f̄f) +
3f
2
∂−1∂̄(f̄∂f) = 0.

Interesting classes of solutions of this system can be found by algebro-geometric
methods. These include doubly-periodic solutions, solutions which arc quasi-periodic
w. r. t. x and y variables, and classes of exactly solvable two-dimensional Schrödinger
operators associated with a single energy level Lψ = 0. Let all the coefficients of
the operator L be periodic in x and y with periods T1 and T2 respectively. We
call this case topologically trivial, since the flux of the magnetic field through the
elementary cell is zero:

[H] =
∫ T1

0

∫ T2

0

H(x, y) dx dy = 0, where 2H = Bz −Az̄.

The Bloch waves ψ such that

Lψ = 0, T̂1ψ = eip1T1ψ, T̂2ψ = eip2T2ψ,

where
T̂1ψ(x, y) = ψ(x+ T1, y), T̂2ψ(x, y) = ψ(x, y + T2)

are parameterized by one-dimensional complex manifolds Γ:

ψ = ψ(x, y,P), P ∈ Γ.

Definition. A differential operator L is called finite-gap or algebra-geometric
w. r. t. the level Lψ = 0 if Γ is an algebraic curve (i. e., the genus of Γ is finite).
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In the general non-singular rank one case we have the following analytic prop-
erties. Suppose Γ is an algebraic curve of genus g with two marked “infinity” points
P± ∈ Γ. Let w± = k−1

± be local parameters in the neighborhood of P±. Then

1) the function ψ(x, y,P) is a meromorphic function on Γ away from P±,
2) ψ has exactly g poles of the first order at the points P1, . . . ,Pg, Pj 6= P±,
3) Pj are independent of x, y,
4) at P± the function ψ has essential singularities of the special form:

ψ(x, y,P) ∼ exp{k+z}(1 +O(k−1
+ )) as P → P+,

ψ(x, y,P) ∼ c(x, y) exp{k−z̄}(1 +O(k−1
− )) as P → P−.

Then the operator L, whose coefficients can be expressed with the help of the
theta function of the curve Γ, annihilates ψ:

Lψ = 0, where L = ∂∂̄ + (ln c)z̄∂̄ + V (x, y).

In general, the coefficients of L are only quasi-periodic.
The theory of two-dimensional algebro-geometric Schrödinger operators is close-

ly connected with the two-dimensional generalization of commutative rings of dif-
ferential operators.

Definition. A commutative ring of operators “mod L” is given by the collec-
tion of operators

Q0, Q1, . . . , Qm, where Q0 = L, Qk =
∑
i,j≥0

akij(z, z̄)∂
i∂̄j ,

satisfying the relations

[Qk, Ql] = BklL, k, l = 0, 1, . . . ,m,

for some differential operators Bkl.

Clearly, the operators Qk are defined up to the additive part

Qk ∼ Qk + SkL, k > 0.

Therefore, any operator Qk can be reduced to the following form:

Qk ∼

∑
j

akj (z, z̄)∂i

+

∑
j

bkj (z, z̄)∂̄i

+BL.

Any algebra of this type, if it is complete enough and has rank one, is isomorphic
to the algebra of functions on an algebraic curve Γ, which are meromorphic away
from at most two points P± ∈ Γ, and correspond to the Schrödinger operator L
[84]. For such algebras of functions and, more generally, of arbitrary order tensors
on Γ it is possible ([KN1]) to construct analogues of the Laurent–Fourier bases.
These Krichever–Novikov bases are necessary for the operator quantization of the
bosonic string. In the scalar case (as above), these bases give a structure of an
almost graded algebra [KN1].

We now explain the conditions necessary to obtain a purely potential self-
adjoint operator

L = ∂∂̄ +W (x, y), W (x, y) ∈ R.
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Consider the curve Γ whose group of involutions is isomorphic to Z2×Z2. Namely,
let Γ have a holomorphic involution a with two fixed points

σ : Γ→ Γ, σ2 = 1, σ(P±) = P±,
and anti-holomorphic involution τ

τ : Γ→ Γ, τ2 = 1, στ = τσ, τ(P∓) = P±, τ∗k+ = k−.

The divisor of poles D = P1 + · · ·+ Pg must satisfy

τ(D) = D, σ(D) +D ∼ K + P+ + P−,
where K is the canonical divisor of Γ and ∼ denotes the linear equivalence. Under
these conditions we obtain a self-adjoint purely potential operator L = ∂∂̄ + W
with

W = −2∂∂̄ log θ(V1z + V2z̄ + V0) + C(Γ, σ).
Here θ is the standard Prym theta function with zero characteristics, C(Γ) is some
constant, and V1, V2 are vectors of normalized periods of abelian differentials of the
second kind corresponding to the points P±. The effective approach for such for-
mulae via non-linear equations (similar to [46] for Sine-Gordon and KP equations)
was considered in [Tai]. To study nonlinear systems one must consider ψ with the
same analytic properties, but with the different asymptotic behavior near P±:

ψ(x, y; t+1 , t
+
2 , . . . ; t

−
1 , t
−
2 , . . . ) ∼ exp

{
k+z +

∑
i≥2

ki+t
+
i

}
, P → P+,

ψ(x, y; t+1 , t
+
2 , . . . ; t

−
1 , t
−
2 , . . . ) ∼ exp

{
k−z̄ +

∑
i≥2

ki+t
−
i

}
, P → P−.

In the real case, the following conditions must be satisfied:

τ∗k+ = k−, τ t∗i = t−i .

To obtain a strictly positive purely potential operator L, the following condi-
tions are necessary [Nat1, Nat2] and sufficient [NV1, GN2]. The anti-involution τ
must have a maximal number 2g + 1 fixed cycles

C = {C1+ ;C1− ; . . . ;Cg+ ;Cg− ;Cg+1},
where g is the genus of the curve Γ0 = Γ/σ,

τ |C ≡ 1,

and
D = P1+ + P1− + · · ·+ Pg+ + Pg− ,

Pj± ⊂ Cj± , σ(Pj+) = Pj− , j = 1, 2, . . . , g,
σ : Cj+ → Cj− , σ : Cg+1 → Cg+1.

The correct generalization of this theory for the g =∞ case was developed in [Kr3].
It was shown that the class of finite-gap operators is everywhere dense in the space
of doubly-periodic potentials W (x, y). Some generalizations of recent results, for
example the generalization of the theory of theta functions, were developed in [KT]
for exactly the same class of curves as considered in [Kr3].

The rapidly decreasing analogue of this theory was studied in [GN*, GM, GN2,
G]. In particular, the case of a positive operator L = ∂∂̄+W is considered in [GN2].
In this case, the data is obtained from the level −Lψ = ε0ψ, where ε0 < 0 is below
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the spectrum, and it is possible to drop the standard assumption, for this theory
and the corresponding KP theory, of the small norm of the potential. The example
of a simple rational decreasing potential, whose corresponding operator L has a
scattering matrix which is trivial on one level, was described in [G].

As was mentioned before, the theory of the dynamical evolution for the pole
systems of the rational solutions of the above equation was constructed in [FN*].

Laplace Transformations

The Laplace transformation for solutions of the Schrödinger equation is a two-
dimensional analogue of the Backlund–Darboux transformation. If Lψ = 0, then
we put

ψ̃ = (∂ +A)ψ, L̃ψ̃ = 0,

L = (∂̃ +B)(∂ +A) + 2V,

L̃ = V (∂ +A)V −1(∂̃ +B) + 2V.

In other words, we have

Ã = A− (lnV )z, B̃ = B, Ṽ = V + H̃, H̃ = H +
∆ lnV

2
.

Let V = exp(f). Consider the infinite chain of Laplace transformations for the
potential and the magnetic field:

efk+1 = efk +Hk+1,

Hk+1 = Hk + 1
2∆fk.

Making a change of variables fk = gk − gk−1, we obtain a well-known two-
dimensional Toda lattice

∆gk = egk+1−gk .

This equation and some of its reductions were already known to the classical geome-
ters (Darboux, Tsitseika [T]), whose approach was based on the Laplace transfor-
mations (as above). In the soliton theory, this equation and its Lax representation
were first obtained in [Mi] as a two-dimensional analogue (via the Zakharov–Shabat
approach) of the usual Toda chain. Therefore, it is a difference version of the KP
equation w. r. t. the variable x, x → n. Under certain “open w. r. t. n” bound-
ary conditions, this equation is an analogue of the Liouville equation ∆ = exp(f),
corresponding to the simple Lie algebras. In the Toda chain theory, the connec-
tion with Lie algebras was first noted and used in [LS]. Periodic chains of Laplace
transformations

fn+k ≡ fk
were studied by Darboux and Tsitseika [T]. For n = 2, the periodicity condition
has a solution in the sinh-Gordon form

1
4

∆f0 = ef1 − ef0 = Ce−f0 − ef0 .

If L0 is a potential operator (i. e., H0 = Hn = 0), then we have:
1
2∆f0 = Ce−2f0 − ef0 , n = 3,

1
2∆f0 = ef1 − ef0 , 1

2∆(2f0 + f1) = Ce−3f0−2f1 − ef0 , n = 4.
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In general, we can replace constants C by arbitrary harmonic functions. Also, for
n = 4 there is a reduction f0 + f1 = C1 to the sinh-Gordon equation

1
4

∆f0 = C2e
−f0 − ef0 .

In [NV], it was shown that the algebro-geometric solutions of the two-dimensional
Toda lattice, obtained in [Kr2] using the methods of the soliton theory, determine
for each value of the discrete parameter k the algebro-geometric (from the spectral
theory of the periodic operators point of view) Schrödinger operator Lk. In this
case, the dependence of the inverse spectral problem data (i. e., a Riemann surface
with two marked points and a divisor of degree g) on the parameter k can be
described as follows: the Riemann surface and the marked points are fixed and
the divisor of poles is shifting. Moreover, if all fk are smooth, doubly-periodic,
and non-singular, then the corresponding Laplace operator Lk is always algebro-
geometric (finite-gap on a single energy level Lkψ = 0). We note that the n = 2
case corresponds to the sinh-Gordon equation and, in this case, the above result
was already known in connection with the theory of surfaces of the constant mean
curvature in R3, and the topology of T 2 (see the review [Bo, Tai1]).

It is worth mentioning that in the doubly-periodic case any algebro-geometric
operator L is topologically trivial, i. e., the magnetic flux is zero:

[H] =
∫∫

K

H(x, y) dx dy = 0.

where K is the fundamental domain for the action of the group of periods Z2 on
the plane R2. Also note that for non-singular smooth periodic fk, the Laplace
transformation preserves the magnetic flux:

[Hk+1] = [Hk]

[Vk+1] = [Vk] + [Hk+1].

The case in question is called doubly-periodic topologically non-trivial if H
and V are periodic with possibly non-periodic potentials A1, A2 (or A,B). In the
simplest case H = const we obtain the Landau case. In this case, the spectrum in
L2(R2) is discrete and forms an arithmetic progression

Lψ = λkψ, λk = λ0 + kε0, ε0 = H.

The levels λk are called k-th Landau levels. They are infinitely degenerate. The
Landau operator can be considered as a natural two-dimensional analogue of the
harmonic oscillator whose spectrum forms an arithmetic progression. In [AC, DN2,
DN3, N3], it was shown that, in the rapidly decreasing and periodic cases, the
condition V = H implies that the operator L has a strongly degenerate “ground”
(basic) level λ0 = 0. It is convenient to choose a gauge in which B = −Ā (i. e.,
A1, A2 are real and the Lorenz condition is satisfied). In the periodic case ([DN2,
DN3, N3]), if H satisfies the integrality condition

[H] = 2πm > 0, m ∈ Z,

then the magnetic Bloch eigenfunctions of the ground level are given by

ψ = eϕ
m∏
j=1

σ(z − aj)eaz, z = x+ iy,
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where

ϕ = − 1
π

∫∫
K

H(x′, y′) ln |σ(z − z′)| dx′dy′.

a1, . . . , am are arbitrary constants, and the constant a can be expressed in terms of
a1, . . . , am. This level (i. e., the whole Hilbert space) is canonically isomorphic to
the ground Landau level with the same magnetic flux and H = const.

The quasi-cyclic chains L0, . . . , Ln of Laplace transformations are given by the
relations

H0 = V0, Hn + Cn = Vn, [Hj ] > 0.

These chains satisfy the strong integrability properties.
Already, for the n = 2 case, this fact implies the following interesting equation:

1
2

∆f0 = C2 − 2ef0 , [H0] > 0.

Let C2 > 0. The operator L2 + C2/2 has two strongly degenerate energy levels.
Since for the operator L2 + C2/2 we have H = V ([DN2, DN3, N3]), there is a
ground level A0 = 0. The second level corresponds to λ2 = C2 and, after the choice
of real gauge, the eigenfunctions have the form

˜̃
ψ = ef1/2(∂ +A1)ef0/2(∂ +A0)ψ,

where

ψ = eϕ
m∏
j=1

σ(z − aj)eaz, ∆ϕ = − 1
π

∫∫
K

H0(z′) ln |σ(z − z′)| d2z,

H0 = ef0 , [H0] = 2πm > 0.

Both levels 0 and C2 are strongly degenerate as Landau levels and there must be
a nontrivial spectrum in the interval (0, C2). It seems that in the doubly-periodic
case with non-zero magnetic flux (excluding the Landau case), there are at most
two strongly degenerate levels.

The non-linear equation ∆g = 1− eg appears in many different problems [dV].
It is not integrable from the soliton theory point of view, but it has large families of
non-singular doubly-periodic solutions. Even in the one-dimensional case, the solu-
tions of this equation correspond to interesting one-dimensional “oscillatory-type”
potentials whose spectral properties are very different from the spectral properties
of the cyclic chains [NV]. Such are the two-dimensional analogues of the theory of
cyclic Backlund–Darboux chains.

Now we consider the discrete analogue of the Laplace transformations. Al-
though in the continuous case hyperbolic and elliptic operators are formally related
by the substitution ∂ → ∂x, ∂̄ → ∂y, in the discrete case they are formally different.

1. In the hyperbolic case we begin with the equation Lψ = 0, where

Lψn = ψn + anT1ψn + bnT2ψn + cnT1T2ψn,

where Tj are shifts on the basis vectors of the lattice, T1 = (1, 0), T2 = (0, 1), and
n = (n1, n2), nj ∈ Z. The operator L admits the representation

L = fn[(1 + unT1)(1 + vnT2) + wn].
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Similarly to the continuous case, put

L̃ψ̃ = 0, ψ̃n = (1 + vnT2)ψn,

L̃ =
wn

1 + wn
[(1 + vnT2)w−1

n (1 + unT1) + 1].

The representation of the form

L = gn[(1 + pnT2)(1 + qnT1) + sn]

generates the inverse representation

˜̃L ˜̃
ψ = 0, ˜̃

ψn = (1 + qnT1)ψn,
˜̃L =

sn
1 + sn

[(1 + qnT1)s−1
n (1 + pnT2) + 1].

The potential
wn = xn−T1a

−1
n−T1

b−1
n − 1

and the magnetic field

eHn =
anbn+T1

an+T2bn

are invariant under the gauge transformations

L→ gLg−1.

The Laplace transformation is given by the following formulae:

eH̃n = eHnwn+T2wn+T1(wnwn+T1+T2)−1,

1 + w̃n+T1 = e−H̃n(1 + wn+T2).

The infinite chain of Laplace transformations gives a complete discrete ana-
logue of the two-dimensional Toda lattice for the variables w(k)

n , eHn . From the
second equation above it follows that the pair (w(k)

n ,H
(k)
n ) can be obtained from

(w(k−1)
n ,H

(k−1)
n ) by the Laplace transformation. It is interesting to compare this

system with the system constructed in [Kr7] and [KLWZ] using the theory of the
Yang–Baxter equation.

It is also possible to impose the following cyclicity condition on chains,

w(k+N)
n = w(k)

n , Hk+N
n = h(k)

n , n = (n1, n2).

Then, for N = 2, after the reduction

w(1)
n = C(w(0)

n )−1,

wn+T1+T2 = w−1
n (C + wn+T1)(C + wn+T2)(1 + wn+T1)−1(1 + wn+T2)−1,

we obtain the discrete analogue of the sinh-Gordon equation.
2. The Laplace transformation for the self-adjoint real difference operators L

is considered only for the operators of the form

L = an + bnT1 + cnT2 + dn+T1T1T
−1
2 + bn−T1T

−1
1 + cn−T2T

−1
2 + dn+T2T

−1
1 T2,

L+ = L, T+
j = T−j 1,

where the lattice consists of equilateral triangles,

|T1| = |T2| = |T−1
1 T2|.
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Therefore, every vertex has six neighbors. The factorization

L = (xn + ynT1 + znT2)(xn + yn−T1T
−1
1 + zn−T2T

−1
2 ) + wn

implies that for any solution Lψ = 0 we can put in correspondence the solution
L̃ψ̃ = 0, where

ψ̃n = (xn + yn−T1T
−1
1 + zn−T2T

−1
2 )ψn,

L̃ = (xn + yn−T1T
−1
1 + zn−T2T

−1
2 )w−1

n (xn + ynT1 + znT2) + 1.

As usual, the alternative factorization

L = (x′n + y′nT
−1
1 + z′nT

−1
2 )(x′n + y′n+T1

T1 + z′n+T2
T2) + w′n

corresponds to the inverse Laplace transformation.
As before, we can consider infinite chains of Laplace transformations and the

cyclicity conditions, and it leads to new discrete analogues of the two-dimensional
Toda lattice and its reductions. The conditions (wn = 0) or (w′n = 0) correspond
to the theory of zero modes, see [AC, DN2, DN3, N3].

Notice that for both classes of operators—hyperbolic in the square lattice, and
real self-adjoint in the equilateral triangle lattice—we have the following result.
The factorization of the operator L can be described by local algebraic formulae in
the coefficients of L. This is different from the one-dimensional case, where one has
to solve the Ricatti-type equations or their discrete analogues.



APPENDIX C

Integrability of Systems of Hydrodynamic Type.
The Non-Linear WKB Method

The circle of ideas, discussed below, was developed in [48, Ts, AN, Kr4, P2] and
summarized in [DN1]. The new applications of these ideas to the two-dimensional
quantum field theories are discussed in Lecture Notes [D1] and the Appendix to
[N1J. This is an active area of current research, and it recently attracted a lot of
attention after the interesting work of N. Seiberg and E. Witten ([SW1, SW2]) on
the supersymmetric Yang–Mills theory.

As was discussed at the end of § 2, the systems of hydrodynamic type have the
form

upt = vp,αq (u(x))uqα, α = 1, 2, . . . , n; p, q = 1, 2, . . . ,m, uqα =
∂uq

∂xα
.

In this equation, u(x) is a map Rn →Mn, where Mm is some “manifold of compo-
nents”. In the spatially one-dimensional case n = 1, there is an important notion of
Riemann invariants. Riemann invariants (u1, . . . , um) are special local coordinates
on the manifold Mm which diagonalize the matrix of velocities:

V pq (u(x)) = vp(u)δpq .

A system written down in Riemann invariants is called diagonal. In the case
m = 2, Riemann showed that if the eigenvalues of the matrix V pq are real and
distinct in the given domain, then it is always possible to find such a coordinate
system. The exact solvability of the two-component spatially one-dimensional sys-
tems of hydrodynamic type is described by the following theorem (attributed to
Riemann): if we do the “hodograph transformation”, i. e., rewrite the equation in
terms of x(u1, u2), t(u1, u2), then the new equation would be linear.

In general, for m > 2, we cannot always find the set of Riemann invariants. For
example, in the theory of the dynamics of gases (m = 3), Riemann invariants exist
only for a special (and non-interesting from the physical point of view) value of the
Poisson adiabatic exponent. However, it is possible to find Riemann invariants for
some important systems of hydrodynamic type. These systems arise in the theory
of asymptotic methods for the soliton equations of the KdV type and they are a
nonlinear analogue of the WKB approximation method or the method of the slow
modulation of the parameter (this method is also called the Bogolubov–Whitham
method). The Whitham method is described in [Wh1] and the existence of Riemann
invariants in this case is discussed in [Wh2, 56].

As was mentioned at the end of § 1 of Chapter 1, the Hamiltonian approach for
the systems of hydrodynamic type was developed in [48, 49, Mo] (see also Insert
for § 1). According to the Novikov hypothesis, the existence of Riemann invariants
together with the Hamiltonian properties of the systems of hydrodynamic type
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imply their strong integrability. This hypothesis was proved in [Ts, Ts1, DN1],
where the beautiful theory of integration for the diagonal Hamiltonian systems
of hydrodynamic type was constructed. This theory is based on the Riemannian
geometry lying in the foundation of the Hamiltonian approach. In fact, this theory
can be extended slightly to the class of semi-Hamiltonian diagonal systems. These
are systems which are Hamiltonian w. r. t. non-local Poisson brackets of the type
considered in [MF, F].

We now consider the Tsarev method for integrating diagonal Hamiltonian sys-
tems of the form

upt = vp(u)upx
This method is based on the fact that in this case the pseudoriemannian metric,
which is used to define the Poisson bracket of hydrodynamic type, would also be
diagonal:

gpq(u) = gp(u)δpq .

The Christoffel symbols Γkkp for the standard (Levi-Civita) connection are obtained
by the formula

Γkkp =
1
2

∂

∂up
ln |gk(u)| (warning: no summation),

and they are connected with the velocities by the relation

Γkkp =
∂pv

k

vp − vk
, k 6= p (warning: no summation).

Therefore, we have the following important Tsarev relation:

∂q

(
∂pv

k

vp − vk

)
= ∂p

(
∂qv

k

vq − vk

)
This relation is taken as a definition of the semi-Hamiltonian diagonal systems of
hydrodynamic type. We can always recover the metric from the above formulae,
but this (diagonal) metric can have a non-zero curvature tensor. Note that the
metrics considered in the theory of the local Poisson brackets of hydrodynamic type
are always flat (see § 1). In certain cases, semi-Hamiltonian systems are actually
Hamiltonian w. r. t. the generalized non-local Poisson brackets of hydrodynamic
type (see Insert for § 1), but this fact is not proved in general. The method for
integrating Hamiltonian and semi-Hamiltonian systems of hydrodynamic type is
called the generalized hodograph method or the Tsarev procedure. It can be shown
(though the proof is not effective) that there exists a large family of “symmetries”,
i. e., systems of hydrodynamic type, which commute with each other and with the
given system. Consider the two systems:

upt = vp(u)upx (the original system),

upt = wp(u)upx (symmetry).

Then a theorem says that the functions up(x, t), determined from the equations

wp(u(x, t)) = vp(u(x, t))t+ x, p = 1, 2, . . . ,m

form a solution to the original system.
Diagonal Hamiltonian and semi-Hamiltonian systems have ample families of

integrals of hydrodynamic type. Although expressed in different terms, this result
for the two component systems has been known for a long time [La, YaR]. In
the Hamiltonian case, the integrals of motion and symmetries are in one-to-one
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correspondence; each integral generates a symmetry, each symmetry corresponds
to an integral.

Unfortunately, it is hard to apply these beautiful general differential-geometric
theorems to concrete problems. One of the examples in which it is possible is
provided by the so called weakly-linear systems. Weakly linear systems are the
systems of the form

∂vp

∂up
, p = 1, 2, . . . ,m (no summation),

such that vp is independent of up.
The systems of hydrodynamic type which arise in the soliton theory (for exam-

ple, in the KdV theory) from the non-linear WKB method are strongly non-linear.
The implementation of the Tsarev method requires the use of algebraic geometry.
This technique was developed in [Kr4, PM] and is discussed below. We conclude
this review with the following general theorem. If functions u1(x), . . . , um(x) are
convex, then the symmetries of hydrodynamic type generate the complete set of
flows, commuting with the given diagonal Hamiltonian system. This means that
the symmetries form a basis for the tangent space to the generic level surface of the
pairwise commuting integrals of hydrodynamic type. In other words, their linear
combinations are everywhere dense. Thus, in a neighborhood of convex functions
u1(x), . . . , um(x), the system is completely Liouville integrable ([Ts, DN1]).

The systems of hydrodynamic type appear in the following context. For sim-
plicity, assume that

ψpt = Kp(ψ,ψx, . . . , ψ(n))

is an evolution system such that all ψ = const are solutions. Let ψp(x, t) be “slow”
functions, i. e.,

(a)

ψpt � ψp, ψx � ψ.

(b) Each next derivative is of a smaller order.
The evolution equation has the form

ψpt = Gp(ψ) + V pq (ψ) + . . . ,

where Gp = 0 and all omitted terms are small by assumption. Then there is a
dispersionless limit of this system:

ψpt = V pq (ψ)ψpx,

and it is a system of hydrodynamic type.
Another, more sophisticated method for obtaining systems of hydrodynamic

type is a non-linear analogue of the WKB method ([Wh1, Wh2, La, Ma, AB,
FFM]). This method requires the existence of a family of exact solutions of the
form

ψ(x, t;u) = Φ(Ux+ V t;u1, . . . , um),

where the functions Φ(η1, . . . , ηn) are periodic with period 2π w. r. t. the vari-
ables η1, . . . , ηk and K-vectors U, V can be expressed in terms of m parameters
u1, . . . , um. We are looking for a solution ψ, which is asymptotic w. r. t. ε, and is
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of the form

ψ = Φ(S(X,T );u1, . . . , um) +O(ε), where

u = (up(X,T )), X = εx, T = εt, ε→ 0, and
∂S

∂X
= U(u1, . . . , um),

∂S

∂T
= V (u1, . . . , um).

In certain cases (see the review [DN1]), it is possible to show that the neces-
sary condition for the existence of such solutions is the following condition on the
function up(X,T ). This function must satisfy the so-called “averaged system”

∂up

∂T
= V pq

(
u(X,T )

∂uq

∂X

)
,

which is a system of hydrodynamic type. The dispersionless limit corresponds to
the case k = 0. The sufficiency condition is known only for certain cases with
k = 1. In particular, for the KdV equation such equations of hydrodynamic type
(Whitham systems) were obtained in [Wh2] for k = 1 and in [FFM] for k > 1 from
the family of the finite-gap quasi-periodic solutions with m = 2k + 1. For these
systems, the Riemann invariants exist for all k ≥ 1. Namely, in the KdV case,
the Riemann invariants r1, . . . , rm are the boundaries of the Bloch spectral zones
in L2(R) of the Schrödinger operator with the finite-gap quasi-periodic potential
U = Φ ([FFM, DN1]).

These systems are Hamiltonian [48]. The pseudo-Riemannian metric gpq is flat
and has signature (k, k + 1).

For Hamiltonian evolutionary systems with a local translation-invariant Poisson
bracket { , }0, can use the method developed in [48]. This method requires the
existence of a family of local integrals

Iq =
∫
PQ(ψ,ψx, . . . ) dx, q = 1, . . . ,m.

We also require that the parameters uq for the family of the exact quasi-periodic
solutions

ψ = Φ(Ux+ V t;u1, . . . , um)

can be taken in the form of the average densities:

uq = Pq(ψ,ψx, . . . ).

Then uq are said to be physical variables. Here we average over the above solutions,
and the value of an integral on the space of almost periodic functions is defined as
the average of its density in the sense of H. Bohr. Finally, we require the integrals
Iq to be in involution:

{Ip, Iq}0 = 0, p, q = 1, 2, . . . ,m.

Let I1 = H be the Hamiltonian of our original system, I2 = P be the mo-
mentum, and I3, . . . , Is be annihilators, i. e., {Iq, ·} = 0 for all q = 3, . . . , s. The
fundamental principle of the conservation of the Hamiltonicity under averaging
claims that the averaged system is also Hamiltonian with the Poisson bracket of
hydrodynamic type. Its Hamiltonian coincides with the usual energy:∫

u1(X) dX, u1 = P1, H =
∫
P1(ψ, . . . ) dx.
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A similar statement holds for the momentum. The Poisson bracket can be written
in the “Liouville form” w. r. t. the physical variables u1, . . . , um:

gpq(u) = γpq(u) + γqp(u),

bpqs (u) =
∂γpq

∂us
.

Since {Ip, Iq} = 0, the original Poisson bracket has the form

{Ip, Pq(ψ,ψx, . . . )}0 =
d

dx
(Qpq(ψ,ψx, . . . ))

Then we have ([DN1]):
γpq = Qpq + const.

This result was proved in complete generality only recently by A. Ya. Maltsev (to
appear in Izvestia, ser. math) (the review [DN1] contains a mistake, see [N4]), its
proof for some special cases can be found in [NM]. For the KdV equation this result
was obtained earlier in [48].

Example 1. Consider the KdV equation and its deformations via the Gardner–
Zakharov–Faddeev bracket

{ψ(x), ψ(y)}0 = δ′(x− y),

H =
∫ (

ψ2
x

2
+ V (ψ)

)
dx.

This system can be written in the Gardner form (see § 1):

ψt =
d

dx

δH

δψ(x)
.

The family of exact solutions of the form ψ(x− vt),

ψ = Φ(Ux+ V t;u1, u2, u3),

depends on three parameters u1, u2, u3.
These parameters are the average values of the following integrals:

u1 =
ψ2
x

2
+ V (ψ) energy density,

u2 = ψ2 momentum density,

u3 = ψ annihilator (or “Casimir”) density.

The formulae for the Poisson bracket of hydrodynamic type for these cases can be
found in [48], [DN1]. For the usual KdV we have V (ψ) = ψ3, and the averaged
densities of the Kruskal integrals Iq, q = −1, 0, 1, 2, . . . define an infinite family of
integrals of of hydrodynamic type. We denote their densities by uq.

The existence of this family is not sufficient to have complete integrability. For
k = 1, one has to add two more families of integrals; their description can be found
in [Ti]. For k ≥ 1 we have to add 2k families. To obtain these families, one has
to integrate a certain form Ω = p dλ over basic cycles on a hyperelliptic Riemann
surface

Γ: µ2 = R2k+1(λ) =
2k∏
j=0

(λ− rj),
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where p = p(λ; r0, . . . , r2k) is a so-called quasi-momentum connected with the spec-
trum of the finite-gap Schrödinger operator L. The main family of the Kruskal
integrals and their averages is obtained from the quasi-momentum expansion at
the “infinity” point.

Any integral of hydrodynamic type generates an exact solution of the averaged
Whitham system via the Tsarev procedure (see above). The averaged Kruskal inte-
grals generate self-similar solutions [Kr4]. In particular, the integral I4 corresponds
to a very interesting solution. This solution is called a dispersive analogue of a shock
wave (or the Gurevich–Pitaevskii solution), and it is very important in physical ap-
plications. The existence of this solution and some of its qualitative properties were
established in [GP], although it was not clear that it was even C1-smooth. The
actual solution was found in [P2] using the procedure from [Kr4]. This solution is
discussed in great detail in [DN1].



APPENDIX D

Spectral Theory of Two-Dimensional
Periodic Operators

The basic algebraic-geometrical construction allows one to obtain periodic and
quasi-periodic solutions for two-dimensional integrable systems but leaves abso-
lutely open the following basic question: “How many algebraic-geometrical solu-
tions are there? And what is their role in the solution of the periodic Cauchy
problem for two-dimensional equations of the KP type?”

For finite dimensional (0 + 1) systems that have the Lax representation of the
form

∂tU(t, λ) = [U(t, λ), V (t, λ)], (D.1)

with U(t, λ) and V (t, λ) rational (or sometimes elliptic) matrix-valued functions of
the spectral parameter λ, the answer to the question is as follows: all the general
solutions are algebraic-geometrical and can be represented in terms of the Riemann
theta-functions.

For spacial one-dimensional evolution equations of the KdV type (1+1-systems)
the existence of direct and inverse spectral transforms allow one to prove (though
it is not always the rigorous mathematical statement) that algebraic-geometrical
solutions are dense in the space of all periodic (in x) solutions.

It turns out that the situation for two-dimensional integrable equations is much
more complicated. For one of the real forms of the KP equation that is called
the KP-2 the algebraic-geometrical solutions are dense in the space of all periodic
(in x and y) solutions [Kr3]. It seems, that the same statement for the KP-1
equation (σ = i) is false. One of the most important problems in the theory of
two-dimensional integrable systems which are still unsolved is “in what sense” the
KP-1 equation that has the operator representation (2.13) and for which a wide
class of periodic solutions has been constructed, is a “non-integrable” system.

The proof of the integrability of the periodic problem for the KP-2 equation is
based on the spectral Floquet theory of the parabolic operator

M = ∂y − ∂2
x + u(x, y), (D.2)

with periodic potential u(x+l1, y) = u(x, y+l2) = u(x, y). We would like to mention
that despite its application to the theory of non-linear equations and related topics,
the structure of the Riemann surface of Bloch solutions of the corresponding linear
equation that was found in [Kr3] has been used as a starting point for the abstract
definition of the Riemann surfaces of infinite genus [KT].

The characteristic equation

R(w,E) = det(w − T̂ (E)) (D.3)

118
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where T (E) is the monodromy operator for periodic ordinary differential operator L
defines the Riemann surface Γ of the Bloch solutions of this operator as a N = nl-
sheet covering of the complex plane of the spectral parameter E (here n is the
order of L and l is the matrix dimension of its coefficients). In [Kr3] another
representation of the Riemann surface of the Bloch solutions was proposed. We
would like to emphasize that this is the only possible representation that can be
used in two dimensions.

Let us consider as an example a non-stationary Schrödinger operator (D.2).
The solutions ψ(x, y, w1, w2) of the non-stationary Schrödinger equation

(σ∂y − ∂2
x + u(x, y))ψ(x, y, w1, w2) = 0 (D.4)

with aperiodic potential u(x, y) = u(x + a1, y) = u(x, y + a2) are called the Bloch
solutions if they are eigenfunctions of the monodromy operators, i. e.

ψ(x+ a1, y, w1, w2) = w1ψ(x, y, w1, w2), (D.5)

ψ(x, y + a2, w1, w2) = w2ψ(x, y, w1, w2), (D.6)

The Bloch functions will always be assumed to be normalized so that ψ(0, 0, w1, w2) =
1. The set of pairs Q = (w1, w2), for which there exists such a solution is called the
Floquet set and will be denoted by Γ. The multivalued functions p(Q) and E(Q)
such that

w1 = eipa1 , w2 = eiEq2

are called quasi-momentum and quasi-energy, respectively.
The gauge transformation ψ → eh(y)ψ, where ∂yh(y) is a periodic function,

transfers the solutions of (D.4) into solutions of the same equation but with another
potential ũ = u − σ∂yh. Consequently, the spectral sets corresponding to the
potentials u and ũ are isomorphic. Therefore, in what follows we restrict ourselves
to the case of periodic potentials such that∫ a1

0

u(x, y)dx = 0. (D.7)

To begin with let us consider as a basic example the “free” operator

M0 = σ∂y − ∂2
x (D.8)

with zero potential u(x, y) = 0. The Floquet set of this operator is parametrized
by the points of the complex plane of the variable k

w0
1 = eika1 , w0

2 = e−σ
−1k2a2 (D.9)

and the Bloch solutions have the form

ψ(x, y, k) = eikx−σ
−1k2y. (D.10)

The functions
ψ+(x, y, k) = e−ikx+σ−1k2y. (D.11)

are Bloch solutions of the formal adjoint operator

(σ∂y + ∂2
x)ψ+ = 0. (D.12)

The formulae (D.9) define the map

k ∈ C 7→ (w0
1, w

0
2) ∈ C2. (D.13)
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Its image is the Floquet set for the free operator M0. It is the Riemann surface
with self-intersections. The self-intersections correspond to the pairs k 6= k′ such
that

w0
i (k) = w0

i (k
′), i = 1, 2. (D.14)

From (D.9) it follows that

k − k′ =
2πN
a1

, (D.15)

k2 − (k′)2 =
σ2πiM
a2

, (D.16)

where N and M are integers. Hence, all the resonant points have the form

k = kN,M =
πN

a1
− σiMa1

Na2
, N 6= 0, k′ = k−N,−M . (D.17)

The basic idea of the construction of the Riemann surface of Bloch solutions of
the equation (D.4) that was proposed in [Kr3] is to consider (D.4) as a perturbation
of the free operator (D.8), assuming that the potential u(x, y) is formally small.

For any k0 6= kN,M it is easy to construct a formal Bloch solution ψ̃ of the
equation (D.4) as a formal series

ψ̃ =
∞∑
s=0

ϕ̃s(x, y, k0), ϕ̃0(x, y, , k0) = ψ(x, y, , k0) = ψ0. (D.18)

This series describes a “perturbation” of the Bloch solution ψ0 of the non-perturbed
equation.

Lemma D.1. If k0 6= kN,M then there exists a unique formal series

F (y, k0) =
∞∑
s=1

Fs(y, k0) (D.19)

such that the equation

(σ∂y − ∂2
x + u(x, y))Ψ(x, y, k0) = F (y, k0)Ψ(x, y, k0) (D.20)

has a formal solution of the form

Ψ(x, y, k0) =
∞∑
s=0

ϕs(x, y, k0), ϕ0 = ψ0, (D.21)

satisfying the conditions

〈ψ+
0 Ψ〉x = 〈ψ+

0 ψ0〉x, ψ+
0 = ψ+(x, y, k0), (D.22)

(here and below 〈f(x)〉x stands for the mean value in x of the corresponding periodic
function f)

Ψ(x+ a1, y, k0) = w10Ψ(x, y, k0), w10 = w0
1(k0), (D.23)

Ψ(x, y + a2, k0) = w20Ψ(x, y, k0), w20 = w0
2(k0). (D.24)
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The corresponding solution is unique and is given by the recursion formulae (D.25)–
(D.29).

ϕs =
∑
n 6=0

csn(y, k0)ψn(x, y), s > 1, (D.25)

ψn = ψn(x, y) = ψ(x, y, k), ψ+
n = ψ+(x, y, kn), kn = k0 +

2πn
a1

(D.26)

csn(y, k0) = σ−1 w2n

w20 − w2n

∫ y+a2

y

(
s−1∑
i=1

Fic
s−i
n − 〈ψ

+
n uϕs−1〉x
〈ψ+
n ψn〉x

)
dy′, (D.27)

w2n = w0
2(kn), (D.28)

Fs(y, k0) =
〈ψ+

0 uϕs−1〉x
〈ψ+

0 ψ0〉x
. (D.29)

From (D.20), (D.23), (D.24) it follows that the formula

ψ̃(x, y, k0) =
Ψ(x, y, k0)
Ψ(0, 0, k0)

e−σ
−1 ∫ y

0 F (y′,k0) dy′ (D.30)

defines the formal Bloch solution of the equation (D.4):

ψ̃(x+ a1, y, k0) = w10ψ(x, y, k0), (D.31)

ψ̃(x, y + a2, k0) = w̃20ψ(x, y, k0), (D.32)

where the corresponding Bloch multiplier is equal to

w̃20 = w20e
−σ−1 ∫ a2

0 F (y′,k0)dy′ . (D.33)

For sufficiently small u(x, y) it is not too hard to show that the above constructed
series of the perturbation theory converges outside some neighborhood of the reso-
nant points (D.17) and therefore determines a function ψ̃(x, y, k0) which is analytic
in k0). This is true for any σ. The principle distinction between the cases Reσ = 0
and Reσ 6= 0 is revealed under an attempt to extend ψ̃ to a “resonant” domain.
In the case Reσ = 0 the resonant points are dense on the real axis. In the case
Reσ 6= 0 there is only a finite number of the resonant points (D.17) in any finite
domain of the complex plane. The discreteness of the resonant points in the last
case is crucial for the extension of ψ̃ to a “resonant” domain (and for the proof of
the approximation theorem).

In the stationary case, when u does not depend on y, the preceding formulae
turn out to be the usual formulae of the perturbation theory of eigenfunctions
corresponding to simple eigenvalues. The condition

w2n 6= w20 ↔ k0 6= kNM (D.34)

is an analog of simplicity of an eigenvalue of an operator. In cases when it is
violated, it is necessary to proceed along the same lines as in the perturbation
theory of multiple eigenvalues.

As the set of indices corresponding to the resonances we can take an arbitrary
set of integers I ∈ Z such that

w2α 6= w2n, α ∈ I, n /∈ I. (D.35)
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Lemma D.2. There are unique formal series

Fαβ (y, w1) =
∞∑
s=1

Fαβ,s(y, w1) (D.36)

that the equations

(σ∂y − ∂2
x + u)Ψα(x, y, w1) =

∑
β

Fαβ (y, w1)Ψβ(x, y, w1) (D.37)

have unique formal Block solutions of the form

Ψα(x, y, w1) =
∞∑
s=0

ϕαs (x, y, w1), ϕα0 = ψα = ψ(x, y, kα) (D.38)

Ψα(x+ a1, y, w1) = w1Ψα(x, y, w1), (D.39)

Ψα(x, y + a2, w1) = w2αΨα(x, y, w1), (D.40)

such that
〈ψ+
β Ψα〉x = δα,β〈ψ+

αψα〉x. (D.41)

The corresponding formulae for Fαβ and Ψα are the matrix generalizations of
the formulae (D.26)–(D.28) (see details in [Kr3]).

Let us define the matrix T = Tαβ (v, w1) by the equation

σ∂tT + TF = 0, T (0, w1) = 1. (D.42)

The functions
Ψ̂α(x, y, w1) =

∑
β

Tαβ (y, w1)Ψβ(x, y, w1) (D.43)

are solutions of(D.4). Under the translation by the period in x they are multiplied
by w1, while under the translation by the period in y they are transformed as follows

Ψ̂α(x, y + a2, w1) =
∑
β

Tαβ (w1)w2βΨ̂β(x, y, w1), (D.44)

where
T̂αβ (w1) = Tαβ (a2, w1). (D.45)

It is natural to call a finite set of the formal solutions T̂αβ quasi-Bloch, since it
remains invariant under the translation by the periods in x and y.

The characteristic equation

R(w1, w̃2) = det(w̃2δα,β − T̂αβ (w1)w2,β) = 0 (D.46)

is an analog of the “secular equation” in the ordinary perturbation theory of mul-
tiple eigenvalues.

Let hα(w1, w̃2) be an eigenvector of the matrix T̂αβ (w1)w2,β normalized so that∑
α

hα(Q̃)Ψ̂α(0, 0, w1) = 1, Q̃ = (w1, w̃2) (D.47)

then
ψ̃(x, y, Q̃) =

∑
α

hα(Q̃)Ψ̂α(x, y, w1) (D.48)

is the formal Bloch solution of (D.4) with multipliers w1 and w̃2, normalized in
the standard way. The last statement means that the Bloch solutions are defined
(locally) on the Riemann surface (D.46).
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Structure of the “Global” Riemann Surface of Bloch Solutions. To
begin with, we shall give here the explanation of the structure of a “global” Riemann
surface of Bloch solutions in the case of small u. Let us consider some neighbor-
hoods RN,M and R−N,−M of the resonant pair of the points kN,M and k−N,−M ,
respectively. The function w1(k) (D.9) identifies them with some neighborhood
R̂N,M of the point w1(kN,M ) = w1(k−N,−M ) on the complex plane of the variable
w1. The series (D.25)–(D.29) of the non-resonant perturbation theory diverge in
RN,M and R−N,−M , but it turns out that the series of the lemma 3.2 converges in
R̂N,M and in this domain defines quasi-Bloch solutions of (D.4) which are analytic
in w1. The characteristic equation (D.46) in this case has the form

w̃2
2 − f1(w1)w̃2 + f2(w1) = 0 (D.49)

and defines a two-sheet covering R̃N,M over R̂N,M on which the Bloch solutions
of (D.4) are defined. The boundary of R̃N,M can be naturally identified with
the boundaries of RN,M and R−N,−M . Hence, the structure (local) of the Riemann
surface Γ of the Bloch functions looks as follows. Let us cut out RN,M and R−N,−M
from the complex plane and glue instead of them a corresponding piece of the
Riemann surface R̃N,M . From the topological point of view this surgery is a gluing
of a “handle” between two resonant points.

The remarkable thing is that the perturbation approach works even when
u(x, y) is not small. Of course, in that case the estimations of the perturbation
theory series are much more complicated. In [Kr3] it was proved that if the poten-
tial u(x, y) can be analytically extended into a domain

|Imx| < τ1, |Im y| < τ2 (D.50)

for some τ1, τ2; then the perturbation series for the non-resonant case converges
outside some central finite domain R0 and outside RN,M for kN,M /∈ R0. Outside
R0 we again have to perform a surgery of the previous type (“glue” handles between
kN,M and k−N,−M for kN,M /∈ R0). In the central domain R0 we have to glue some
finite genus piece of the corresponding Riemann surface R̃0 instead of a disc R0.
As a result we obtain the global Riemann surface Γ of the Bloch solutions of the
equation (D.4) with Reσ 6= 0.

Theorem D.1. If the potential u(x, y) of the equation (D.17) can be analytically
extended into the domain (D.50) then the Riemann surface Γ of the Bloch solutions
of this equation is a result of the above-defined glueing of the three types of “pieces”:

1◦. A complex plane of the variable k without small neighborhoods of the finite
or infinite set of points kN,M , k−N,−M and without some central domain
|k| > K0;

2◦. A set of “handles “ R̂|N,M | that are defined by the equations of the form
(D.4) as the two-sheets covering of the small neighborhoods of the pairs
kN,M , k−N,−M ;

3◦. A Riemann surface R̃0 (with boundary) of a finite genus g0.
The Bloch solutions of (D.4) ψ(x, y,Q), Q ∈ Γ, that are normalized by the condition
ψ(0, 0, Q) = 1 are meromorphic on Γ. Their poles do not depend on x, y. It has
one simple pole in each of the domains R̂|N,M |. In the domain R̂0 it has g0 poles,
where g0 in general position (when R̂0 is smooth) equals the genus of R̂0. Outside
these domains the function ψ is holomorphic and has no zeros.
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If there is a finite number of handles that are glued then the corresponding curve
is compactifed by one point and the corresponding Bloch function is the Baker–
Akhiezer function on the compactified Riemann surface.

In the case of real and smooth u(x, y) for σ = 1 the final form of the Floquet
set can be represented in the following form [Kr3]. Let us fix some finite or infinite
subset S of integer pairs (N > 0,M) . The set of pairs of complex numbers
π = {ps,1, ps,2} where s ∈ S would be called “admissible”, if

Re ps,i =
πN

a1
, |ps,i − ks| = o(|ks|−1), i = 1, 2, (D.51)

and the intervals [ps,1, ps,2] do not intersect. (Here ks are resonant points (D.17),
s = (N,M).)

Let us define the Riemann surface Γ(π) for any admissible set π. It is obtained
from the complex plane of the variable k by cutting it along the intervals [ps,1, ps,2]
and [−p̄s,1,−p̄s,2] and by sewing after that the left side of the first cut with the
right side of the second cut and vice versa. (After this surgery for any cut [ps,1, ps,2]
there corresponds a nontrivial cycle as on Γ(π).)

Theorem D.2. For any real periodic potential u(x, y) which can be analytically
extended into some neighborhood of the real values x, y, the Bloch solutions of the
equation (D.4) with σ = 1 are parametrized by points Q of the Riemann surface
Γ(π) corresponding to some admissible set π. The function ψ(x, y,Q) which is
normalized by the condition ψ(0, 0, Q) = 1 is meromorphic on Γ and has a simple
pole γs on each cycle as. If the admissible set π contains only a finite number of
pairs, then Γ(π) has finite genus and is compactified by only one point P1 (k =∞),
in the neighborhood of which the Bloch function ψ has the form:

ψ = ekx+k2y =

(
1 +

∞∑
s=1

ξs(x, y)k−s
)
.

The potentials u for which Γ(π) has finite genus are called finite-gap and as
it follows from the last statement of the theorem they coincide with the algebraic-
geometrical potentials. The following theorem states that the finite-gap potentials
are dense in the space of all periodic smooth functions in two variables ([Kr3]).

Theorem D.3. Each smooth periodic potential u(x, y) of the equation (D.4)
with Reσ 6= 0 analytically extendable to a neighbourhood of real x, y can he approx-
imated by finite-gap potentials uniformly with any number of derivatives.
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1. The basic concepts of the Hamiltonian formalism go back to the classical work in analytical

mechanics, to Poisson, Hamilton, Jacobi, Lie. Different versions of the presentation of these
classical concepts are to be found in quite a number of textbooks (see, for example, [7], [42]) and

surveys (see [112]). Infinite-dimensional analogues of the Hamiltonian formalism until recently
were considered only for Lagrangian field systems in connection with the needs of quantum field

theory (see, for example, [17]). More complicated examples arose in the hydrodynamics of a perfect

incompressible fluid (see [7], appendix 2), and also in the theory of the Korteweg–de Vries equation
[54J, [59]. The modern formalism of Poisson brackets in application to infinite-dimensional (field

theoretic) systems was systematically developed in [112]. The general concept of a Poisson bracket
of hydrodynamic tvpe was introduced and studied in [48].

2. The use of the symmetry of Hamiltonian systems to construct their integrals and to reduce

their order also goes hack to the classical works of Jacobi, Poincare and others; for a modern
presentation see [101] (see also [7], appendix 5). The construction of integrals for field-theoretic
Lagrangian systems with symmetry was given by E. Noether.

3. The concept of a completely integrable Hamiltonian system arose in the works of Bour and
Liouville (see the textbooks [7], [42]). We do not discuss here degenerate completely integrable
systems with a larger number of integrals than the number of degrees of freedom (see, for example,
[57] and V.V. Kozlov’s survey article [72]).

4. The fundamental material of section 4 (chap. 1) is contained in the classical works of
Hamilton and Jacobi (see, for example, the text [7]).

5. Beginning with the paper [89], in which the mechanism for integrating the KdV equation
which had been proposed in the pioneering paper [60] was cleared up, all schemes for producing
integrable evolution equations have been based on representing them in the form of a compatibility

condition for the auxiliary linear problems.
The scheme based on the equations of “zero curvature for rational families of operators”,

proposed in [127], included in a natural way all examples known up till then, in particular such

key stages in the development of the method as [54], [88], [96], [56], [59], [1]. (These examples and
a number of others are presented together with the history of the development of the first stages

of the inverse scattering method in the books [115], [25]). A representation of the KdV equation
in the form of the zero curvature equation for polynomial families of operators was first proposed

in [111], and an example of a rational family was met with in the paper [1].

For the anisotropic Landau–Lifshitz equation, the papers [22], [128] first used a zero-curvature
representation for families of operators with a spectral parameter on an elliptic curve. This line

received a further development in the papers [30], [29]. In the papers [84], [86] another way was
proposed of generalizing the zero-curvature equations for rational families to the case where the

spectral parameter is defined on an algebraic curve of non-zero genus. In the article [80] (for

greater detail see [83]) a representation for the Moser–Calogero system was proposed in which the
dependence of the matrix entries on a parameter defined on an elliptic curve contained essential

singularities of a special form.
6. The program for integration of the periodic problem for the KdV equation was initiated

by the paper [111] (somewhat later and in a less effective form it was considered in [90]). The

employment of the methods of algebraic geometry for the construction of periodic and quasiperi-
odic solutions of the kdV and nonlinear Schrödinger equations was begun in the articles [38], [39],

1For the convenience of the reader, reference to reviews in Zentralblatt fur Mathcmatik (Zbl.).

compiled using the MATH database, and Jahrhuch über die Fortschritte der Mathematik (FdM.),
have, as far as possible, been included in this bibliography.
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[45], [47], [64]. (Later the papers [102], [103] appeared.) For the sine-Gordon equation finite gap
solutions were constructed in [68]. The question of whether one can approximate an arbitrary

periodic potential by finite gap potentials of a Sturm-Liouville operator with conservation of the
period was settled positively in [100], [104].

The first stage of the theory of finite gap integration was presented in [45], [115].

A general scheme for integrating two-dimensional equations of the type of the Kadomtsev
Petviashvili equation with the aid of the methods of algebraic geometry was proposed in [74], [75].

It also included in a natural way the constructions of solutions of one-dimensional evolution equa-
tions which were proposed in the works cited above. The concept of the Clebsch–Gordan–Baker–
Akhiezer function became the central concept of this scheme. The definition of such functions,

including the multi-point ones, was given in [75] on the basis of a generalization of the analytic
properties of Bloch functions of finite gap periodic and quasipenodic operators. “Single-point”

functions of this kind were introduced as a formal generalization of the concept of exponentials
in the 19th century by Gordan and Clehsch (see [8]). Their connection with a joint eigenfunc-
tion of a pair of commuting operators of relatively prime orders was first noted in [9] by Baker.

N.I. Akhiezer indicated examples of the interpretation of such functions in the spectral theory of
operators on the half-line.

The isolation of the real non-singular solutions within the framework of the general scheme,

for equations for which the auxiliary linear problem is not self-adjoint, was begun in [28] and was
earnestly pushed forward in [13], [41], [44], [46].

A general Hamiltonian theory of systems whose integration is connected with hyperelliptic
curves was proposed in [116], [118]. This theory made it possible to examine from a single point
of view and to unify not only the Hamiltonian structure itself of diverse systems, but also to

give a unified construction of variables of the action-angle type. For Kovalevskaya’s system a
construction of variables of the action type was obtained for the first time in just these articles.

A construction of action-angle variables for the Hamiltonian systems connected with finite gap
Sturm–Liouville operators was first obtained in [6], [56]. The relation of the stationary and non-

stationary Hamiltonian formalisms for these systems was obtained in [18], [20], [34].

8. References to works devoted to the algebraic-geometric integration of a number of classical
systems of mechanics and hydrodynamics are cited in sections 3 and 4 of Chapter 2 in the course

of the analysis of a series of prime examples.
9. The program of the research on the dynamics of the poles of solutions of equations to which

the inverse scattering method is applicable goes back to the paper [87]. The connection of the

dynamics of the poles of rational and elliptic solutions of the KdV equation with the rational and
elliptic Moser–Calogero systems was first discovered in [4]. Without any connection with finite-

dimensionai systems, elliptic solutions of the KdV equation with three poles were constructed in
[47]. The isomorphism of the rational Moser–Calogero system and the polar system of rational

solutions of the KP equation was established in [77]. In [31] this result was carried over to the

elliptic case. The construction of variables of the angle type for the elliptic Moser–Calogero system
and the construction of all elliptic solutions of the KP equation were obtained in [80].

10. The algebraic-geometric Floquet spectral theory of linear operators with periodic coeffi-
cients was developed in the publications [38], [45], [115], [64], [111], [100], [90]. The starting point

for these works was the problem of constructing periodic solutions of equations of the KdV type.

The possibilities for applying the algebraic-geometric spectral theory to the continuous Peierls–
Fröhlich model were discovered in [12], [24].

The construction of the algebraic-geometric spectral theory of the Schrödinger difference
operator was begun in the articles [45], [33] and received its completion in [79]. These results were

used in the papers [23], [50], [51], [81], in which the discrete Peierls model was integrated and its

perturbations were investigated.

Translator’s Remark. In the literature list which follows, whenever a Russian work has

been translated into English a reference to the translation has been included, and the title I have
given is then simply the title of the English translation, unless (as is not infrequent!) the title

of the translation is incorrect or differs significantly from the Russian title. In these cases I have

supplied my own translation of the Russian title and have indicated how the title of the English
translation differs.

However, I have not corrected one “mistake” which is nearly universal in translations of the
subject matter treated in this article. It is the lazy translation “finite-zone” (a literal translation

of the Russian term) for what English writers generally call finite gap (operators, potentials, etc.).
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Because “finite-zone” is so frequent (although it is found almost exclusively in translations from
the Russian) I have left it unchanged in the English titles but wish to draw the reader’s attention

to it here.
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