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How to solve KdV equation

(XIX Century)?

The Korteweg-de-Vries Equa-

tion (KdV):

ut = 6uux + uxxx

Consider ”The Soliton Pro-

files” |u(x)| → 0 for |x| → ∞

Numerics, Integrals: Kruskal

and Zabuski, Soliton Interac-

tion, 1965
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The IST Solution: Gardner,

Green, Kruskal, Miura, 1967

Math By-Product , ”Lax Pairs”:

Lax, 1968

Generalizations: Higher analogs

of KdV



Developments:

Another Important Systems Solv-

able by IST, 1971-...



Developments:

Another Important Systems Solv-

able by IST, 1971-...

Hamiltonian Treatment of These

Systems, 1971-...



Developments:

Another Important Systems Solv-

able by IST, 1971-...

Hamiltonian Treatment of These

Systems, 1971-...

Analog of IST for Periodic Bound-

ary Conditions. Riemann Sur-

faces, Finite-Gap Operators and

KdV Solutions, 1974-...
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My Point of View:

Nonlinear Systems Solvable by

IST are exotic. But they present

new sort of ”Spectral Sym-

metry” of Most Fundamental

Linear Operators in the Di-

mensions 1D and 2D such as

1D Schrodinger L = −∂2
x+u(x)

2D Schrodinger L = −∂2
x−∂2

y +

A∂x + B∂y + W Parabolic L =

σ∂t + ∂x + W Dirac L= ...
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For which classes of opera-

tors such ”symmetry” exists?

Factorizable Operators

L = Q1Q2 + C

Example 1 (Factorization):

−∂2
x+u(x) = −(∂x+a)(∂x−a)+C

Solve equation ax+a2+C = u(x)
Isospectral Map: QQ∗ → Q∗Q
(Euler-Darboux-Backlund)
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Example 2 (Weak Factorization):

L = −(∂ + A)(∂̄ + B) + W

One-level Lψ = 0 Symmetry for
2D, Laplace Transformations

2D Laplace is Factorizable: ∆ =
∂∂̄. It is the most fundamen-
tal property of plane generating
Complex Analysis.

Conclusion: 2D Complex Anal-
ysis is similar to the Completely
Integrable Systems. Is it possi-
ble to preserve this property af-
ter Discretization?
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Discretization of Most Fundamen-
tal Linear Operators: How to pre-
serve Spectral Symmetry?

For 1D Case we take:

T (n) = n+1, L = cnT+T−1cn+vn

The factorization L = QQ∗+ C

is always possible,

Q = anT + bn, Q∗ = T−1an + bn.

Iso-spectral deformations dL/dt =

[A, L] appear ( ”Toda Lattice”

and ”Volterra=Discrete KdV=...”

for the subfamily vn = 0).



2D Case and Quadrilateral (Square)

Lattice: shifts T1(m, n) = (m +

1, n), T2(m, n) = (m, n+1): Take

equation Lψ = 0:

L = am,n+bm,nT1+cm,nT2+dm,nT1T2

The ”Weakly Factorized” form

is f−1L =

(1+uT1)(1+vT2)+w = Q1Q2+w

and gauge group acts

L ∼ f−1Lg, ψ ∼ g−1ψ
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T1
T2

(m+1,n+1)(m,n+1)

(m,n) (m,n+1)

T2

T1

For 2D Case and Equilateral Tri-

angle Lattice L = a+bT1+cT2+

+dT−1
1 T2+T−1

1 b+T−1
2 c+T−1

2 T1d

The Weakly Factorized Form is:

±L = Qb∗Qb+V, Qb = u+vT1+wT2
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Example: Laplace -Beltrami Op-

erator on The Equilateral Trian-

gle Lattice:

−∆ = Qb∗Qb − 9

so we have:

a = 6, b = c = d = −1

u = v = w = 1, V = −9
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Definition.We call Qb = u+vT1+

wT2 ”Black Triangle Operator”,

and the adjoint operator Qb∗ ”White

Triangle Operator” Qw on the

Equilateral Triangle Lattice.

We call Qbψ = 0 ”Black Triangle

Equation” and Qwψ = 0 ”White

Triangle Equation”.



Exotic Example:(S.N.-I.Krichever,

1999): For trivalent tree (see

Fig 3)Every Self-adjoint Real 4th

order operator is Weakly Factor-

izable: Lψ(P ) =
∑

i bPP ′′i
ψ(P ′′)+

+
∑

j
bPP ′j

ψ(P ′j) + V (P )ψ(P ) =

= (QQ+ + v)ψ(P )

Fig 3



P3
’

P2
’

P1
’

P1
’’

P2
’’

P3
’’

P4
’’

P6
’’

P5
’’

P

2nd order ball 2B (P)

Completely integrable systems ap-

pear on this graph. Nothing like

that exists for the second order

operators on this graph.
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GLn Connections=Overdetermined

Systems of Linear Equations:

The Triangle Operators, Data:

1.Triangulated surface with se-

lected family of triangles X; 2.Co-

efficients bT :P 6= 0 for every Tri-

angle T ∈ X and vertex P ∈ T .

QXψ(T ) =
∑

P∈T
bT :Pψ(P )

acts on the functions of ver-

tices.
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B/W surfaces (The Discrete Con-

formal Structure): all triangles

are colored into black and white

colors. We have operators Qb

and Qw where family X = b con-

sists of all black triangles, and

X = w of all white triangles.

Another Example: X = b
⋃

w is

the set of all triangles T . We call

corresponding triangle equation

Qψ = 0 ”Discrete GLn Connec-

tion”. What is Curvature?
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Let all bT :P = 1. We call solu-

tions to the equation Qbψ = 0

on B/W Surfaces ”Discrete (d)

Holomorphic Functions”.

For Equilateral Triangle Lattice:

We have

Qb = 1 + T1 + T2

Qw = 1 + T−1
1 + T−1

2



Following picture explains how

nontrivial curvature appears for

such ”connections” (see Fig 5).

For every vertex P we start from

the vertex P1 in its star. Know-

ing ψ(P ) and ψ(P1) we calculate

all ψ(Pi) ”along the circle” for

n = 2 in the star. Contradiction

might appear after returning to

the original point P1 as a trian-

gle matrix CP . We call CP ”cur-

vature operator”. Holonomy is



defined for the Thick Paths. Im-

portant Case: bT :P = 1 and n =

2. ” The Zero Curvature” prop-

erty CP = 1 simply means that

even number of triangles enter

P . For the case bT :P = 1 and

CP = 1 holonomy belongs to the

permutation group Sn.



Fig 4 Fig 5

K>0 K<0

K=0

black/white coloring P7

P1
P2

P3

P4
P5

P6

P
Star
St(P)

Theory of curvature was devel-

oped recently.



New Discretization of Complex

Analysis.

Classical discrete complex anal-

ysis is based on the quadrilateral

lattice (Lelong-Ferrand, 1940).

Weak Points: 1.Discrete Analog

of Cauchy-Riemann Operator ∂̄

is in fact a second-order differ-

ence operator. 2.Factorization

Property is missing here.



Our Discretization is based on

the properties of EquilateraL Tri-

angle Lattice with Factorization

∆ = −Qb∗Qb+9, Qb = 1+T1+T2

In both approaches d-holomorphic

functions Do Not Form a Ring



For every 2-manifold with B/W

triangulation and bT :P = 1 we

define d.(i.e. discrete) holomor-

phic functions as real functions

satisfying to the equation: Qbψ =

0 and d.anti-holomorphic func-

tions Qwψ = 0

”The Covariant Constants” are

such functions that Qψ = 0 i.e.:

Qbψ = 0, Qwψ = 0



−2∆ + 3mP = Q∗Q =

= 2Qb∗Qb = 2Qw∗Qw

Here mP is equal to the num-

ber or triangles entering P where

6 − mP is a ”Scalar Curvature”

of the Triangulated Surface. For

mP = const the zero modes of

Q∗Q coincide with maximal modes

of Laplace-Beltrami Operator ∆.

Let us remind ”The Instanton

Trick”: For factorizable opera-

tors 0-minima of functional (Lψ, ψ)



satisfy to ”smaller (self-duality)

equation”: Q∗Qψ = 0 implies

(Qψ, Qψ) = 0 implies Qψ = 0.

Therefore d-holomorphic function

on compact surface is covariant

constant:

Qbψ = 0 implies Qb∗Qbψ = 0 im-

plies Q∗Qψ = 0 implies (Qψ, Qψ) =

0 implies Qbψ = 0, Qwψ = 0.

So discrete analog of Liouville

Principle is true here.



We assume now that the space

of covariant constants is R2.



We assume now that the space

of covariant constants is R2.

Continuous Limit: Take covari-

ant constant f0 whose values are

1, ζ, ζ2 where ζ3 = 1. Use Gauge

L → f−1
0 Lf0, ψ → f−1

0 ψ such that

one covariant constant became

ordinary constant. Extend field

to C. In the continuous limit

one half of our theory converges

to the ordinary complex analysis,

second half is divergent for the

small scales.



Maximum Principle is also true:

Consider finite domain D con-

sisting of black triangles T . The

Evaluation Map Eψ(T ) treats d-

holomorphic functions as R2-valued

functions of black triangles: it

assigns to black triangle T with

vertices P, P ′, P ′′ unique covari-

ant constant R2 defined by the

triple ψ(P ), ψ(P ′), ψ(P ′′) on T The-

orem. The image Eψ(D)) coin-

cides with the convex hull of the

image of boundary triangles.



Previous results are true for all B/W

surfaces.

D-Holomorphic Polynomials and

Taylor Series We work now with

equilateral triangle lattice in the

plane with shifts T1, T2 (see Fig

6).Our operators Qb, Qw map here

the space of functions of ver-

tices into itself: Qb = 1 + T1 +

T2, Qw = (Qb)∗ = 1 + T−1
1 + T−1

2



How to define polynomials with-

out multiplication?

We call d.holomorphic function

Polynomial of degree k if

(Qw)k+1ψ = 0

d-analog of Ball here is any big

equilateral triangle Tk whose edges

are black from inside and con-

tain exactly 2k + 2 vertices (see

Fig 6).



Theorem (The Taylor Approxi-

mation).

For every d.holomorphic function

ψ and big triangle Tk there exists

exactly one holomorphic polyno-

mial Pk of degree k such that

ψ − Pk = 0 in the triangle Tk.



The space Hk of holomorphic poly-

nomials has dimension 2k+2 over

R. Its basis can be chosen using

”Balls”, see Fig 6.

Fig 6

Tk

T α
k−1

Pα
k

T α
k−1Tk

−1

0 0

0

0+1

0

0

−1

+1

0+1

−1

α
α

α ’’

α’

k=0

k=1



How to define d-analog of Cauchy

Kernel 1/z?

Cauchy Formula.

Let ψ be d.holomorphic in the

bounded domain D in the equi-

lateral triangle lattice. We can

easy construct fundamental so-

lution G(x− y) such that

QbG(x− y) = δ(x− y)

where x = (m, n) and δ(x) =

1,0 = x, and zero otherwise.



One such function is given in Fig

7. It is equal to zero for all x =

(m, n) where m > 0 or n > 0.

Its values at the boundary are

(−1)m in the points (−m,0) and

(−1)n in the points (0,−n) and

G = (−1)m+n(m+n)!
m!n! for m < 0, n <

0 (The Pascal Triangle).



Is it right analog of 1/z? It is

OK for Cauchy Formula but has

exponential growth in some di-

rections.

Fig 7

01

0−1

1 −1 1

2

−1

−3

−3

−1 0 0

0

0

"Pascal Triangle" G(x)   x=(m,n)



Let ψ is d-holomorphic in finite

domain D. Take function ψ̃ = ψ

in D and zero outside.The func-

tion Qbψ̃ is concentrated along

the boundary ∂D which is a ”strip”.

Theorem. Following Cauchy For-

mula is valid for x ∈ D:

∑

y
(Qbψ̃(y))G(x− y) = ψ(x)



Any Green function can be used

here. Our function looks more

hyperbolic than elliptic. Recently

Grinevich and R.Novikov found

”really elliptic” function G(x−y)

decreasing for |x−y| → ∞. Such

Green function (The Cauchy Ker-

nel) is unique. It can be sim-

ply found by the Fourier Trans-

form. They obtained a number

of results using it. So all rational

functions are naturally defined in

our theory



Hyperbolic (Lobatchevslki) Plane.

Recently we started to develop
d-complex analysis for the equi-
lateral lattices on hyperbolic plane.
Neither analogs of Taylor Poly-
nomials nor Grinevich-R.Novikov
type Green function are known
here. We have negative curva-
ture if number of edges entering
every vertex is mP > 6. In our
case it should be even number.
For the homogeneous triangula-
tions with mP = 8,10,12, ... we
have a big group preserving tri-
angulation. Let us concentrate
on the minimal case mP = 8.



Problem: How to describe bound-
ary of r-ball for every integer r?

A picture is presented below for r = 0,1,2.

Fig 8 r=0,1,2



We define a class of the Right-Convex
oriented simplicial paths–see Fig
9a,b,c,d. Their local picture from the right

side is following by definition

Fig 9
bb

c)

ww

d)

bw wb
a) b)

We are coding right-convex ori-
ented paths by the words in 2
symbols b, w assigning bw to fig
9a, wb to fig 9b, bb to fig 9c and
ww to fig 9d.



Let us introduce Structural Transfor-
mation T on the space of infinite periodic

right-convex oriented paths by the for-
mulas T : bw → bwbw, wb → wbwb,
bb → bwb,ww → wbw We apply T
to every pair of neighboring let-
ters in the word and after that
delete old letters.

For the word R1 = ...bwbwbwbw... which
is a boundary of 1-ball,we have

T (R1) =

= ...bwbwwbwbbwbwwbwbbwbwwbwbbwbwwbwb... = R2



Lemma 1. The image of right-

convex path exactly coincides with

the right-convex path which is

a closest neighbor from the left

side. In particular,

T r(R1) = Rr = ∂Dr, r ≥ 1

for r-balls Dr

This type of maps are standard for peo-
ple working in symbolic dynamics. Mike
Boyle from the University of Maryland
helped me:



Lemma 2. For every word A we
have: |T (A)|/|A| asymptotically
equal to 2 +

√
3, |A| → ∞ . This

asymptotic almost exact for r ≥
4, A = Rr

We have |R1| = 8, |R2| = 32, |R3| =
120,|R4| = 448, |R5| = 1672, R6 =
6230, ...



Construct basis of d-holomorphic
functions zr

P(x) such that zr
P =

0 for all points x in Rk, k < r
and for all points in the path
Rr except of the selected place
P ⊂ Rr where P = wbbw or P =
wbw (see Fig 10 for the values
of these functions in P )

Fig 10

P=...wbbw...

0

1 −1 1

0

...wbw...=P

0 0

1 −1



Conjecture: There exists basis of
d-holomorphic functions zr

P which
are globally bounded in the Hy-
perbolic Plane. Their linear com-
binations are similar to polyno-
mials

∑n
k=0 akzk in the unit disc

(Poincare’ model in the contin-
uous case).

Theorem. Dimension of the space
of d-holomorphic functions restricted
to the boundary ∂Dr = Rr, is
equal to 1 + |Rr|/2
It is quite similar to the continuous case. On

the boundary Rr linear span of these spaces is

exactly all space of functions, and their inter-

section is exactly covariant constants.


