Математическая логика: лекция 12

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2020

О разрешимых и перечислимых множествах

Напоминаю, что $f:\subseteq \mathbb{N}^\ell \to \mathbb{N}$ называется вычислимой, если существует алгоритм, который по каждому $\vec{n}\in \mathrm{dom}\, f$ находит $f\left(\vec{n}\right)$, причём на элементах $\mathbb{N}^\ell\setminus \mathrm{dom}\, f$ этот алгоритм «зависает».

Замечание

Здесь под алгоритмами мы понимаем, например, машины Тьюринга, которые по умолчанию подразумеваются детерминированными.

Пусть $A \subseteq \mathbb{N}$. Говорят, что:

- ightharpoonup A разрешимо, или вычислимо, если его характеристическая функция, обозначаемая χ_A , вычислима.
- ▶ A перечислимо, если либо $A = \emptyset$, либо $A = \operatorname{range} f$ для нек. вычислимой $f : \mathbb{N} \to \mathbb{N}$.

В рассуждениях мы будем свободно использовать:

Тезис Чёрча-Тьюринга

 $f:\subseteq \mathbb{N}^\ell o \mathbb{N}$ интуитивно вычислима тогда и только тогда, когда она вычислима посредством некоторой машины Тьюринга.

Этот тезис невозможно ни доказать, ни опровергнуть математически ввиду того, что здесь участвуют одновременно:

- неформ. (немат.) понятие интуитивно вычислимой функции;
- форм. (мат.) понятие вычислимой по Тьюрингу функции.

Статус тезиса Чёрча–Тьюринга отражает наши представления о том, как математическая модель алгоритма связана с «реальностью».

Грубо говоря, если подходить к вопросу эмпирически:

никто не смог придумать алгоритма в традиционном, интуитивном его понимании, который невозможно смоделировать посредством подходящей машины Тьюринга.

Если же подходить к вопросу чисто математически:

• все известные формализации концепции алгоритма/понятия вычислимости равносильны: по алгоритмам одного рода мы можем эффективно строить алгоритмы другого рода, вычисляющие те же частичные функции из \mathbb{N}^ℓ в \mathbb{N} .

Наконец, тезис Чёрча—Тьюринга приобретает особую актуальность, когда речь заходит об алгоритмической *неразрешимости*.

Замечание

Определим pair : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ по правилу

$$pair(n, m) := 2^n \cdot (2m + 1) - 1.$$

Ясно, что pair — вычислимая биекция из $\mathbb{N} \times \mathbb{N}$ на \mathbb{N} , причём по ней легко строятся вычислимые left, right : $\mathbb{N} \to \mathbb{N}$ такие, что

left
$$(pair(n, m)) = n$$
 u right $(pair(n, m)) = m$.

Далее, с помощью pair для всякого $\ell \geqslant 2$ можно построить вычислимую биекцию ℓ -tuple из \mathbb{N}^ℓ на \mathbb{N} :

3-tuple
$$(n_1, n_2, n_3) := pair(pair(n_1, n_2), n_3)$$

4-tuple $(n_1, n_2, n_3, n_4) := pair(pair(pair(n_1, n_2), n_3), n_4)$
:

Разумеется, посредством этих биекций можно переходить от подмножеств $\mathbb N$ к подмножествам $\mathbb N^\ell$, и наоборот.

Пусть $A, B \subseteq \mathbb{N}$ разрешимы. Тогда $A \cap B$, $A \cup B$ и $\mathbb{N} \setminus A$ разрешимы.

Доказательство.

Пусть χ_A и χ_B вычислимы. Заметим, что для любого $n\in\mathbb{N}$:

$$\chi_{A\cap B}(n) = \min \{\chi_A(n), \chi_B(n)\};$$

$$\chi_{A\cup B}(n) = \max \{\chi_A(n), \chi_B(n)\};$$

$$\chi_{\mathbb{N}\setminus\mathcal{A}}(n) = 1 - \chi_{\mathcal{A}}(n).$$

Поэтому $\chi_{A\cap B}$, $\chi_{A\cup B}$ и $\chi_{\mathbb{N}\setminus A}$ вычислимы.

Для произвольного $A\subseteq \mathbb{N}$ зададим $\chi_A^*:\subseteq \mathbb{N} o \mathbb{N}$ по правилу

$$\chi_A^*(n) := \begin{cases} 1 & \text{если } n \in A \\ \uparrow & \text{иначе,} \end{cases}$$

где \uparrow означает, что функция «зависает»; χ_A^* иногда называют полухарактеристической функцией A.

Предложение

Для любого $A \subseteq \mathbb{N}$,

A перечислимо \iff χ_A^* вычислима.

Доказательство.

Пусть $A=\varnothing$. Тогда χ_A^* — «пустая функция». Значит, A перечислимо и χ_A^* вычислима. Отныне мы будем считать, что $A\neq\varnothing$.

 \Longrightarrow Пусть $A={\rm range}\,f$ для некот. вычислимой $f:\mathbb{N}\to\mathbb{N}$. Тогда χ_A^* можно вычислить посредством следующего алгоритма.

- **0**: Положим k := 0.
- 1: Вычислим f(k). Если f(k) = n, то выдадим 1. Иначе положим k := k+1 и GoTo 1.

Здесь n — это значение аргумента на входе.

. .

Доказательство (продолжение).

Пусть χ_A^* вычислима посредством нек. алгоритма Р. Как легко убедиться, существуют вычислимые $h_1,h_2:\mathbb{N}\to\mathbb{N}$ такие, что

$$\{(h_1(n), h_2(n)) \mid n \in \mathbb{N}\} = \mathbb{N} \times \mathbb{N}.$$

Далее, зафиксируем какой-нибудь $a_0 \in A$. Рассмотрим $f: \mathbb{N} \to \mathbb{N}$, вычисляемую посредством следующего алгоритма.

0: Вычислим h_1 (n) и h_2 (n). Если алг. Р останавливается за h_1 (n) шагов на входе h_2 (n), то выдадим h_2 (n). Иначе выдадим a_0 .

Ясно, что range f = A.

Замечание

Перечислимость иногда называют полуразрешимостью.

Следствие

 $A\subseteq \mathbb{N}$ перечислимо тогда и только тогда, когда $A=\operatorname{dom} f$ для некот. вычислимой $f:\subseteq \mathbb{N} \to \mathbb{N}$.

Доказательство.

 \implies Пусть χ_A^* вычислима. Тогда, поскольку $A = \text{dom } \chi_A^*$, мы можем взять χ_A^* в качестве искомой f.

 \longleftarrow Пусть $A=\operatorname{dom} f$ для некоторой вычислимой $f:\subseteq\mathbb{N} o\mathbb{N}$. Для удобства обозначим $\chi_\mathbb{N}$ через f 1, т.е. $f 1=\lambda n$.[1]. Тогда

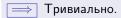
$$\chi_A^* = f \circ \mathbf{1}.$$

Стало быть, χ_A^* вычислима.

Следствие

 $A\subseteq \mathbb{N}$ перечислимо тогда и только тогда, когда $A=\operatorname{range} f$ для нек. вычислимой $f:\subseteq \mathbb{N} \to \mathbb{N}$.

Доказательство.



Пусть $A=\operatorname{range} f$ для некоторой вычислимой $f:\subseteq\mathbb{N}\to\mathbb{N}$. По предыдущему следствию $\operatorname{dom} f$ перечислимо.

- ▶ Если dom $f = \emptyset$, то range $f = \emptyset$, а потому A перечислимо.
- ▶ Если $\mathrm{dom}\, f \neq \varnothing$, то $\mathrm{dom}\, f = \mathrm{range}\, g$ для некоторой вычислимой $g: \mathbb{N} \to \mathbb{N}$, откуда

$$range f = range (g \circ f),$$

а потому A перечислимо.

Пусть $A,B\subseteq\mathbb{N}$ перечислимы. Тогда $A\cap B$ и $A\cup B$ перечислимы.

Доказательство.

Как мы знаем, сущ. вычислимые $f,f',g,g':\subseteq\mathbb{N} o\mathbb{N}$ такие, что

$$A = \operatorname{dom} f = \operatorname{range} f'$$
 u $B = \operatorname{dom} g = \operatorname{range} g'$.

Зададим вычислимую $h:\subseteq \mathbb{N} \to \mathbb{N}$ по правилу

$$h(n) := f(n) \cdot g(n)$$

а вычислимую $h':\subseteq \mathbb{N} \to \mathbb{N}$ — по правилу

$$h'(n) := egin{cases} f'(n/2) & ext{если } n \text{ чётно} \\ g'((n-1)/2) & ext{если } n \text{ нечётно.} \end{cases}$$

Тогда $\operatorname{dom} h = \operatorname{dom} f \cap \operatorname{dom} g$ и $\operatorname{range} h' = \operatorname{range} f' \cup \operatorname{range} g'$; поэтому $A \cap B$ и $A \cup B$ перечислимы.

Пусть $A\subseteq\mathbb{N}$ разрешимо. Тогда A перечислимо.

Доказательство.

Заметим, что из вычислимости χ_A следует вычислимость χ_A^* .

Замечание

Обратное опровергается. В частности, множество Halt, которое кодирует проблему остановки для машин Тьюринга, перечислимо, однако разрешимым оно не является.

Предложение (теорема Поста)

 $A\subseteq\mathbb{N}$ разрешимо, если и только если A и $\mathbb{N}\setminus A$ перечислимы.

Доказательство.

 \implies Пусть A разрешимо. Тогда и $\mathbb{N}\setminus A$ разрешимо. Следовательно, они оба перечислимы.

Пусть A и $\mathbb{N}\setminus A$ перечислимы. Если одно из них пусто, то они оба вычислимы. Будем считать, что A и $\mathbb{N}\setminus A$ непусты. Значит, сущ. вычислимые $f,g:\mathbb{N}\to\mathbb{N}$ такие, что

$$A = \operatorname{range} f$$
 u $\mathbb{N} \setminus A = \operatorname{range} g$.

. .

Доказательство (продолжение).

Тогда χ_A можно вычислить посредством следующего алгоритма.

- $0: \$ Положим k := 0.
- 1: Вычислим f(k) и g(k). Если f(k) = n, то выдадим 1, а если g(k) = n выдадим 0. Иначе положим k := k + 1 и GoTo 1.

Так как range $f \cup$ range $g = \mathbb{N}$ и range $f \cap$ range $g = \emptyset$, алгоритм всегда завершает работу корректным образом.

Замечание

В частности, дополнение Halt неперечислимо.

Пусть $A,B\subseteq\mathbb{N}$. Говорят, что A сводится к B, и пишут $A\leqslant B$, если существует вычислимая $f:\mathbb{N}\to\mathbb{N}$ такая, что для любого $n\in\mathbb{N}$,

$$n \in A \iff f(n) \in B$$

т.е. $f^{-1}[B]$ совпадает с A. Пишут $A \equiv B$, называя A и B эквивалентными, если $A \leqslant B$ и $A \leqslant A$; традиционно классы эквивалентности по \equiv именуют степенями.

Замечание

Классическая терминология: m-сводимость и так далее. Если дополнительно потребовать от сводящих функций (f) инъективности, мы получим 1-сводимость и т.д.; это очень важные понятия, но они нам в ближайшее время не понадобятся.

Замечание (без доказательства)

Если от сводящих функций потребовать вычислимости за *полиноми-альное время*, мы получим полиномиальную сводимость. Она играет ключевую роль в теории вычислительной сложности.

Опуская ряд технических деталей, обозначим

класс всех множеств, характеристические функции которых вычислимы за пол. время посредством

Среди элементов NP есть наиболее сложный, точнее тот, к которому полиномиально сводятся все элементы NP, причём он единственен с точностью до пол. эквивалентности. Им окажется

 $\mathsf{Prop} extsf{-Sat} \; := \; \{n \in \mathbb{N} \; | \; \mathsf{проп.} \; \mathsf{формула} \; \mathsf{c} \; \mathsf{кодом} \; n \; \mathsf{выполнима}\},$

в силу упоминавшейся ранее теоремы Кука-Левина.

Отношение сводимости является предпорядком на $\mathcal{P}\left(\mathbb{N}\right)$.

Доказательство.

Пусть $A,B,C\subseteq\mathbb{N}$. Очевидно, id_A сводит A к A. Далее, если f сводит A к B, а g — B к C, то для любого $n\in\mathbb{N}$,

$$n \in A \iff f(n) \in B \iff g(f(n)) \in C$$

а значит, $f \circ g$ сводит $A \ltimes C$. Стало быть, отношение сводимости как бинарное отношение на $\mathcal{P}(\mathbb{N})$ рефлексивно и транзитивно.

Поэтому отношение сводимости индуцирует (частичный) порядок на совокупности всех степеней.

Пусть $A, B \subseteq \mathbb{N}$ и $A \leqslant B$. Тогда:

- і. если В разрешимо, то А разрешимо;
- іі. если В перечислимо, то А перечислимо.

Доказательство.

Зафиксируем вычислимую $f:\mathbb{N}\to\mathbb{N}$, сводящую A к B. Ясно, что

$$\chi_A = f \circ \chi_B$$
 u $\chi_A^* = f \circ \chi_B^*$.

Стало быть, из вычислимости χ_B следует вычислимость χ_A , а из вычислимости χ_B^* — вычислимость χ_A^* .

Замечание (без доказательства)

Среди перечислимых множеств есть наиболее сложное, а именно, то, к которому сводятся все перечислимые множества, причём оно единственно с точностью до эквивалентности. Им окажется Halt.

Самая базовая интуиция такова:

- ightharpoonup чтобы доказать разрешимость A, мы сводим A к подходящему разрешимому множеству;
- чтобы доказать неразрешимость A, мы, напротив, сводим подходящее неразрешимое множество к A.

В некотором смысле «простейшим» среди естественно возникающих неразрешимых множеств является Halt.

Общие комментарии

- ▶ Теория вычислимости, также известная как теория рекурсии / теория алгоритмов, — интересный и глубокий предмет. В частности, про одни только перечислимые множества и их степени можно написать увесистую книгу.
- ▶ Выше приведено лишь несколько простейших фактов, нужных для понимания дальнейшего материала.
- Результаты и методы теории вычислимости во многом вдохновили то, что происходит в теории вычислит. сложности.

- Учебники по базовой теории вычислимости:
 - [1] Rogers, H., (1967). Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company. xxii+482 p.
 - [2] Soare, R. I. (2016). Turing Computability. Springer. xxxvi+263 p.
- К этому добавляются многочисленные исследования в теории вычислимых моделей, «вычислимом анализе», алгоритмической теории случайности и других современных областях.

О кодировании термов и формул

Чтобы отождествлять алгоритмические проблемы над дискретным типом данных с вычислением функций над \mathbb{N} , прибегают к кодированию, или нумерации, входов.

Нас интересует нумерация для логики первого порядка над σ . Для наглядности возьмём в качестве σ сигнатуру арифметики.

Замечание

В контексте изучения алгоритмических вопросов мы ограничиваемся конечными и счётными сигнатурами, причём счётность должна быть в некотором смысле «эффективной».

Определим $\#: \mathsf{Term}_\sigma \cup \mathsf{Form}_\sigma \to \mathbb{N}$ следующим образом:

```
\#(v_n) := pair(1, n);
       \#(0) := pair(2,0):
   \#(s(t)) := pair(3, \#(t)):
\#(t_1+t_2) := pair(4, pair(\#(t_1), \#(t_2)));
  \#(t_1 \cdot t_2) := pair(5, pair(\#(t_1), \#(t_2)));
\#(t_1 = t_2) := pair(6, pair(\#(t_1), \#(t_2)));
    \#(\neg \Psi) := pair(7, \#(\Psi)):
 \#(\Psi \vee \Theta) := pair(8, pair(\#(\Psi), \#(\Theta)));
 \#(\Psi \vee \Theta) := pair(9, pair(\#(\Psi), \#(\Theta)));
\#(\Psi \rightarrow \Theta) := pair(10, pair(\#(\Psi), \#(\Theta)));
 \#(\forall v_n \Psi) := pair(11, pair(n, \#(\Psi))):
 \#(\exists v_n \Psi) := pair(12, pair(n, \#(\Psi))).
```

инъективна.

Доказательство.

Очевидно, $\# [\mathsf{Term}_\sigma] \cap \# [\mathsf{Form}_\sigma] = \varnothing$, а потому достаточно показать инъективность

$$\#_{\mathsf{T}} := \# \upharpoonright_{\mathsf{Term}_{\sigma}} \mathsf{u} \#_{\mathsf{F}} := \# \upharpoonright_{\mathsf{Form}_{\sigma}}.$$

Докажем, что для любых $t,t'\in\mathsf{Term}_\sigma$,

$$\#(t) = \#(t') \implies t = t'.$$

Сделаем это индукцией по построению t. Пусть #(t) = #(t').

. . .

Доказательство (продолжение).

- ▶ Если $t=v_n$, где $n\in\mathbb{N}$, то, очевидно, $t'=v_n$.
- ▶ Если t = 0, то, очевидно, t' = 0.
- ▶ Предположим, что $t = s(t_1)$. Тогда left (#(t)) = 3 = left(#(t')), а потому $t' = s(t'_1)$ для некоторого t'_1 . При этом

$$\#(t_1) = \text{right}(\#(t)) = \text{right}(\#(t')) = \#(t'_1),$$

откуда $t_1=t_1'$, в силу индукционной гипотезы.

lacktriangle Случаи $t=t_1+t_2$ или $t=t_1\cdot t_2$ разбираются аналогично.

Значит, $\#_T$ инъективна. Аналогично для $\#_F$.

Стало быть, $\operatorname{Term}_\sigma \cup \operatorname{Form}_\sigma$ можно мысленно отождествить с range #.

Замечание

Ясно, что для любых $n,m\in\mathbb{N}$,

$$pair(n,m) = 2^{n} \cdot (2m+1) - 1$$
$$\geqslant \max\{2^{n} - 1, 2m\}$$
$$\geqslant \max\{n, m\},$$

а в случае, когда $n \neq 0$, мы имеем

$$pair(n, m) \geqslant 4m + 1 > m.$$

В частности, легко показать, что для любых $\emph{o}_1,\emph{o}_2 \in \mathsf{Term}_\sigma \cup \mathsf{Form}_\sigma$,

$$o_1 \ \preccurlyeq \ o_2 \ \ \mathsf{u} \ \ \ o_1 \ \neq \ o_2 \ \ \Longrightarrow \ \ \#(o_1) \ < \ \#(o_2).$$

Это позволяет пользоваться возвратной индукцией/рекурсией.

[Term $_{\sigma}$] и # [Form $_{\sigma}$] разрешимы.

Доказательство.

Хар. функцию $\#[\mathsf{Term}_\sigma]$ можно вычислить посредством следующего алгоритма.

- 0: Положим $S := \{n\}$.
- 1: Если $S=\varnothing$, то выдадим 1. Иначе положим $k:=\max S$.
- 2: Если left (k) = 0 или left (k) > 5, то выдадим 0.
- 3: Если left (k) = 1 или $k = \mathsf{pair}\,(2,0)$, то положим $S := S \setminus \{k\}$ и GoTo 1.

. .

Доказательство (продолжение).

4: Если left (k) = 3, то положим

$$S := (S \setminus \{k\}) \cup \{\mathsf{right}(k)\}$$

и GoTo 1.

5: Если left (k) = 4 или left (k) = 5, то положим

$$S := (S \setminus \{k\}) \cup \{ \text{left (right } (k)), \text{ right (right } (k)) \}$$

и GoTo 1.

Здесь n — это значение аргумента на входе.

Алгоритм всегда завершает работу, поскольку в случае добавления к S новых элементов (см. 4 и 5) уменьшается $\max S$.

Аналогично для # [Form_{σ}].

Далее, можно, например, построить алгоритмы A, B, C, D такие, что:

- ${\tt A}$ по кодам ${\tt x}$ и ${\tt t}$ вычисляет, входит ли ${\tt x}$ в ${\tt t}$;
- В по кодам x и Φ вычисляет, свободна ли x в Φ ;
- С по кодам x, t и Φ вычисляет, свободен ли t для x в Φ ;
- D по кодам x, t и Φ вычисляет код $\Phi(x/t)$.

Здесь x, t и Φ пробегают Var, $\operatorname{Term}_{\sigma}$ и $\operatorname{Form}_{\sigma}$ соответственно. В частности, мы получаем разрешимость $\# [\operatorname{Sent}_{\sigma}]$.

Грубо говоря, мы можем делать с кодами то же самое, что с термами и формулами, руководствуясь интуицией и здравым смыслом.

Замечание

Так как в pair используется экспонента, для целей теории сложности требуется другая, вычислимая за полиномиальное время биекция. В литературе популярна функция

$$\lambda n.\lambda m.\left[\frac{(n+m+1)(n+m)}{2}+m\right].$$

называемая канторовской нумерующей функцией. В качестве упражнения проверьте, что она является биекцией из $\mathbb{N} \times \mathbb{N}$ на \mathbb{N} .

О разрешимости теорий

Для простоты давайте считать σ конечной. В дальнейшем мы будем предполагать наличие фикс. процедуры эф. кодирования σ -термов и σ -формул и нередко отождествлять объекты с их кодами.

Для удобства для каждого $\Gamma\subseteq\mathsf{Sent}_\sigma$ обозначим

$$[\Gamma] := \{ \Phi \in \mathsf{Sent}_{\sigma} \mid \Gamma \vdash \Phi \},\$$

т.е. $[\Gamma]$ — это дедуктивное замыкание Γ ; ясно, что $[\Gamma]$ = $\mathsf{Th}\,(\mathsf{Mod}\,(\Gamma))$.

Предложение

Пусть $\Gamma\subseteq \mathsf{Sent}_\sigma$ перечислимо. Тогда $[\Gamma]$ перечислимо.

Доказательство.

Не ограничивая общности, можно считать, что Γ непусто, поскольку $[\varnothing] = [\{\Phi\}]$, где Φ — какое-н. σ -предложение, выводимое из \varnothing .

Очевидно, Form $_\sigma$, будучи разрешимым, перечислимо. Так как Form $_\sigma$ и Γ непусты, сущ. вычислимые $f,g:\mathbb{N} \to \mathsf{Form}_\sigma$ такие, что

$$\operatorname{range} f = \operatorname{Form}_{\sigma}$$
 и $\operatorname{range} g = \Gamma$.

Тогда $\chi_{[\Gamma]}^*$ можно вычислить посредством следующего алгоритма.

- 0: Положим k := 1.
- 1: Вычислим $f(0), \ldots, f(k), g(0), \ldots, g(k)$. Затем перебераем все последовательности элементов $\{f(0), \ldots, f(k)\}$ длины не более k: если среди них есть вывод Φ из $\{g(0), \ldots, g(k)\}$, то выдадим 1. Иначе положим k := k+1 и GoTo 1.

Здесь $\Phi \in \mathsf{Sent}_\sigma$ — значение аргумента на входе.

Следствие

 $extit{Пусть } \Gamma \subseteq \mathsf{Sent}_\sigma$ разрешимо. Тогда $[\Gamma]$ перечислимо.

Пример

Теория абелевых групп перечислима, так как она задаётся конечным множеством предложений. Далее, теории групп без кручения и делимых групп будут перечислимы, так как каждую из них можно задать разрешимым множеством предложений.

По аналогии с проп. логикой $\Gamma\subseteq {\sf Sent}_\sigma$ называется полным, если для любого $\Phi\in {\sf Sent}_\sigma$ верно $\Phi\in \Gamma$ или $\neg\Phi\in \Gamma$.

Замечание

Разумеется, когда Г непротиворечиво и полно,

$$\Gamma = \mathsf{Th}\,(\mathfrak{A})$$
 для всех $\mathfrak{A} \in \mathsf{Mod}\,(\Gamma),$

а потому Γ можно отождествить с $\mathsf{Th}\,(\mathfrak{A})$ для какой-нибудь особой $\mathfrak{A}.$

Предложение

Пусть $\Gamma\subseteq \mathrm{Sent}_\sigma$ непротиворечиво. Если $[\Gamma]$ перечислимо и полно, то $[\Gamma]$ разрешимо.

Доказательство.

Пусть [Г] перечислимо и полно. Очевидно, [Г] непусто, а значит, найдётся вычислимая $f: \mathbb{N} \to \mathsf{Form}_\sigma$ такая, что range $f = [\Gamma]$. Тогда $\chi_{[\Gamma]}$ можно вычислить посредством следующего алгоритма.

- 0: Положим k := 0.
- 1: Вычислим f(k). Если f(k) равно Φ , то выдадим 1. Если f(k) равно $\neg \Phi$, то выдадим 0. Иначе положим k := k+1 и GoTo 1.

Здесь $\Phi \in \mathsf{Sent}_\sigma$ — значение аргумента на входе.

Поскольку [Г] полно, алгоритм всегда завершает работу, причём Φ и $\neg \Phi$ не могут оба принадлежать [Г], в силу непротиворечивости Г.

Замечание

Пожалуй, основной недостаток этого подхода заключается в отсутствии явной оценки на количество шагов, нужное для решения вопроса о принадлежности σ -предложения к $[\Gamma]$.

Для всякой σ -структуры $\mathfrak A$, если $\mathsf{Th}\,(\mathfrak A)$ перечислимо, то $\mathsf{Th}\,(\mathfrak A)$ разр.

Доказательство.

Достаточно заметить, что $\mathsf{Th}\,(\mathfrak{A})$ непротиворечиво и полно.

Замечание

Значит, чтобы доказать разрешимость $\mathsf{Th}\,(\mathfrak{A})$, достаточно построить перечислимое $\Gamma\subseteq\mathsf{Sent}_\sigma$ такое, что $[\Gamma]=\mathsf{Th}\,(\mathfrak{A})$.

Метод элиминации кванторов

Обозначим за $\mathsf{Form}^\circ_\sigma$ множество всех бескванторных σ -формул.

Пусть $\Gamma\subseteq {\sf Sent}_\sigma$. Говорят, что Γ допускает (эффективную) элиминацию кванторов, если существует (вычислимая) функция τ , которая по каждой $\Phi\in {\sf Form}_\sigma$ строит $\tau(\Phi)\in {\sf Form}_\sigma^\circ$ такую, что

$$\Gamma \vdash \Phi \leftrightarrow \tau \left(\Phi \right) \quad \text{if} \quad \mathsf{FV} \left(\tau \left(\Phi \right) \right) \; \subseteq \; \mathsf{FV} \left(\Phi \right).$$

Замечание

Для удобства мы будем считать, что в нашем языке имеются специальные логические константы

которые являются замкнутыми атомарными σ -формулами. Поэтому $\mathsf{Atom}_\sigma \cap \mathsf{Sent}_\sigma$ будет непусто даже в случае, когда $\mathsf{Const}_\sigma = \varnothing$.

Предложение

Пусть $\Gamma\subseteq {\sf Sent}_\sigma$ допускает эф. элиминацию кванторов, и $[\Gamma]\cap {\sf Form}_\sigma^\circ$ разрешимо. Тогда $[\Gamma]$ разрешимо.

Доказательство.

Пусть au реализует эффективную элиминацию кванторов в Г. Тогда, в частности, для любого $\Phi \in \mathsf{Sent}_\sigma$,

$$\Gamma \vdash \Phi \iff \Gamma \vdash \tau (\Phi),$$

что можно переписать как

$$\Phi \in [\Gamma] \iff \tau(\Phi) \in [\Gamma] \cap \mathsf{Form}_{\sigma}^{\circ}.$$

Стало быть, $[\Gamma] \leqslant [\Gamma] \cap \mathsf{Form}_\sigma^\circ$. Поэтому из разрешимости $[\Gamma] \cap \mathsf{Form}_\sigma^\circ$ следует разрешимость $[\Gamma]$.

Предложение

Пусть существует вычислимая функция ρ , которая по каждой σ -формуле Φ вида $\exists x \, \Psi$, где Ψ бескванторная, строит бесквант. σ -формулу $\rho(\Phi)$ такую, что

$$\Gamma \vdash \Phi \leftrightarrow \rho(\Phi)$$
 и $FV(\rho(\Phi)) \subseteq FV(\Phi)$.

Тогда Г допускает эффективную элиминацию кванторов.

Доказательство.

Определим нужную au по рекурсии следующим образом.

▶ Если Ф бескванторная, то $\tau(\Phi) := \Phi$.

. .

- ▶ Если $\Phi = \Psi \circ \Theta$, где $\circ \in \{\land, \lor, \rightarrow\}$, то $\frac{\tau(\Phi)}{\tau(\Phi)} := \tau(\Psi) \circ \tau(\Theta)$.
- ▶ Если $\Phi = \neg \Psi$, то $\tau(\Phi) := \neg \tau(\Psi)$.
- lacktriangle Если $\Phi = \exists x \, \Psi$, то $\tau \, (\Phi) := \rho \, (\exists x \, \tau \, (\Psi))$.
- ► Если $\Phi = \forall x \Psi$, то $\tau(\Phi) := \neg \rho(\exists x \neg \tau(\Psi))$.

Легко проверить, что для всех $\Phi \in \mathsf{Form}_\sigma$,

$$\Gamma \vdash \Phi \leftrightarrow \tau(\Phi)$$
 и $FV(\tau(\Phi)) \subseteq FV(\Phi)$,

т.е. au реализует эффективную элиминацию кванторов в Γ .

Предложение

Пусть $\Gamma\subseteq {\sf Sent}_\sigma$ допускает элиминацию кванторов, $[\Gamma]$ перечислимо. Тогда Γ допускает эффективную элиминацию кванторов.

Доказательство.

Очевидно, $[\Gamma]$ непусто, а значит, найдётся вычислимая $f: \mathbb{N} \to \mathsf{Form}_\sigma$ такая, что range $f = [\Gamma]$. Рассмотрим следующий алгоритм.

- 0: Положим k := 0.
- 1: Вычислим f(k). Если f(k) имеет вид $\Phi \leftrightarrow \Psi$, где $\Psi \in \mathsf{Form}_\sigma^\circ$, то выдадим Ψ . Иначе положим k := k+1 и GoTo 1.

Здесь $\Phi \in \mathsf{Form}_\sigma$ — значение аргумента на входе.

Раз Г допускает элиминацию кванторов, алгоритм всегда завершает работу. Вычисляемая им функция au является искомой.

Замечание

Недостаток этого подхода заключается в отсутствии явной оценки на количество шагов, нужное для нахождения эквивалентной по модулю Γ бескванторной σ -формулы.

С другой стороны, в (неэффективной) элиминации кванторов можно применять более универсальные по своей природе теоретико-модельные методы, однако о них мы практически не говорили.

Порядок на рациональных числах

Возьмём $\langle =^2, <^2 \rangle$ в качестве σ .

Обозначим через $\mathfrak Q$ стандартную σ -структуру с носителем $\mathbb Q$.

Теорема

 $\mathsf{Th}\left(\mathfrak{Q}\right)$ допускает эффективную элиминацию кванторов.

Доказательство.

Начнём с частного, но принципиального случая. Пусть $\Omega_0, \ldots, \Omega_n$ — атомарные σ -формулы, а x — переменная. Возьмём

$$\Theta := \Omega_0 \wedge \cdots \wedge \Omega_n.$$

Давайте эффективно построим $\Theta_{\exists \mathsf{x}} \in \mathsf{Form}^\circ_\sigma$ такую, что

$$\mathsf{Th}\,(\mathfrak{Q}) \vdash \exists x\,\Theta \leftrightarrow \Theta_{\exists x} \quad \mathsf{u} \quad \mathsf{FV}\,(\Theta_{\exists x}) \;\subseteq\; \mathsf{FV}\,(\exists x\,\Theta).$$

Заметим, что для любого $i \in \{0, ..., n\}$:

▶ если Ω_i не содержит x, то

$$\vdash \exists x \, \Theta \leftrightarrow (\Omega_i \wedge \exists x \, (\Omega_0 \wedge \cdots \wedge \Omega_{i-1} \wedge \Omega_{i+1} \wedge \cdots \wedge \Omega_n));$$

▶ если Ω_i совпадает с x < x, то

$$\mathsf{Th}\,(\mathfrak{Q}) \vdash \exists x\,\Theta \leftrightarrow \bot.$$

ightharpoonup если Ω_i совпадает с x=x, причём n>0, то

$$\vdash \exists x \, \Theta \leftrightarrow \exists x \, (\Omega_0 \wedge \cdots \wedge \Omega_{i-1} \wedge \Omega_{i+1} \wedge \cdots \wedge \Omega_n).$$

ightharpoonup если Ω_i совпадает с x=x, причём n=0, т.е. Θ совп. с x=x, то

$$\vdash \exists x \Theta \leftrightarrow \top$$
.

Поэтому, не ограничивая общности, мы можем считать, что:

- а. x входит в каждую из $\Omega_0, \ldots, \Omega_n$;
- b. ни x=x, ни x< x не встречается среди $\Omega_0, \ldots, \Omega_n$.

Теперь избавиться от квантора в $\exists x \, \Theta$ можно следующим образом.

- lacktriangle Если одно из $\Omega_0,\,\ldots,\,\Omega_n$ имеет вид x=y, где $y\in \mathsf{Var}\setminus\{x\}$, то $\vdash \exists x\,\Theta \leftrightarrow \Theta\left(x/y
 ight).$
- ▶ Если Θ имеет вид $\bigwedge_{i=0}^n u_i < x$, где $\{u_0,\dots,u_n\} \subseteq \mathsf{Var} \setminus \{x\}$, то $\mathsf{Th}\,(\mathfrak{Q}) \vdash \exists x\,\Theta \leftrightarrow \top.$

Аналогично для $\bigwedge_{i=0}^{n} x < u_i$.

▶ Если Ө (с точностью до порядка конъюнктов) имеет вид

$$\left(\bigwedge\nolimits_{i=0}^k u_i < x\right) \wedge \left(\bigwedge\nolimits_{j=0}^l x < v_j\right),$$

где $\{u_0,\ldots,u_k,v_0,\ldots,v_l\}\subseteq \mathsf{Var}\setminus\{x\}$, то

$$\mathsf{Th}\,(\mathfrak{Q}) \vdash \exists x \,\Theta \leftrightarrow \left(\bigwedge_{i=0}^m \bigwedge_{j=0}^l u_i < v_j \right).$$

В конце мы получим искомую бескванторную формулу $\Theta_{\exists x}$, которая эквивалентна $\exists x \Theta$ по модулю Th (\mathfrak{Q}) .

. .

Переходя к общему случаю, рассмотрим σ -формулу

$$\Phi = \exists x \, \Psi (x, \vec{y}),$$

где $\Psi \in \mathsf{Form}_\sigma^\circ$. Нужно построить $\rho\left(\Phi\right) \in \mathsf{Form}_\sigma^\circ$ такую, что

$$\mathsf{Th}\left(\mathfrak{Q}\right) \vdash \Phi \leftrightarrow \rho\left(\Phi\right) \quad \mathsf{u} \quad \mathsf{FV}\left(\rho\left(\Phi\right)\right) \subseteq \; \mathsf{FV}\left(\Phi\right).$$

Мы действуем следующим образом.

і. С помощью законов де Моргана и снятия двойного отрицания проносим \neg внутрь $\Psi(x, \vec{y})$, чтобы \neg стояло только перед атомарными подформулами.

. . .

іі. Избавляемся от ¬ (перед атом. подформулами), используя

$$\mathsf{Th}\,(\mathfrak{Q}) \vdash \neg x < y \leftrightarrow (x = y \lor y < x),$$
$$\mathsf{Th}\,(\mathfrak{Q}) \vdash \neg x = y \leftrightarrow (x < y \lor y < x).$$

ііі. Применяя законы дистрибутивности, получаем

$$\Theta_0 \vee \cdots \vee \Theta_n$$
,

где $\Theta_0, \ldots, \Theta_n$ суть конъюнкции атомарных формул; при этом, как известно,

$$\vdash \exists x (\Theta_0 \lor \cdots \lor \Theta_n) \leftrightarrow \exists x \Theta_0 \lor \cdots \lor \exists x \Theta_n.$$

Описанный ранее алгоритм позволяет избавиться от кванторов в $\exists x \Theta_0, ..., \exists x \Theta_n$. В итоге получится $\rho(\Phi)$.

Наконец, из ρ можно сделать желаемую τ .

Обозначим через DLO конъюнкцию следующих σ -предложений:

- $\blacktriangleright \forall x \, x \not< x;$
- $\forall x \, \forall y \, \forall z \, (x < y \land y < z \rightarrow x < z);$
- $\forall x \, \forall y \, (x \neq y \rightarrow x < y \vee y < x);$
- $\forall x \, \forall y \, (x < y \rightarrow \exists u \, (x < u < y)).$
- $\blacktriangleright \forall x \exists y (y < x);$
- $ightharpoonup \forall x \exists y (x < y).$

Очевидно, Mod(DLO) — это класс всех плотных (строгих) линейных порядков без концов, или п.л.п. без концов.

 $\mathsf{Th}\left(\mathfrak{Q}\right) = [\mathsf{DLO}].$

Доказательство.

Нетрудно проверить, что в приведённом выше доказательстве

«Th
$$(\mathfrak{Q})$$
 \vdash » всюду можно заменить на «DLO \vdash ».

Стало быть, функция au реализует элиминацию кванторов и в Th (\mathfrak{Q}) , и в DLO. В частности, для всякого $\Phi \in \mathsf{Sent}_\sigma$:

$$DLO \vdash \Phi \iff DLO \vdash \tau(\Phi);$$

$$Th(\mathfrak{Q}) \vdash \Phi \iff Th(\mathfrak{Q}) \vdash \tau(\Phi).$$

. .

Поэтому достаточно показать, что для всех бескв. σ -предложений Ψ ,

$$\mathsf{DLO} \vdash \Psi \quad \Longleftrightarrow \quad \mathsf{Th}\,(\mathfrak{Q}) \vdash \Psi,$$

т.е. [DLO] \cap Form $_{\sigma}^{\circ}=\operatorname{Th}\left(\mathfrak{Q}\right)\cap\operatorname{Form}_{\sigma}^{\circ}.$

Пусть Ψ — бескванторное σ -предложение. Ясно, что Ψ представляет собой булеву комбинацию \bot и \top , так как $\mathsf{Const}_\sigma = \varnothing$. Поэтому либо $\models \Psi$, либо $\models \neg \Psi$.

- ▶ Если $\models \Psi$, то $\vdash \Psi$, а потому DLO $\vdash \Psi$ и Th $(\mathfrak{Q}) \vdash \Phi$.
- ▶ Если $\models \neg \Psi$, то DLO $\nvdash \Psi$ и Th $(\mathfrak{Q}) \nvdash \Phi$, поскольку DLO и Th (\mathfrak{Q}) выполнимы.

Альтернативное рассуждение.

Для каждого σ -предложения Φ ,

DLO
$$\vdash \Phi \iff \Phi$$
 истинно во всех п.л.п. без концов
$$\iff \Phi \text{ истинно во всех счётных п.л.п. без концов} \\ \iff \Phi \text{ истинно в }\mathfrak{Q}.$$

Тут последняя эквивалентность обусловлена тем, что, как мы знаем, любой счётный п.л.п. без концов изоморфен \mathfrak{Q} . Этот факт ещё формулируют так: DLO категорична в мощности \aleph_0 .

 $\mathsf{Th}\left(\mathfrak{Q}\right)$ разрешимо.

Доказательство.

Достаточно заметить, что $\mathsf{Th}\left(\mathfrak{Q}\right)\cap\mathsf{Form}_{\sigma}^{\circ}$ разрешимо.

Альтернативное рассуждение.

Так как Th $(\mathfrak{Q}) = [\mathsf{DLO}]$, Th (\mathfrak{Q}) перечислимо, а значит, и разрешимо (ввиду своей полноты).

Более того, элиминация кванторов позволяет получать явные оценки на временную/ёмкостную сложность разрешающей процедуры, тогда как альтернативный подход такой возможности не даёт.

Пусть $S\subseteq \mathbb{Q}$ определимо в \mathfrak{Q} . Тогда $S=\varnothing$ или $S=\mathbb{Q}$.

Доказательство.

Пусть $\Phi(x)$ определяет S в \mathfrak{Q} . Тогда $\tau(\Phi(x))$ также определяет S в \mathfrak{Q} . Однако $\tau(\Phi(x))$ представляет собой булеву комбинацию формул видов x=x и x< x. Стало быть,

либо
$$\mathfrak{Q} \Vdash \forall x \, \tau \, (\Phi(x))$$
, либо $\mathfrak{Q} \Vdash \forall x \, \neg \tau \, (\Phi(x))$.

Альтернативное рассуждение.

Как мы знаем, определимые в $\mathfrak Q$ множества замкнуты относительно автоморфизмов $\mathfrak Q$. Далее, «челночная конструкция» позволяет нам для любых $p,q\in\mathbb Q$ найти $\xi\in\operatorname{Aut}(\mathfrak Q)$ такой, что $\xi(p)=q$. Поэтому, если $S\subseteq\mathbb Q$ замк. отн. автоморфизмов $\mathfrak Q$, то $S=\varnothing$ или $S=\mathbb Q$.

Общие комментарии

Эффективная элиминация кванторов в Th (\mathfrak{A}) , если она возможна, нередко позволяет:

- ▶ построить разрешимое множество аксиом для $\mathsf{Th}\,(\mathfrak{A});$
- ▶ получить явный разрешающий алгоритм для $\mathsf{Th}\,(\mathfrak{A})$;
- ▶ дать исчерпывающее описание определимости в X.

Эффективная элиминация кванторов в Γ также нередко позволяет получить явный разрешающий алгоритм для $[\Gamma]$. Тут уже полнота может как иметь, так и не иметь места; так или иначе, бескванторные предложения куда проще, чем произвольные.

Здесь всюду речь идёт о «естественных» структурах и теориях.

