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Problem: Can one extend the

idea of Isospectral Deformation

to the Singular Solutions of the

KdV Equation?

Is it possible to construct Spec-
tral Theory on the real line for
the real singular 1D Schrodinger
Operators L = −∂2

x +u(x, t) sat-
isfying to KdV such that time
dependence is an isospectral de-
formation?

Example: Lame-Hermit Singu-
lar Potentials and their trigono-
metric or rational degenerations
leading to elliptic (trigonomet-
ric, rational) solutions.



Some people investigated ”weakly
singular” solutions to KdV. For
example, Tao proved about 10
years ago that KdV dynamics is
well-posed in the Sobolev spaces
H−s for s ≤ 3/10 at the real x-
line (circle). No ideas of Inverse
Scattering (Spectral) Transform
were used, no claims about isospec-
tral properties has been made.
Later Kappeler and Topalov us-
ing finite-gap approximation proved
this for s ≤ 1 including isospec-
tral property. This is probably
the final limit for the ordinary
spectral theory.



However, the well-known funda-
mental class of exact solutions
(outside of the physical theory
of solitons and spectral theory
in the Hilbert spaces) contains
all ”singular multisolitons” and
”singular finite-gap KdV solutions”
(algebro-geometric solutions). We
cannot find them in the Sobolev
spaces above. They have stronger
singularities and the property (be-
low) :

All solutions (for all λ) Lψ = λψ
are x-meromorphic at the real
line for all t. This property we
take as a definition. Question: Is
this true for all locally x-meromorphic
KdV solutions? Is this property
locally true for the domains in
the x, t plane or it is global prop-
erty for KdV solutions?



Our Results: 1.The class of ad-
missible potentials u(x) consists
of C∞ functions with special iso-
lated singularities. Such opera-
tors are symmetric in the indef-
inite inner product in the corre-
sponding spaces of ψ-functions.
2.The right analog of the Fourier
Transform on the Riemann Sur-
faces will be defined below. It
is an isometry in the indefinite
inner product. Even more: We
prove a Completeness Theorem
for the real algebro-geometric (or
singular finite-gap) potentials. For
the general real admissible po-
tentials this problem is open.



All algebrogeometric (AG)or sin-

gular finite-gap potentials belong

to this class including rational

and elliptic solutions. Their sin-

gularities are)

u = nk(nk+1)
(x−xk)2

+
∑

j bjk(x− xk)
2j +

o((x− xk)
2nk) for j ≥ 0

We consider general real poten-
tials with discrete set of such singularities–
finite at every period for periodic
case and finite at the whole line
for the rapidly decreasing case.



The spectral theory should be

developed in the class of ψ-functions

which are C∞ plus isolated sin-

gularities at the real line

ψ(x) =
∑

j≤nk
qj(x − xk)

−nk+2j +

o((x−xk)
nk) for j ≥ 0, nearby of

every real singularity of potential

u for given moment t. We call it

Fx1,...,xM ;n1,...,nM = FX;N



The inner product in the space

FX;N is

< ψ, φ >=
∫
ψ(x)φ̄(x̄)dx

It is well-defined here using com-

plex contours avoiding singular-

ities because all residues of the

product are equal to zero.

This inner product is indefinite.



We consider either functions rapidly

decreasing at infinity (T = ∞) or

quasiperiodic with Bloch-Floquet

condition

ψ(x + T ) = κψ(x), ψ ∈ FX,N(κ)

for |κ| = 1. The number of neg-

ative squares of inner product in

the space FX,N(κ) is equal to

mX;N =
∑

k[(nk+1)/2]; (It is the

Integral of KdV dynamics, so the

time deformation is isospectral).



KdV and Schrodinger Operator:

ut(x, t) = 6uux − uxxx

Lψ = −ψxx + uψ = λψ

Classical Theory: Spectral The-

ory of Rapidly Decreasing and

Periodic Schrodinger Operators

L requires NONSINGULARITY

of Potential u(x) as well as phys-

ical derivation of KdV in the The-

ory of Solitons.



A number of other applications

of KdV theory was discovered later

which do not require nonsingu-

larity. Huge Literature is dedi-

cated to the singular KdV Solu-

tions. A Theory of Rational and

Elliptic Solutions is especially pop-

ular.

Example: For j = 1, ..., n(n+1)
2

there are Real Rational and El-

liptic Solutions



u(x, t) =
∑

j 2/(x− xj(t))
2

u(x, t) =
∑

j 2℘(x− xj(t))

let u(x,0) = n(n + 1)/x2

0

and u(x,0) = n(n+1)℘(x); −T T0

(the famous Lame’ Potentials.)



Hermit found Spectrum with Dirich-

let boundary conditions for x =

0, T . Here T is a real period.No

spectral theory was constructed

on the real line. For n = 1 this

solution is a SINGULAR TRAV-

ELING WAVE u = 2℘(x − at)

with 2nd order pole in the point

x = at. Don’t Confuse it with

NONSINGULAR TRAVELING WAVE

u = 2℘(x + iω′ − at) where 2iω′

is an imaginary period. This is a

first example of periodic finite-

gap potentials found in 1950s.



The evolution of Lame’ Poten-

tials

u(x,0) = n(n + 1)℘(x)

or u(x,0) = n(n+1)/x2 leads to

singular solutions

Important Technical Question:

How many real poles these solu-

tions have for t > 0?
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The orbits of group Z/3Z are

marked here. We have 1,1,2,2,3, ...

real poles for n = 1,2,3,4,5....
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2
n(n+1)

=10n=4

xj ∼ rjt
1/3

The symmetry group Z/3Z acts here

rj → ζrj, ζ
3 = 1



Our Result: The number of real

poles is equal to [(n+1)/2]. This

number is equal to the number

of negative squares for the Inner

Product in the Spaces of func-

tions on the real line where the

operator L = −∂2
x+u(x, t) is sym-

metric. Physicists Arkad’ev,

Polivanov and Pogrebkov constructed

earlier some kind of Scattering

Theory for the potentials with

singularities like 2/(x− xk)
2. No

spectral theory was discussed.



How Singular Solitons can be used?

We used them to define right

analog of Fourier Transform on

Riemann Surfaces.

What is Fourier Transform

on Riemann Surfaces? Which

Problems need it? Why sin-

gular Solitons are important?

Example: The Fourier/Laurent

Series for the contours which are



the time-sections of the world-

sheet Riemann Surfaces (the ”String

Diagrams”) was constructed by

Krichever-Novikov (1986-1990) re-

alizing The Program of Opera-

tor Quantization of the Closed

Strings) . Some Singular so-

lutions to the 2D Toda Sys-

tem were used.

Continuous Fourier Transform on

Riemann Surfaces was invented



in our works with Grinevich us-

ing singular finite-gap solutions

to KdV and KP (2003-2010). It

is based on the Maximally Singu-

lar Baker-Akhiezer (BA) function–

i.e. its poles concentrated at the

infinite point of Riemann Sur-

face only. We found out that

Spectral Problem here is as-

sociated with the Indefinite

Inner Product for genus g >

0.



There are many orthonormal bases

in Mathematics and Applications

(”Wavelets”, for example) but

Fourier base has remarkable mul-

tiplicative properties.

They are important for Nonlin-

ear Problems. The notion of Res-

onances is based on multiplica-

tion.

It was critical to have bases with

good MULTIPLICATIVE proper-

ties on Riemann Surfaces for the

operator quantization of strings.



Let BA-functions Ψ(λ, x) be Max-

imally Singular.

Example: The classical pe-

riodic Lame’ operators −∂2
x+

g(g + 1)℘(x) .

Do Singular Operators have

reasonable spectral theory

on the whole real line x?



Classical people like Hermit con-

sidered spectrum of Lame’ po-

tentials only at the interval [0, T =

2ω] with zero boundary condi-

tions. The inner product needed

here is positive. We have to

use the whole x-line in or-

der to construct Fourier Trans-

form with good multiplica-

tive properties.

Ψ-functions for smooth real pe-

riodic operators do not have good

multiplicative properties.



Consider real (may be sin-

gular) ”finite-gap” periodic

operator with spectral curve (Rie-

mann Surface) Γ:

µ2 = (E−E1) · · · (E−E2g+1) with

involution σ(E, µ) = (E,−µ) and

poles of Ψ-function D = γ1, ..., γg.

Real case corresponds to the

data where Γ and poles are

invariant under conjugation

τ(E, µ) = (Ē, µ̄).



The spectrum of operator

(see below) is equal to the

projection on the complex

λ-plane of the τ-invariant

Canonical Contour κ0.

Example 1: Let g = 1 (Γ is

a torus)

and all Ej are real, j = 1,2,3:

E 3E 2E 1

gaps

spectrum

0 ω

2ιω

ιω

2ω



The lattice of periods of

the Weierstrass ℘ -function

in this case is rectangular

with periods 2ω,2iω′.

The spectrum is real , and

spectral gaps are [−∞, E1]

and [E2, E3], τ = id at κ0

E 1 E 2 E 3

singular potential regular potential κ0 is

represented by fine lines.



The contour κ0 has 2 com-

ponents here: infinite and

finite. There is only one

pole γ: For Regular Case

it belongs to the finite gap,

for the Singular Case it be-

longs to the infinite gap

(They both are the shifted

Hermit-Lame Operators but

in regular case the shift is

imaginary, in singular case

the shift is real).



Example 2. Let g = 1, E1 ∈
R, E3 = E2:

0

ω

ω

ω+ω

The lattice of periods is

rombic.

E 1
E 2

E 3

singular potential κ0

given by fine lines.



The spectrum on the whole

line coincides with the pro-

jection of the contour κ0

on the E − plane. It con-

tains complex arc joining E2, Ē2

and τ 6= id at κ0

Define the ”spectral measure”

dµ. Let λj= projection of poles:

dµ = (E−λ1)...(E−λg)dE

2
√
(E−E1)...(E−E2g+1)

For every smooth function on the

contour κ0 with decay fast at in-

finity, we define



Direct and Inverse Spectral
Transform:

φ̃(x) =
1√
2π

∫

κ0
φ(λ)Ψ(σλ, x)dµ(λ(E))

(1)

φ(λ) =
1√
2π

∫

R φ̃(x)Ψ(λ, x)dx

(2)
We call it R-Fourier Trans-
form if all λj = ∞; dµF =

dE/2
√
(E − E1) . . . (E − E2g+1),

Our base has good multi-
plicative properties:



Ψ(x, λ)Ψ(y, λ) = lΨ(x+y, λ)
l = (∂g

z + ζ(z)∂g−1
z + ...)

λ = (E,±), z = x + y

In the Regular Case τ = id

at κ0 and measure is posi-

tive. This Spectral Trans-

form is an Isometry between

the Hilbert spaces with pos-

itive inner products

< ψ1, ψ2 >κ0=
∫

κ0
ψ1(λ)ψ2(τλ)dµ(λ)



< f1, f2 >R=

∫

R f1(x)f2(x)dx

Consider Singular Potentials

1) Formula for the Spectral Trans-

form remains valid; For the In-

verse Transform it remains valid

after a natural regularization.

2) Spectral Transform is an isom-

etry between the spaces with in-

definite metric described above.



All singularities have a form

described above

Example 1. All branching

points are real: τ acts iden-

tically on κ0, the form dµ is

negative somewhere. For

R-Fourier Transform we have:

dµF/dp > 0 exactly in every

second component starting

from the infinite one; So



we have [(g +1)/2] ”nega-

tive” finite components in

κ0.

Example 2. Some pair of branch-

ing points is complex adjoint: τ

is not identity in the nonreal com-

ponents of κ0; So the inner prod-

uct is nonlocal and therefore in-

definite.

We proved Completeness Theo-

rem in the spaces FX,N(κ) which



are similar to the Pontryagin-Sobolev

spaces

E 1 E 2 E 3

µ <0d µ >0dγ
1

E 1
E 2

E 3

singular potential

Every function on the line f(x) ∈
L2(R) can be written as a direct

integral of the Bloch-Floquet spaces

such that f(κ, x+ T ) = κf(κ, x).

The space FX,N also is a direct



integral of Bloch-Floquet spaces

f ∈ FX,N(κ), |κ| = 1: Our inner

product has r negative squares

in the space FX,N(κ), r = [(g +

1)/2] for the R-Fourier case.

Remark: Singular Bloch-Floquet

eigenfunctions are known for

the k+1-particle Moser-Calogero

operator with Weierstrass pair-

wise potential if coupling con-

stant is equal to n(n + 1), n ∈
Z. They form a k-dimensional

complex algebraic variety. No



one function is known for k >

1 serving the discrete spec-

trum in the space L2 of the

bounded domain inside of poles.

Our case corresponds to k =

1. We believe that for all k >

1 this family of eigenfunctions

also serves spectral problem

in some indefinite inner prod-

uct in the proper space of func-

tions defined in the whole space

Rk.


