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Abstract

We develop a quantified version of the propositional modal logic BK from an article by S. P.
Odintsov and H. Wansing, which is based on the (non-modal) Belnap—Dunn system; denote
this version by QBK. First, by using the canonical model method we shall prove that QBK, as
well as some important extensions of it, is strongly complete with respect to a suitable possible
world semantics. Then we shall define translations (in the spirit of Godel-McKinsey-Tarski) that
faithfully embed the quantified versions of Nelson’s constructive logics into suitable extensions
of QBK. In conclusion, we shall discuss interpolation properties for QBK-extensions.
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1 Introduction

Quantified intuitionistic logic, QInt, plays a key role in constructive mathematics. Among its in-
terpretations, a special place is occupied by Kleene’s realizability semantics and the informal Brou-
wer—Heyting—Kolmogorov interpretation; see [8]] and, say, [20, Chapter 1]. However, QInt has a cer-
tain drawback: although from each derivation of ® in intuitionistic number theory one can extract
a way of verifying ®, a derivation of =® does not give a direct way of falsifying ®, but only reduces
the assumption that ® is verifiable to absurdity; see [10] and [11][] In particular, this implies the fail-
ure of the ‘negative disjunction property’: from the derivability of = (® A V) we cannot, in general,
obtain the derivability of =® or —W.

In order to eliminate the drawback mentioned above, D. Nelson proposed to enrich the language
of QInt by adding a ‘strong negation’, ~, which is directly responsible for falsification, and expand
the realizability semantics to the new language; see [11]], and also [1]]. This is how the logic QN3
arose. Then its useful generalization QN4 was described, which allows one to deal with inconsistent
data; see [2]. Here QN3 extends QN4 by adding the scheme

~O — (P — V).

In what follows, for every quantified logic QL we shall denote its propositional version by L] No-
tice that if we exclude intuitionistic implication, N3 turns into Kleene’s strong three-valued logic,
which has an algorithmic interpretation, and N4 turns into the well-known Belnap-Dunn four-
valued logic; see [9] § 64] and [3, [4].

A very important role in understanding QInt is played by the Godel-McKinsey—-Tarski transla-
tion from QInt into the modal logic QS4, i.e. the reflexive-transitive extension of the modal logic
QK. We would like to have a similar understanding of the logics QN3 and QN4. In the propositional
case, this problem was solved by S.P. Odintsov and H. Wansing in [18]]:

« they defined the propositional Belnap—Dunn modal logic, which enriches K and is denoted by
BK, and showed the strong completeness of BK and some of its extensions with respect to a
suitable possible worlds semantics;

« by enriching the propositional version of the Godel-McKinsey-Tarski translation they showed
that N3 and N4 are faithfully embedded into suitable BK-extensions /]

However, so far nothing has been known about the situation in the quantifier case, despite the fact
that constructive theories are formulated exactly in a quantified language. Our goal is to develop a
quantified version of BK, prove the strong completeness theorems for it and some of its extensions
with respect to a suitable possible worlds semantics, and also generalize the result about faithful
embeddings to QN3 and QN4. We shall consider semantics with expanding domains as well as with
constant domains. Furthermore, we shall discuss interpolation properties for QBK-extensions.

'Here and elsewhere —® is an abbreviation for ® — L.

*We shall assume that the language of N4 includes that of Int, and therefore contains L; a lot of information about
the lattice of extensions of N4 is contained in [13]].

3The lattice of extensions of BK has been actively studied in [14} [15] [16].



2 Syntax

For simplicity we shall restrict ourselves to signatures without equality and without function sym-
bols[]] Let o be a signature. Denote by Pred, and Const, the sets of all its predicate and constant
symbols respectively. Here and elsewhere we assume that Pred, # &.

Fix a countable set Var, whose elements will be called variables. Denote by Term, the set of all
o-terms. Thus Term, = Var U Const,. Our logical vocabulary will consist of:

« the connective symbols A, V, —, L, ~, [ and Q;

« the quantifier symbols V and 3.

Denote by Form, the set of all o-formulas. For each ® € Form,, take
FV (®) := {z € Var | z is free in }.

By o-substitutions we mean functions from Var to Term,. If FV (®) C {z4,...,x,}, then for each
o-substitution \ we denote by A® the result of (simultaneously) replacing all free occurrences of x4,
ooy T in @ by A (21), ..., A (x,) respectively. In the case when

A=Az, )} U{(y,y) |y € Varand y # z},

where © € Var and ¢t € Term,, we shall often write ® (x/t) instead of A®. Finally, a o-substitution
A is called ground if A (z) € Const, for all z € Var.

For convenience we introduce the following abbreviations:

Abbreviation | Definition Name

- b — L weak negation

O U (O = V)N (¥ — D) weak equivalence
o= U (O <> U)A (~P <> ~ V) | strong equivalence

Denote by Sent,, the set of all o-sentences, i.e. o-formulas without free variables. Arbitrary subsets
of Sent, will be called o-theories.

As usual, by o-structures we mean non-empty sets augmented with interpretations for the sym-
bols of o over them. Let 2 be an arbitrary o-structure, A be its domain. For each ¢ € o, define

£¥ := the interpretation of ¢ in 2.

If we expand o to the signature
oa == ocU{a|ae€ A},

where a are new constant symbols, then we can pass from 2 to its 0 4-expansion 2* such that

a® = a forevery a € A.

In this case 0 4-formulas will be also called A-formulas, and o 4-substitutions will be called A-sub-
stitutions. If ® is a A-sentence, we shall often write A I+ ® instead of 2* I+ .

“This is due to the fact that in the context of expanding domain semantics some well-known problems related to
equality and function symbols arise; see discussion in [6].



3 Hilbert-style calculus

Our calculus for a quantified version of BK extends the deductive system for BK from [18]. It
employs the following axiom schemes.

« Axioms for classical logic in the language {A,V, —, L }:

I1. & — (U — ®);

2. (P> (V= 0) > (P > V) —» (& - 0));
Cl. DAV = @

C2. DAV = U;

C3. &= (¥ — AV

DI. ¢ — PV VY,

D2. UV — &V

D3. (P —0)—= ((V—-0)—= (dPVV - 0));
Ni. L — &;

N2. DV (P — 1);

Ql. Vx & — & (x/t), where ¢ is free for x in ®;
Q2. ¢ (z/t) — Jx @, where ¢ is free for x in .

« Axioms for strong negation:

SN1. ~~® « P;

SN2, ~ (D AT) < (~DPV ~T);
SN3. ~(®VVU) <> (~DPA~T);
SN4. ~ (& = V) <> (DA~T);
SN5. ~ 1;

SN6. ~Vx ® « dx~ O;

SN7. ~dz @ < Vo ~ .

« Axioms for [:

O1. (O AOT) — O(d A D),
O2. O(® — ).

« Modal interaction axioms:

M1, —0O® < O—P;
M2, QP - [-P;
M3. 0P & ~ O~ P
M4, 0P & ~ [~ O,



It also employs the following inference rules.

« The modus ponens rule, i.e.

o \%) — U (MP).
« The monotonicity rules for [J and ¢:
% (MB)  and ﬁ (MD).
+ The Bernays rules for V and 3:
% (BR1)  and 33;17_“1) (BR2),

where 2 does not occur free in ®.

Denote by QBK, the least set of o-formulas containing all axioms of our calculus (in the signature
o) and closed under all its inference rules. In what follows, when the choice of ¢ is not of significant
importance or the whole logic is meant (with no reference to a specific signature), the lower index
- will often be dropped.

Proposition 3.1. QBK includes the Kripke scheme
K. O@ - V) — (00— 0OU).
Furthermore, QBK is closed under the normalization rule

P

0 (RN).

Proof. The Kripke scheme is obtained in a standard way:

1 (P—=>TV)AD >V classical logic
2|1 0(P—>TV)AD) - OV from 1 by MB
3/00@—->9)A00—-0((P—TV)AD) | D1

4|1 0@ —-v)A 00 —»0Ov from 3, 2

50 0@ — V) — (00— 0OV) from 4.

Now let us check the closedness of QBK under the normalization rule. Suppose that ® belongs to

QBK. Then [J® will also belong to QBK:

1| by hypothesis
2/ (=)= from 1
3/0(®— &) — 0P | from2by MB
4| 0(0—9) 02

5| 0P from 4, 3.




For each I' C Form,,, define
Disj(I') := {®;V---VP,|neNand {Py,...,9,} CT}.

Here the empty disjunction is identified with L. Given I' C Sent,, and A C Form,, we write ' - A
if and only if some element of Disj (A) can be obtained from elements of I' U QBK, by means of MP,
BR1 and BRQ Since the modal rules (MB and MD) are not used here, the derivability relation - has a
local character in the sense that it is intended to preserve truth in specific worlds (see the definition
of the semantical consequence relation in §[4); at the same time, MB and MD will apply globally, i.e.
preserve truth in models, but not in specific worlds of these models. Of course, when A = {®}, we
usually write I' - ® instead of I" - {®}.

Theorem 3.2 ((on deduction)). For any ' U{®} C Sent, and ¥ € Form,,

TU{e}+v <= TI'+F®— V[

The proof is similar to the case of classical first-order logic.

Like other logics with strong negation, BK is not closed under the usual replacement rule; see
[18]. Of course, the same will hold for QBK, but to formally justify this fact, we need a suitable
possible world semantics, which will appear only in Section 4, Nevertheless, the ‘positive’ and
‘weak’ replacement rules from [18]] can be generalized, without much effort, to the quantifier case.

Theorem 3.3 ((positive replacement rule)). Let {®, U, 0} C Form,. Suppose that ¢’ is obtained
from ® by replacing some occurrences of ¥ by O, and none of these occurrences are in the scope of ~.

Thent ¥ < O impliest= ¢ < O’

Proof. We shall restrict ourselves to the cases when ® begins with V or 3, because the remaining
cases have actually been considered by S. P. Odintsov and H. Wansing. Furthermore, we may assume
that U # @, since otherwise the statement is trivial.

Suppose ¢ = Vz (). Clearly, the part (2 corresponds to {2’ such that &’ = V2 ). Then ® <> 9’ is
derived in a standard way:

1| Qe inductive hypothesis
2 [ Ve Q — Q Q1
31V — QY from 2, 1
4 | VrQ — VrQ | from 3 by BR1
5| Ve Q' — Vz) | by analogy with 4
6 | VrQ < Ve | from4,5.
Similarly for & = Jx (). O

For convenience, in what follows we shall denote applications of Theorem [3.3 by PR, from ‘pos-
itive replacement’.

Theorem 3.4 ((weak replacement rule)). Let {®, V, 0} C Form,. Suppose that ¢’ is obtained from
® by replacing some occurrences of V by ©. Thent ¥ < O impliest ® < @',

SThe requirement that I' consist of sentences is related to standard difficulties in defining Hilbert-style derivations
from sets of formulas with free variables.
%Since I has been defined as a relation between sets of sentences and formulas, ® must contain no free variables.



Proof. We shall restrict ourselves to the cases when ® begins with ~, V or 3. Furthermore, we may

assume that ¥ # ¢.

Suppose & = ~ (. Clearly, the part 2 corresponds to €’ such that ' = ~ (). Then ¢ < @’ can

be easily derived:

NN G W N

Qs
QO
~~ e Q

QA ~~ QY
~~ Qs Y
~Q e~
~Q s~

inductive hypothesis
from 1

SN1

SN1

from 3, 2, 4

from 1

from 6, 5.

Suppose ® = Vz . So the part €2 corresponds to €’ such that &’ = V2 ). Then ¢ < @’ can be

derived in the following way:

Similarly for ® = Jx ).

O 0 I N U1 v W DN =

Qs

Qo

Vo Q) < Vo Y

~Q =~
dr~Q <« Jx~Q
~VrQ < dr~Q
dr~Q &~V Y
~Vr Q< ~Vo )
Ve < Vo)

inductive hypothesis

from 1

from 2 by PR
from 1

from 4 by PR
SN6

SN6

from 6, 5, 7
from 3, 8.

]

For convenience, in what follows we shall denote applications of Theoremby WR, from ‘weak

b
replacement’.

Say that a o-formula ® is a negation normal form, or an n.n.f. for short, if each occurrence of ~
in ® immediately precedes some atomic subformulal] Our next goal is to prove a strong version of
the n.n.f. theorem for QBK. Here ‘strong’ indicates that we shall use not <> (as in [15], for example),

but < — cf. [19, Proposition 3.1]. On this path what turns out to be useful is:

Proposition 3.5. The following schemes are derivable in QBK:

Al ~ 2D & D

A2, (@ = U) & (=9 V U)f

Proof. First we derive ~ =® — ==

[ 2 B N O I R

~(P— L) (PA
~(P—L1)— (PA
~(OP—1)—>@
d— P

~(P—1)— D

"Here L is treated as an atomic formula.

8 A semantical proof of this fact can be extracted from [[18] Section 5]; see also [[14, Section 3].

~ 1) | sN3
~ 1) | from1
from 2

from 3, 4

classical logic



(remember that = is an abbreviation for ® — 1). Now we derive ==& — ~ —®:

1| P —d classical logic
2 | ~1 SN5

3| = — (PA~L) from 1, 2

4| (PA~L)> ~(P— L) | sN3
5020 =~ (P — 1) from 3, 4.

Thus - ~ =P <+ == for all & € Form,,. Finally, note that:

~r~=ad e O SN4

P 5 P classical logic

———®P ¢ ~ =P | by what has already been proved
~~=P &~ =D | from 1, 2, 3.

B W N -

Hence - ~ =® & == for every ¢ € Form,.

Clearly, (& — V) <+ (=® Vv ¥) can be derived as in classical logic. Let us show the deriv-
ability of ~ (& — V) <> ~ (=® VvV U):

~(P—=T) > (PA~D) SN3
P classical logic
-—® &~ A1

P ~—d from 3, 4

(PA~T) 45 (=P A~T) | from4byPR
(=P A~T) > ~ (=D V) | SN3
~(P—=T) >~ (2D VD) from 1, 5, 6.

N N U RN

]

For each S € {SN1,SN2, SN3, SN6,SN7,M1,M2} denote by S* the scheme obtained from S by
replacing <+ by <.

Lemma 3.6. SN1*, SN2*, SN3*, M1* and M2* are derivable in QBK/[

Proof. Obviously, ~ ~ ~ ® <> ~ ® belongs to QBK (as a special case of SN1).
Let us show that ~ ~ (® A ) ¢+ ~ (~ & V ~ ¥) belongs to QBK:

1|~~~ (PAT) < (PAY) SN1
2| P~ D SN1
3| (PAVY) & (~~DAV) from 2 by PR
4|V~ U SN1
50 (~~PAY) 4 (v~ DA~~~ from 4 by PR
6| (~v~PA~~T) 5 ~(~DV ~T) | SN3
7|~ (PVY) 5 ~(~PA~T) from 1,3, 5, 6.

This case is similar to that of SN2*.
Let us show that ~ —=[J® < ~ {—® belongs to QBK:

° A semantical proof of this fact can be extracted from [[18] Section 5]; see also [[14, Section 3].
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This case is similar to that of M1*.

Lemma 3.7. SN6* and SN7* are derivable in QBK.

Proof. Let us show that ~ ~Vx ® <+ ~ Jx ~ & belongs to QBK:

~-d < -0 Al
=00 + O—d M1
=P - =O—-P from 1 by PR
=0 - O-—P M2
=P 5 ~ D Al
U= - U~ =P from 5 by PR
O~ —=® & ~~[O~-d | SN1
~O~=d & O M4
~~O~ =D & ~ O | from 8
~=0P < ~O—P from 1, 3, 4,6, 7, 9.
]
1| ~~Ved < Vrd SN1
2| P~ SN1
3| Ved Ve~ d from 2 by PR
4 | Ve~~~ ® o ~dr~d | SNT
5| ~~Vr® — ~dz~® | from 1,3, 4.
]

This case is similar to that of SN6™.

At the same time, we cannot replace <+ in SN4 by <> (this can be formally justified by means of
a suitable possible world semantics). However, instead of SN4 one can employ the formula scheme

~(P V) (P A~T),

which is not hard to obtain by using the above results:

AN U W N =

(&= V)& (—-PVY)
~(P—=T)s ~ (=D VD)

~ (=P V) S (~aDA~TD)
~P &

(ﬂV‘1¢)ﬁ\AJEO = (ﬁ—ﬂi A m/qq
~ (D = T) & (D A~ D)

Now we are ready to establish the following.

(SN4')

A2

from 1 by WR
SN3*

Al

from 4 by WR
from 2, 3, 5.

Theorem 3.8 ((on negation normal form, strong version)). For every o-formula ® there exists an n.n.f.
® such that ® < ¢ € QBK,. Moreover, there is an algorithm that constructs, given any o-formula ®,

a suitable n.n.f. ®.

Proof. By an easy induction on the complexity of @, where we use the rule WR and the schemes SN1*,
SN2*, SN3*, SN4/, SN6*, SN7*, M3 and M4. Here it is convenient to rewrite M3 and M4 as:

M3, ~O0 & O~ D



MA. ~ QD < O~ . O

Remark 3.9. For Nelson’s constructive logics (propositional or quantified), the analogue of The-
orem (3.8| does not hold: there the implication connective has a much more complex, intuitionistic
character, and we can obtain only a weak version of the n.n.f. theorem.

Finally, by QBK-extensions we mean supersets of QBK closed under formula substitutions and
all the inference rules (including the modal ones)m Given a QBK-extension L, define

', A «— LUI'FA.

If L is a QBK-extension, and Sy, ..., S, are formula schemes, then we shall denote by L+{S;,...,S,}
the least QBK-extension containing L and all the substitution instances of Sy, ..., S,,. In fact, all
these notions formally depend on the choice of 7, but it will always be clear from the context which
signature we are talking about, or we shall explicitly write L, instead of L.

It is not hard to see that the results of the present section will remain true if we replace QBK by
an arbitrary QBK-extension in their formulations.

4 Possible world semantics

As usual, by a frame is meant an ordered pair of the form WW = (W, R), where W is a non-empty
set, whose elements are called possible worlds, and R is a binary relation on 1. Given a frame W
and two families of o-structures

dt = (AL weW) and &~ = (A

w

cw e W),

the corresponding triple
M= W o)
is called a QBK,-model if for any u,v € W:

<AL= AL

e = foralle € Const,;

uRv implies A7 C AT;

uRv implies A = M for all ¢ € Const,.

Here A and A;, are the domains of o-structures 2 and 2, respectively. We shall usually write
A, instead of A (which coincides with A;) and ¢+ instead of e (which coincides with ¢®+).
Nevertheless, it is worth remembering that the interpretations of the symbols of Pred, in 2(; and
2. may differ significantly.

Let M be a QBK,-model. In what follows R (u) will denote {v € W | uRv}, i.e. the image of
{u} under R. For any w € W and A,,-sentense ¢ we define

MwlFt® and M,wl-" ®

10A rigorous definition of what it means for a set of formulas to be closed under formula substitutions can be found
in 6, Chapter 2].

10



by induction on the complexity of :

M,'IUH_+P(t17...,tn) <~ Ql$“_P(t1,
M,wlE" P(ty,...,t,) <= 2, IFP(ty,...
MwlFT U AO — MuwlF" ¥
MwlEF"TAO <— Muwlk" U
MuwlFtToITve — Muwltv
MuwlF"¥vVvVe <«— Muwl" U
MwlFt U -0 — Muwk" T
MuwlF ¥ -0 <— MuwltT
MuwlFt L <~ 0#0;
MuwlFE L <— 0=0;
MuwlFr ~T = Mwl-" ;
MuwlF ~¥ = M,wl-" V;
MwlFT OV <— Muwl-t ¥
Muwlt~ OV <— Muwlt" ¥
MwlFT QU «— M uwl-t ¥
MuwlE~ Q¥ <— M,wlt~ ¥
MawlFT Ve ¥ <= Mwl-" ¥ (
MuwlF~ Ve U <= Mwl~ ¥(
Muwlbt 320 — M wl-" ¥ (
MwlF" 20 «— Mwl- ¥(

In particular, we always have M,w ¥ L and M,w I~ L. Informally, - is responsible for
verifiability, and |~ is for falsifiability. When it is clear from the context which model M we are
talking about, we write w IF° ® instead of M, w IF° ®, where o € {+, —}. Finally, the notation
W IF ® means that M, w IF™ A® for any QBK,-model M based on W, w € W and A, -substitution

A

The semantics for QBK, as well as its propositional version from [17], is locally four-valued.

More precisely, four situations are potentially possible:
1. M,wlFt ®and M, w ¥~ d;
2. M, whk¥t ®and M, w - &;
3. M,wl¥Ft ®and M,w ¥~ d;
4. M,wlIFt ® and M, w I~ ®.

The first situation corresponds to the value ‘true’, the second is for ‘false’, the third is for ‘undefined’,

and the fourth is for ‘overdefined’.

Remark 4.1. Models for QBK may be viewed as ‘modalized’ versions of models for the quantified
Belpan-Dunn logic; cf. [21]]. Although the language of the latter does not contain | and —, they

can be easily added; see [17, Section 4].

11

)
)

and M,w I ©;
or M,wl-" ©;

or M,wl-t 6;
and M,wlF" ©;

or M,wl-t 6;
and M,wlF" ©;

I

forall u € R (w)
for some u € R (w);
for some u € R (w);
)

9

forall u e R(w

forall a € A,;

for some a € A,;

)
)

xz/a) for some a € Ay;
)

forall a € A,,.



Let I' C Sent, and A C Form,. Say that A follows semantically from I', and write ' F A, if for
any QBK,-model M = (W, &/, &/ ~), w € W and ground A,,-substitution ),

M, wlFt ® forall e’ = M,wl-" AU forsome ¥ c A.

By analogy with -, when A = {®}, we usually write [' F & instead of I' £ {®}. We shall call a
o-formula ® valid if F ®. As is easily verified, the following semantic analogue of the deduction
theorem holds.

Theorem 4.2. Forany ' U {®} C Sent, and ¥V € Form,,

TU{B}ET <= TE® V.

Our next goal is to show that QBK is sound with respect to the above semantics.

Lemma 4.3. For every ® € Form,,
F® — F .

In other words, the derivability of a o-formula implies its validity.

Proof. Suppose that - @, i.e. there exists a finite sequence
by, P4, ..., &, =7

of o-formulas such that for each i € {0, ..., n} one of the following conditions is satisfied:

a. P, is an axiom;
b. ®; is obtained from previous ®; and ®;, by MP;
c. ®; is obtained from a previous ®; by MB or MD;

d. ®; is obtained from a previous ®; by the rule BR1 or BR2.

Let M be a QBK,-model. By induction on i, we shall establish that M, w IF™ X (®;) forallw € W
and ground A, -substitutions .

If @; is an axiom of classical logic, then we can argue as in classical first-order logic.

If ®; is a ‘propositional’ axiom for strong negation, then we can argue as in BK; see [18] Sec-
tion 4]. For example, let ®; be an axiom of type SN4, i.e. of the form

~(U—0) (YA~O).
We need to show that for any w € W and ground A,,-substitution A,
wliFt A~ (U= 0) <— wliFt A (T A~O).
This is done as follows:

wIFT A~ (T = ©) wIFT ~ (AT = \O)

wlF~ AU — \O
wlFT AU and wlF~ \O
wlFT AU and wlFT ~)\O

1111

12



«— wlFT AU A~AXO
e wlhtA(TA~O).

Next, consider the ‘quantifier’ axioms for strong negation. Let ®; be an axiom of type SN6, i.e. of the
form
~Vr U < Jr~ .

We need to show that for any w € W and ground A,,-substitution A,
wlk A~V U <=  wlk Az~ U,
This is done as follows:

wE A~V U wlFT ~Vz A2

w - Ve A;®

wlF~ (Ai®) (xz/a) for some a € A,
wlFt ~(\2®) (z/a) for some a € A,
wIFT o~ N2

wlFt Az~ U,

111t

where A denotes (A \ {(z, A (x))}) U {(z,z)}. Similarly for SN7.
If @, is either an axiom for [] or a modal interaction axiom, then we can argue as in BK.

If ®; is obtained from previous ®; and ®; by MP, BR1 or BR2, then we can argue as in classical
predicate logic, and if ®; is obtained from a previous ®; by MB or MD, then we can argue as in BK. [

Theorem 4.4 ((on the soundness of QBK)). For anyI' C Sent, and A C Form,,,

'r-A = TEA.

Proof. Suppose that I' = A. So there will be a finite A C I" and ® € Disj (A) such that A - &. We
consider two cases separately:

« Assume A = @. Then F ® by Lemma[4.3] whence I" F A.
« Assume A = {V,..., U, }. So ¥y A... AV, - &, which is equivalent to
FU AL AT, = D
by Theorem[3.2] ThenE ¥y A ... A ¥,, = ® by Lemma [4.3] which is equivalent to
UgA...AV, FP

by Theorem[4.2] Hence I' E A. O

Let L be a QBK-extension. Denote by F the relativization of F to the class of frames
Krp = {W|WI®forall® € L}.

It is easy to see that the results of the present section will remain true if we replace - by -, and F
by Fy, in their formulations, where L is an arbitrary QBK-extension.

13



5 Strong completeness theorem

We shall call a o-theory I' saturated if:

o I' # Sent,;

{® € Sent, | '+ @} C T}
e VU ecl'implies® € I'or ¥ e I}

« Jz ® € I' implies ¢ (x/c) € I for some ¢ € Const,.

Here the first two conditions are responsible for being non-trivial and deductively closed, and the
third and fourth are for having the ‘disjunctive’ and ‘existential’ properties. Moreover, saturated
theories enjoy two other useful properties:

Proposition 5.1. Let I' be a saturated o-theory. Then:

i. forevery ® € Form, we have either ® € I' or ~® € I;

ii. if®(z/c) €T forallc € Const,, thenVx ® € T.

The proof is similar to the case of classical first-order logic.

For any set S, take
os == oU{s|se S}

where all s’s are new constant symbols.

Lemma 5.2. Let I' C Sent, and A C Form, be such that ' ¥ A. Then for each set S of cardinality
|Sent,, | there exists a saturated og-theory I'" O T" such that I ¥ A.

The proof is similar to the case of classical first-order logic.

Now fix some set S* of cardinality |Sent,|. It will play the role of a ‘potential’ universe in our

canonical model for QBK,. We shall call S C S* admissible if |S* \ S| = |S*|.

Lemma 5.3. Let S C S* be admissible, and letI' C Sent,, and A C Form, be such thatI' ¥ A.
Then there exist an admissible S’ O S and a saturated og-theory I'" O T" such that I ¥ A.

Proof. Since |S* \ S| = |Sent, |, we can find an admissible S’ O S such that
1S\ S| = |Sent,|.

Moreover, we have |Sent,| = |Sent,|, because |S| < |Sent,|. It remains to apply Lemma [5.2 with
og:=o0gand S :=5"\ S. N

Lemma 5.4. Let S C S* be admissible, and letI" C Sent,, and A C Form, be such thatI' ¥ A.
Then there exists a saturated o g«-theory I" O I such that " ¥ A.

Proof. We just need to apply Lemmal5.2| with 0 := 05 and S = S* \ S. O]
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Finally, we are ready to adapt the method of canonical models for QBK and its extensions. In-
formally speaking, we need to combine the canonical model for BK from [18| Section 4] and the
canonical model for classical quantified modal logic (see [6, Section 6]) in a natural way. We shall
sometimes drop the index o, but it will always be clear from the context which signature we are
talking about. For any set 5, let

Satg := the collection of all saturated og-theories.

In addition, for an arbitrary set I" of formulas, denote by Const (I") the collection of all constant
symbols that occur in elements of I". Note that for each I' in Sats we shall have Const (I') =
Const,: obviously, Const,, includes Const (I'); on the other hand, for every ¢ € Const,, we can
easily construct ¥. € QBK,, N Sent,, such that ¢ occurs in ¥., and hence we have Const,, C
Const (I') (in view of QBK,, C I'). Next, with any saturated og-theory I" we associate two og-

structures (Ql*rq ) " and (Qllé' ) - with the same domain
A = Const (I

such that all constant symbols of og are interpreted as themselves in these structures, and for every
atomic og-sentence O:

@AHTFE = @ T,
(AF) P = ~o €.

Denote by 2/ and 21~ the o-reducts of (Qlif )+ and (2[15) - respectively. Clearly, every Ar-sentence
has the form

@(l’l/ﬁ,"wxn/c_n)’

where {cy,...,c,} C Const (I'); therefore, for convenience, we shall often identify it with the og-
sentence ¢ (z1/cq, ..., x,/c,). Now take

TWaBK . — U {Satg | S is an admissible subset of S*}.

By the canonical frame for QBK we mean a frame WBK = (IWQBK RQBK) 'where the relation RYBK
is defined in a standard way:

ROBK = {(T,A) € WK 5 WK | Ty C A}
The canonical model for QBK is
MABK <WQBK (ﬁfQBK)+ (MQBK)*>
where
(/)T = (A T e WIBKY,
()" = (A : T € WEBK),
As we shall verify shortly, this construction is correct.

Lemma 5.5. MBK js ¢ QBK-model.
"As usual, given I C Sent,,, we denote {® | J® € I'} by I'.
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Proof. Suppose that TRBKA. Let og be the signature of I'. Clearly, for every ¢ € Const,, we
can construct ¥. € QBK,, N Sent,, such that c occurs in ¥,; then OV, € QBK,, N Sent, (by
RN), and therefore OV, € T', whence we obtain U, € A. As a consequence, Const (A) includes
Const (I'), which coincides with Const, . Furthermore, the interpretation of the symbols of Const,,
will, obviously, be preserved when passing from Q[;“ to le. O

A key role in the proof of the strong completeness theorem is played by:

Lemma 5.6 ((on the canonical model for QBK)). For anyI' € WK and Ap-sentence ®:

MEBKD TP «— & eI
MBKD - — ~P eI

Proof. By induction on the complexity of ®.
The case when @ is atomic is trivial.

Suppose & = Jx . Let us look at verification first:

MBI Iz 0 = MK T I U (x/a) for some a € Const (T')
<= VY (z/a) €' forsome a € Const (I')
— dzxvel.

Here the last equivalence requires explanation: the direct implication is obtained by using Q2, and
the converse employs the existential property. Now let us look at falsification:

MBI 32T = MK T I~ U (z/a) forall a € Const (I
< ~VU(z/a)eD forall a € Const (I
— Ve~V el
<— ~dzVel.

In the third equivalence, the direct implication is obtained by using Q1, and the converse uses Propo-
sition [5.1(ii); the last equivalence is guaranteed by SN7.
Similarly for & = Vx .

The remaining cases are handled as in BK (see [[18, Section 4] or [17, Section 2]), although we
need to use Lemma [5.3]instead of the propositional version of the extension lemma. O

Theorem 5.7 ((on the strong completeness of QBK)). For any ' C Sent, and A C Form,,,

'FA <« T EA.

Proof. See Theorem [4.4]

Suppose that I' ¥ A. Fix some admissible S C S* of cardinality X, (thus |S| = |Var|). Let
A be a one-one function from Var onto {s | s € S}. Take

A = (AU | T e A}

It is easy to verify that ' ¥ A’. By Lemma [5.3| (with 0 := og and S := S* \ 5), there will be
IV € WQBK such that I' C IV and I ¥ A’. Clearly, A\ may be viewed as a ground Ap-substitution.
So by Lemma we have MQRBK TV |- ® for all ® € I and also MRBK TV ¢ AU for all ¥ € A.
Hence I' ¥ A. O]
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Let L be a QBK-extension. Then the canonical frame for L and the canonical model for L, denoted
by W! and M respectively, can be defined in the same way as for QBK, but with Satg replaced by

Satt := {I' € Sats | L N Sent,, C T'}.

Further, as is easy to understand, the analogue of Lemma 5.6|for L will hold. However, the analogue
of Theorem [5.7| may fail if there are non-canonical models based on W* in which formulas from L
are refuted, i.e. when W' does not belong to Ky

6 Some natural extensions

Using a variant of the canonical model method from the previous section, it is not difficult to establish
the strong completeness of some natural QBK-extensions (cf. [18] Section 4]). Here we shall consider
two basic types of such extensions:

i. those obtained by excluding ‘undefined’ or ‘overdefined’;

ii. those obtained by imposing additional restrictions — expressed by means of modal formulas
— on accessibility relations in frames.

We start with extensions of type (i). At the axiomatic level, the following axiom schemes correspond
to excluding ‘overdefined’ or ‘undefined’:

Exp. ~® — (& — U);
ExM. &V ~ .

Here Exp is an abbreviation for ‘explosion’, and ExM is for ‘excluded middle’. In fact, it suffices to have
Exp and ExM for all atomic ¢ and V; furthermore, Exp will be equivalent to the scheme ‘~ & — =’
Let

QBK? := QBK + {ExM} and QB3K := QBK+ {Exp}.

A QBK,-model M = (W, o7t o/ ~) will be called:
« a QB3K,-model if for any w € W and atomic A, -sentence P,

AW D or A, W P;

« a QBK? -model if for any w € W and atomic A, -sentence P,

AL or A I+ D,

Denote by F3,g and FQg the relativizations of = to the corresponding classes of models. It is worth
noting that we avoid the notations Fqg3k and Fqpke, since otherwise there will arise a conflict with
how F was defined in Section [4]

Theorem 6.1. For any ' C Sent, and A C Form,,

T l_QB3K A < r 'ZSQBK A.
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Proof. Here the argument is similar to the proof of Theorem In the present case the
verifiability of Exp in all QB3K,-models is established by an easy induction on the complexity of ®.

First we check that M®B3K js a QB3K,-model. Let I' € W®B3K and o4 be the signature of
I'. Consider an arbitrary atomic Ar-sentence @; it can also be viewed as a og-sentence. Assume, by
way of contradiction, that Ql}“ IF ® and A |- D, ie.

MEBK DI+ d and MOBK T o,

By the analogue of Lemma 5.6 for QB3K, this is equivalent to ® € I" and ~® € I'. At the same
time we have ~® — (& — ) € I' for all U € Sent,,. Hence we easily get I' = Sent,, — a
contradiction. Then one can argue as in the proof of Theorem O]

Theorem 6.2. For any " C Sent, and A C Form,,

The proof is similar to the proof of Theorem [6.1]

Now we proceed by considering extensions of type (ii). For each such extension L we shall
assume that:

a. WE belongs to K, i.e. WL I ® forall ® € L;
b. for every frame W = (W, R),

W € K <= R has certain properties.

Then the strong completeness theorem for L can be obtained in the same way as for QBK. As an
illustration, consider three axiom schemes:

D. J® — (P,
T. U — P

4. J® — 0.

As in classical modal logic, it is easy to show the following.

« D, T and 4 express seriality, reflexivity and transitivity respectively, i.e. for every frame WW =
(W, R):

WIFtD <= R is serial;
WIFTT <<= R is reflexive;
WIFt 4 <= R is transitive.

+ For any QBK-extension L:

L includes D = R is serial;
L includes T = R’ is reflexive;
L includes 4 == R! is transitive.
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Let us introduce some related notation:

QBD := QBK +{D}, QBT := QBK+ {T}, QBK4 := QBK + {4},
QBD4 := QBK + {D,4} and QBS4 := QBK + {T,4}.

In addition, for convenience, we denote by .Z the collection of all these logics.
Theorem 6.3. Let L € . Then for anyI' C Sent, and A C Form,,
'L A «— TF;A.

The proof is similar to the proof of Theorem 5.7 (taking into account the above remarks).

Of course, the two types of extension can be combined. For example, take
QB3S4 := QBS4 + {Exp}.

Hence ‘undefined’ must be excluded in QB3S4-models (as in QB3K), and the accessibility relations
must be preorderings (as in QBS4). Denote by F{gs, the relativization of  to the models of this
kind. Clearly, M®835% will turn out to be a QB3S4-model. So Fqg3s4 Will coincide with IZ%BS4, ie.
the completeness theorem for QB354 will hold.

The logics QBS4 and QB354 will play an important role in Section|[8] which is devoted to faithful
embeddings of Nelson’s quantified logics.

7 Constant domain variant
Consider the following two variants of the Barcan scheme:

Bal. Vo Od — OVax &;

Ba®. OJx d — Tz 0.
Note that the scheme corresponding to the converse to Ba™ is derivable in QBK:

1| Vod — @ Q1
2 | WVz® — 0P from 1 by MD
3| Vx® — VP | from 2 by BR1.

The converse scheme for Ba® is obtained similarly. Denote
QBKY := QBK+ {Ba"} and QBK! := QBK + {Ba’}.

Although the proof of the proposition below is exactly similar to the case of classical quantified
modal logic, we provide it for expository purposes.

Proposition 7.1. QBKﬁD and QBK§> coincide.

Proof. Let us show that Ba® is derivable in QBK:
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1| Ve O-® — OVe - Ba-
2 | "V -® — Ve [-P | from1
3| OVr—=P < -V -d | M1
4| dJx® > Vo classical logic
5| O0dae® < OV D from 4 by PR
6 | "V U~ > dor —[1-=P | classical logic
7 | 2O=P < O——P M1
8| P P classical logic
9| =D & O from 8 by PR
10 | 0= + OP from 7, 9
11 | dz-0-® < Jx 0P from 10 by PR
12| OJdzx® — Jx 0P from 5, 3, 2, 6, 11.
In a similar way, one can show that Bal is derivable in QBK%. OJ

In what follows we shall write QBK? instead of QBKﬁD and QBKti , and also H! instead of N
Furthermore, we shall restrict ourselves to at most countable signatures, since dealing with uncount-
able signatures gives rise to some problems even for the variant of QK with constant domains; cf.
(6 Lemma 7.1.2], where the proof makes significant use of the countability of the signature.

We shall call a QBK,-model M = (W, o7+, .o7~) a QBK? -model if A, = A, for all u,v € W.
In other words, QBK’ -models are QBK,,-models with constant domains. In fact, the Barcan scheme
only guarantees that for any u,v € W,

uRv =— A, = A,.

However, this is not crucial, since for a given v € W one can always pass to the generated submodel
whose set of worlds is R (u). Denote by ¥ the relativization of F to the class of all QBK’ -models.

Theorem 7.2 ((on the soundness of QBKB,)). For any " C Sent, and A C Form,,

'HA — TFEA.

The proof is similar to the proof of Theorem In the present case the verifiability of Ba" (or
Ba®) in all QBK? -models is established as in classical quantified modal logic.

As in Section [5| fix some set S* of cardinality |Sent,|. For brevity, we shall write o, instead of
og+. Take
W* .= the collection of all saturated o,-theories.

Obviously, Const (I') = Const,, for all " € W*. By the canonical frame for QBK* and the canonical
model for QBK* we mean

W= (WA and M — OV ()" () ),

where the components RY, (;zﬂ)Jr and (Jzﬂ)f are defined in the same way as ROBK, (Jz{QBK)+ and
(27 9BK)", but with WK replaced by W*.
Lemma 7.3. Forany' € W* and ® € Sent

00 € I' <= forevery Ac W' if TgCA, then ® € A,

Ob € I' <= thereexists A € W* suchthat T C A and ® € A.
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The proof is exactly similar to the case of classical quantified modal logic; see, for example, [6]
Lemma 7.1.2].

From this we easily obtain:

Lemma 7.4 ((on the canonical model for QBK®)). For anyT' € W* and Ar-sentence ®:

MTIH ® «— & e T
MTIH @ «— ~® e T.

Proof. By induction on the complexity of ®.

Of course, since all worlds deal with the same domain Const,,,, we cannot use Lemma How-
ever, the cases when ® does not begin with [J or {) are handled as in the proof of Lemma(because
they do not require Lemma 5.3).

Suppose & = [JW. Obviously, the equivalence for I+ follows from Lemmal7.3|(and the inductive
hypothesis). Let us now look at falsification:
MU TIFH OF <« thereexists A € W* such that

't CA and MY, AIF U

<= there exists A € W* such that
I'bCA and ~V¥ € A

— O~V el

— ~0OU e TI.

Here the third equivalence is guaranteed by Lemma and the latter follows from the fact that
O~ U & ~ OV is derivable in QBK:

10~V & ~0O~v~T | M4
2|~~~V & U SN1*
3| ~U~~U & ~LU | from 2 by WR
4 | O~V & ~0Ov from 1, 3.
Similarly for & = Q. ]

Theorem 7.5 ((on the strong completeness of QBK?®)). For any ' C Sent, and A C Form,,
'HA «— TFA

Proof. See Theorem 7.2}
Suppose that I' ¥* A. Fix some admissible S C S* of cardinality . Let A be a one-one
function from Var onto {s | s € S}. Take
A= {\U | T e A}

Clearly, I' ¥* A’. By Lemma there will be IV € W* such that I' C I and I" ¥* A’. Obviously,
A can be viewed as a ground Ar/-substitution. So by Lemma we have M* " |- ® forall ® € T
and also M® T” ¢ \U for all U € A. Hence I #f A. ]

Of course, by analogy with QBK, we may consider various natural extensions of QBK*. In par-

ticular, as is easily verified, for extensions obtained from logics in .Z, QB3K or QBK® by adding Ba-
the corresponding strong completeness theorems will hold.
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8 Faithful embedding of quantified Nelson’s logics

Let QN4 be the quantified version of Nelson’s constructive logic, QN3 be its extension obtained by
excluding ‘overdefined’, i.e. adding the relativization of the scheme Exp to the language of QN4; see
[11] 2], and also [[7,12].

Recall that syntactically, the language of QN4 is simply the non-modal fragment of the language
of QBK. However, there are fundamental differences between QN4 and QBK at the semantic level:
— and V are verified in QN4 by analogy with intuitionistic logic, and not with classical logic, as in
QBK. Intuitively, QN4 enriches quantified intuitionistic logic, QInt, by adding strong negation.

Below, by constructive o-formulas we shall mean o-formulas in the language of QN4, i.e. those
containing no occurrences of [] and ¢). Negation normal forms in the language of QN4 are defined
in the same way as in QBK. It is well-known that a result similar to Theorem holds for QN4, but
with weak equivalence instead of strong equivalence:

Theorem 8.1 ((see, for example, [12]])). For every constructive o-formula ® there exists an n.n.f. ®

such that ® <> ® € QN4,. Moreover, there is an algorithm that constructs, given any constructive

o-formula ®, a suitable n.n.f. 5

Next, we define a translation 7 that associates with each n.n.f. in the language of QN4, a formula

in the language of QBK,:

T(P(t1,...,tn)) = OP(t1,...,tn);
T(~P(ty,....tn)) = ~OP (t1,...,tn);
T(OAT) = 7(P)AT (D),
T(OVVY) = 7(d) V7 (V)
T(®—= V) = O (P) = 7(V));
T(L) = 1;

T(~1) = 1L — 1;

T (V@) = OVx 7 (P);

7(3x®) = Jx7 (D).

The mapping 7 can be naturally extended to the set of all constructive o-formulas: if ® is not an
n.n.f., then take B

7(®) = 7 (D).
Formally, we should write 7, instead of 7, but it will always be clear from the context which signature

we are talking about.

Clearly, the restriction of 7 to formulas not containing ~ coincides with the Godel-McKinsey-
Tarski translation, which faithfully embeds QInt into the modal logic QS4. Furthermore, 7 may
be viewed as a (quantified) extension of the propositional translation proposed earlier in [18] Sec-
tion 7.1].

Remark 8.2. If we fix the usual algorithm for reducing constructive o-formulas to n.n.f’s, then the
mapping 7 can be described as follows:

T(P(th,....tn) = OP(t1,....tn); T(~P .. 1) = ~OP(t, ... b);

2Unlike in Theorem we cannot replace <+ by < here. In particular, it can be shown that there exists no propo-
sitional n.n.f. ¢ such that ~ (p — ¢) < ¢ € N4.
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T(OPAY) = 7(P)AT (D), T(~(PAVW)) = 7(~P) VT (~T);
T(®VVY) = 7(P) VT (V) T(~(PVU)) := 7(~P)AT(~T);
7T(® = V) = O(1(P) = 7(¥)); T(~ (P = V)) = 7(P)AT(~V);
T(Ll) = 1; T(~1) = 1L —1;
7 (Ve ®) = OVe T (P); T(~Vz®) = Jo7(~P);
7(3x®) = Jo7(P); T(~3Jz®) = Va7 (~D);
T(~~®) = 7(D).

Say that a QBK,-model M = (W, &7t o/ ~) is a QN4,-model if R is a preordering on W, and

for any u,v € W,
u Rwv

—  P% CP% forall P€ Pred,.
Further, a QN4,-model M is called a QN3,-model if for every w € W,

PY¥ A P% — @ forall P e Pred,.

The verifiability and falsifiability relations for QN4,, are defined in the natural way:

Mow Y Pty ... t)
M,w - P(ty, ..., t,)

MwlFt oA T
MwlE~ AT

MwlFt oV U
MwlE~ dVv ¥

MwlFt & = 0

MuwltE~® - U

M, wlFt L
Mow lF" L
M, w - ~®
MwlE™ ~d
M, w I Vo &
M, wlF~ Vrd

M,wlFt Iz d
MwlE~ Jzd

1A A S A Y A |

AL Pty ... ta);
A, - P(ty,... t);
MwlFt® and M,w -t U;
MwlkF~® or M,wl- V;
MwlFt® or M,wlF" ¥,
M,wlF~® and M,wl-" ¥,
for every u € R (w),
if M,ul-" ®, then M,ul-" ¥,
MwlFt® and M,wl-" U;
0 # 0;
0=0;
M,wlF~
M, w - ®;
M,u T ®(x/a) forall u€ R(w) and a € Ay;
M,wlF" ®(x/a) forsome a € A,;
M,w -t @ (z/a) for some a € A,;
M,ulk™ ®(z/a) forall u € R(w) and a € A,.

Here, instead of - and I, it would be more accurate to write II—EN 4 and IFqy,, but in what follows
it will always be clear from the context what kind of logic we are talking about. Note that M is a
QN3,-model if and only if there are no w € W and atomic A,-sentence ® such that 2} |- ® and
A~ I ®@; cf. the definition of QB3K,-model in Section@

The semanical consequence relations for QN4 and QN3 are defined by analogy with Fqgk and
Fgk; denote them by Fqng and E{y, respectively.
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Theorem 8.3 ((see [12] and [7]])). For any I’ C Sent, and A C Form,,:

F l_QN4 A <~ F ':QN4 A,
Thans A <= T FELwu A,

where Fqna and -qns denote the derivability relations for QN4 and QN3 respectively.

Let M = (W, &/", o/ ™) be an arbitrary QBS4,-model, i.e. a QBK,-model in which the accessi-
bility relation is reflexive and transitive. Associate with it the triple
M = W, (%) (7))
such that for any w € W and atomic A, -sentence ®:

@) FPe = MwlF O

2,) Fe = Muwl- 0.
Here we set (A,) = A, for all w € W. It is easy to understand that M’ will turn out to be a
QN4,-model. Moreover, if M is a QB35S4,-model, then M’ will be a QN3,-model. The following

statement is similar to Lemma 14 in [[18].

Lemma 8.4. Let M = W, o/, o/ ~) be a QBS4,-model. Then for any w € W and constructive
A,,-sentence O,

Mwlktd = Muwl-" 7(d).
Proof. By Theorem we can assume that ¢ is an n.n.f.
By induction on the complexity of ®.

The case when @ is atomic is trivial.

The case when ® = ~ P (ty,...,t,) is slightly more complicated:

M wlFT ~P(ty,... t,) M wlE™ P(ty,... t,)
() I P (tr,... 1)
Mow = QP (ty, ..., t,)
Mow bt ~OP (ty, ..., t,)

MawlFt 7 (~P(ty, ... 1))

111ty

Suppose & = Vz U. Then

M w -V M ul-t W (z/a) forall u € R(w) and a € A,
M,ulrt 7 (¥ (x/a)) forall u € R(w) and a € A,
M,u T 7 () (z/a) forall u€ R(w) and a € A,
M,ulF" Vo7 (¥) forall u € R(w)

M, w - OVz 7 ()

M, w IF 7(®).

rreee

Suppose & = 3z V. Then

Miwlkt 320 < M, wltt ¥ (z/a) forsome a€ A,
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— M wlt" 7(¥(z/a)) forsome a€ A,
— M, wl-" 7(¥)(z/a) forsome a€ A,
— M,wlt" 37 (D)
— M,wlt 7 (d).
The remaining cases are handled as in BK; see [18| Section 7]. O

Remark 8.5. In the formulation of Lemma we cannot replace I-* by IF~. Indeed, suppose
® = U — O. Then, as is easily verified,

MwlFE ¥V -0 = Muwlk 7(¥—0),

but the converse implication may in general fail. A similar problem arises for & =
Vo .

From this one easily obtains:

Theorem 8.6. For every constructive o-sentence P,
¢ € QN4, <= 7(?) € QBS4,.

In other words, T faithfully embeds QN4 into QBS4.

Proof. In view of the completeness theorems for QN4 and QBS4, we need to show that
Fana @ <= Fqesa 7 ()

(see Theorems [8.3|and [6.3| respectively).

Suppose that Fqng ®. Consider arbitrary QBS4,-model M and w € W. Since M’ w IF+
®, we have M, w I 7 (®) by Lemma 8.4} Hence Fqgsa 7 (D).

Suppose that Fqgss 7 (®). Consider arbitrary QN4,-model M and w € W. Obviously, M
can be thought of as a QBS4,-model; in this case M’ will coincide with M. So, since M, w -1 7 (),
we have M, w IF™ ® by Lemma Hence Fqnsg . O

Furthermore, we have:

Theorem 8.7. For every constructive o-sentence ®,
® € QN3, <<= 71(P) € QB354,.

In other words, T faithfully embeds QN3 into QB354.

The proof follows from Theorem taking into account the completeness theorems for QN4,
QBS4, QN3 and QB354.

Remark 8.8. Theorems [8.6| and [8.7] could be reformulated in terms of derivability or semantical
consequence relations (with non-empty sets of hypotheses). In fact, such formulations will turn out
to be equivalent to the original ones in view of the strong completeness theorems for QN4, QBS4,

QN3 and QB354.
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A result similar to Theorem [8.7 holds for the logic QN4°, which is obtained from QN4 by ex-
cluding ‘undefined’, i.e. adding the relativization of the scheme ExM to the language of QN4. More
precisely, take

QBS4° := QBS4 + {ExM}.

Then 7 will embed QN4° into QBS4°. In this case, formally, we shall need the strong completeness
theorem for QN4°, which can be proved by analogy with Theorem using the canonical model
for QN4.

Finally, all the results of the present section are easily relativized to the case of constant domains.
Here the role of the Barcan scheme for QN4-extensions will be played by

CD .Vz (®V V) — &V VeV, where x does not occur free in .

However, this kind of relativization may be criticized from a constructive point of view, since CD is
refuted in Kleene’s realizability semantics (let alone Nelson’s semantics).

9 Interpolation properties

It is known that some extensions of classical quantified modal logic, QK, have Craig’s interpolation
property; see, for example, [5]. In this section, using the technique of [[15| Section 2], we shall show
how interpolation results for QK-extensions can be transferred to QBK-extensions.

For each o-formula ®, take
O(®) := {e€ 0 |coccursin P} UFV (D).

Let L be a QK-extension. Say that L has Craig’s interpolation property, or CIP for short, if for any
signature o and ® — ¥ € L, there exists © € Form, such that

(650,050} C L and 0(0) C O(®)NO ().

Here O is called a Craig interpolant for ® — W in L. This terminology will be used for QBK-exten-
sions as well.

Remark 9.1. In fact, the requirement that O (®) includes FV (®) is not crucial, since, if necessary,
all free variables of ® can be replaced by new constant symbols.

In addition, a more subtle version of CIP for QBK-extensions is worth discussing; cf. [19, § 4].
By Theorem we can restrict ourselves to n.n.f’s. Given a o-n.n.f. ® and P € Pred,, call an
occurrence of P in ® positive if it is not inside the scope of ~, and negative otherwise. For each
o-n.nf. ¢ we set:

D (®) := {c € Const, | coccursin @} UFV (d);
P* (®) := {P € Pred, | P occurs positively in ®};
P~ (®) := {P € Pred, | P occurs negatively in ®}.

Let L be a QBK-extension. We shall say that L has the strong interpolation property, or SIP for short,
if for any signature o and o-n.n.f. ® — ¥ in L there exists a o-n.n.f. © such that

{($ 50,0650} C L, D(O) C D@ ND(V),
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PT(©) C PT(®)NPT(¥) and P~ (©) C P~ (®)NP (V).
Here O is called a strong interpolant for ® — W in L. It is easy to see that SIP is stronger than CIP:
if L has SIP, then it has CIP.

Obviously, to each QBK-extension L in . (from the formulation of Theorem there will
correspond the QK-extension L (without ‘B’ in the name). It is known that all such L’s have CIP;
see [5]]. Our next goal is to obtain SIP for all logics in .Z.

For any signature o, take

g = ocU{P|P € Pred,},

where P is a new predicate symbol of the same arity as P. Consider arbitrary L in .# and signature
0. With each L,-model M we associate the L, -model

M = W, ),

where &7 denotes the family (2, : w € W) such that for every w € W:

'A :Aw§

w

e 2o = A for all ¢ € Const,;

. P% = P and P2 = P% for all P € Pred,.

Obviously, M is a L,-model. Moreover, for every L,-model N there exists a (unique) L,-model M
such that M = N.

Further, define a translation p from the set of all o-n.n.f’s to the set of all g-formulas without
strong negation as follows (cf. [15 Section 2] and [19, Section 4]):

p(P(ty,....tn)) := P(t1,...,tn);
p(~ Pt b)) = Pty t):
p(P1© Pz) = p(P1) ©p(P2);
p(L) =1
pl~l) = L—=1
p(O®) = Op(P);
p(Qr @) = Qup(P),

where ©® € {A,V,—}, 0 € {J,0}, Q € {V, 3} and x € Var. Of course, if necessary, the mapping
p can be extended to all o-formulas by setting

p(®) = p(P).

Formally, we should write p, instead of p, but it will always be clear from the context which signature
we are talking about.

Lemma 9.2. For any L,-model M, w € W and 0 4, -sentence P,
MuwlFtd — M wlkp(d),

where |- denotes truth in classical quantified modal logic

UBy definition, p (®) is a sentence in the signature o 4 .
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Proof. By Theorem we can assume that ¢ is an n.n.f. Then the lemma is proved by an easy
induction on the complexity of ®. O]

Theorem 9.3. For every o-formula P,
el < p(P) e L.

In other words, p faithfully embeds L into L.

Proof. In view of the completeness theorems for L and L, we need to show that
|:L P — ':L T ((I))

(see Theorem|6.3|and, for example, [6] Section 6]). Then we can argue by analogy with the proof of
Theorem 8.6} using Lemma [9.2]instead of Lemma O

From this, using some interpolation theorems for QK-extensions, we can obtain the desired
result:

Theorem 9.4. All logics in £ have SIP.
Proof. Consider arbitrary L in .Z and signature o.
Suppose that a o-n.n.f. ® — ¥ belongs to L. By Theorem [9.3] we have
p(®)—p(¥) € L.

Since L has CIP, there exists a Craig interpolant © for p (®) — p (V) in L. Take
©" := the result of replacing each P in © by ~ P.

Then ©' is a o-n.n.f,, and p (©’) = ©. Applying Theorem [9.3]again, we get

-0 €L and © Ve L.
Here by construction,

D (') = (O(©)N Const,) UFV (&)
O (

= (O (®)NConst,) UFV (O)

D (p
D (®

N

®))ND(p(¥))

(
)N D ().

Moreover, it is easy to check that
PT(©) C P (®)NPT(¥) and P (©) C P (®)NP (V).
So ©' is a strong interpolant for & — W in L. O

Let us now discuss QBK-extensions of type (i), i.e. QB3K and QBK®. Define the translations 0
and p° exactly as p, but with the following modifications (cf. [15, Section 2]):

PP (~P(ty, ..., ty) == P(tr,...,ty) A=P (t1, ... ty);
P (~ Pty .. tn)) = P(ty, ... .t,) V=P (ty, ... t).

Then we have:
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Lemma 9.5. For any QB3K,-model M, w € W and A,,-sentence P,
MuwlFt® = M wl p*(®).

Similarly for QBK® and p°.

Proof. Note  that for every QB3K,-model M  and atomic  A,-sentence
P(ty,... tn),

MowlIFT ~ P (ty,...,t,) M,wl- P (ty,...,t,)

—
<~ M,’w“‘B(tl,...,tn)/\_|P(t1,...,tn).

Therefore we can argue in the same way as in the proof of Lemmal9.2]
Similarly for QBK® and p°. O]
On the other hand, for L € {QBK®, QB3K} it is impossible, for each QK,-model N, to find a
L,-model M such that M = N. Therefore we need to work more accurately than with L € Z.
With each QK,-model N' = (W, o7) we associate the QB3K,-model
N3 = (W, %t a7,

where &% and &/~ denote the families (A3 : w € W) and (A% : w € W) such that for every
we W:

o A3T = A3 = A
e T = A — M foralle € Const,;
« P%" — P% for all P € Pred,;
. P = Pl (A2 \ P*) for any n-ary P € Pred,.
Obviously, N/ 3 is a QB3K,-model. Similarly, the QBK? -model
NC = (W, % o)

is defined, but we need to replace N by U in the last item:
. PY = P¥ y (An\ P*) for any n-ary P € Pred,.

The following statement will play the role of a converse to Lemma 9.5]

Lemma 9.6. For any QK,-model N', w € W and o 4, -sentence @,
N,wlkp? (@) —= N3 wlt O
Similarly for p° and N'°.
The proof is obtained by an easy induction on the complexity of ®.
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Theorem 9.7. For every o-formula ®,

d € QB3K, <<= p’(®) € QK,.
Similarly for QBK® and p°. In other words, p* and p° faithfully embed QB3K and QBK® respectively
into QK.

This follows from Lemmas [9.6] (for the direct implication) and [9.5](for the converse implication),
taking into account the completeness theorems for QB3K, QBK® and QK.

From this we can already get CIP for extensions of type (i):

Theorem 9.8. QB3K and QBK® have CIP.

Proof. Consider an arbitrary signature o.

Suppose that & — ¥ € QB3K,. By Theorem[9.7] we have
p’ (@) = p*(¥) € L

Since QK has CIP, there exists a Craig interpolant © for p? (®) — p* (¥) in QB3K. Clearly, ©
does not necessarily have the form p* (') (because there could be ‘free-standing’ P (¢4, ...,t,)’s in
©, which are not connected with =P (¢4, ..., t,) by means of conjunction). Take

~ the result of replacing each free-standing
B(thatn) ln@byB(tl,,tn) /\_'P(tl,,tn)
It is easy to show that for any QB3K,-model M, w € W and A, -substitution A,
MwlF O < M, wl \O.

Obviously, © = p? (@) for a suitable o-formula ©'. Taking into account the soundness theorem for

QK, this implies that for any QB3K,-model M, w € W and A, -substitution A,
M,wlEX(p* (@) — p*(©) and M,wl- X (p*(0) = p* (1)),
which, in view of Lemma is equivalent to
MwlEA(P—0) and M,wlk (O — ¥).
By the completeness theorem for QB3K, the latter means that
® -0 ¢ QB3K, and © — ¥ e QB3K,.

In addition, it is not hard to check that O (©) C O (®) N O (V). So ©' is a Craig interpolant for
® — U in QB3K.

In the case of QBK®, we argue similarly. O
Remark 9.9. The logics QB3K and QBK® do not have SIP. Indeed, in the case of QB3K, take
¢ = P(xy,...,2,) and W := =~P(z1,...,2,),

where P is some n-ary predicate symbol. Then ® — ¥ € QB3K, but there is no strong interpolant
for ® — ¥ in QB3K. In the case of QBK®, one can take

¢ = =P(x,...,x,) and ¥ = ~P(xq,...,2,).
Then & — ¥ € QBK®, but there is no strong interpolant for ® — ¥ in QBK®.

Of course, the proof of Theorem is easily modified to obtain CIP for QB354, for example.
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