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Abstract

Inspired by Kit Fine’s theory of arbitrary objects, we explore some ways in which the
generic structure of the natural numbers can be presented. Following a suggestion of Saul
Kripke’s, we discuss how basic facts and questions about this generic structure can be ex-
pressed in the framework of Carnapian quantified modal logic.
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1 Introduction

Kit Fine proposed, defended and explored his approach to reasoning about arbitrary objects in
[Fine 1985a] and [Fine 1985b]. The approach taken naturally gives rise to an interesting theory
of mathematical structure — which was articulated in [Horsten 2018] (note that Fine discussed
a somewhat similar theory in [Fine 1998, pp. 618–619]). Now from the viewpoint of this theory,
the natural number structure can be conceived as an ‘arbitrary’, or ‘generic’, system of objects,
which may be called the generic ω-sequence. Then two ways of modelling this generic structure
formally suggest themselves:

• one is in the spirit of [Benacerraf 1996], according to which any particular ω-sequence can
be thought of as an admissible instance of the natural number structure;

• another is in the spirit of [Halbach & Horsten 2005, Horsten 2012], according to which we
are to restrict ourselves to computable ω-sequences;

Both of these will be considered below.
It was proposed in [Kripke 1992, p. 73] that reasoning with arbitrary objects can in effect be

represented using Carnapian modal logic with quantifiers over individual concepts, i.e. functions
from possible worlds to elements of a given domain (cf. [Carnap 1956]) — instead of Fine’s own
framework. Following Kripke’s proposal, we explore how different facts and questions about the
generic structure of the natural numbers can be expressed in this setting. In fact, the structure
in question is a good test case for the formal investigation of generic structures in general. Note
also that a distinctive feature of our approach — which will play a key role in our modelling —
is that we supplement the original modal language with a special intensional predicate.

2 Two kinds of generic structure

Roughly speaking, a generic (or arbitrary) structure is an entity that can be in different states.
In particular we shall be concerned with the generic structure of the natural numbers, with the
states representable as various ω-sequence orderings of some fixed underlying countably infinite
plurality of objects — so it will also be called the generic ω-sequence. In this case we may view
any natural number as an arbitrary object too, or rather as an individual concept, i.e. a functi-
on from states to elements of the underlying set. It will be seen shortly how both arbitrary and
specific natural numbers arise in this framework.

Next we describe two essentially different versions of this generic ω-sequence. In the present
article we shall not adjudicate between these but rather confine ourselves to uncovering some of
their logical/metamathematical properties.

2.1 The ‘full’ version

Without loss of generality, and purely for exposition, we may identify the underlying countably
infinite plurality of objects with N itself. Let

G := the collection of all permutations of N.

Now suppose that we follow the slogan ‘any ω-sequence will do’ from [Benacerraf 1996] — as is
also done in [Shapiro 1997]. To be more precise, since every permutation of N can be viewed as
a specific ω-sequence, we define the state space of our generic ω-sequence to be G. Let us think
of G as the full generic ω-sequence. Clearly |G| = 2ℵ0 , so there are continuum many states that
the full generic ω-sequence can be in.
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Take σ to be the signature of Peano arithmetic, i.e. {0, s,+,×,=}, and N to be its standard
model, which serves as the intended interpretation of σ. Naturally, every π ∈ G induces its own
isomorphic copy π [N] of N, given by:

π [N] |= π (i) = 0 ⇐⇒ N |= i = 0;

π [N] |= s (π (i)) = π (j) ⇐⇒ N |= s (i) = j;

π [N] |= π (i) + π (j) = π (k) ⇐⇒ N |= i+ j = k;

π [N] |= π (i)× π (j) = π (k) ⇐⇒ N |= i× j = k.1

— in other words, π [N] can be obtained by applying π−1 to the intended interpretations of the
symbols in σ.

Intuitively an arbitrary number in G is a kind of ‘individual concept’ which for each state π
picks out some position in π, regarded as an ω-sequence. Formally, arbitrary numbers in G can
be identified with function from G to N. Denote by A the collection of all arbitrary numbers in

G. Evidently |A| = 22
ℵ0

.
Roughly, the specific numbers are treated as limiting values of arbitrary numbers. To illust-

rate how this works, consider the arbitrary number α such that for every π ∈ G,

α (π) = π (0),

i.e. for each state π ∈ G, α picks out the object that plays the role of 0 at π (regarded as an ω-
sequence). Naturally, this α may be thought of as the specific number 0 in G. Then, in general,
we define the specific number n in G to be the arbitrary number α given by

α (π) = π (n).

Denote by S the collection of all specific numbers. Obviously |S| = ℵ0.

2.2 The ‘computable’ version

Of course most of the permutations of N induce non-computable presentations — e.g. there are
continuously many π’s in G such that the interpretation of s in π [N], and hence also that of +,
is not Turing computable. Since it is possible to compute with (ordinary) natural numbers, one
might want to disqualify these ‘incomputable’ permutations from being states of our generic ω-
sequence; see [Benacerraf 1965, pp. 275–277], [Halbach & Horsten 2005] and [Horsten 2012]. So,
one might insist that the structures that instantiate our intended interpretation must represent
constructive systems of notations.

This line of reasoning leads to narrowing the state space G to

Gc := the collection of all computable permutations of N

(whose elements are regarded as constructive systems of notations) — which gives a computab-
le isomorphism type. Let us think of Gc as the computable generic ω-sequence. Evidently there
are only countably many Turing machines, hence |Gc| = ℵ0.

As in the case of the full generic ω-sequence, one can then go on to identify the collection of
all arbitrary numbers in Gc with the set Ac of all functions from Gc to N; obviously |Ac| = 2ℵ0 .
And the specific numbers in Gc are treated as limiting values of arbitrary numbers, similarly to
how we did for G.

We shall be concerned with both G and Gc. Occasionally, we shall write G when there is no
need to differentiate between these two; let A be the collection of all functions from G to N.

1All σ-structures are assumed to be normal, so = has its usual meaning
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3 Formal presentation

It was suggested in [Kripke 1992, p. 73] that Fine’s reasoning with arbitrary objects can be rep-
resented using Carnap’s individual concepts. We shall follow this approach in a certain way, by
regarding G as essentially a possible worlds model of Carnapian quantified modal logic S5 with
equality (see [Carnap 1956, Chapter V]). Now we present a formal semantics for our framework
and also describe some variation on it which will turn out to be useful.

3.1 A framework

Let us elaborate on the ideas from the previous section. In addition to the symbols of the sign-
ature σ of Peano arithmetic, our formal language L includes:

• a countable set Var = {x, y, z, . . . } of variables;

• the connective symbols ¬ and ∨;

• the quantifier symbol ∃;

• the modal operator symbol 3, read as ‘it is possible that ’;

• the extra unary predicate symbol Sp, read as ‘ is specific’.

Notice that in the context of first-order logic, we shall treat ∧, → and ∀ as defined, rather than
as primitive. The L-formulas are then built up in the usual manner:

• if t1 and t2 are σ-terms, then t1 = t2 is an L-formula;

• if Φ is an L-formula, then ¬Φ is an L-formula;

• if Φ and Ψ are L-formulas, then Φ ∨Ψ is an L-formula;

• if x is a variable and Φ is an L-formula, then ∃xΦ is an L-formula;

• if Φ is an L-formula, then 3Φ is an L-formula;

• if t is a σ-term, then Sp (t) is an L-formula.

We abbreviate ¬ (¬Φ ∨ ¬Ψ) to Φ ∧Ψ, ¬Φ ∨Ψ to Φ→ Ψ, ¬∃x¬Φ to ∀xΦ, and lastly ¬3¬Φ to
2Φ. Of course, x, y, z, . . . are intended to range over arbitrary natural numbers. However, the
L-formula x = y will not express the identity of x and y, but only their ‘coincidence’ at a given
possible world (cf. [Kripke 1992, p. 71]). Still, identity turns out to be expressible, via

' (x, y) := 2 (x = y),

as one may expect. It should also be remarked that Sp is the only symbol of L with intensional
meaning, and its presence will play a crucial role for the expressive power of L. Notice that the
first-order σ-formulas are a subset of the L-formulas. These formulas will be occasionally called
purely arithmetical.

Any possible world is a permutation of N, which may or may not be computable, depending
on what we put for G. Intuitively a possible world represents a specific ‘state’ in which G might
be; on the other hand, there is no ‘state’ in which G actually is, i.e. no preferred world. As was
mentioned earlier, we associate with each π ∈ G the σ-structure π [N]. More precisely,

π [N] := 〈N; 0π, sπ,+π,×π,=π〉
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where =π is the ordinary equality relation on N, and the others are given by:

0π := π (0);

sπ (i) := π
(
π−1 (i) + 1

)
;

i+π j := π
(
π−1 (i) + π−1 (j)

)
;

i×π j := π
(
π−1 (i)× π−1 (j)

)
.

Here 0, s, + and × on the right sides have their standard meaning, as in N. Thus, for instance,
we define i+π j to be (roughly speaking) the number that plays at π the role of the sum of the
role that i plays at π and the role that j plays at π.

By a valuation in A we mean simply a function from Var to A. Naturally, every valuation γ
in A can be inductively extended to σ-terms:

γ (0) := λπ.[0π];

γ (s (t)) := λπ.[sπ ((γ (t)) (π))];

γ (t1 + t2) := λπ.[(γ (t1)) (π) +π (γ (t2)) (π)];

γ (t1 × t2) := λπ.[(γ (t1)) (π)×π (γ (t2)) (π)].

Here λπ.[. . . π . . . ] traditionally denotes the function which maps each π in G to . . . π . . . .
Of course the ‘standard’ interpretation of Sp in G would be

S := {λπ.[π (n)] | n ∈ N}.

Nevertheless, it is instructive to allow Sp to be interpreted by other subsets of A as well. Given
an S ⊆ A, we define, for any L-formula Φ, valuation γ in A and world π ∈ G, what it means for
Φ to be true in 〈G, S〉 at π under γ, written 〈G, S〉 |=π Φ [γ], as follows:

• 〈G, S〉 |=π t1 = t2 [γ] iff (γ (t1)) (π) = (γ (t2)) (π);

• 〈G, S〉 |=π ¬Φ [γ] iff 〈G, S〉 6|=π Φ [γ];

• 〈G, S〉 |=π Φ ∨Ψ [γ] iff 〈G, S〉 6|=π Φ [γ] or 〈G, S〉 6|=π Ψ [γ];

• 〈G, S〉 |=π ∃xΦ [γ] iff there exists α ∈ A such that 〈G, S〉 |=π Φ [γxα];

• 〈G, S〉 |=π 3Φ [γ] iff there exists π′ ∈ G such that 〈G, S〉 |=π′ Φ [γ];

• 〈G, S〉 |=π Sp (t) [γ] iff γ (t) ∈ S.

Here we use γxα for the valuation which agrees with γ except that γxα (x) = α, viz.

γxα (y) :=

{
γ (y) if y 6= x,

α if y = x.

Clearly if Φ is of the form Φ (x1, . . . , x`), i.e. the free variables of Φ are among x1, . . . , x`, then
it does not matter what values γ assigns to the elements of Var \ {x1, . . . , x`}, so we may write

〈G, S〉 |=π Φ [γ (x1), . . . , γ (x`)],

or more explicitly 〈G, S〉 |=π Φ [x1/γ (x1), . . . , x`/γ (x`)]. Further, when Φ is an L-sentence, i.e.
no variable occurs free in Φ, this becomes 〈G, S〉 |=π Φ.
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Proposition 3.1. Let S ⊆ A and π ∈ G. For any purely arithmetical L-formula Φ (x1, . . . , x`)
and (α1, . . . , α`) ∈ A`,

〈G, S〉 |=π Φ [α1, . . . , α`] ⇐⇒ π [N] |= Φ [α1 (π), . . . , α` (π)].

Proof. By an easy induction on the construction of Φ.

Corollary 3.2. The collection of all purely arithmetical sentences true in 〈G, S〉 at π coincides
with the first-order theory of N.

Proof. The set of first-order σ-sentences true in 〈G, S〉 at π coincides with the first-order theory
of π [N] by the Proposition above. Moreover, since π [N] and N are isomorphic, their first-order
theories coincide. So the result follows.

We say Φ is generically true in 〈G, S〉 under γ, written 〈G, S〉 |= Φ [γ], iff 〈G, S〉 |=π Φ [γ] for
all π ∈ G. As before, in the case where Φ is an L-sentence we can omit γ and write 〈G, S〉 |= Φ.
We notice that the notion of generic truth does not presuppose there being an ‘actual’ world in
which arbitrary numbers take their ‘actual’ values.

Corollary 3.3. The collection of all purely arithmetical sentences true generically in 〈G, S〉 co-
incides with the first-order theory of N.

Proof. Immediate.

Notice that since there is no restriction on π′ in the defining condition for 〈G, S〉 |=π 3Φ [γ],
the intended accessibility relation is, in effect, the Cartesian square of G — and thus 3 satisfies
the propositional laws of S5. One readily verifies that in 〈G, S〉, Leibniz’s scheme of identity

∀x∀y (x = y → (Φ (x)→ Φ [x/y]) ∧ (Φ [x/y]→ Φ (x)))

fails already for the Sp-free L-formulas, but holds for the 2-free L-formulas. Roughly speaking,
the basic quantificational principles that hold in 〈G, S〉 are, unsurprisingly, those for Carnapian
quantified modal logic. It is easy to see that the Barcan formula/scheme

∀x2Φ (x)→ 2∀xΦ (x)

and its converse both hold in 〈G, S〉.2 The so-called Ghilardi formula/scheme

2∃xΦ (x)→ ∃x2Φ (x),

which can be regarded as a choice principle, fails already for the Sp-free L-formulas (though its
converse holds in 〈G, S〉, of course).3 For consider the L-formula

Ψ := (x = 0) ∧ ¬2 (x = 0);

then 〈G, S〉 |= 2∃xΨ and yet 〈G, S〉 6|= ∃x2Ψ.

2Cf. also [Heylen 2010, p. 357] and [Williamson 2013, Sections 2.1–2.2].
3Cf. also [Heylen 2010, Footnote 1 on p. 358] and [Williamson 2013, pp. 54–56].
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3.2 A useful variation

Now we are going to give a somewhat simpler yet equivalent semantics for L — which will turn
out to be quite helpful in what follows. We do not suggest that this version is intuitively better
than the original one, but rather wish to attract attention to its technical advantages.

The idea is to identify directly each π [N] with N. Thus we do not want to think of possible
worlds as permutations of N. Let a non-empty set W be given. Then we shall write W for NW ,
viz. the collection of all functions from W to N. In the present context, the elements of W play
the role of possible worlds, and those of W the role of arbitrary numbers.

Similarly to before, by a valuation in W we understand simply a function γ from Var to W,
which can be extended to σ-terms in the natural way:

γ (0) := λw.[0];

γ (s (t)) := λw.[s ((γ (t)) (w))];

γ (t1 + t2) := λw.[(γ (t1)) (w) + (γ (t2)) (w)];

γ (t1 × t2) := λw.[(γ (t1)) (w)× (γ (t2)) (w)].

Here w ranges over W , of course.
Clearly the ‘standard’ interpretation of Sp in the present context would be

F := {λw.[n] | n ∈ N}

Nevertheless, we allow Sp to be interpreted by other subsets of W too. Given an F ⊆ W, let us
define 〈W,F 〉 w Φ [γ] exactly as before, but with W and F in place of G and S respectively.

For the rest of this subsection, assume |G| = |W |, viz. the cardinalities of G and W must be
equal. Fix a one-to-one function ι from W onto G. For each α ∈ A, define

αι := λw.
[
(ι (w))

−1
(α (ι (w)))

]
.

In particular, if W = G and ι = λw.[w], then αι := λw.
[
w−1 (α (w))

]
. Given an R ⊆ A`, take

Rι := {(αι1, . . . , αι`) | (α1, . . . , α`) ∈ R}.

As might be expected, we have:

Theorem 3.4. Assuming |G| = |W |, let S ⊆ A. For any L-formula Φ (x1, . . . , x`), (α1, . . . , α`)
∈ A` and w ∈W ,

〈G, S〉 |=ι(w) Φ [α1, . . . , α`] ⇐⇒ 〈W,Sι〉 w Φ [αι1, . . . , α
ι
`].

Proof. One can easily verify that for any first-order σ-term t (x1, . . . , x`), (α1, . . . , α`) ∈ A` and
w ∈W ,

(γ (t)) (ι (w)) = (ι (w)) ((γ (t))
ι
(w)),

where γ is a valuation which maps x1, . . . , x` to α1, . . . , α` respectively — in other words,

(γ (t)) (ι (w)) plays the role of ((γ (t))
ι
(w)) at ι (w).

From this observation it is a short step to the desired result, which we can now prove by induc-
tion of the construction of Φ.

Suppose Φ is atomic. Then the result follows quickly by the observation made above.
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The case when Φ = ¬Ψ is immediate from the inductive hypothesis.

The case when Φ = Ψ ∨Θ is also immediate from the inductive hypothesis.

Suppose Φ = ∃yΨ (x1, . . . , x`, y). Note that λα.[αι] is a one-to-one function from A onto W,
so in particular, every β ∈ W has the form αι with α ∈ A. Thus the result follows quickly from
the inductive hypothesis.

The case when Φ = 3Ψ is immediate from the inductive hypothesis — because every π ∈ G
has the form ι (w) with w ∈W .

Of course, things look simpler in 〈W,Sι〉 than in 〈G, S〉. For instance, if Sp has its standard
meaning in 〈G, S〉, then so does Sp in 〈W,Sι〉, and vice versa — more formally,

S = S ⇐⇒ Sι = F,

independently of the choice of ι. Moreover, S is not closed under permutations of G, but F (i.e.
the set of all constant functions from W to N) is clearly closed under permutations of W .

In fact, we shall be mainly concerned with the standard interpretations of Sp. Then instead
of 〈G,S〉 |=π Φ [γ] and 〈W,F〉 w Φ [γ] we can write respectively

G |=π Φ [γ] and W w Φ [γ],

or simply π |= Φ [γ] and w  Φ [γ]. Let us finish with an easy application of Theorem 3.4 which
gives an alternative definition of generic truth for L-sentences in the case S = S.

Corollary 3.5. Assume |G| = |W |. For any L-sentence Φ and {π1, π2} ⊆ G,

G |=π1
Φ ⇐⇒ G |=π2

Φ.

Thus G |= Φ iff G |=π Φ for some π ∈ G.

Proof. Let Φ be an L-sentence. It is readily seen that the truth of W w Φ does not depend on
the choice of w, i.e. for all {w1, w2} ⊆W ,

W w1
Φ ⇐⇒ W w2

Φ.

Now the result follows immediately by this fact and the Theorem above.

In words, any two possible worlds are indistinguishable by L-sentences provided that Sp has
its standard meaning.

4 Model-theoretic aspects

To get a deeper understanding of the behavior of arbitrary numbers in our framework, we need
to investigate some basic model-theoretic properties of L.

4.1 Definability

Henceforth by a specific number we mean a ‘standard’ specific number, viz. a function of either
of the forms

λπ.[π (n)] and λw.[n]

where n ∈ N, depending on whether G or W is involved.
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Given an S ⊆ A, call R ⊆ A` definable in 〈G, S〉 iff there is an L-formula Φ (x1, . . . , x`) such
that for every (α1, . . . , α`) ∈ A`,

(α1, . . . , α`) ∈ R ⇐⇒ 〈G, S〉 |= Φ [α1, . . . , α`].

If the same Φ defines R in 〈G, S〉 for all S ⊆ A, we say R is uniformly definable in G. Similarly
for 〈W,F 〉. Remembering the definition of αι from the previous secton, we have:

Proposition 4.1. Assume |W | = |G|, and let S ⊆ A. Then for every R ⊆ A` and every L-for-
mula Φ (x1, . . . , x`),

Φ defines R in 〈G, S〉 ⇐⇒ Φ defines Rι in 〈W,Sι〉.

Proof. Immediate from Theorem 3.4.

As usual, one can speak of definability of arbitrary numbers and functions on them:

• by identifying an arbitrary number with its singleton;

• by identifying a function on the arbitrary numbers with its graph.4

As has been observed earlier, λα.[αι] maps A one-to-one onto W, so we are free to pass from G
to W , and vice versa. To facilitate discussion we mostly deal with W .

For instance, the identity relation on W is uniformly definable in W by the L-formula

x ' y := 2 (x = y).

The ‘coordinatewise’ addition and multiplication, viz.

R+ :=
{

(α1, α2, λw.[α1 (w) + α2 (w)]) | (α1, α2) ∈ W2
}

and

R× :=
{

(α1, α2, λw.[α1 (w)× α2 (w)]) | (α1, α2) ∈ W2
}
,

can then be uniformly defined in W by

Φ+ (x, y, z) := x+ y ' z and Φ× (x, y, z) := x× y ' z

respectively. Let us temporarily pretend that σ includes neither 0 nor s. Still, the specific num-
bers λw.[0] and λw.[1] will be uniformly definable in W by

Φ0 (x) := ∀yΦ+ (y, x, y) and Φ1 (x) := ∀yΦ× (y, x, y)

respectively. Hence the ‘coordinatewise’ successor function, viz.

Rs := {(α, λw.[α (w) + 1]) | α ∈ W},

can be uniformly defined in W by

Φs (x, y) := ∃z (Φ1 (z) ∧ Φ+ (x, z, y)).

4The second convention may look redundant since functions are officially identified with their graphs in ZFC,
and we deal with set-theoretic objects. Still, in first-order logic predicate and function symbols are often treated
separately, and the notions of definability and representability, for instance, are described in two stages. Also, in
computability theory it is common practice to distinguish between functions and their graphs.
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Note in passing that as far as definability is concerned there is no significant difference between
σ and, say, the smaller signature {+,×,=}; in fact any other σ′ would do as well provided that
the standard models of σ and σ′ are first-order interdefinable.

Now for each n ∈ N, denote λw.[n] by n. Define a sequence A0 (x), A1 (x), . . . of L-formulas
by recursion:

An (x) :=

{
x ' 0 if n = 0,

∃y (An−1 (y) ∧ x ' s (y)) if n > 0.

Evidently the following holds.

Proposition 4.2. For each n ∈ N, the specific number n is uniformly definable in W by the L-
formula An (x).

Proof. By a trivial induction on n.

Furthermore, no non-specific number is definable in W , as will be seen shortly. However, we
need a little more semantic machinery to establish this. Let δ be a permutation of W . For each
α ∈ W we denote by α ◦ δ the composition of α and δ, i.e.

α ◦ δ := λw.[α (δ (w))];

obviously α ◦ δ ∈ W. Given an R ⊆ W`, take

R ◦ δ := {(α1 ◦ δ, . . . , α` ◦ δ) | (α1, . . . , α`) ∈ R}.

As one would expect, we have:

Proposition 4.3. Let δ be a permutation of W and F ⊆ W. For any L-formula Φ (x1, . . . , x`),
(α1, . . . , α`) ∈ W` and w ∈W ,

〈W,F 〉 δ(w) Φ [α1, . . . , αn] ⇐⇒ 〈W,F ◦ δ〉 w Φ [α1 ◦ δ, . . . , αn ◦ δ].

Proof. By an easy induction on the construction of Φ.

Remember that we abbreviate 〈W,F〉 w Φ [γ], where F denotes the standard interpretation
of Sp, to W w Φ [γ]. Likewise ‘definable in W ’ will stand for ‘definable in 〈W,F〉’.

Corollary 4.4. For every R ⊆ W`,

R is definable in W =⇒ R ◦ δ = R for all permutations δ of W.

Proof. Assume R ⊆ W` can be defined in 〈W,F〉 by an L-formula Φ. Let δ be a permutation of
W . Evidently F ◦ δ = F. Hence by the Proposition above, for any (α1, . . . , α`) ∈ W`,

W  Φ [α1, . . . , α`] ⇐⇒ W  Φ [α1 ◦ δ, . . . , α` ◦ δ].

Consequently R ◦ δ = R, as desired.

Finally we are ready for the promised result.

Theorem 4.5. For every α ∈ W the following are equivalent:

1. α is specific;

2. α is uniformly definable in W ;

10



3. α is definable in W .

Proof. 1 =⇒ 2 Immediate from Proposition 4.2.

2 =⇒ 3 This is obvious.

3 =⇒ 1 Assume α is definable in W . So by Corollary 4.4, α ◦ δ = α for all permutations δ
of W . Thus α must be a constant function, and hence specific.

Is it possible to fix the intended interpretation of Sp by means of a single L-sentence? Curi-
ously the answer turns out to be affirmative. Take the axioms for Sp to be

B1 := ∀x (x ' 0→ Sp (x)),

B2 := ∀x (Sp (x)→ Sp (s (y))) and

B3 := ∀x (Sp (x) ∧ x 6' 0→ ∃y (Sp (y) ∧ x ' s (y))).

We are going to show that the conjunction of these three L-sentences does the job.

Theorem 4.6. For every F ⊆ W,

〈W,F 〉 |= B1–B3 ⇐⇒ F = F.

Proof. ⇐= This is obvious.

=⇒ Given an α ∈ W, take

rank (α) := min {α (w) | w ∈W}.

Assume 〈W,F 〉 |= B1–B3. Using B1–2 we easily get F ⊆ F . Suppose F 6= F. Consequently there
exists α ∈ F \ F. Clearly α 6= 0. So by B3 there must be α′ ∈ F such that 〈W,F 〉 |= α ' s (α′).
Then rank (α′) < rank (α), and moreover, α′ ∈ F \ F — because otherwise the successor α of α′

would be in F. Continuing in this fashion we obtain an infinite sequence

α, α′, , α′′, . . .

of elements of F \ F such that

rank (α) > rank (α′) > rank (α′) > . . .

This contradicts the well-foundedness of N with the usual ordering, of course.

4.2 Cardinality

Temporarily forget about the condition |W | = |G| and let W be any non-empty set (of possible
worlds). Given an F ⊆ W, by the L-theory of 〈W,F 〉 we mean

Th (W,F ) := {Φ | Φ is an L-sentence and 〈W,F 〉  Φ}.

Similarly for 〈G, S〉. As might be expected, Th (W,F) and Th (G,S) are abbreviated to Th (W )
and Th (G) respectively. More explicitly Th (W ) can be written as Th (N;W ). Obviously every
cardinal a can itself be viewed as a set of worlds of cardinality a. Thus, for instance,

Th (Gc) = Th (N;ℵ0) and Th (G) = Th
(
N; 2ℵ0

)
.

— remember Theorem 3.4. To facilitate the further exposition, we abbreviate

∀x (Sp (x)→ Φ) and ∃x (Sp (x) ∧ Φ)

to ∀SpxΦ and ∃SpxΦ respectively.

11



Proposition 4.7. There exists an L-sentence Φ such that for every cardinal a,

a  Φ ⇐⇒ a = ℵ0.

Proof. Consider the L-formula

C (x) := ∀Spy3 (x = y) ∧ ∀Spy ∀z (3 (x = y ∧ z = y)→ 2 (x = y → z = y)).

Clearly for each α ∈ W,

W  C [α] ⇐⇒ α is a one-to-one function from W onto N.

Take Φ to be ∃xC (x). Obviously W  Φ iff |W | = ℵ0.

Corollary 4.8. Th (N;ℵ0) 6= Th
(
N; 2ℵ0

)
, i.e. Th (Gc) 6= Th (G).

Proof. Immediate.

Then, since L allows us to distinguish ℵ0 from the other cardinals, the reader may very well
ask whether we can do the same for ℵ1, ℵ2, and so on. The answer turns out to be negative, as
will be seen below. For the rest of this subsection W , U , etc. stand for sets of worlds. We write
W, U , etc. for the corresponding collections of arbitrary numbers, i.e. NW , NU , etc.

Let ~α = (α1, . . . , α`) ∈ W`. For each ~n = (n1, . . . , n`) ∈ N`, define

J~α;~nK := {w ∈W | αi (w) = ni for all i from 1 to `}.

By the profile of ~α we mean the function prof~α from N` to N ∪ {ℵ0,ℵ1} given by

prof~α (~n) :=

{
|J~α;~nK| if |J~α;~nK| 6 ℵ0
ℵ1 otherwise.

In particular, if ` = 0, then ~α = () and N` = {()}, hence prof~α maps () to min {|W |,ℵ1}. Given

~α ∈ W` and ~β ∈ U`, we say that ~α and ~β are congruent, and write ~α ∼= ~β, iff their profiles coin-
cide — although the underlying sets W and U need not be the same.5

Lemma 4.9. Let ~α ∈ W` and ~β ∈ U`. Suppose ~α and ~β are congruent. Then for every α′ ∈ W
there exists β′ ∈ U such that (~α, α′) and (~β, β′) are congruent.

Proof. Since {J~β;~nK | ~n ∈ N`} is clearly a partition of U , it suffices to define β′ on each element
of this partition. Consider an arbitrary ~n ∈ N`. Obviously

|J~α;~nK| =

∞∑
k=0

|J(~α, α′); (~n, k)K|

and therefore

prof~α (~n) =

∞∑
k=0

prof(~α,α′) (~n, k).

On the other hand, prof~α (~n) = prof ~β (~n) by assumption. So β′ can be defined on J~β;~nK in such
a way that for each k ∈ N,

prof(~β,β′) (~n, k) = prof(~α,α′) (~n, k).

In detail, the argument falls into two cases.

5However, ~α ∼= ~β implies min {|W |,ℵ1} = min {|U |,ℵ1}, as can be readily verified.
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i. Suppose |J~α;~nK| 6 ℵ0, and hence |J(~α, α′); (~n, k)K| 6 ℵ0 for any k ∈ N. Then |J~β;~nK| 6 ℵ0,

and we can even define β′ on J~β;~nK so that for each k ∈ N,

|J(~α, α′); (~n, k)K| = |J(~β, β′); (~n, k)K|,

which is more than enough.

ii. Suppose |J~α;~nK| > ℵ1, and hence |J(~α, α′); (~n, i)K| > ℵ1 for some i ∈ N. Then |J~β;~nK| > ℵ1
and therefore J~β;~nK has a subset B of cardinality ℵ1. Certainly one can define β′ on B so
that for each k ∈ N,

min {|J(~α, α′); (~n, k)|,ℵ1} = min{|B ∩ J(~β, β′); (~n, k)K|,ℵ1},

and we get the desired result by setting β′ (u) := i for all u ∈ J~β;~nK \B.

These are the only cases possible, of course.

We are ready for the key result of this subsection:

Theorem 4.10. Let ~α ∈ W`, ~β ∈ U`, w ∈W and u ∈ U . Suppose ~α and ~β are congruent, with
~α (w) = ~β (u). Then for every L-formula Φ (x1, . . . , x`),

W w Φ [~α] ⇐⇒ U u Φ [~β].

Proof. By induction on the construction of Φ. Note: for every w′ ∈ W there exists u′ ∈ U such
that ~α (w′) = ~β (u′) — simply because

prof ~β (~α (w′)) = prof~α (~α (w′)) = min {|J~α; ~α (w′)K|,ℵ1} 6= 0,

i.e. |J~β; ~α (w′)K| 6= 0, and thus J~β; ~α (w′)K 6= ∅.

Suppose Φ is atomic and does not contain Sp, so it has the form t1 = t2 where t1 and t2 are
σ-terms. Clearly we have

w  Φ [~α] ⇐⇒ tN1 (~α (w)) = tN2 (~α (w)),

and similarly for u and ~β. Since ~α (w) = ~β (u), the result follows.

Suppose Φ is atomic and does contain Sp, so it has the form Sp (t) with t a σ-term. For the
⇐ direction, assume w 1 Φ [~α]. In other words, tN (~α (w)) 6= tN (~α (w′)) for some w′ ∈W . Now

take u′ to be an element of U such that ~α (w′) = ~β (u′). Of course tN(~β (u)) 6= tN(~β (u′)). Thus

u 1 Φ [~β]. The ⇒ direction holds by symmetry.

The case when Φ = ¬Ψ is immediate from the inductive hypothesis.

The case when Φ = Ψ ∨Θ is also immediate from the inductive hypothesis.

Suppose Φ = ∃yΨ (x1, . . . , x`, y). For the ⇒ direction, assume w  Φ [~α]; thus w  Ψ [~α, α′]

for some α′ ∈ W. By Lemma 4.9 there is β′ ∈ U such that 〈~α, α′〉 ∼= 〈~β, β′〉, so by the inductive

hypothesis we have u  Ψ [〈~β, β′〉]. Hence w  Φ[~β]. The ⇐ direction holds by symmetry.

Suppose Φ = 3Ψ. For the ⇒ direction, assume w  Φ [~α]; thus w′  Ψ [~α] for some w′ ∈W .

Take u′ to be an element of U such that ~α (w′) = ~β (u′), so by the inductive hypothesis we have

u′  Ψ [~β]. Hence u  Φ [~β]. The ⇐ direction holds by symmetry again.
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Corollary 4.11. For any cardinals a and b,

min {a,ℵ1} = min {b,ℵ1} =⇒ Th (N; a) = Th (N; b).

In particular, Th (N;ℵ1) = Th (N; a) for all cardinals a > ℵ1.

Proof. Immediate.

For instance, it makes no substantial difference whether we choose 2ℵ0 or ℵ1, and clearly no
assumption about the Continuum Hypothesis has been used to prove this.6

Let us conclude with a remark on finite cardinals. Certainly the condition ‘W has exactly n
members’ is expressible in L. Formally, for each n ∈ N, consider the L-sentence

Dn := ∃x1 . . . ∃xn ∃y
(∧n−1

i=1

∧n

j=i+1
2 (xi 6= xj) ∧

∧n

i=1
3 (y = xi)

)
∧

¬∃x1 . . . ∃xn+1 ∃y
(∧n

i=1

∧n+1

j=i+1
2 (xi 6= xj) ∧

∧n+1

i=1
3 (y = xi)

)
.

It is straightforward to show that for every cardinal a,

a  Dn ⇐⇒ a = n.

Thus L allows us to distinguish, in addition to ℵ0, each finite cardinal (and nothing else).

4.3 Indiscernibility

Although the original semantics for L provided in Subsection 3.1 may be technically less conve-
nient than its variation presented in Subsection 3.2, it has some advantages for structuralists:

• while N is the preferred first-order structure of the natural numbers in Subsection 3.2, we
treat it on par with any π [N] in Subsection 3.1;

• while each n ∈ N plays the same role at all possible worlds in Subsection 3.2, its role vari-
es with the choice of π in Subsection 3.1.

We are going to discuss indiscernibility in terms of the original semantics. Evidently one could
do it in terms of the alternative semantics as well (recalling Theorem 3.4) — but it would seem
somewhat unnatural.

For expository purposes, we took the underlying countably infinite plurality of objects to be
N itself in Subsection 3.1. Then every n ∈ N can be embedded into G as

cn := λπ.[n].

Notice that the constant function cn is, in effect, a very arbitrary number, and nothing like the
specific number n in G. (Moreover, if we pass from cn to cιn using Theorem 3.4, then cιn will be
nothing like a constant function, of course.)

In keeping with the spirit of structuralism, we want the elements of the underlying set to be
to the highest possible degree (compatible with the presence of identity) indistinguishable from
each other. To this end, for any {α1, α2} ⊆ A we let

Type (α1, α2) := {Φ (x, y) | Φ is an L-formula and G |= Φ [α1, α2]}.

Now α1 and α2 are said to be relatively distinguishable iff Type (α1, α2) 6= Type (α2, α1) — this
definition and a discussion of its suitability can be found in [Ladyman et al. 2012].

6We assume nothing beyond ZFC (the Axiom of Choice was used in the proof of Lemma 4.9, for example).
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Theorem 4.12. For any {i, j} ⊆ N,

Type (ci, cj) = Type (cj , ci),

i.e. ci and cj are relatively indistinguishable.

Proof. Let {i, j} ⊆ N. We need to show that for all L-formulas Φ (x, y),

G |= Φ [ci, cj ] ⇐⇒ G |= Φ [cj , ci]

— which is, assuming |W | = |G| and using the notation of Subsection 3.2, equivalent to

W  Φ
[
cιi, c

ι
j

]
⇐⇒ W  Φ

[
cιj , c

ι
i

]
(by Theorem 3.4). At the same time it is straightforward to check that:

a. cιi and cιj are congruent;

b. for every w ∈W there exists w′ ∈W such that(
cιi (w), cιj (w)

)
=
(
cιj (w′), cιi (w′)

)
,

and vice versa.

Thus by Theorem 4.10 one easily obtains the desired result.

Intuitively, while Theorem 4.5 guarantees that the specific numbers in G are maximally dis-
tinguishable from each other, Theorem 4.12 tells us that the objects in the underlying set — or
rather, their representations in G via λn.[cn] — are at the opposite extreme.

4.4 Compactness

Let W be a non-empty collection of possible worlds. A set Γ of L-formulas whose free variables
are among x1, . . . , x` is called satisfiable in W if there is an ~α ∈ W` such that W  Φ [~α] for all
Φ ∈ Γ, and finitely satisfiable if every finite subset of Γ is satisfiable. Similarly for G, which can
be viewed as the special case when |W | = |G| by Theorem 3.4. Not surprising, we have:

Proposition 4.13. Let W be infinite. There exists a set of L-formulas which is finitely satisfi-
able but not satisfiable in W .

Proof. We prove this for ` = 1. Traditionally, with every n ∈ N comes a closed σ-term n, called
its numeral, given by:

n :=

{
0 if n = 0,

s (n− 1) if n > 0.

Now define a sequence Φ0 (x), Φ1 (x), . . . of L-formulas by recursion:

Φn (x) :=

{
3 (x = 0) if n = 0,

Φn−1 ∧3 (x = n) if n > 0.

On the other hand, let
Φ∞ (x) := ¬∀Spy3 (x = y).

Evidently {Φn | n ∈ N} ∪ {Φ∞} has the desired properties.

The failure of compactness for L-formulas may point to complexity beyond first-order arith-
metic. In the next section we shall examine certain computational aspects of L.

15



5 Complexity aspects

We are now going to prove that, in fact, both Th (G) and Th (Gc) have the same complexity as
complete second-order arithmetic, i.e. the second-order theory of N. To make this precise, some
basic terminology of computability theory is needed; see e.g. [Soare 2016, Chapter 1].

Let P and Q be subsets of N. We say that P is m-reducible to Q, written P 6m Q, iff there
exists a computable f : N→ N such that for every n ∈ N,

n ∈ P ⇐⇒ f (n) ∈ Q.

Also, P and Q are called m-equivalent, written P ≡m Q, iff they are m-reducible to each other.
The notion of m-reducibility clearly plays a major role in studying complexity of decision prob-
lems and expressive power of formal languages in the foundations of mathematics.

Without loss of generality, we can restrict our attention to monadic second-order arithmetic
(since first-order arithmetic allows us to code elements of N` as elements of N). Its language L2

includes two sorts of variables, namely:

• individual variables x, y, z, . . . (intended to range over natural numbers);

• set variables X, Y , Z, . . . (intended to range over sets of natural numbers).7

Accordingly one must distinguish between individual and set quantifiers, viz.

∃x, ∃y, ∃z, . . . and ∃X, ∃Y , ∃Z, . . .

The L2-formulas — or monadic second-order σ-formulas — are built up from the first-order σ-
formulas and the expressions of the form t ∈ X, where t is a σ-term and X is a set variable, by
means of the connective symbols and the quantifiers in the usual way. As one would expect, we
write ¬∃X ¬Φ as shorthand for ∀X Φ, and adopt other standard abbreviations.

So we wish to show that both Th (G) and Th (Gc) are m-equivalent to the set of all L2-sen-
tences true in N, denoted by Th2 (N).

5.1 Hardness

First we prove that each of Th (G), Th (Gc) is at least as complex as Th2 (N). And in fact, our
argument below will demonstrate a bit more.

For convenience we pass from G to W (without imposing any restrictions on the cardinality
of W at the moment). We say P ⊆ N` is absolutely definable in W iff there exists an L-formula
Φ (x1, . . . , x`) such that for every (n1, . . . , n`) ∈ N`,

(n1, . . . , n`) ∈ P ⇐⇒ W  Φ [n1, . . . ,n`]

where ni = λw.[ni] for each i ∈ {1, . . . , `}.

Theorem 5.1. There exists a computable function τ that, given any L2-formula Φ (x1, . . . , x`),
produces an L-formula Φτ (y1, . . . , y`) such that for every infinite W and (n1, . . . , n`) ∈ N`,

N |= Φ [n1, . . . , n`] ⇐⇒ W  Φτ [n1, . . . ,n`],

i.e. Φτ absolutely defines in W the same set as Φ defines in N.8

7Henceforth we shall identify the collection of all individual variables with Var.
8We can try to allow free set variables in Φ as well: the translation τ supplied by the proof below shows that

just as for each n ∈ N its role in W is played by n, for each non-empty P ⊆ N its role in W can be played by an
arbitrary α ∈ W that satisfies P = {α (w) | w ∈W}. There may be infinitely many such α’s, however, and there
seems to be no canonical way to choose between them.
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Proof. Assume W is infinite. Then given any non-empty P ⊆ N, one can find α ∈ W such that

P = {α (w) | w ∈W}

— in other words, for all n ∈ N,

n ∈ P ⇐⇒ α and n coincide at some w ∈W.

Clearly we want the elements of F to play the role of natural numbers, and those of W the role
of non-empty sets of natural numbers. Of course, the empty set is easy to model.

It is straightforward to effectively convert every L2-formula Φ into a semantically equivalent
L2-formula Φ? satisfying the following conditions:

• each atomic subformula of Φ? is of either of the forms

x = y, x = y + z, x = y × z and x ∈ X;

• no set or individual quantifier occurs more than once in Φ?.

Now let v0, v1, . . . and V0, V1, . . . be fixed enumerations of the individual variables and the set
variables respectively. Given an L2-formula Φ, take

Φτ := (Φ?)
τ

with (Φ?)
τ

defined inductively as follows:

(vi = vj)
τ

:= v2i = v2j ;

(vi + vj = vk)
τ

:= v2i + v2j = v2k;

(vi × vj = vk)
τ

:= v2i × v2j = v2k;

(vi ∈ Vj)τ := 3 (v2i = v2j+1);

(¬Ψ)
τ

:= ¬τ (Ψ);

(Ψ ∧Θ)
τ

:= Ψτ ∧Θτ ;

(∃vi Ψ)
τ

:= ∃v2i (Sp (v2i) ∧Ψτ );

(∃Vj Ψ)
τ

:= ∃v2j+1 Ψτ ∨ (Ψ [Vj := ∅])
τ

where Ψ [Vj := ∅] denotes the result of replacing each vi ∈ Vj in Ψ by vi 6= vi. Observe that for
every L2-formula Φ (vi1 , . . . , vi`) the corresponding L-formula Φτ (v2i1 , . . . , v2i`) absolutely defi-
nes in W what is needed, as an easy induction on the construction of Φ shows.

We remark that in the context of monadic second-order logic the difference between the sig-
nature σ of Peano arithmetic and its fragment {0, s,+,=}, which is the signature of Presburger
arithmetic, turns out to be inessential, because we can eliminate × from L2 without any loss of
expressiveness; see [Speranski 2013] for details and further references.9 In view of Theorem 5.1,
the same applies to L. However, the reader should bear in mind that although multiplication is
absolutely definable using a ×-free L-formula, expressing set quantifiers in L requires 3, and in
particular, no purely arithmetical ×-free formula can do this job.

Corollary 5.2. Th2 (N) is m-reducible to both Th (G) and Th (Gc).

Proof. By the Theorem above, for each infinite W , Th2 (N) is m-reducible to Th (N;W ). Since
Th (G) = Th

(
N; 2ℵ0

)
and Th (Gc) = Th (N;ℵ0), the result follows.

Thus the expressive power of L is greater than or equal to that of L2. In effect, the equality
holds, as will be established in the next subsection.

9While in the context of first-order logic this is not so, of course.
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5.2 Boundedness

Further, the complexity of Th (G) and Th (Gc) turns out to be bounded by that of Th2 (N). In
order to prove this, we shall reconsider the technique developed in Subsection 4.2.

Theorem 5.3. For every W , Th (N;W ) is m-reducible to Th2 (N).

Proof. By Corollary 4.11, without loss of generality, we can restrict to W ’s with |W | 6 ℵ1. The
most interesting case is where |W | = ℵ1; the other cases are, in fact, much simpler, and may be
treated similarly. Assume W has cardinality ℵ1.

Briefly stated, Theorem 4.10 allows us to replace possible worlds by tuples of elements of N,
and arbitrary numbers by functions from tuples of elements of N to elements of N ∪ {ℵ0,ℵ1} —
hence the result follows. Formally, we are going to suitably redefine .

Throughout the proof by an `-profile we shall mean a function from N` to N ∪ {ℵ0,ℵ1} that
takes ℵ1 as value at least once.10 Denote by Prof` the collection of all `-profiles; note that Prof0
coincides with {prof()}, where prof() is the unique function from {()} to {ℵ1}. Evidently

Prof` =
{

prof~α | ~α ∈ W`
}
.

Remember that by Theorem 4.10, any two elements of W` with the same profile are indistingu-
ishable by L-formulas.

Moreover, in view of Theorem 4.10, given an L-formula Φ (x1, . . . , x`) and ~α ∈ W`, the only
thing we need to know about w ∈ W is ~α (w). For ` 6= 0 this amounts to switching from worlds
to `-tuples that ~α takes as value at least once. Accordingly, for each f ∈ Prof` we consider

Wf :=
{
~n ∈ N` | f (~n) 6= 0

}
.

Certainly reducing the number of quantifiers in a given Φ (x1, . . . , x`) requires passing to tuples
of length greater than `. To see how to do it in the present setting, let f ∈ Prof`, g ∈ Prof`+1,
~n ∈Wf and ~m ∈Wg. We say 〈g, ~m〉 extends 〈f, ~n〉, written 〈g, ~m〉 < 〈f, ~n〉, if:

i. f (~p) =
∑∞
i=0 g (~p, i) for every ~p ∈ N`;

ii. ~m = (~n, i) for some i ∈ N.

Intuitively, (i) guarantees that g can be obtained by appropriately splitting f (cf. the argument
for Lemma 4.9), and by (ii) it can be assumed that we deal with the same world.

Now we are ready to redefine  in a suitable way. Namely, for any L-formula Φ (x1, . . . , x`),
f ∈ Prof` and ~n ∈Wf , define

~n . Φ [f ]

inductively as follows:

• ~n . t1 = t2 [f ] iff tN1 (~n) = tN2 (~n);

• ~n . ¬Ψ [f ] iff it is not the case that ~n .Ψ [f ];

• ~n .Ψ ∨Θ [f ] iff ~n .Ψ [f ] or ~n .Θ [f ];

• ~n . ∃yΨ [f ] iff there are g ∈ Prof`+1 and ~m ∈Wg such that 〈g, ~m〉 < 〈f, ~n〉 and ~m .Ψ [g];

• ~n .3Ψ [f ] iff there is ~m ∈Wf such that ~m .Ψ [f ];

10In other words, the sum of the elements in the range of this function must be ℵ1 — in general, one needs to
substitute |W | for ℵ1, of course.
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• ~n . Sp (t) [f ] iff tN (~n) = tN (~m) for all ~m ∈Wf .

Then using Theorem 4.10, it is straightforward to show that for every L-formula Φ (x1, . . . , x`),
~α ∈ W` and w ∈W ,

w  Φ [~α] ⇐⇒ ~α (w) . Φ [prof~α].

Therefore Th (N;W ) coincides with the set of all L-sentences Φ which satisfy () . Φ [prof()]. To
complete the argument, we make the following observations:

a. each `-profile, being a countable object, can be encoded as a subset of N;

b. . can be readily expressed within L2, so there exists a computable function ρ from L-sen-
tences to L2-sentences such that

() . Φ [prof()] ⇐⇒ ρ (Φ) ∈ Th2 (N).

This gives the desired m-reduction.

Corollary 5.4. Both Th (G) and Th (Gc) are m-reducible to Th2 (N).

Proof. Since Th (G) = Th
(
N; 2ℵ0

)
and Th (Gc) = Th (N;ℵ0), the result follows.

Finally we get:

Theorem 5.5. Th (G), Th (Gc) and Th2 (N) are m-equivalent to each other.

Proof. Immediate from Corollaries 5.2 and 5.4.

6 Directions of further research

It would be interesting to continue the investigation of generic structures and their metamathe-
matical aspects. Let us briefly mention some directions that might profitably be explored.

• In this paper we have been concerned with the model-theoretic and complexity aspects of
G, i.e. G and Gc. On the other hand, one may also wish to develop some proof theory for
reasoning about these generic structures. Of course, no computably enumerable system of
axioms and rules can capture Th (G) or Th (Gc), by Corollary 5.2; however, Corollary 5.4
suggests that one may try to develop proof systems for them in much the same fashion as
in second-order arithmetic.

• We have shown that the L-theories of G and Gc both have the same complexity as comp-
lete second-order arithmetic. One might wonder what happens when we restrict ourselves
to reasonable fragments of L. The answer is clear in some cases (e.g., when × is excluded
from the language), but it requires a deeper analysis in others.

• Another issue not touched on here concerns the study of the notions of independence and
determinateness within the Carnapian framework we exploited. It would be interesting to
investigate the relationship between the present framework and that of the so-called inde-
pendence-friendly logic (which was introduced in [Hintikka & Sandu 1989], and advocated
in [Hintikka 1996]) and its variations (see, for instance, [Grädel & Väänänen 2013]).

• In effect we do not have to limit our attention to arithmetic and its reducts — the notion
of generic truth can be applied to other structures as well.

All these fall beyond the scope of this paper, and are the subject of future work.

19



Acknowledgements. We want to thank audience of the Philosophy of Mathematics Seminar
at the University of Oxford (in particular, Timothy Williamson), Jan Heylen, Philip Welch and
Hazel Brickhill for providing constructive comments. The work was partially carried out during
S. O. Speranski’s visit to the Department of Philosophy at the University of Bristol, which took
place in Summer 2017 and was supported by an IAS Benjamin Meaker Visiting Professorship.

References

[Benacerraf 1965] P. Benacerraf (1965). What numbers could not be. Philosophical Review
74(1), 47–73. DOI: 10.2307/2183530

[Benacerraf 1996] P. Benacerraf (1996). Recantation or Any old ω-sequence would do after all.
Philosophia Mathematica 4(2), 184–189. DOI: 10.1093/philmat/4.2.184

[Carnap 1956] R. Carnap (1956). Meaning and Necessity. A Study in Semantics and Modal
Logic. 3rd ed. University of Chicago Press.

[Fine 1985a] K. Fine (1985). Reasoning with Arbitrary Objects. Blackwell.

[Fine 1985b] K. Fine (1985). Natural deduction and arbitrary objects. Journal of Philosophical
Logic 14(1), 57–107. DOI: 10.1007/BF00542649

[Fine 1998] K. Fine (1998). Cantorian abstraction: a reconstruction and defence. Journal of
Philosophy 95(12), 599–634. DOI: 10.2307/2564641
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