On Kripke's theory of truth — II

Stanislav Speranski

Steklov Mathematical Institute, Moscow

(SIMC)

27 May 2022

Stanislav Speranski On Kripke's theory of truth — II

・ロ・・(型・・モー・・モー・

э.

Kleene's O

Remember that Kleene's system of notation for C-Ord consists of:

- a special partial function $\nu_{\mathbb{O}}$ from \mathbb{N} onto C-Ord;
- an appropriate ordering relation $<_0$ on dom (ν_0) which mimics the usual ordering relation on C-Ord.

Call $n \in \mathbb{N}$ a notation for $\alpha \in$ C-Ord iff $\nu_{\mathcal{O}}(n) = \alpha$. To simplify the statements I often write $n \in \mathcal{O}$ instead of $n \in \text{dom}(\nu_{\mathcal{O}})$.

Folklore

dom $(\nu_{\mathcal{O}})$ is Π_1^1 -complete.

Fix one's favorite universal partial computable (two-place) function U.

Folklore

There exists a computable function f such that for every $n \in \mathcal{O}$,

$$\{k \in \mathbb{N} \mid k <_{\mathcal{O}} n\} = \operatorname{dom} (U_{f(n)}).$$

Folklore (Effective Transfinite Recursion)

Suppose f is a computable function such that for any $e \in \mathbb{N}$ and $n \in \mathcal{O}$,

$$\{k \in \mathbb{N} \mid k <_{\mathbb{O}} n\} \subseteq \operatorname{dom}(U_e) \implies n \in \operatorname{dom}(U_{f(e)}).$$

Then there is a $c \in \mathbb{N}$ for which $U_{f(c)} = U_c$, and dom $(\nu_0) \subseteq \text{dom}(U_c)$.

・ロト ・ 一下・ ・ ヨト・

About Least Fixed-Points

Let us call a valuation scheme V ordinary iff for any $\alpha \in \text{Ord}$, $\chi \in Sen$, $\psi \in Sen_T$ and $\varphi(x) \in For_T$ the following conditions hold:

- 1 $T_V^{\alpha} \subseteq T_V^{\alpha+1}$; 2 $\chi \in T_V^{\alpha}$ iff $\alpha \neq 0$ and $\mathfrak{N} \models \chi$; 3 $\psi \in T_V^{\alpha}$ iff $\mathcal{T}(\ulcorner \psi \urcorner) \in T_V^{\alpha+1}$; 4 $\forall x \varphi(x) \in T_V^{\alpha+1}$ iff $\{\varphi(\underline{n}) \mid n \in \mathbb{N}\} \subseteq T_V^{\alpha+1}$; 5 $\chi \land \psi \in T_V^{\alpha}$ iff $\mathfrak{N} \models \chi$ and $\psi \in T_V^{\alpha}$; 6 if $\chi \lor \psi \in T_V^{\alpha}$ and $\mathfrak{N} \models \neg \chi$, then $\psi \in T_V^{\alpha}$;
- 7 if $\mathfrak{N} \models \chi$ and $\alpha \neq 0$, then $\chi \lor \psi \in \mathrm{T}_{V}^{\alpha}$.

In effect, except for $V_{
m wK}$, all the schemes considered above are ordinary.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

Computational Aspects Some References Some Strengthenings

Given V, by the rank of $\psi \in Sen_T$ — denoted by $rank_V(\psi)$ — I mean the least ordinal α for which $\psi \in T_V^{\alpha+1}$.

Proposition

Let V be a valuation scheme satisfying (3–4). Then for every $\psi \in Sen_T$ and every $\varphi(x) \in For_T$,

$$\operatorname{rank}_{V} (T (\ulcorner \psi \urcorner)) = \operatorname{rank}_{V} (\psi) + 1 \quad \operatorname{and} \\ \operatorname{rank}_{V} (\forall x \varphi (x)) = \sup \{\operatorname{rank}_{V} (\varphi (\underline{n})) \mid n \in \mathbb{N}\}.$$

Proposition *

For each ordinary scheme V there exists a computable function ρ_V such that for every $n \in \mathcal{O}$, $rank_V (\rho_V (n)) = \nu_{\mathcal{O}} (n) + 1$.

イロン 不得 とくほう くほう 二日

Corollary *

Each ordinary scheme V has the following property: for every ordinal α , if $T_V^{\alpha} = T_V^{\alpha+1}$, then $\alpha \ge \omega_1^{CK}$ and T_V^{α} is Π_1^1 -hard.

The technique used in the proofs of these facts can be applied in various other situations as well. Let us see how it works e.g. for $V_{\rm wK}$. Still, as it was shown by Cain and Damnjanovic, one should be warned:

Actually certain complexity results for the weak Kleene scheme depend on the Gödel numbering and the language of the "standard" model of arithmetic we choose.

I am aiming at a deeper understanding of this intensionality phenomenon.

・ロト ・ 同ト ・ ヨト ・ ヨト

In their article from 1991, Cain and Damnjanovic suggested expanding σ to avoid the conflict. More precisely, assuming an appropriate coding M_0, M_1, \ldots of all Turing machines, they added a new function symbol π of arity 4, whose interpretation is given by

 $\pi(e, i, j, k) := \begin{cases} n & \text{if } M_e \text{ halts on input } i \text{ at step } j \text{ with output } n, \\ k & \text{if } M_e \text{ does not halt on input } i \text{ at step } j. \end{cases}$

Clearly this function is primitive recursive. So what can we do with π ?

Observation

If we include π in σ , then both Proposition \star and Corollary * generalise to arbitrary valuation schemes satisfying (1–5).

・ ロ ト ・ 同 ト ・ ヨ ト ・ 日 ト

Computational Aspects Some References Some Strengthenings

As an alternative to Cain–Damnjanovic' suggestion, I propose to add a symbol - for cut-off subtraction, i.e. $i - j := \max\{0, i - j\}$:

Observation \heartsuit

Similar to Observation \sharp , but with - instead of π .

Another modification, with \mathcal{L} unchanged, deals with the following condition (for any $\alpha \in \text{Ord}$ and $\theta(x) \in For$):

8 $\exists x (\theta(x) \land T(x)) \in T_V^{\alpha}$ iff $\mathfrak{N} \models \theta(\underline{n})$ and $T(\underline{n}) \in T_V^{\alpha}$ for some $n \in \mathbb{N}$.

Observation \diamondsuit

The analogues of Proposition \star and Corollary \star hold for all valuation schemes satisfying (1–5) and (8).

In fact, although (8) fails for the weak Kleene scheme, the customary treatment of \exists in the case of $V_{\rm wK}$ does not seem to be well motivated. Alternatively, we can define $V_{\rm wK}^*$ exactly as $V_{\rm wK}$ except that

$$\begin{array}{l} V_{\mathrm{wK}}^{*}\left(\mathcal{S}\right)\left(\exists x\,\varphi\left(x\right)\right) \ := \\ \left\{ \begin{array}{ll} 1 & \text{if } V_{\mathrm{wK}}^{*}\left(\mathcal{S}\right)\left(\varphi\left(t\right)\right) = 1 \ \text{for some closed } \mathcal{L}\text{-term } t, \\ 0 & \text{if } V_{\mathrm{wK}}^{*}\left(\mathcal{S}\right)\left(\varphi\left(t\right)\right) = 0 \ \text{for all closed } \mathcal{L}\text{-terms } t, \\ \frac{1}{2} & \text{otherwise.} \end{array} \right. \end{array}$$

(treating \exists like in the strong Kleene scheme V_{sK}). Then V_{wK}^* satisfies (1–5) and (8), so Observation \blacklozenge applies.

ヘロト 人間ト ヘヨト ヘヨト

Earlier we took \rightarrow as an abbreviation. However, interpreting $\varphi \rightarrow \psi$ as $\neg \varphi \lor \psi$ is not always the right choice. To avoid confusion, I add a new connective symbol \rightarrow to the original three (viz. \neg , \land and \lor). Of course *For*, *For*, *Sen* and *Sen*, *T* are easily modified to accommodate \rightarrow . Now consider the following variation on (6–7):

6 if
$$\chi \twoheadrightarrow \psi \in \mathrm{T}_{V}^{\alpha}$$
 and $\mathfrak{N} \models \chi$, then $\psi \in \mathrm{T}_{V}^{\alpha}$;

7 if
$$\mathfrak{N} \models \neg \chi$$
, then $\chi \twoheadrightarrow \psi \in \mathrm{T}^{\alpha}_{V}$

— where χ and ψ range over the modified versions of Sen and Sen_T resp. Evidently, even when we treat \rightarrow as the material conditional on $\{0, 1\}$, the meanings of $\varphi \rightarrow \psi$ and $\neg \varphi \lor \psi$ may differ on $\{0, \frac{1}{2}, 1\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Observation \diamondsuit

If we expand \mathcal{L} and \mathcal{L}_T by adding \twoheadrightarrow , then the analogues of Proposition \star and Corollary \ast hold for all val. schemes satisfying (1–5) and (6'–7').

This is closely related to a three-valued scheme from Feferman's article 'Axioms for determinateness and truth'. It can be obtained by extending $V_{\rm wK}$ to formulas containing \rightarrow by setting

$$\begin{array}{l} V'_{\mathrm{wK}}\left(S\right)\left(\varphi \twoheadrightarrow \psi\right) \ := \\ \left\{ \begin{array}{ll} 1 & \text{if } V'_{\mathrm{wK}}\left(S\right)\left(\varphi\right) = 0 \ \text{or } V'_{\mathrm{wK}}\left(S\right)\left(\psi\right) = V'_{\mathrm{wK}}\left(S\right)\left(\varphi\right) = 1, \\ 0 & \text{if } V'_{\mathrm{wK}}\left(S\right)\left(\varphi\right) = 1 \ \text{and } V'_{\mathrm{wK}}\left(S\right)\left(\psi\right) = 0, \\ \frac{1}{2} & \text{otherwise;} \end{array} \right. \end{array}$$

(the other clauses are the same as in the definition of $V_{\rm wK}$). Now $V'_{\rm wK}$ satisfies (1–5) and (6'–7'), so Observation \Diamond applies.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

 Computational Aspects
 About Least Fixed-Points

 Some References
 Some Strengthenings

Note that every \mathcal{L}_T -formula can be viewed as an arithmetical monadic second-order $\sigma_{\mathbb{N}}$ -formula whose only set variable is T, and vice versa. Given an \mathcal{L}_T -sentence ψ and an \mathcal{L} -formula $\chi(x)$, we construct

 ψ_{χ} := the result of replacing each T(t) in ψ by $\chi(t) \wedge T(t)$.

Observation 🐥

Let $\chi(x)$ be an \mathcal{L} -formula defining an infinite computable subset of \mathbb{N} in \mathfrak{N} . Then $\{\psi_{\chi} \mid \psi \in Sen_{\mathcal{T}} \text{ and } \mathfrak{N} \models \forall \mathcal{T} \psi_{\chi}(\mathcal{T})\}$ is Π_1^1 -complete.

It gives an alternative and probably the shortest proof for the following.

Theorem (Welch, Hjorth, Meadows)

For any $V \in \{V_{SV}, V_{VB}, V_{FV}, V_{MC}, V_{L}\}$ and $\alpha \in Ord^+$, T_V^{α} is Π_1^1 -hard.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

Proof.

Assume $V = V_L$. Take A to be $\# \{\mu, T(\ulcorner µ \urcorner), T(\ulcorner T(\ulcorner µ \urcorner) \urcorner), ...\}$ with μ denoting some fixed 'truthteller', and let χ be an \mathcal{L} -formula defining A in \mathfrak{N} . Since $A \cap \mathbf{G} = \emptyset$, we obtain

$$\begin{split} \#\psi_{\chi} \in \mathrm{T}_{V}^{\beta+1} & \iff & \#\psi_{\chi} \in \mathrm{G}_{\beta+1} \text{ and } \langle \mathfrak{N}, \mathrm{T}_{V}^{\beta} \rangle \models \psi_{\chi} \\ & \iff & \mathfrak{N} \models \forall T \left(\psi_{\chi} \left(T \cap \mathrm{G}_{\beta} \right) \leftrightarrow \psi_{\chi} \left(T \right) \right) \wedge \psi_{\chi} (\mathrm{T}_{V}^{\beta}) \\ & \iff & \mathfrak{N} \models \forall T \left(\psi_{\chi} \left(\varnothing \right) \leftrightarrow \psi_{\chi} \left(T \right) \right) \wedge \psi_{\chi} (\varnothing) \\ & \iff & \mathfrak{N} \models \forall T \psi_{\chi} \left(T \right). \end{split}$$

Clearly $T_V^{\alpha} = \bigcup_{\beta < \alpha} T_V^{\beta+1}$, so the Π_1^1 -hardness of T_V^{α} follows by Observation **4**. Perfectly analogous arguments apply to the other schemes.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

- J. P. Burgess (1986). The truth is never simple. *Journal of Symbolic Logic* 51:4, 663–681.
- J. Cain and Z. Damnjanovic (1991). On the weak Kleene scheme in Kripke's theory of truth. *Journal of Symbolic Logic* 56:4, 1452–1468.
- S. Feferman (2008). Axioms for determinateness and truth. *Review of Symbolic Logic* 1:2, 204–217.
- M. Fischer, V. Halbach, J. Kriener and J. Stern (2015). Axiomatizing semantic theories of truth? *Review of Symbolic Logic* 8:2, 257–278.
- S. Kripke (1975). Outline of a theory of truth. *The Journal of Philosophy* 72:19, 690–716.

(I) < (I)

- H. Leitgeb (2005). What truth depends on. *Journal of Philosophical Logic* 34:2, 155–192.
- T. Schindler (2015). *Type-Free Truth* (Ph.D. Thesis). Ludwig-Maximilians-Universität München.
- S. O. Speranski (2017). Notes on the computational aspects of Kripke's theory of truth. *Studia Logica* 105:2, 407–429. ✓
- P. D. Welch (2014). The complexity of the dependence operator. *Journal of Philosophical Logic* 44:3, 337–340.

・ 同 ト ・ ヨ ト ・ ヨ ト