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Abstract

We develop a quantified version of the propositional modal logic BK from an article by S. P.

Odintsov and H. Wansing, which is based on the (non-modal) Belnap–Dunn system; denote

this version by QBK. First, by using the canonical model method we shall prove that QBK, as
well as some important extensions of it, is strongly complete with respect to a suitable possible

world semantics. Thenwe shall define translations (in the spirit of Gödel–McKinsey–Tarski) that

faithfully embed the quantified versions of Nelson’s constructive logics into suitable extensions

of QBK. In conclusion, we shall discuss interpolation properties for QBK-extensions.
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1 Introduction

Quantified intuitionistic logic, QInt, plays a key role in constructive mathematics. Among its in-

terpretations, a special place is occupied by Kleene’s realizability semantics and the informal Brou-
wer–Heyting–Kolmogorov interpretation; see [8] and, say, [20, Chapter 1]. However, QInt has a cer-
tain drawback: although from each derivation of Φ in intuitionistic number theory one can extract

a way of verifying Φ, a derivation of ¬Φ does not give a direct way of falsifying Φ, but only reduces
the assumption thatΦ is verifiable to absurdity; see [10] and [11].

1
In particular, this implies the fail-

ure of the ‘negative disjunction property’: from the derivability of ¬ (Φ ∧Ψ) we cannot, in general,

obtain the derivability of ¬Φ or ¬Ψ.

In order to eliminate the drawback mentioned above, D. Nelson proposed to enrich the language

of QInt by adding a ‘strong negation’, ∼, which is directly responsible for falsification, and expand

the realizability semantics to the new language; see [11], and also [1]. This is how the logic QN3
arose. Then its useful generalizationQN4was described, which allows one to deal with inconsistent
data; see [2]. Here QN3 extends QN4 by adding the scheme

∼Φ → (Φ → Ψ).

In what follows, for every quantified logic QL we shall denote its propositional version by L.2 No-
tice that if we exclude intuitionistic implication, N3 turns into Kleene’s strong three-valued logic,

which has an algorithmic interpretation, and N4 turns into the well-known Belnap–Dunn four-

valued logic; see [9, § 64] and [3, 4].

A very important role in understanding QInt is played by the Gödel–McKinsey–Tarski transla-

tion from QInt into the modal logic QS4, i.e. the reflexive-transitive extension of the modal logic

QK. We would like to have a similar understanding of the logics QN3 and QN4. In the propositional

case, this problem was solved by S. P. Odintsov and H. Wansing in [18]:

• they defined the propositional Belnap–Dunn modal logic, which enriches K and is denoted by

BK, and showed the strong completeness of BK and some of its extensions with respect to a

suitable possible worlds semantics;

• by enriching the propositional version of theGödel–McKinsey–Tarski translation they showed

that N3 and N4 are faithfully embedded into suitable BK-extensions.3

However, so far nothing has been known about the situation in the quantifier case, despite the fact

that constructive theories are formulated exactly in a quantified language. Our goal is to develop a

quantified version of BK, prove the strong completeness theorems for it and some of its extensions

with respect to a suitable possible worlds semantics, and also generalize the result about faithful

embeddings to QN3 and QN4. We shall consider semantics with expanding domains as well as with

constant domains. Furthermore, we shall discuss interpolation properties for QBK-extensions.

1
Here and elsewhere ¬Φ is an abbreviation for Φ → ⊥.

2
We shall assume that the language of N4 includes that of Int, and therefore contains ⊥; a lot of information about

the lattice of extensions of N4 is contained in [13].

3
The lattice of extensions of BK has been actively studied in [14, 15, 16].
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2 Syntax

For simplicity we shall restrict ourselves to signatures without equality and without function sym-

bols.
4
Let σ be a signature. Denote by Predσ and Constσ the sets of all its predicate and constant

symbols respectively. Here and elsewhere we assume that Predσ ̸= ∅.

Fix a countable set Var, whose elements will be called variables. Denote by Termσ the set of all

σ-terms. Thus Termσ = Var ∪ Constσ. Our logical vocabulary will consist of:

• the connective symbols ∧, ∨, →, ⊥, ∼, □ and ♢;

• the quantifier symbols ∀ and ∃.

Denote by Formσ the set of all σ-formulas. For each Φ ∈ Formσ, take

FV (Φ) := {x ∈ Var | x is free in Φ}.

By σ-substitutions we mean functions from Var to Termσ. If FV (Φ) ⊆ {x1, . . . , xn}, then for each

σ-substitution λwe denote by λΦ the result of (simultaneously) replacing all free occurrences of x1,

. . . , xn in Φ by λ (x1), . . . , λ (xn) respectively. In the case when

λ = {(x, t)} ∪ {(y, y) | y ∈ Var and y ̸= x},

where x ∈ Var and t ∈ Termσ, we shall often write Φ (x/t) instead of λΦ. Finally, a σ-substitution
λ is called ground if λ (x) ∈ Constσ for all x ∈ Var.

For convenience we introduce the following abbreviations:

Abbreviation Definition Name
¬Φ Φ → ⊥ weak negation

Φ ↔ Ψ (Φ → Ψ) ∧ (Ψ → Φ) weak equivalence

Φ ⇔ Ψ (Φ ↔ Ψ) ∧ (∼Φ ↔ ∼Ψ) strong equivalence

Denote by Sentσ the set of all σ-sentences, i.e. σ-formulas without free variables. Arbitrary subsets

of Sentσ will be called σ-theories.

As usual, by σ-structures we mean non-empty sets augmented with interpretations for the sym-

bols of σ over them. Let A be an arbitrary σ-structure, A be its domain. For each ε ∈ σ, define

εA := the interpretation of ε in A.

If we expand σ to the signature

σA := σ ∪ {a | a ∈ A},

where a are new constant symbols, then we can pass from A to its σA-expansion A∗
such that

aA
∗
:= a for every a ∈ A.

In this case σA-formulas will be also called A-formulas, and σA-substitutions will be called A-sub-
stitutions. If Φ is a A-sentence, we shall often write A ⊩ Φ instead of A∗ ⊩ Φ.

4
This is due to the fact that in the context of expanding domain semantics some well-known problems related to

equality and function symbols arise; see discussion in [6].
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3 Hilbert-style calculus

Our calculus for a quantified version of BK extends the deductive system for BK from [18]. It

employs the following axiom schemes.

• Axioms for classical logic in the language {∧,∨,→,⊥}:

I1. Φ → (Ψ → Φ);

I2. (Φ → (Ψ → Θ)) → ((Φ → Ψ) → (Φ → Θ));

C1. Φ ∧Ψ → Φ;

C2. Φ ∧Ψ → Ψ;

C3. Φ → (Ψ → Φ ∧Ψ);

D1. Φ → Φ ∨Ψ;

D2. Ψ → Φ ∨Ψ;

D3. (Φ → Θ) → ((Ψ → Θ) → (Φ ∨Ψ → Θ));

N1. ⊥ → Φ;

N2. Φ ∨ (Φ → ⊥);

Q1. ∀xΦ → Φ (x/t), where t is free for x in Φ;

Q2. Φ (x/t) → ∃xΦ, where t is free for x in Φ.

• Axioms for strong negation:

SN1. ∼∼Φ ↔ Φ;

SN2. ∼ (Φ ∧Ψ) ↔ (∼Φ ∨ ∼Ψ);

SN3. ∼ (Φ ∨Ψ) ↔ (∼Φ ∧ ∼Ψ);

SN4. ∼ (Φ → Ψ) ↔ (Φ ∧ ∼Ψ);

SN5. ∼⊥;

SN6. ∼∀xΦ ↔ ∃x∼Φ;

SN7. ∼∃xΦ ↔ ∀x∼Φ.

• Axioms for □:

□1. (□Φ ∧□Ψ) → □ (Φ ∧Ψ);

□2. □ (Φ → Φ).

• Modal interaction axioms:

M1. ¬□Φ ↔ ♢¬Φ;
M2. ¬♢Φ ↔ □¬Φ;
M3. □Φ ⇔ ∼♢∼Φ;

M4. ♢Φ ⇔ ∼□∼Φ.
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It also employs the following inference rules.

• The modus ponens rule, i.e.

Φ Φ → Ψ
(MP).

Ψ

• The monotonicity rules for □ and ♢:

Φ → Ψ
(MB)

□Φ → □Ψ
and

Φ → Ψ
(MD).

♢Φ → ♢Ψ

• The Bernays rules for ∀ and ∃:

Φ → Ψ
(BR1)

Φ → ∀xΨ and
Ψ → Φ

(BR2),∃xΨ → Φ

where x does not occur free in Φ.

Denote by QBKσ the least set of σ-formulas containing all axioms of our calculus (in the signature

σ) and closed under all its inference rules. In what follows, when the choice of σ is not of significant

importance or the whole logic is meant (with no reference to a specific signature), the lower index

·σ will often be dropped.

Proposition 3.1. QBK includes the Kripke scheme

K. □ (Φ → Ψ) → (□Φ → □Ψ).

Furthermore, QBK is closed under the normalization rule

Φ (RN).
□Φ

Proof. The Kripke scheme is obtained in a standard way:

1 (Φ → Ψ) ∧ Φ → Ψ classical logic

2 □ ((Φ → Ψ) ∧ Φ) → □Ψ from 1 by MB

3 □ (Φ → Ψ) ∧□Φ → □ ((Φ → Ψ) ∧ Φ) □1
4 □ (Φ → Ψ) ∧□Φ → □Ψ from 3, 2

5 □ (Φ → Ψ) → (□Φ → □Ψ) from 4.

Now let us check the closedness of QBK under the normalization rule. Suppose that Φ belongs to

QBK. Then □Φ will also belong to QBK:

1 Φ by hypothesis

2 (Φ → Φ) → Φ from 1

3 □ (Φ → Φ) → □Φ from 2 by MB

4 □ (Φ → Φ) □2
5 □Φ from 4, 3.
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For each Γ ⊆ Formσ, define

Disj (Γ) := {Φ1 ∨ · · · ∨ Φn | n ∈ N and {Φ1, . . . ,Φn} ⊆ Γ}.

Here the empty disjunction is identified with⊥. Given Γ ⊆ Sentσ and∆ ⊆ Formσ, we write Γ ⊢ ∆
if and only if some element ofDisj (∆) can be obtained from elements of Γ∪QBKσ by means of MP,

BR1 and BR2.5 Since the modal rules (MB and MD) are not used here, the derivability relation ⊢ has a

local character in the sense that it is intended to preserve truth in specific worlds (see the definition

of the semantical consequence relation in § 4); at the same time, MB and MD will apply globally, i.e.

preserve truth in models, but not in specific worlds of these models. Of course, when ∆ = {Φ}, we
usually write Γ ⊢ Φ instead of Γ ⊢ {Φ}.

Theorem 3.2 ((on deduction)). For any Γ ∪ {Φ} ⊆ Sentσ and Ψ ∈ Formσ,

Γ ∪ {Φ} ⊢ Ψ ⇐⇒ Γ ⊢ Φ → Ψ.6

The proof is similar to the case of classical first-order logic.

Like other logics with strong negation, BK is not closed under the usual replacement rule; see

[18]. Of course, the same will hold for QBK, but to formally justify this fact, we need a suitable

possible world semantics, which will appear only in Section 4. Nevertheless, the ‘positive’ and

‘weak’ replacement rules from [18] can be generalized, without much effort, to the quantifier case.

Theorem 3.3 ((positive replacement rule)). Let {Φ,Ψ,Θ} ⊆ Formσ. Suppose that Φ′ is obtained
from Φ by replacing some occurrences of Ψ by Θ, and none of these occurrences are in the scope of ∼.
Then ⊢ Ψ ↔ Θ implies ⊢ Φ ↔ Φ′.

Proof. We shall restrict ourselves to the cases when Φ begins with ∀ or ∃, because the remaining

cases have actually been considered by S. P. Odintsov and H.Wansing. Furthermore, wemay assume

that Ψ ̸= Φ, since otherwise the statement is trivial.

Suppose Φ = ∀xΩ. Clearly, the part Ω corresponds to Ω′
such that Φ′ = ∀xΩ′

. Then Φ ↔ Φ′
is

derived in a standard way:

1 Ω ↔ Ω′
inductive hypothesis

2 ∀xΩ → Ω Q1

3 ∀xΩ → Ω′
from 2, 1

4 ∀xΩ → ∀xΩ′
from 3 by BR1

5 ∀xΩ′ → ∀xΩ by analogy with 4

6 ∀xΩ ↔ ∀xΩ′
from 4, 5.

Similarly for Φ = ∃xΩ.

For convenience, in what follows we shall denote applications of Theorem 3.3 by PR, from ‘pos-

itive replacement’.

Theorem 3.4 ((weak replacement rule)). Let {Φ,Ψ,Θ} ⊆ Formσ. Suppose that Φ′ is obtained from
Φ by replacing some occurrences of Ψ by Θ. Then ⊢ Ψ ⇔ Θ implies ⊢ Φ ⇔ Φ′.

5
The requirement that Γ consist of sentences is related to standard difficulties in defining Hilbert-style derivations

from sets of formulas with free variables.

6
Since ⊢ has been defined as a relation between sets of sentences and formulas, Φ must contain no free variables.
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Proof. We shall restrict ourselves to the cases when Φ begins with ∼, ∀ or ∃. Furthermore, we may

assume that Ψ ̸= Φ.

Suppose Φ = ∼Ω. Clearly, the part Ω corresponds to Ω′
such that Φ′ = ∼Ω′

. Then Φ ⇔ Φ′
can

be easily derived:

1 Ω ⇔ Ω′
inductive hypothesis

2 Ω ↔ Ω′
from 1

3 ∼∼Ω ↔ Ω SN1

4 Ω′ ↔ ∼∼Ω′ SN1

5 ∼∼Ω ↔ ∼∼Ω′
from 3, 2, 4

6 ∼Ω ↔ ∼Ω′
from 1

7 ∼Ω ⇔ ∼Ω′
from 6, 5.

Suppose Φ = ∀xΩ. So the part Ω corresponds to Ω′
such that Φ′ = ∀xΩ′

. Then Φ ⇔ Φ′
can be

derived in the following way:

1 Ω ⇔ Ω′
inductive hypothesis

2 Ω ↔ Ω′
from 1

3 ∀xΩ ↔ ∀xΩ′
from 2 by PR

4 ∼Ω ↔ ∼Ω′
from 1

5 ∃x∼Ω ↔ ∃x∼Ω′
from 4 by PR

6 ∼∀xΩ ↔ ∃x∼Ω SN6

7 ∃x∼Ω′ ↔ ∼∀xΩ′ SN6

8 ∼∀xΩ ↔ ∼∀xΩ′
from 6, 5, 7

9 ∀xΩ ⇔ ∀xΩ′
from 3, 8.

Similarly for Φ = ∃xΩ.

For convenience, in what follows we shall denote applications of Theorem 3.4 by WR, from ‘weak

replacement’.

Say that a σ-formula Φ is a negation normal form, or an n.n.f. for short, if each occurrence of ∼
in Φ immediately precedes some atomic subformula.

7
Our next goal is to prove a strong version of

the n.n.f. theorem forQBK. Here ‘strong’ indicates that we shall use not↔ (as in [15], for example),

but ⇔ — cf. [19, Proposition 3.1]. On this path what turns out to be useful is:

Proposition 3.5. The following schemes are derivable in QBK:

A1. ∼¬Φ ⇔ ¬¬Φ;

A2. (Φ → Ψ) ⇔ (¬Φ ∨Ψ).8

Proof. A1 First we derive ∼¬Φ → ¬¬Φ:

1 ∼ (Φ → ⊥) ↔ (Φ ∧ ∼⊥) SN3

2 ∼ (Φ → ⊥) → (Φ ∧ ∼⊥) from 1

3 ∼ (Φ → ⊥) → Φ from 2

4 Φ → ¬¬Φ classical logic

5 ∼ (Φ → ⊥) → ¬¬Φ from 3, 4

7
Here ⊥ is treated as an atomic formula.

8
A semantical proof of this fact can be extracted from [18, Section 5]; see also [14, Section 3].
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(remember that ¬Φ is an abbreviation for Φ → ⊥). Now we derive ¬¬Φ → ∼¬Φ:

1 ¬¬Φ → Φ classical logic

2 ∼⊥ SN5

3 ¬¬Φ → (Φ ∧ ∼⊥) from 1, 2

4 (Φ ∧ ∼⊥) ↔ ∼ (Φ → ⊥) SN3

5 ¬¬Φ → ∼ (Φ → ⊥) from 3, 4.

Thus ⊢ ∼¬Φ ↔ ¬¬Φ for all Φ ∈ Formσ. Finally, note that:

1 ∼∼¬Φ ↔ ¬Φ SN4

2 ¬Φ ↔ ¬¬¬Φ classical logic

3 ¬¬¬Φ ↔ ∼¬¬Φ by what has already been proved

4 ∼∼¬Φ ↔ ∼¬¬Φ from 1, 2, 3.

Hence ⊢ ∼¬Φ ⇔ ¬¬Φ for every Φ ∈ Formσ.

A2 Clearly, (Φ → Ψ) ↔ (¬Φ ∨Ψ) can be derived as in classical logic. Let us show the deriv-

ability of ∼ (Φ → Ψ) ↔ ∼ (¬Φ ∨Ψ):

1 ∼ (Φ → Ψ) ↔ (Φ ∧ ∼Ψ) SN3

2 Φ ↔ ¬¬Φ classical logic

3 ¬¬Φ ⇔ ∼¬Φ A1

4 Φ ↔ ∼¬Φ from 3, 4

5 (Φ ∧ ∼Ψ) ↔ (∼¬Φ ∧ ∼Ψ) from 4 by PR

6 (∼¬Φ ∧ ∼Ψ) ↔ ∼ (¬Φ ∨Ψ) SN3

7 ∼ (Φ → Ψ) ↔ ∼ (¬Φ ∨Ψ) from 1, 5, 6.

For each S ∈ {SN1, SN2, SN3, SN6, SN7, M1, M2} denote by S∗ the scheme obtained from S by

replacing ↔ by⇔.

Lemma 3.6. SN1∗, SN2∗, SN3∗, M1∗ and M2∗ are derivable in QBK.9

Proof. SN1∗ Obviously, ∼∼∼Φ ↔ ∼Φ belongs to QBK (as a special case of SN1).

SN2∗ Let us show that ∼∼ (Φ ∧Ψ) ↔ ∼ (∼Φ ∨ ∼Ψ) belongs to QBK:

1 ∼∼ (Φ ∧Ψ) ↔ (Φ ∧Ψ) SN1

2 Φ ↔ ∼∼Φ SN1

3 (Φ ∧Ψ) ↔ (∼∼Φ ∧Ψ) from 2 by PR

4 Ψ ↔ ∼∼Ψ SN1

5 (∼∼Φ ∧Ψ) ↔ (∼∼Φ ∧ ∼∼Ψ) from 4 by PR

6 (∼∼Φ ∧ ∼∼Ψ) ↔ ∼ (∼Φ ∨ ∼Ψ) SN3

7 ∼∼ (Φ ∨Ψ) ↔ ∼ (∼Φ ∧ ∼Ψ) from 1, 3, 5, 6.

SN3∗ This case is similar to that of SN2∗.

M1∗ Let us show that ∼¬□Φ ↔ ∼♢¬Φ belongs to QBK:

9
A semantical proof of this fact can be extracted from [18, Section 5]; see also [14, Section 3].
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1 ∼¬□Φ ↔ ¬¬□Φ A1

2 ¬□Φ ↔ ♢¬Φ M1

3 ¬¬□Φ ↔ ¬♢¬Φ from 1 by PR

4 ¬♢¬Φ ↔ □¬¬Φ M2

5 ¬¬Φ ↔ ∼¬Φ A1

6 □¬¬Φ ↔ □∼¬Φ from 5 by PR

7 □∼¬Φ ↔ ∼∼□∼¬Φ SN1

8 ∼□∼¬Φ ⇔ ♢¬Φ M4

9 ∼∼□∼¬Φ ↔ ∼♢¬Φ from 8

10 ∼¬□Φ ↔ ∼♢¬Φ from 1, 3, 4, 6, 7, 9.

M2∗ This case is similar to that of M1∗.

Lemma 3.7. SN6∗ and SN7∗ are derivable in QBK.

Proof. SN6∗ Let us show that ∼∼∀xΦ ↔ ∼∃x∼Φ belongs to QBK:

1 ∼∼∀xΦ ↔ ∀xΦ SN1

2 Φ ↔ ∼∼Φ SN1

3 ∀xΦ ↔ ∀x∼∼Φ from 2 by PR

4 ∀x∼∼Φ ↔ ∼∃x∼Φ SN7

5 ∼∼∀xΦ ↔ ∼∃x∼Φ from 1, 3, 4.

SN7∗ This case is similar to that of SN6∗.

At the same time, we cannot replace↔ in SN4 by⇔ (this can be formally justified by means of

a suitable possible world semantics). However, instead of SN4 one can employ the formula scheme

∼ (Φ → Ψ) ⇔ (¬¬Φ ∧ ∼Ψ) , (SN4′)

which is not hard to obtain by using the above results:

1 (Φ → Ψ) ⇔ (¬Φ ∨Ψ) A2

2 ∼ (Φ → Ψ) ⇔ ∼ (¬Φ ∨Ψ) from 1 by WR

3 ∼ (¬Φ ∨Ψ) ⇔ (∼¬Φ ∧ ∼Ψ) SN3∗

4 ∼¬Φ ⇔ ¬¬Φ A1

5 (∼¬Φ ∧ ∼Ψ) ⇔ (¬¬Φ ∧ ∼Ψ) from 4 by WR

6 ∼ (Φ → Ψ) ⇔ (¬¬Φ ∧ ∼Ψ) from 2, 3, 5.

Now we are ready to establish the following.

Theorem3.8 ((on negation normal form, strong version)). For every σ-formulaΦ there exists an n.n.f.
Φ such that Φ ⇔ Φ ∈ QBKσ. Moreover, there is an algorithm that constructs, given any σ-formula Φ,
a suitable n.n.f. Φ.

Proof. By an easy induction on the complexity ofΦ, where we use the rule WR and the schemes SN1∗,

SN2∗, SN3∗, SN4′, SN6∗, SN7∗, M3 and M4. Here it is convenient to rewrite M3 and M4 as:

M3′. ∼□Φ ⇔ ♢∼Φ;
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M4′. ∼♢Φ ⇔ □∼Φ.

Remark 3.9. For Nelson’s constructive logics (propositional or quantified), the analogue of The-

orem 3.8 does not hold: there the implication connective has a much more complex, intuitionistic

character, and we can obtain only a weak version of the n.n.f. theorem.

Finally, by QBK-extensions we mean supersets of QBK closed under formula substitutions and

all the inference rules (including the modal ones).
10
Given a QBK-extension L, define

Γ ⊢L ∆ :⇐⇒ L ∪ Γ ⊢ ∆.

IfL is aQBK-extension, and S1, . . . , Sn are formula schemes, thenwe shall denote byL+{S1, . . . , Sn}
the least QBK-extension containing L and all the substitution instances of S1, . . . , Sn. In fact, all

these notions formally depend on the choice of σ, but it will always be clear from the context which

signature we are talking about, or we shall explicitly write Lσ instead of L.

It is not hard to see that the results of the present section will remain true if we replace QBK by

an arbitrary QBK-extension in their formulations.

4 Possible world semantics

As usual, by a frame is meant an ordered pair of the form W = ⟨W,R⟩, where W is a non-empty

set, whose elements are called possible worlds, and R is a binary relation on W . Given a frame W
and two families of σ-structures

A + = ⟨A+
w : w ∈ W ⟩ and A − = ⟨A−

w : w ∈ W ⟩,

the corresponding triple

M = ⟨W ,A +,A −⟩

is called a QBKσ-model if for any u, v ∈ W :

• A+
u = A−

u ;

• cA
+
u = cA

−
u
for all c ∈ Constσ;

• uRv implies A+
u ⊆ A+

v ;

• uRv implies cA
+
u = cA

+
v
for all c ∈ Constσ.

Here A+
u and A−

u are the domains of σ-structures A+
u and A−

u respectively. We shall usually write

Au instead of A+
u (which coincides with A−

u ) and cAu
instead of cA

+
u
(which coincides with cA

−
u
).

Nevertheless, it is worth remembering that the interpretations of the symbols of Predσ in A+
u and

A−
u may differ significantly.

Let M be a QBKσ-model. In what follows R (u) will denote {v ∈ W | uRv}, i.e. the image of

{u} under R. For any w ∈ W and Aw-sentense Φ we define

M, w ⊩+ Φ and M, w ⊩− Φ

10
A rigorous definition of what it means for a set of formulas to be closed under formula substitutions can be found

in [6, Chapter 2].
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by induction on the complexity of Φ:

M, w ⊩+ P (t1, . . . , tn) ⇐⇒ A+
w ⊩ P (t1, . . . , tn) ;

M, w ⊩− P (t1, . . . , tn) ⇐⇒ A−
w ⊩ P (t1, . . . , tn) ;

M, w ⊩+ Ψ ∧Θ ⇐⇒ M, w ⊩+ Ψ and M, w ⊩+ Θ;

M, w ⊩− Ψ ∧Θ ⇐⇒ M, w ⊩− Ψ or M, w ⊩− Θ;

M, w ⊩+ Ψ ∨Θ ⇐⇒ M, w ⊩+ Ψ or M, w ⊩+ Θ;

M, w ⊩− Ψ ∨Θ ⇐⇒ M, w ⊩− Ψ and M, w ⊩− Θ;

M, w ⊩+ Ψ → Θ ⇐⇒ M, w ⊮+ Ψ or M, w ⊩+ Θ;

M, w ⊩− Ψ → Θ ⇐⇒ M, w ⊩+ Ψ and M, w ⊩− Θ;

M, w ⊩+ ⊥ ⇐⇒ 0 ̸= 0;

M, w ⊩− ⊥ ⇐⇒ 0 = 0;

M, w ⊩+ ∼Ψ ⇐⇒ M, w ⊩− Ψ;

M, w ⊩− ∼Ψ ⇐⇒ M, w ⊩+ Ψ;

M, w ⊩+ □Ψ ⇐⇒ M, w ⊩+ Ψ for all u ∈ R (w);

M, w ⊩− □Ψ ⇐⇒ M, w ⊩− Ψ for some u ∈ R (w);

M, w ⊩+ ♢Ψ ⇐⇒ M, w ⊩+ Ψ for some u ∈ R (w);

M, w ⊩− ♢Ψ ⇐⇒ M, w ⊩− Ψ for all u ∈ R (w);

M, w ⊩+ ∀xΨ ⇐⇒ M, w ⊩+ Ψ(x/a) for all a ∈ Aw;

M, w ⊩− ∀xΨ ⇐⇒ M, w ⊩− Ψ(x/a) for some a ∈ Aw;

M, w ⊩+ ∃xΨ ⇐⇒ M, w ⊩+ Ψ(x/a) for some a ∈ Aw;

M, w ⊩− ∃xΦ ⇐⇒ M, w ⊩− Ψ(x/a) for all a ∈ Aw.

In particular, we always have M, w ⊮+ ⊥ and M, w ⊩− ⊥. Informally, ⊩+
is responsible for

verifiability, and ⊩−
is for falsifiability. When it is clear from the context which model M we are

talking about, we write w ⊩◦ Φ instead of M, w ⊩◦ Φ, where ◦ ∈ {+,−}. Finally, the notation

W ⊩ Φmeans thatM, w ⊩+ λΦ for anyQBKσ-modelM based onW ,w ∈ W andAw-substitution

λ.

The semantics for QBK, as well as its propositional version from [17], is locally four-valued.

More precisely, four situations are potentially possible:

1. M, w ⊩+ Φ and M, w ⊮− Φ;

2. M, w ⊮+ Φ and M, w ⊩− Φ;

3. M, w ⊮+ Φ and M, w ⊮− Φ;

4. M, w ⊩+ Φ and M, w ⊩− Φ.

The first situation corresponds to the value ‘true’, the second is for ‘false’, the third is for ‘undefined’,

and the fourth is for ‘overdefined’.

Remark 4.1. Models for QBK may be viewed as ‘modalized’ versions of models for the quantified

Belpan–Dunn logic; cf. [21]. Although the language of the latter does not contain ⊥ and →, they

can be easily added; see [17, Section 4].
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Let Γ ⊆ Sentσ and ∆ ⊆ Formσ. Say that ∆ follows semantically from Γ, and write Γ ⊨ ∆, if for

any QBKσ-modelM = ⟨W ,A +,A −⟩, w ∈ W and ground Aw-substitution λ,

M, w ⊩+ Φ for all Φ ∈ Γ =⇒ M, w ⊩+ λΨ for some Ψ ∈ ∆.

By analogy with ⊢, when ∆ = {Φ}, we usually write Γ ⊨ Φ instead of Γ ⊨ {Φ}. We shall call a

σ-formula Φ valid if ⊨ Φ. As is easily verified, the following semantic analogue of the deduction

theorem holds.

Theorem 4.2. For any Γ ∪ {Φ} ⊆ Sentσ and Ψ ∈ Formσ,

Γ ∪ {Φ} ⊨ Ψ ⇐⇒ Γ ⊨ Φ → Ψ.

Our next goal is to show that QBK is sound with respect to the above semantics.

Lemma 4.3. For every Φ ∈ Formσ,
⊢ Φ =⇒ ⊨ Φ.

In other words, the derivability of a σ-formula implies its validity.

Proof. Suppose that ⊢ Φ, i.e. there exists a finite sequence

Φ0, Φ1, . . . , Φn = Φ

of σ-formulas such that for each i ∈ {0, . . . , n} one of the following conditions is satisfied:

a. Φi is an axiom;

b. Φi is obtained from previous Φj and Φk by MP;

c. Φi is obtained from a previous Φj by MB or MD;

d. Φi is obtained from a previous Φj by the rule BR1 or BR2.

LetM be a QBKσ-model. By induction on i, we shall establish thatM, w ⊩+ λ (Φi) for all w ∈ W
and ground Aw-substitutions λ.

If Φi is an axiom of classical logic, then we can argue as in classical first-order logic.

If Φi is a ‘propositional’ axiom for strong negation, then we can argue as in BK; see [18, Sec-

tion 4]. For example, let Φi be an axiom of type SN4, i.e. of the form

∼ (Ψ → Θ) ↔ (Ψ ∧ ∼Θ).

We need to show that for any w ∈ W and ground Aw-substitution λ,

w ⊩+ λ∼ (Ψ → Θ) ⇐⇒ w ⊩+ λ (Ψ ∧ ∼Θ).

This is done as follows:

w ⊩+ λ∼ (Ψ → Θ) ⇐⇒ w ⊩+ ∼ (λΨ → λΘ)

⇐⇒ w ⊩− λΨ → λΘ

⇐⇒ w ⊩+ λΨ and w ⊩− λΘ

⇐⇒ w ⊩+ λΨ and w ⊩+ ∼λΘ

12



⇐⇒ w ⊩+ λΨ ∧ ∼λΘ

⇐⇒ w ⊩+ λ (Ψ ∧ ∼Θ).

Next, consider the ‘quantifier’ axioms for strong negation. Let Φi be an axiom of type SN6, i.e. of the

form

∼∀xΨ ↔ ∃x∼Ψ.

We need to show that for any w ∈ W and ground Aw-substitution λ,

w ⊩ λ∼∀xΨ ⇐⇒ w ⊩ λ∃x∼Ψ.

This is done as follows:

w ⊨ λ∼∀xΨ ⇐⇒ w ⊩+ ∼∀xλx
xΦ

⇐⇒ w ⊩− ∀xλx
xΦ

⇐⇒ w ⊩− (λx
xΦ) (x/a) for some a ∈ Aw

⇐⇒ w ⊩+ ∼ (λx
xΦ) (x/a) for some a ∈ Aw

⇐⇒ w ⊩+ ∃x∼λx
xΦ

⇐⇒ w ⊩+ λ∃x∼Ψ,

where λx
x denotes (λ \ {(x, λ (x))}) ∪ {(x, x)}. Similarly for SN7.

If Φi is either an axiom for □ or a modal interaction axiom, then we can argue as in BK.

If Φi is obtained from previous Φj and Φk by MP, BR1 or BR2, then we can argue as in classical

predicate logic, and ifΦi is obtained from a previousΦj by MB or MD, then we can argue as in BK.

Theorem 4.4 ((on the soundness of QBK)). For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢ ∆ =⇒ Γ ⊨ ∆.

Proof. Suppose that Γ ⊢ ∆. So there will be a finite Λ ⊆ Γ and Φ ∈ Disj (∆) such that Λ ⊢ Φ. We

consider two cases separately:

• Assume Λ = ∅. Then ⊨ Φ by Lemma 4.3, whence Γ ⊨ ∆.

• Assume Λ = {Ψ0, . . . ,Ψn}. So Ψ0 ∧ . . . ∧Ψn ⊢ Φ, which is equivalent to

⊢ Ψ0 ∧ . . . ∧Ψn → Φ

by Theorem 3.2. Then ⊨ Ψ0 ∧ . . . ∧Ψn → Φ by Lemma 4.3, which is equivalent to

Ψ0 ∧ . . . ∧Ψn ⊨ Φ

by Theorem 4.2. Hence Γ ⊨ ∆.

Let L be a QBK-extension. Denote by ⊨L the relativization of ⊨ to the class of frames

KL := {W | W ⊩ Φ for all Φ ∈ L}.

It is easy to see that the results of the present section will remain true if we replace ⊢ by ⊢L and ⊨
by ⊨L in their formulations, where L is an arbitrary QBK-extension.
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5 Strong completeness theorem

We shall call a σ-theory Γ saturated if:

• Γ ̸= Sentσ;

• {Φ ∈ Sentσ | Γ ⊢ Φ} ⊆ Γ;

• Φ ∨Ψ ∈ Γ implies Φ ∈ Γ or Ψ ∈ Γ;

• ∃xΦ ∈ Γ implies Φ (x/c) ∈ Γ for some c ∈ Constσ.

Here the first two conditions are responsible for being non-trivial and deductively closed, and the

third and fourth are for having the ‘disjunctive’ and ‘existential’ properties. Moreover, saturated

theories enjoy two other useful properties:

Proposition 5.1. Let Γ be a saturated σ-theory. Then:

i. for every Φ ∈ Formσ we have either Φ ∈ Γ or ¬Φ ∈ Γ;

ii. if Φ (x/c) ∈ Γ for all c ∈ Constσ, then ∀xΦ ∈ Γ.

The proof is similar to the case of classical first-order logic.

For any set S, take
σS := σ ∪ {s | s ∈ S},

where all s’s are new constant symbols.

Lemma 5.2. Let Γ ⊆ Sentσ and ∆ ⊆ Formσ be such that Γ ⊬ ∆. Then for each set S of cardinality
|Sentσ| there exists a saturated σS-theory Γ′ ⊇ Γ such that Γ′ ⊬ ∆.

The proof is similar to the case of classical first-order logic.

Now fix some set S⋆
of cardinality |Sentσ|. It will play the role of a ‘potential’ universe in our

canonical model for QBKσ. We shall call S ⊆ S⋆ admissible if |S⋆ \ S| = |S⋆|.

Lemma 5.3. Let S ⊆ S⋆ be admissible, and let Γ ⊆ SentσS
and ∆ ⊆ FormσS

be such that Γ ⊬ ∆.
Then there exist an admissible S ′ ⊇ S and a saturated σS′-theory Γ′ ⊇ Γ such that Γ′ ⊬ ∆.

Proof. Since |S⋆ \ S| = |Sentσ|, we can find an admissible S ′ ⊇ S such that

|S ′ \ S| = |Sentσ|.

Moreover, we have |Sentσ| = |SentσS
|, because |S| ⩽ |Sentσ|. It remains to apply Lemma 5.2 with

σ := σS and S := S ′ \ S.

Lemma 5.4. Let S ⊆ S⋆ be admissible, and let Γ ⊆ SentσS
and ∆ ⊆ FormσS

be such that Γ ⊬ ∆.
Then there exists a saturated σS⋆-theory Γ′ ⊇ Γ such that Γ′ ⊬ ∆.

Proof. We just need to apply Lemma 5.2 with σ := σS and S = S⋆ \ S.
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Finally, we are ready to adapt the method of canonical models for QBK and its extensions. In-

formally speaking, we need to combine the canonical model for BK from [18, Section 4] and the

canonical model for classical quantified modal logic (see [6, Section 6]) in a natural way. We shall

sometimes drop the index σ, but it will always be clear from the context which signature we are

talking about. For any set S, let

SatS := the collection of all saturated σS-theories.

In addition, for an arbitrary set Γ of formulas, denote by Const (Γ) the collection of all constant

symbols that occur in elements of Γ. Note that for each Γ in SatS we shall have Const (Γ) =
ConstσS

: obviously, ConstσS
includes Const (Γ); on the other hand, for every c ∈ ConstσS

we can

easily construct Ψc ∈ QBKσS
∩ SentσS

such that c occurs in Ψc, and hence we have ConstσS
⊆

Const (Γ) (in view of QBKσS
⊆ Γ). Next, with any saturated σS-theory Γ we associate two σS-

structures

(
AS

Γ

)+
and

(
AS

Γ

)−
with the same domain

AS
Γ := Const (Γ)

such that all constant symbols of σS are interpreted as themselves in these structures, and for every

atomic σS-sentence Φ: (
AS

Γ

)+
⊩ Φ :⇐⇒ Φ ∈ Γ,(

AS
Γ

)−
⊩ Φ :⇐⇒ ∼Φ ∈ Γ.

Denote by A+
Γ and A−

Γ the σ-reducts of
(
AS

Γ

)+
and

(
AS

Γ

)−
respectively. Clearly, every AΓ-sentence

has the form

Φ
(
x1/c1, . . . , xn/cn

)
,

where {c1, . . . , cn} ⊆ Const (Γ); therefore, for convenience, we shall often identify it with the σS-

sentence Φ (x1/c1, . . . , xn/cn). Now take

WQBK :=
⋃

{SatS | S is an admissible subset of S⋆}.

By the canonical frame forQBKwemean a frameWQBK = ⟨WQBK, RQBK⟩, where the relationRQBK

is defined in a standard way:

RQBK :=
{
(Γ,∆) ∈ WQBK ×WQBK | Γ□ ⊆ ∆

}
.11

The canonical model for QBK is

MQBK = ⟨WQBK,
(
A QBK

)+
,
(
A QBK

)−⟩,
where (

A QBK
)+

:= ⟨A+
Γ : Γ ∈ WQBK⟩,(

A QBK
)−

:= ⟨A−
Γ : Γ ∈ WQBK⟩.

As we shall verify shortly, this construction is correct.

Lemma 5.5. MQBK is a QBK-model.
11
As usual, given Γ ⊆ Sentσ , we denote {Φ | □Φ ∈ Γ} by Γ□.
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Proof. Suppose that ΓRQBK∆. Let σS be the signature of Γ. Clearly, for every c ∈ ConstσS
we

can construct Ψc ∈ QBKσS
∩ SentσS

such that c occurs in Ψc; then □Ψc ∈ QBKσS
∩ SentσS

(by

RN), and therefore □Ψc ∈ Γ, whence we obtain Ψc ∈ ∆. As a consequence, Const (∆) includes
Const (Γ), which coincides withConstσS

. Furthermore, the interpretation of the symbols ofConstσ
will, obviously, be preserved when passing from A+

Γ to A+
∆.

A key role in the proof of the strong completeness theorem is played by:

Lemma 5.6 ((on the canonical model for QBK)). For any Γ ∈ WQBK and AΓ-sentence Φ:

MQBK,Γ ⊩+ Φ ⇐⇒ Φ ∈ Γ;

MQBK,Γ ⊩− Φ ⇐⇒ ∼Φ ∈ Γ.

Proof. By induction on the complexity of Φ.

The case when Φ is atomic is trivial.

Suppose Φ = ∃xΨ. Let us look at verification first:

MQBK,Γ ⊩+ ∃xΨ ⇐⇒ MQBK,Γ ⊩+ Ψ(x/a) for some a ∈ Const (Γ)

⇐⇒ Ψ(x/a) ∈ Γ for some a ∈ Const (Γ)

⇐⇒ ∃xΨ ∈ Γ.

Here the last equivalence requires explanation: the direct implication is obtained by using Q2, and

the converse employs the existential property. Now let us look at falsification:

MQBK,Γ ⊩− ∃xΨ ⇐⇒ MQBK,Γ ⊩− Ψ(x/a) for all a ∈ Const (Γ)

⇐⇒ ∼Ψ(x/a) ∈ Γ for all a ∈ Const (Γ)

⇐⇒ ∀x ∼Ψ ∈ Γ

⇐⇒ ∼∃xΨ ∈ Γ.

In the third equivalence, the direct implication is obtained by using Q1, and the converse uses Propo-

sition 5.1 (ii); the last equivalence is guaranteed by SN7.

Similarly for Φ = ∀xΨ.

The remaining cases are handled as in BK (see [18, Section 4] or [17, Section 2]), although we

need to use Lemma 5.3 instead of the propositional version of the extension lemma.

Theorem 5.7 ((on the strong completeness of QBK)). For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢ ∆ ⇐⇒ Γ ⊨ ∆.

Proof. =⇒ See Theorem 4.4.

⇐= Suppose that Γ ⊬ ∆. Fix some admissible S ⊆ S⋆
of cardinality ℵ0 (thus |S| = |Var|). Let

λ be a one-one function from Var onto {s | s ∈ S}. Take

∆′ := {λΨ | Ψ ∈ ∆}.

It is easy to verify that Γ ⊬ ∆′
. By Lemma 5.3 (with σ := σS and S := S⋆ \ S), there will be

Γ′ ∈ WQBK
such that Γ ⊆ Γ′

and Γ′ ⊬ ∆′
. Clearly, λ may be viewed as a ground AΓ′-substitution.

So by Lemma 5.6, we have MQBK,Γ′ ⊩ Φ for all Φ ∈ Γ and also MQBK,Γ′ ⊮ λΨ for all Ψ ∈ ∆.

Hence Γ ⊭ ∆.
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LetL be aQBK-extension. Then the canonical frame forL and the canonical model forL, denoted
byWL

andML
respectively, can be defined in the same way as for QBK, but with SatS replaced by

SatLS := {Γ ∈ SatS | L ∩ SentσS
⊆ Γ}.

Further, as is easy to understand, the analogue of Lemma 5.6 for Lwill hold. However, the analogue

of Theorem 5.7 may fail if there are non-canonical models based on WL
in which formulas from L

are refuted, i.e. whenWL
does not belong to KL.

6 Some natural extensions

Using a variant of the canonicalmodelmethod from the previous section, it is not difficult to establish

the strong completeness of some naturalQBK-extensions (cf. [18, Section 4]). Here we shall consider
two basic types of such extensions:

i. those obtained by excluding ‘undefined’ or ‘overdefined’;

ii. those obtained by imposing additional restrictions — expressed by means of modal formulas

— on accessibility relations in frames.

We start with extensions of type (i). At the axiomatic level, the following axiom schemes correspond

to excluding ‘overdefined’ or ‘undefined’:

Exp. ∼Φ → (Φ → Ψ);

ExM. Φ ∨ ∼Φ.

Here Exp is an abbreviation for ‘explosion’, and ExM is for ‘excludedmiddle’. In fact, it suffices to have

Exp and ExM for all atomicΦ andΨ; furthermore, Expwill be equivalent to the scheme ‘∼Φ → ¬Φ’.
Let

QBK◦ := QBK+ {ExM} and QB3K := QBK+ {Exp}.

A QBKσ-modelM = ⟨W ,A +,A −⟩ will be called:

• a QB3Kσ-model if for any w ∈ W and atomic Aw-sentence Φ,

A+
w ⊮ Φ or A−

w ⊮ Φ;

• a QBK◦
σ-model if for any w ∈ W and atomic Aw-sentence Φ,

A+
w ⊩ Φ or A−

w ⊩ Φ.

Denote by ⊨3
QBK and ⊨◦

QBK the relativizations of ⊨ to the corresponding classes of models. It is worth

noting that we avoid the notations ⊨QB3K and ⊨QBK◦ , since otherwise there will arise a conflict with

how ⊨L was defined in Section 4.

Theorem 6.1. For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢QB3K ∆ ⇐⇒ Γ ⊨3
QBK ∆.
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Proof. =⇒ Here the argument is similar to the proof of Theorem 4.4. In the present case the

verifiability of Exp in all QB3Kσ-models is established by an easy induction on the complexity of Φ.

⇐= First we check thatMQB3K
is a QB3Kσ-model. Let Γ ∈ WQB3K

and σS be the signature of

Γ. Consider an arbitrary atomic AΓ-sentence Φ; it can also be viewed as a σS-sentence. Assume, by

way of contradiction, that A+
Γ ⊩ Φ and A−

Γ ⊩ Φ, i.e.

MQB3K,Γ ⊩+ Φ and MQB3K,Γ ⊩− Φ.

By the analogue of Lemma 5.6 for QB3K, this is equivalent to Φ ∈ Γ and ∼Φ ∈ Γ. At the same

time we have ∼Φ → (Φ → Ψ) ∈ Γ for all Ψ ∈ SentσS
. Hence we easily get Γ = SentσS

— a

contradiction. Then one can argue as in the proof of Theorem 5.7.

Theorem 6.2. For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢QBK◦ ∆ ⇐⇒ Γ ⊨◦
QBK ∆.

The proof is similar to the proof of Theorem 6.1.

Now we proceed by considering extensions of type (ii). For each such extension L we shall

assume that:

a. WL
belongs to KL, i.e.WL ⊩ Φ for all Φ ∈ L;

b. for every frameW = ⟨W,R⟩,

W ∈ KL ⇐⇒ R has certain properties.

Then the strong completeness theorem for L can be obtained in the same way as for QBK. As an
illustration, consider three axiom schemes:

D. □Φ → ♢Φ;

T. □Φ → Φ;

4. □Φ → □□Φ.

As in classical modal logic, it is easy to show the following.

• D, T and 4 express seriality, reflexivity and transitivity respectively, i.e. for every frame W =
⟨W,R⟩:

W ⊩+ D ⇐⇒ R is serial;

W ⊩+ T ⇐⇒ R is reflexive;

W ⊩+ 4 ⇐⇒ R is transitive.

• For any QBK-extension L:

L includes D =⇒ RL
is serial;

L includes T =⇒ RL
is reflexive;

L includes 4 =⇒ RL
is transitive.
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Let us introduce some related notation:

QBD := QBK+ {D}, QBT := QBK+ {T}, QBK4 := QBK+ {4},

QBD4 := QBK+ {D, 4} and QBS4 := QBK+ {T, 4}.

In addition, for convenience, we denote by L the collection of all these logics.

Theorem 6.3. Let L ∈ L . Then for any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢L ∆ ⇐⇒ Γ ⊨L ∆.

The proof is similar to the proof of Theorem 5.7 (taking into account the above remarks).

Of course, the two types of extension can be combined. For example, take

QB3S4 := QBS4+ {Exp}.

Hence ‘undefined’ must be excluded in QB3S4-models (as in QB3K), and the accessibility relations

must be preorderings (as in QBS4). Denote by ⊨3
QBS4 the relativization of ⊨ to the models of this

kind. Clearly, MQB3S4
will turn out to be a QB3S4-model. So ⊢QB3S4 will coincide with ⊨3

QBS4, i.e.

the completeness theorem for QB3S4 will hold.

The logicsQBS4 andQB3S4will play an important role in Section 8, which is devoted to faithful

embeddings of Nelson’s quantified logics.

7 Constant domain variant

Consider the following two variants of the Barcan scheme:

Ba□. ∀x□Φ → □∀xΦ;

Ba♢. ♢∃xΦ → ∃x♢Φ.

Note that the scheme corresponding to the converse to Ba□ is derivable in QBK:

1 ∀xΦ → Φ Q1

2 □∀xΦ → □Φ from 1 by MD

3 □∀xΦ → ∀x□Φ from 2 by BR1.

The converse scheme for Ba♢ is obtained similarly. Denote

QBK♯
□ := QBK+ {Ba□} and QBK♯

♢ := QBK+ {Ba♢}.

Although the proof of the proposition below is exactly similar to the case of classical quantified

modal logic, we provide it for expository purposes.

Proposition 7.1. QBK♯
□ and QBK♯

♢ coincide.

Proof. Let us show that Ba♢ is derivable in QBK♯
□:
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1 ∀x□¬Φ → □∀x¬Φ Ba□

2 ¬□∀x¬Φ → ¬∀x□¬Φ from 1

3 ♢¬∀x¬Φ ↔ ¬□∀x¬Φ M1

4 ∃xΦ ↔ ¬∀x¬Φ classical logic

5 ♢∃xΦ ↔ ♢¬∀x¬Φ from 4 by PR

6 ¬∀x□¬Φ ↔ ∃x¬□¬Φ classical logic

7 ¬□¬Φ ↔ ♢¬¬Φ M1

8 ¬¬Φ ↔ Φ classical logic

9 ♢¬¬Φ ↔ ♢Φ from 8 by PR

10 ¬□¬Φ ↔ ♢Φ from 7, 9

11 ∃x¬□¬Φ ↔ ∃x♢Φ from 10 by PR

12 ♢∃xΦ → ∃x♢Φ from 5, 3, 2, 6, 11.

In a similar way, one can show that Ba□ is derivable in QBK♯
♢.

In what follows we shall write QBK♯
instead of QBK♯

□ and QBK♯
♢, and also ⊢♯

instead of ⊢QBK♯ .

Furthermore, we shall restrict ourselves to at most countable signatures, since dealing with uncount-

able signatures gives rise to some problems even for the variant of QK with constant domains; cf.

[6, Lemma 7.1.2], where the proof makes significant use of the countability of the signature.

We shall call a QBKσ-model M = ⟨W ,A +,A −⟩ a QBK♯
σ-model if Au = Av for all u, v ∈ W .

In other words, QBK♯
σ-models are QBKσ-models with constant domains. In fact, the Barcan scheme

only guarantees that for any u, v ∈ W ,

u R v =⇒ Av = Au.

However, this is not crucial, since for a given u ∈ W one can always pass to the generated submodel

whose set of worlds is R (u). Denote by ⊨♯
the relativization of ⊨ to the class of all QBK♯

σ-models.

Theorem 7.2 ((on the soundness of QBK♯
σ)). For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢♯ ∆ =⇒ Γ ⊨♯ ∆.

The proof is similar to the proof of Theorem 4.4. In the present case the verifiability of Ba□ (or

Ba♢) in all QBK♯
σ-models is established as in classical quantified modal logic.

As in Section 5, fix some set S⋆
of cardinality |Sentσ|. For brevity, we shall write σ⋆ instead of

σS⋆ . Take

W ♯ := the collection of all saturated σ⋆-theories.

Obviously, Const (Γ) = Constσ⋆ for all Γ ∈ W ♯
. By the canonical frame for QBK♯

and the canonical
model for QBK♯

we mean

W♯ = ⟨W ♯, R♯⟩ and M♯ = ⟨W♯,
(
A ♯

)+
,
(
A ♯

)−⟩,
where the components R♯

,

(
A ♯

)+
and

(
A ♯

)−
are defined in the same way as RQBK

,

(
A QBK

)+
and(

A QBK
)−

, but with WQBK
replaced byW ♯

.

Lemma 7.3. For any Γ ∈ W ♯ and Φ ∈ Sentσ⋆ :

□Φ ∈ Γ ⇐⇒ for every ∆ ∈ W ♯, if Γ□ ⊆ ∆, then Φ ∈ ∆;

♢Φ ∈ Γ ⇐⇒ there exists ∆ ∈ W ♯ such that Γ□ ⊆ ∆ and Φ ∈ ∆.
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The proof is exactly similar to the case of classical quantified modal logic; see, for example, [6,

Lemma 7.1.2].

From this we easily obtain:

Lemma 7.4 ((on the canonical model for QBK♯
)). For any Γ ∈ W ♯ and AΓ-sentence Φ:

M♯,Γ ⊩+ Φ ⇐⇒ Φ ∈ Γ;

M♯,Γ ⊩− Φ ⇐⇒ ∼Φ ∈ Γ.

Proof. By induction on the complexity of Φ.

Of course, since all worlds deal with the same domain Constσ⋆ , we cannot use Lemma 5.3. How-

ever, the cases whenΦ does not begin with□ or♢ are handled as in the proof of Lemma 5.6 (because

they do not require Lemma 5.3).

SupposeΦ = □Ψ. Obviously, the equivalence for⊩+
follows from Lemma 7.3 (and the inductive

hypothesis). Let us now look at falsification:

M♯,Γ ⊩− □Ψ ⇐⇒ there exists ∆ ∈ W ♯
such that

Γ□ ⊆ ∆ and M♯,∆ ⊩− Ψ

⇐⇒ there exists ∆ ∈ W ♯
such that

Γ□ ⊆ ∆ and ∼Ψ ∈ ∆

⇐⇒ ♢∼Ψ ∈ Γ

⇐⇒ ∼□Ψ ∈ Γ.

Here the third equivalence is guaranteed by Lemma 7.3, and the latter follows from the fact that

♢∼Ψ ⇔ ∼□Ψ is derivable in QBK:

1 ♢∼Ψ ⇔ ∼□∼∼Ψ M4

2 ∼∼Ψ ⇔ Ψ SN1∗

3 ∼□∼∼Ψ ⇔ ∼□Ψ from 2 by WR

4 ♢∼Ψ ⇔ ∼□Ψ from 1, 3.

Similarly for Φ = ♢Ψ.

Theorem 7.5 ((on the strong completeness of QBK♯
)). For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢♯ ∆ ⇐⇒ Γ ⊨♯ ∆.

Proof. =⇒ See Theorem 7.2.

⇐= Suppose that Γ ⊬♯ ∆. Fix some admissible S ⊆ S⋆
of cardinality ℵ0. Let λ be a one-one

function from Var onto {s | s ∈ S}. Take

∆′ := {λΨ | Ψ ∈ ∆}.

Clearly, Γ ⊬♯ ∆′
. By Lemma 5.4, there will be Γ′ ∈ W ♯

such that Γ ⊆ Γ′
and Γ′ ⊬♯ ∆′

. Obviously,

λ can be viewed as a ground AΓ′-substitution. So by Lemma 7.4, we have M♯,Γ′ ⊩ Φ for all Φ ∈ Γ
and also M♯,Γ′ ⊮ λΨ for all Ψ ∈ ∆. Hence Γ ⊭♯ ∆.

Of course, by analogy with QBK, we may consider various natural extensions of QBK♯
. In par-

ticular, as is easily verified, for extensions obtained from logics in L , QB3K orQBK◦
by adding Ba□

the corresponding strong completeness theorems will hold.
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8 Faithful embedding of quantified Nelson’s logics

Let QN4 be the quantified version of Nelson’s constructive logic, QN3 be its extension obtained by

excluding ‘overdefined’, i.e. adding the relativization of the scheme Exp to the language of QN4; see
[11, 2], and also [7, 12].

Recall that syntactically, the language ofQN4 is simply the non-modal fragment of the language

of QBK. However, there are fundamental differences between QN4 and QBK at the semantic level:

→ and ∀ are verified in QN4 by analogy with intuitionistic logic, and not with classical logic, as in

QBK. Intuitively, QN4 enriches quantified intuitionistic logic, QInt, by adding strong negation.

Below, by constructive σ-formulas we shall mean σ-formulas in the language of QN4, i.e. those
containing no occurrences of □ and ♢. Negation normal forms in the language of QN4 are defined
in the same way as in QBK. It is well-known that a result similar to Theorem 3.8 holds for QN4, but
with weak equivalence instead of strong equivalence:

Theorem 8.1 ((see, for example, [12])). For every constructive σ-formula Φ there exists an n.n.f. Φ
such that Φ ↔ Φ ∈ QN4σ. Moreover, there is an algorithm that constructs, given any constructive
σ-formula Φ, a suitable n.n.f. Φ.12

Next, we define a translation τ that associates with each n.n.f. in the language ofQN4σ a formula

in the language of QBKσ:

τ (P (t1, . . . , tn)) := □P (t1, . . . , tn);

τ (∼P (t1, . . . , tn)) := ∼♢P (t1, . . . , tn);

τ (Φ ∧Ψ) := τ (Φ) ∧ τ (Ψ);

τ (Φ ∨Ψ) := τ (Φ) ∨ τ (Ψ);

τ (Φ → Ψ) := □ (τ (Φ) → τ (Ψ));

τ (⊥) := ⊥;

τ (∼⊥) := ⊥ → ⊥;

τ (∀xΦ) := □∀x τ (Φ);
τ (∃xΦ) := ∃x τ (Φ).

The mapping τ can be naturally extended to the set of all constructive σ-formulas: if Φ is not an

n.n.f., then take

τ (Φ) := τ
(
Φ
)
.

Formally, we shouldwrite τσ instead of τ , but it will always be clear from the context which signature

we are talking about.

Clearly, the restriction of τ to formulas not containing ∼ coincides with the Gödel–McKinsey–

Tarski translation, which faithfully embeds QInt into the modal logic QS4. Furthermore, τ may

be viewed as a (quantified) extension of the propositional translation proposed earlier in [18, Sec-

tion 7.1].

Remark 8.2. If we fix the usual algorithm for reducing constructive σ-formulas to n.n.f.’s, then the

mapping τ can be described as follows:

τ (P (t1, . . . , tn)) := □P (t1, . . . , tn); τ (∼P (t1, . . . , tn)) := ∼♢P (t1, . . . , tn);

12
Unlike in Theorem 3.8, we cannot replace ↔ by ⇔ here. In particular, it can be shown that there exists no propo-

sitional n.n.f. φ such that ∼ (p → q) ⇔ φ ∈ N4.

22



τ (Φ ∧Ψ) := τ (Φ) ∧ τ (Ψ); τ (∼ (Φ ∧Ψ)) := τ (∼Φ) ∨ τ (∼Ψ);

τ (Φ ∨Ψ) := τ (Φ) ∨ τ (Ψ); τ (∼ (Φ ∨Ψ)) := τ (∼Φ) ∧ τ (∼Ψ);

τ (Φ → Ψ) := □ (τ (Φ) → τ (Ψ)); τ (∼ (Φ → Ψ)) := τ (Φ) ∧ τ (∼Ψ);

τ (⊥) := ⊥; τ (∼⊥) := ⊥ → ⊥;

τ (∀xΦ) := □∀x τ (Φ); τ (∼∀xΦ) := ∃x τ (∼Φ);

τ (∃xΦ) := ∃x τ (Φ); τ (∼∃xΦ) := □∀x τ (∼Φ);

τ (∼∼Φ) := τ (Φ).

Say that a QBKσ-model M = ⟨W ,A +,A −⟩ is a QN4σ-model if R is a preordering on W , and

for any u, v ∈ W ,

u R v =⇒ PA±
u ⊆ PA±

v
for all P ∈ Predσ.

Further, a QN4σ-modelM is called a QN3σ-model if for every w ∈ W ,

PA+
w ∩ PA−

w = ∅ for all P ∈ Predσ.

The verifiability and falsifiability relations for QN4σ are defined in the natural way:

M, w ⊩+ P (t1, . . . , tn) ⇐⇒ A+
w ⊩ P (t1, . . . , tn);

M, w ⊩− P (t1, . . . , tn) ⇐⇒ A−
w ⊩ P (t1, . . . , tn);

M, w ⊩+ Φ ∧Ψ ⇐⇒ M, w ⊩+ Φ and M, w ⊩+ Ψ;

M, w ⊩− Φ ∧Ψ ⇐⇒ M, w ⊩− Φ or M, w ⊩− Ψ;

M, w ⊩+ Φ ∨Ψ ⇐⇒ M, w ⊩+ Φ or M, w ⊩+ Ψ;

M, w ⊩− Φ ∨Ψ ⇐⇒ M, w ⊩− Φ and M, w ⊩− Ψ;

M, w ⊩+ Φ → Ψ ⇐⇒ for every u ∈ R (w),

if M, u ⊩+ Φ, then M, u ⊩+ Ψ;

M, w ⊩− Φ → Ψ ⇐⇒ M, w ⊩+ Φ and M, w ⊩− Ψ;

M, w ⊩+ ⊥ ⇐⇒ 0 ̸= 0;

M, w ⊩− ⊥ ⇐⇒ 0 = 0;

M, w ⊩+ ∼Φ ⇐⇒ M, w ⊩− Φ;

M, w ⊩− ∼Φ ⇐⇒ M, w ⊩+ Φ;

M, w ⊩+ ∀xΦ ⇐⇒ M, u ⊩+ Φ (x/a) for all u ∈ R (w) and a ∈ Au;

M, w ⊩− ∀xΦ ⇐⇒ M, w ⊩− Φ (x/a) for some a ∈ Aw;

M, w ⊩+ ∃xΦ ⇐⇒ M, w ⊩+ Φ (x/a) for some a ∈ Aw;

M, w ⊩− ∃xΦ ⇐⇒ M, u ⊩− Φ (x/a) for all u ∈ R (w) and a ∈ Au.

Here, instead of ⊩+
and ⊩−

, it would be more accurate to write ⊩+
QN4 and ⊩

−
QN4, but in what follows

it will always be clear from the context what kind of logic we are talking about. Note that M is a

QN3σ-model if and only if there are no w ∈ W and atomic Aw-sentence Φ such that A+
w ⊩ Φ and

A−
w ⊩ Φ; cf. the definition of QB3Kσ-model in Section 6.

The semanical consequence relations for QN4 and QN3 are defined by analogy with ⊨QBK and

⊨3
QBK; denote them by ⊨QN4 and ⊨3

QN4 respectively.
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Theorem 8.3 ((see [12] and [7])). For any Γ ⊆ Sentσ and ∆ ⊆ Formσ:

Γ ⊢QN4 ∆ ⇐⇒ Γ ⊨QN4 ∆;

Γ ⊢QN3 ∆ ⇐⇒ Γ ⊨3
QN4 ∆,

where ⊢QN4 and ⊢QN3 denote the derivability relations for QN4 and QN3 respectively.

LetM = ⟨W ,A +,A −⟩ be an arbitrary QBS4σ-model, i.e. a QBKσ-model in which the accessi-

bility relation is reflexive and transitive. Associate with it the triple

M′ := ⟨W ,
(
A +

)′
,
(
A −)′⟩

such that for any w ∈ W and atomic Aw-sentence Φ:(
A+

w

)′
⊩ Φ :⇐⇒ M, w ⊩+ □Φ;(

A−
w

)′
⊩ Φ :⇐⇒ M, w ⊩− ♢Φ.

Here we set (Aw)
′ = Aw for all w ∈ W . It is easy to understand that M′

will turn out to be a

QN4σ-model. Moreover, if M is a QB3S4σ-model, then M′
will be a QN3σ-model. The following

statement is similar to Lemma 14 in [18].

Lemma 8.4. Let M = ⟨W ,A +,A −⟩ be a QBS4σ-model. Then for any w ∈ W and constructive
Aw-sentence Φ,

M′, w ⊩+ Φ ⇐⇒ M, w ⊩+ τ (Φ).

Proof. By Theorem 8.1, we can assume that Φ is an n.n.f.

By induction on the complexity of Φ.

The case when Φ is atomic is trivial.

The case when Φ = ∼P (t1, . . . , tn) is slightly more complicated:

M′, w ⊩+ ∼P (t1, . . . , tn) ⇐⇒ M′, w ⊩− P (t1, . . . , tn)

⇐⇒
(
A−

w

)′
⊩ P (t1, . . . , tn)

⇐⇒ M, w ⊩− ♢P (t1, . . . , tn)

⇐⇒ M, w ⊩+ ∼♢P (t1, . . . , tn)

⇐⇒ M, w ⊩+ τ (∼P (t1, . . . , tn))

Suppose Φ = ∀xΨ. Then

M′, w ⊩+ ∀xΨ ⇐⇒ M′, u ⊩+ Ψ(x/a) for all u ∈ R (w) and a ∈ Au

⇐⇒ M, u ⊩+ τ (Ψ (x/a)) for all u ∈ R (w) and a ∈ Au

⇐⇒ M, u ⊩+ τ (Ψ) (x/a) for all u ∈ R (w) and a ∈ Au

⇐⇒ M, u ⊩+ ∀x τ (Ψ) for all u ∈ R (w)

⇐⇒ M, w ⊩+ □∀x τ (Ψ)

⇐⇒ M, w ⊩+ τ(Φ).

Suppose Φ = ∃xΨ. Then

M′, w ⊩+ ∃xΨ ⇐⇒ M′, w ⊩+ Ψ(x/a) for some a ∈ Aw
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⇐⇒ M′, w ⊩+ τ (Ψ (x/a)) for some a ∈ Aw

⇐⇒ M′, w ⊩+ τ (Ψ) (x/a) for some a ∈ Aw

⇐⇒ M, w ⊩+ ∃x τ (Ψ)

⇐⇒ M, w ⊩+ τ (Φ).

The remaining cases are handled as in BK; see [18, Section 7].

Remark 8.5. In the formulation of Lemma 8.4, we cannot replace ⊩+
by ⊩−

. Indeed, suppose

Φ = Ψ → Θ. Then, as is easily verified,

M′, w ⊩− Ψ → Θ =⇒ M, w ⊩− τ (Ψ → Θ),

but the converse implication may in general fail. A similar problem arises for Φ =
∀xΨ.

From this one easily obtains:

Theorem 8.6. For every constructive σ-sentence Φ,

Φ ∈ QN4σ ⇐⇒ τ (Φ) ∈ QBS4σ.

In other words, τ faithfully embeds QN4 into QBS4.

Proof. In view of the completeness theorems for QN4 and QBS4, we need to show that

⊨QN4 Φ ⇐⇒ ⊨QBS4 τ (Φ)

(see Theorems 8.3 and 6.3 respectively).

=⇒ Suppose that ⊨QN4 Φ. Consider arbitrary QBS4σ-model M and w ∈ W . Since M′, w ⊩+

Φ, we have M, w ⊩+ τ (Φ) by Lemma 8.4. Hence ⊨QBS4 τ (Φ).

⇐= Suppose that ⊨QBS4 τ (Φ). Consider arbitraryQN4σ-modelM andw ∈ W . Obviously,M
can be thought of as aQBS4σ-model; in this caseM′

will coincidewithM. So, sinceM, w ⊩+ τ (Φ),
we have M, w ⊩+ Φ by Lemma 8.4. Hence ⊨QN4 Φ.

Furthermore, we have:

Theorem 8.7. For every constructive σ-sentence Φ,

Φ ∈ QN3σ ⇐⇒ τ (Φ) ∈ QB3S4σ.

In other words, τ faithfully embeds QN3 into QB3S4.

The proof follows from Theorem 8.6, taking into account the completeness theorems for QN4,
QBS4, QN3 and QB3S4.

Remark 8.8. Theorems 8.6 and 8.7 could be reformulated in terms of derivability or semantical

consequence relations (with non-empty sets of hypotheses). In fact, such formulations will turn out

to be equivalent to the original ones in view of the strong completeness theorems for QN4, QBS4,
QN3 and QB3S4.
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A result similar to Theorem 8.7 holds for the logic QN4◦, which is obtained from QN4 by ex-

cluding ‘undefined’, i.e. adding the relativization of the scheme ExM to the language of QN4. More

precisely, take

QBS4◦ := QBS4+ {ExM}.

Then τ will embed QN4◦ into QBS4◦. In this case, formally, we shall need the strong completeness

theorem for QN4◦, which can be proved by analogy with Theorem 6.2, using the canonical model

for QN4.

Finally, all the results of the present section are easily relativized to the case of constant domains.

Here the role of the Barcan scheme for QN4-extensions will be played by

CD . ∀x (Φ ∨Ψ) → Φ ∨ ∀xΨ, where x does not occur free in Φ.

However, this kind of relativization may be criticized from a constructive point of view, since CD is

refuted in Kleene’s realizability semantics (let alone Nelson’s semantics).

9 Interpolation properties

It is known that some extensions of classical quantified modal logic, QK, have Craig’s interpolation
property; see, for example, [5]. In this section, using the technique of [15, Section 2], we shall show

how interpolation results for QK-extensions can be transferred to QBK-extensions.

For each σ-formula Φ, take

O(Φ) := {ε ∈ σ | ε occurs in Φ} ∪ FV (Φ).

Let L be a QK-extension. Say that L has Craig’s interpolation property, or CIP for short, if for any

signature σ and Φ → Ψ ∈ Lσ there exists Θ ∈ Formσ such that

{Φ → Θ,Θ → Ψ} ⊆ L and O(Θ) ⊆ O(Φ) ∩O(Ψ).

Here Θ is called a Craig interpolant for Φ → Ψ in L. This terminology will be used for QBK-exten-
sions as well.

Remark 9.1. In fact, the requirement that O(Φ) includes FV (Φ) is not crucial, since, if necessary,
all free variables of Φ can be replaced by new constant symbols.

In addition, a more subtle version of CIP for QBK-extensions is worth discussing; cf. [19, § 4].

By Theorem 3.8, we can restrict ourselves to n.n.f.’s. Given a σ-n.n.f. Φ and P ∈ Predσ, call an

occurrence of P in Φ positive if it is not inside the scope of ∼, and negative otherwise. For each
σ-n.n.f. Φ we set:

D(Φ) := {c ∈ Constσ | c occurs in Φ} ∪ FV (Φ);

P+ (Φ) := {P ∈ Predσ | P occurs positively in Φ};
P− (Φ) := {P ∈ Predσ | P occurs negatively in Φ}.

Let L be a QBK-extension. We shall say that L has the strong interpolation property, or SIP for short,

if for any signature σ and σ-n.n.f. Φ → Ψ in L there exists a σ-n.n.f. Θ such that

{Φ → Θ,Θ → Ψ} ⊆ L, D(Θ) ⊆ D(Φ) ∩D(Ψ),
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P+ (Θ) ⊆ P+ (Φ) ∩ P+ (Ψ) and P− (Θ) ⊆ P− (Φ) ∩ P− (Ψ).

Here Θ is called a strong interpolant for Φ → Ψ in L. It is easy to see that SIP is stronger than CIP:

if L has SIP, then it has CIP.

Obviously, to each QBK-extension L in L (from the formulation of Theorem 6.3) there will

correspond the QK-extension L (without ‘B’ in the name). It is known that all such L’s have CIP;
see [5]. Our next goal is to obtain SIP for all logics in L .

For any signature σ, take
σ := σ ∪ {P | P ∈ Predσ},

where P is a new predicate symbol of the same arity as P . Consider arbitrary L in L and signature

σ. With each Lσ-modelM we associate the Lσ-model

M := ⟨W ,A ⟩,

where A denotes the family ⟨Aw : w ∈ W ⟩ such that for every w ∈ W :

• Aw = Aw;

• cAw = cA
+
w
for all c ∈ Constσ;

• PAw = PA+
w
and PAw = PA−

w
for all P ∈ Predσ.

Obviously,M is a Lσ-model. Moreover, for every Lσ-modelN there exists a (unique) Lσ-modelM
such thatM = N .

Further, define a translation ρ from the set of all σ-n.n.f.’s to the set of all σ-formulas without

strong negation as follows (cf. [15, Section 2] and [19, Section 4]):

ρ (P (t1, . . . , tn)) := P (t1, . . . , tn);

ρ (∼P (t1, . . . , tn)) := P (t1, . . . , tn);

ρ (Φ1 ⊙ Φ2) := ρ (Φ1)⊙ ρ (Φ2);

ρ (⊥) := ⊥;

ρ (∼⊥) := ⊥ → ⊥;

ρ (♡Φ) := ♡ρ (Φ);

ρ (QxΦ) := Qx ρ (Φ),

where ⊙ ∈ {∧,∨,→}, ♡ ∈ {□,♢}, Q ∈ {∀, ∃} and x ∈ Var. Of course, if necessary, the mapping

ρ can be extended to all σ-formulas by setting

ρ (Φ) := ρ
(
Φ
)
.

Formally, we shouldwrite ρσ instead of ρ, but it will always be clear from the context which signature

we are talking about.

Lemma 9.2. For any Lσ-modelM, w ∈ W and σAw-sentence Φ,

M, w ⊩+ Φ ⇐⇒ M, w ⊩ ρ (Φ),

where ⊩ denotes truth in classical quantified modal logic.13

13
By definition, ρ (Φ) is a sentence in the signature σAw

.
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Proof. By Theorem 3.8, we can assume that Φ is an n.n.f. Then the lemma is proved by an easy

induction on the complexity of Φ.

Theorem 9.3. For every σ-formula Φ,

Φ ∈ L ⇐⇒ ρ (Φ) ∈ L.

In other words, ρ faithfully embeds L into L.

Proof. In view of the completeness theorems for L and L, we need to show that

⊨L Φ ⇐⇒ ⊨L τ (Φ)

(see Theorem 6.3 and, for example, [6, Section 6]). Then we can argue by analogy with the proof of

Theorem 8.6, using Lemma 9.2 instead of Lemma 8.4.

From this, using some interpolation theorems for QK-extensions, we can obtain the desired

result:

Theorem 9.4. All logics in L have SIP .

Proof. Consider arbitrary L in L and signature σ.

Suppose that a σ-n.n.f. Φ → Ψ belongs to L. By Theorem 9.3, we have

ρ (Φ) → ρ (Ψ) ∈ L.

Since L has CIP, there exists a Craig interpolant Θ for ρ (Φ) → ρ (Ψ) in L. Take

Θ′ := the result of replacing each P in Θ by ∼P .

Then Θ′
is a σ-n.n.f., and ρ (Θ′) = Θ. Applying Theorem 9.3 again, we get

Φ → Θ′ ∈ L and Θ′ → Ψ ∈ L.

Here by construction,

D(Θ′) = (O (Θ′) ∩ Constσ) ∪ FV (Θ′)

= (O (Θ) ∩ Constσ) ∪ FV (Θ)

⊆ D(ρ (Φ)) ∩D(ρ (Ψ))

= D (Φ) ∩D(Ψ).

Moreover, it is easy to check that

P+ (Θ) ⊆ P+ (Φ) ∩ P+ (Ψ) and P− (Θ) ⊆ P− (Φ) ∩ P− (Ψ).

So Θ′
is a strong interpolant for Φ → Ψ in L.

Let us now discuss QBK-extensions of type (i), i.e. QB3K and QBK◦
. Define the translations ρ3

and ρ◦ exactly as ρ, but with the following modifications (cf. [15, Section 2]):

ρ3 (∼P (t1, . . . , tn)) := P (t1, . . . , tn) ∧ ¬P (t1, . . . , tn);

ρ◦ (∼P (t1, . . . , tn)) := P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn).

Then we have:
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Lemma 9.5. For any QB3Kσ-modelM, w ∈ W and Aw-sentence Φ,

M, w ⊩+ Φ ⇐⇒ M, w ⊩ ρ3 (Φ).

Similarly for QBK◦ and ρ◦.

Proof. Note that for every QB3Kσ-model M and atomic Aw-sentence

P (t1, . . . , tn),

M, w ⊩+ ∼P (t1, . . . , tn) ⇐⇒ M, w ⊩ P (t1, . . . , tn)

⇐⇒ M, w ⊩ P (t1, . . . , tn) ∧ ¬P (t1, . . . , tn)︸ ︷︷ ︸
ρ3(∼P (t1,...,tn))

.

Therefore we can argue in the same way as in the proof of Lemma 9.2.

Similarly for QBK◦
and ρ◦.

On the other hand, for L ∈ {QBK◦,QB3K} it is impossible, for each QKσ-model N , to find a

Lσ-model M such that M = N . Therefore we need to work more accurately than with L ∈ L .

With each QKσ-model N = ⟨W ,A ⟩ we associate the QB3Kσ-model

N 3 := ⟨W ,A 3,+,A 3,−⟩,

where A 3,+
and A 3,−

denote the families ⟨A3,+
w : w ∈ W ⟩ and ⟨A3,+

w : w ∈ W ⟩ such that for every

w ∈ W :

• A3,+
w = A3,−

w = Aw;

• cA
3,+
w = cA

3,−
w = cAw

for all c ∈ Constσ;

• PA3,+
w = PAw

for all P ∈ Predσ;

• PA3,−
w = PAw ∩

(
An

w \ PAw
)
for any n-ary P ∈ Predσ.

Obviously, N 3
is a QB3Kσ-model. Similarly, the QBK◦

σ-model

N ◦ := ⟨W ,A ◦,+,A ◦,−⟩

is defined, but we need to replace ∩ by ∪ in the last item:

• PA◦,−
w = PAw ∪

(
An

w \ PAw
)
for any n-ary P ∈ Predσ.

The following statement will play the role of a converse to Lemma 9.5.

Lemma 9.6. For any QKσ-model N , w ∈ W and σAw-sentence Φ,

N , w ⊩ ρ3 (Φ) ⇐⇒ N 3, w ⊩+ Φ.

Similarly for ρ◦ and N ◦.

The proof is obtained by an easy induction on the complexity of Φ.
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Theorem 9.7. For every σ-formula Φ,

Φ ∈ QB3Kσ ⇐⇒ ρ3 (Φ) ∈ QKσ.

Similarly for QBK◦ and ρ◦. In other words, ρ3 and ρ◦ faithfully embed QB3K and QBK◦ respectively
into QK.

This follows from Lemmas 9.6 (for the direct implication) and 9.5 (for the converse implication),

taking into account the completeness theorems for QB3K, QBK◦
and QK.

From this we can already get CIP for extensions of type (i):

Theorem 9.8. QB3K and QBK◦ have CIP.

Proof. Consider an arbitrary signature σ.

Suppose that Φ → Ψ ∈ QB3Kσ. By Theorem 9.7, we have

ρ3 (Φ) → ρ3 (Ψ) ∈ L.

Since QK has CIP, there exists a Craig interpolant Θ for ρ3 (Φ) → ρ3 (Ψ) in QB3K. Clearly, Θ
does not necessarily have the form ρ3 (Θ′) (because there could be ‘free-standing’ P (t1, . . . , tn)’s in
Θ, which are not connected with ¬P (t1, . . . , tn) by means of conjunction). Take

Θ̃ :=
the result of replacing each free-standing

P (t1, . . . , tn) in Θ by P (t1, . . . , tn) ∧ ¬P (t1, . . . , tn).

It is easy to show that for any QB3Kσ-modelM, w ∈ W and Aw-substitution λ,

M, w ⊩ λΘ ⇐⇒ M, w ⊩ λΘ̃.

Obviously, Θ̃ = ρ3 (Θ′) for a suitable σ-formula Θ′
. Taking into account the soundness theorem for

QK, this implies that for any QB3Kσ-model M, w ∈ W and Aw-substitution λ,

M, w ⊩ λ
(
ρ3 (Φ) → ρ3 (Θ′)

)
and M, w ⊩ λ

(
ρ3 (Θ′) → ρ3 (Ψ)

)
,

which, in view of Lemma 9.5, is equivalent to

M, w ⊩ λ (Φ → Θ′) and M, w ⊩ λ (Θ′ → Ψ).

By the completeness theorem for QB3K, the latter means that

Φ → Θ′ ∈ QB3Kσ and Θ′ → Ψ ∈ QB3Kσ.

In addition, it is not hard to check that O(Θ) ⊆ O(Φ) ∩ O(Ψ). So Θ′
is a Craig interpolant for

Φ → Ψ in QB3K.

In the case of QBK◦
, we argue similarly.

Remark 9.9. The logics QB3K and QBK◦
do not have SIP. Indeed, in the case of QB3K, take

Φ := P (x1, . . . , xn) and Ψ := ¬∼P (x1, . . . , xn),

where P is some n-ary predicate symbol. Then Φ → Ψ ∈ QB3K, but there is no strong interpolant

for Φ → Ψ in QB3K. In the case of QBK◦
, one can take

Φ := ¬P (x1, . . . , xn) and Ψ := ∼P (x1, . . . , xn).

Then Φ → Ψ ∈ QBK◦
, but there is no strong interpolant for Φ → Ψ in QBK◦

.

Of course, the proof of Theorem 9.8 is easily modified to obtain CIP for QB3S4, for example.
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