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Abstract

Infinitary action logic can be naturally expanded by adding exponential and subexponen-
tial modalities from linear logic. In this article we shall develop infinitary action logic with
a subexponential that allows multiplexing (instead of contraction). Both non-commutative
and commutative versions of this logic will be considered, presented as infinitary sequent
calculi. We shall prove cut admissibility for these calculi, and estimate the complexity
of the corresponding derivability problems: in both cases it will turn out to be between
complete first-order arithmetic and the 𝜔𝜔 level of the hyperarithmetical hierarchy. Here
the complexity upper bound is much lower than that for the system with a subexponential
that allows contraction. The complexity lower bound in turn is much higher than that for
infinitary action logic.
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1 Introduction

The multiplicative-additive Lambek calculus, denoted by MALC, is an extension of the Lambek
calculus [14] with additive connectives, and nowadays can be viewed as a non-commutative
intuitionistic variant of Girard’s linear logic [5]. From this point of view, it is natural to extend
it with exponential or subexponential modalities [7]. These modalities allow structural rules of
contraction, exchange, and weakening, which MALC, being a substructural logic, does not allow
for arbitrary formulae. The exponential modality allows all these rules (for formulae under this
modality), while subexponential ones may allow only some of them. We shall write SMALCΣ

for the extension of MALC with a family Σ of subexponential modalities.
On the other hand, MALC is the core of action logic, the algebraic logic of residuated Kleene

lattices, or action lattices [19, 9]. Besides operations of MALC, action logic also includes a
unary operation of iteration, called the Kleene star. In this article, we shall be interested in the
algebraic logic of a subclass of action lattices called *-continuous ones. This logic is called
infinitary action logic and denoted by ACT𝜔 [3, 18, 4]. In ACT𝜔 , the Kleene star is axiomatised
by an 𝜔-rule, thus making the whole system infinitary. Extending ACT𝜔 further with a family
Σ of subexponential modalities results in a system called !ΣACT𝜔 [12].

Although both SMALCΣ and ACT𝜔 are undecidable, they have a rather moderate degree
of undecidability: ACT𝜔 is Π0

1-complete [3, 18, 4], while SMALCΣ is Σ0
1-complete [15, 7],

provided at least one subexponential in Σ allows contraction (otherwise the system is decidable).
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However, combining both a subexponential allowing contraction and the Kleene star raises
complexity dramatically: if Σ contains a subexponential for contraction, then !ΣACT𝜔 is Π1

1-
complete [12], hence not even hyperarithmetical.

This huge complexity gap motivates the search for natural systems of intermediate complexity
level, which somehow involve both Kleene star and some sorts of subexponential modalities.
Notice that completely disallowing contraction for subexponentials does not give such a system,
since in this case we return to the Π0

1 upper bound [12].
One such fragment of !ACT𝜔 , which has an intermediate complexity level, was introduced

in [10]. This fragment is defined by the following syntactic restriction: the Kleene star is not
allowed to appear under the exponential. This restriction makes complexity hyperarithmetical
(the fragment belongs to Δ1

1); on the other hand, it is Π0
2-hard, which is a lower bound higher

than both Σ0
1 and Π0

1 .
Such a restriction, however, may look artificial. In this article, we give a new example of a

system with intermediate complexity, in which, instead of an external constraint on syntax, we
use a modified set of rules for the subexponential modality.

Namely, we introduce an extension of infinitary action logic with a subexponential modality
for multiplexing instead of contraction. The difference is as follows. Contraction just copies
formulae under !, keeping the ! at its place and allowing its reusing upper in the proof tree:

. . . !𝐴 . . . !𝐴 . . . ⊢ 𝐶
. . . !𝐴 . . . ⊢ 𝐶

On the other hand, multiplexing is an introduction rule for !, which can be used for copying the
formula only once:

. . .

𝑛 times︷    ︸︸    ︷
𝐴𝐴 . . . 𝐴 . . . ⊢ 𝐶
. . . !𝐴 . . . ⊢ 𝐶

The finitary system of intuitionistic non-commutative linear logic with multiplexing was
introduced in [8]. This system is also equipped with another subexponential, ∇, which is used
for permutation. In this article, we also consider a commutative version of the system with
multiplexing, where ∇ is unnecessary. The rules for introducing subexponential modalities to
the right-hand side of sequents are also different from those in linear logic, and follow the ideas
of “light” and “soft” linear logic [6, 13]. An accurate formulation of the calculi we consider is
given in Section 2.1 below.

For infinitary action logic with multiplexing, both commutative and non-commutative, we
get tighter complexity bounds than those in [10]. More precisely, the lower bound is complete
first-order arithmetic, while the upper bound is Σ0

𝜔𝜔 , i.e. the 𝜔𝜔 level of the hyperarithmetical
hierarchy. In order to prove the latter, we show that the closure ordinals for the derivability
operators for both systems are less than or equal to 𝜔𝜔 . For comparison, for !ΣACT𝜔 , when
at least one subexponential allows contraction, the closure ordinal is 𝜔CK

1 (the highest possible,
which reflects Π1

1-completeness) [12].
The motivation for this extension of infinitary action logic is as follows. Unlike rules used in

linear logic, the multiplexing rule for ! is exactly dual to the 𝜔-rule introducing the Kleene star.

3



Namely, while ∗ stands for the “for all” quantifier, ! models the “exists” one. Complexitywise, the
system obtained is quite unusual for a propositional logic: it is highly likely that its complexity
lies exactly in the hyperarithmetical range.

Semantics for infinitary action logic extended with modalities for multiplexing is a subtle
issue, and we leave it for further research. On one hand, ACT𝜔 itself has natural algebraic
models, which are *-continuous action algebras [19, 9, 4]. On the other hand, for soft linear
logic [13], which employs multiplexing, there is also a line of research towards semantics [20].
These approaches could probably be extended to the Kleene star, at least in the commutative
case. This seems to be an interesting question for future research.

The rest of this article is organised as follows. Section 2 includes the necessary preliminaries.
Here we define the syntax of our calculi and prove that, thanks to the∇modality, the commutative
system can be embedded into the non-commutative one. We also recall the basics of the theory
of inductive definitions and hyperarithmetical hierarchy, which will be needed further in our
arguments. In Section 3 we introduce a rank function on sequents and use it for proving an upper
bound of 𝜔𝜔 on the closure ordinal. Section 4 contains a sketch of cut elimination proof. In
Sections 5 and 6, we prove lower and upper complexity bounds, respectively. Finally, Section 7
is a concluding one, stating some open questions for future research.

2 Preliminaries

2.1 Infinitary action logic with multiplexing

Let us introduce an extension of infinitary action logic [4] with two subexponential modalities
! and ∇ [8]. The first one allows the so-called multiplexing rule, and the second one is for
controlled permutation. The system which we define here will be denoted by !m∇ACT𝜔 .

We start with MALC, multiplicative-additive Lambek calculus, as the basic logic, formulated
as a sequent calculus. Formulae of MALC are built from variables (𝑝, 𝑞, 𝑟, . . .) and constants 0
and 1 using five binary operations: · (product, or multiplicative conjunction), \ (left division), /
(right division), ∧ (additive conjunction), and ∨ (additive disjunction). Sequents are expressions
of the form Π ⊢ 𝐴, where 𝐴 is a formula and Π is a sequence of formulae, possibly empty.

The axioms and inference rules of MALC are as follows:

𝐴 ⊢ 𝐴 (id)

Π ⊢ 𝐴 Γ, 𝐵,Δ ⊢ 𝐶
Γ,Π, 𝐴 \ 𝐵,Δ ⊢ 𝐶 (\ 𝐿) 𝐴,Π ⊢ 𝐵

Π ⊢ 𝐴 \ 𝐵 (\ 𝑅)

Π ⊢ 𝐴 Γ, 𝐵,Δ ⊢ 𝐶
Γ, 𝐵 / 𝐴,Π,Δ ⊢ 𝐶 (/ 𝐿) Π, 𝐴 ⊢ 𝐵

Π ⊢ 𝐵 / 𝐴 (/ 𝑅)

Γ, 𝐴, 𝐵,Δ ⊢ 𝐶
Γ, 𝐴 · 𝐵,Δ ⊢ 𝐶 (·𝐿) Γ ⊢ 𝐴 Δ ⊢ 𝐵

Γ,Δ ⊢ 𝐴 · 𝐵 (·𝑅)
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Γ,Δ ⊢ 𝐶
Γ, 1,Δ ⊢ 𝐶 (1𝐿) ⊢ 1 (1𝑅)

Γ, 0,Δ ⊢ 𝐶 (0𝐿)

Γ, 𝐴1,Δ ⊢ 𝐶 Γ, 𝐴2,Δ ⊢ 𝐶
Γ, 𝐴1 ∨ 𝐴2,Δ ⊢ 𝐶 (∨𝐿) Π ⊢ 𝐴𝑖

Π ⊢ 𝐴1 ∨ 𝐴2
(∨𝑅𝑖), 𝑖 = 1, 2

Γ, 𝐴𝑖 ,Δ ⊢ 𝐶
Γ, 𝐴1 ∧ 𝐴2,Δ ⊢ 𝐶 (∧𝐿𝑖), 𝑖 = 1, 2 Π ⊢ 𝐴1 Π ⊢ 𝐴2

Π ⊢ 𝐴1 ∧ 𝐴2
(∧𝑅)

The calculus !m∇ACT𝜔 is obtained from MALC by adding three unary connectives, ∗

(Kleene star), ! (multiplexing subexponential) and ∇ (permuting subexponential) with the fol-
lowing rules. Here and further 𝐴𝑛 means 𝐴, . . . , 𝐴 (𝑛 times); in particular, 𝐴0 is the empty
sequence.

(Γ, 𝐴𝑛,Δ ⊢ 𝐶)𝑛∈𝜔
Γ, 𝐴∗,Δ ⊢ 𝐶 (∗𝐿𝜔)

⊢ 𝐴∗ (∗𝑅0)
Π1 ⊢ 𝐴 . . . Π𝑛 ⊢ 𝐴

Π1, . . . ,Π𝑛 ⊢ 𝐴∗ (∗𝑅𝑛), 𝑛 > 0 and each Π𝑖 is non-empty

Γ, 𝐴𝑛,Δ ⊢ 𝐶
Γ, !𝐴,Δ ⊢ 𝐶 (!𝐿𝑛), 𝑛 ∈ 𝜔 𝐴 ⊢ 𝐵

!𝐴 ⊢ !𝐵 (!𝑅)

Γ, 𝐴,Δ ⊢ 𝐶
Γ,∇𝐴,Δ ⊢ 𝐶 (∇𝐿) 𝐴 ⊢ 𝐵

∇𝐴 ⊢ ∇𝐵 (∇𝑅)

Γ, 𝐵,∇𝐴,Δ ⊢ 𝐶
Γ,∇𝐴, 𝐵,Δ ⊢ 𝐶 (∇𝑃1)

Γ,∇𝐴, 𝐵,Δ ⊢ 𝐶
Γ, 𝐵,∇𝐴,Δ ⊢ 𝐶 (∇𝑃2)

Notice that cut is not included as an official rule into the system. Thus, cut elimination will
be formulated as cut admissibility—the set of derivable sequents is closed under cut—and proved
below in Section 4.

The non-emptiness restriction on the (∗𝑅𝑛) rule does not actually alter the set of derivable
sequents. Indeed, if a Π 𝑗 is empty, we may just remove the corresponding premise, which will
make the rule even stronger. If all Π𝑖’s happen to be empty, then (∗𝑅𝑛) reduces to the (∗𝑅0)
axiom. This non-emptiness restriction, however, helps in analysis of derivations.

Since our calculus includes an 𝜔-rule, (∗𝐿𝜔), we should be careful when defining deri-
vations and derivability. Here we use the same approach as in [12], which follows Aczel [1,
Definition 1.4.4] and Buchholz [2, § 1]. Let us briefly recall it. Traditionally, the derivability of
a sequent is defined as the existence of a derivation for it. A derivation, in turn, is a well-founded
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(but possibly infinitely branching) labelled tree 𝔗 such that each vertex 𝑣 of 𝔗 is labelled by a
sequent, and this sequent can be obtained from the sequents labelling the children of 𝑣 by applying
one of the inference rules. In particular, axioms are treated as nullary inference rules; thus the
leaves of 𝔗 are labelled by instances of axioms. Below (see Proposition 2.2 and Section 2.2) we
shall also discuss alternative, but equivalent, ways of defining derivability.

We also consider a commutative version of !m∇ACT𝜔 , denoted by !mCommACT𝜔 . This
commutative version is obtained from !m∇ACT𝜔 by adding the unrestricted permutation rule:

Γ, 𝐵, 𝐴,Δ ⊢ 𝐶
Γ, 𝐴, 𝐵,Δ ⊢ 𝐶 (𝑃)

and removing ∇, which is now unnecessary. Alternatively, one can reformulate the language
of sequents, making their left-hand sides multisets rather than sequences. In !mCommACT𝜔 ,
two divisions, 𝐴 \ 𝐵 and 𝐵 / 𝐴, are equivalent, and we denote them by 𝐴 ⊸ 𝐵. The notion of
derivability in !mCommACT𝜔 is defined in the same way as in !m∇ACT𝜔 .

In fact, !mCommACT𝜔 can be conservatively embedded into !m∇ACT𝜔 using the ∇ modal-
ity. More precisely, we define two translations of formulae from !mCommACT𝜔 , denoted by
𝐴∇+ and 𝐴∇−, by joint recursion:

𝑝∇+ = 𝑝 𝑝∇− = ∇𝑝
0∇+ = 0 0∇− = ∇0
1∇+ = 1 1∇− = ∇1
(𝐴 ⊸ 𝐵)∇+ = 𝐴∇− \ 𝐵∇+ (𝐴 ⊸ 𝐵)∇− = ∇(𝐴∇+ \ 𝐵∇−)
(𝐴 · 𝐵)∇+ = 𝐴∇+ · 𝐵∇+ (𝐴 · 𝐵)∇− = ∇(𝐴∇− · 𝐵∇−)
(𝐴 ∧ 𝐵)∇+ = 𝐴∇+ ∧ 𝐵∇+ (𝐴 ∧ 𝐵)∇− = ∇(𝐴∇− ∧ 𝐵∇−)
(𝐴 ∨ 𝐵)∇+ = 𝐴∇+ ∨ 𝐵∇+ (𝐴 ∨ 𝐵)∇− = ∇(𝐴∇− ∨ 𝐵∇−)
(𝐴∗)∇+ = (𝐴∇+)∗ (𝐴∗)∇− = ∇

(
(𝐴∇−)∗

)
(!𝐴)∇+ = !𝐴∇+ (!𝐴)∇− = ∇!𝐴∇−

Theorem 2.1.
A sequent 𝐴1, . . . , 𝐴𝑛 ⊢ 𝐵 is derivable in !mCommACT𝜔 iff its translation 𝐴∇−

1 , . . . , 𝐴∇−
𝑛 ⊢ 𝐵∇+

is derivable in !m∇ACT𝜔 .

Proof. The given !mCommACT𝜔 derivation is translated into the corresponding !m∇ACT𝜔
derivation. The translation is straightforward. When a new formula 𝐴 is introduced to the
left-hand side of the sequent, we add an extra (∇𝐿) application which adds the ∇ needed to form
𝐴∇−. The same happens with the (id) axiom. Introducing new formulae to the right is translated
as is. Finally, permutation (𝑃) is translated into (∇𝑃1), since each formula 𝐴∇−

𝑖
in the left-hand

side is of the form ∇𝐹.
For the backwards translation, we just take the !m∇ACT𝜔 derivation of the translated sequent

and remove all ∇’s. This gives a valid derivation in !mCommACT𝜔 (in particular, (∇𝑃1) and
(∇𝑃2) transform into (𝑃)) of the original sequent. □
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We finish this section with an alternative, but equivalent way to define derivability:

Proposition 2.2.
Let L ∈ {!m∇ACT𝜔 , !mCommACT𝜔}. A sequent is derivable in L (i.e. there exists a derivation
𝔗 in the sense defined above) iff it belongs to the least (w.r.t. inclusion) set of sequents which is
closed under the inference rules of L.

Proof. See [12, Proposition 2.2], where the same was proved for a closely related system !ACT𝜔 .
The proof does not depend on the concrete form of inference rules. □

In Section 2.2 below, we shall reformulate this alternative definition in terms of the least
fixed point of the immediate derivability operator on sets of sequents.

2.2 Inductive definitions

To simplify our discussion, let

Ord := the class of all ordinals,
LOrd := the class of all limit ordinals,
COrd := the class of all constructive ordinals.1

The least element of Ord \ COrd is traditionally called the Church–Kleene ordinal, and denoted
by 𝜔CK

1 . Since COrd forms an initial segment of Ord, we have

COrd =
{
𝛼 ∈ Ord | 𝛼 < 𝜔CK

1
}
.

Naturally, if one wishes to use transfinite recursion in an effective way, it is reasonable to focus
attention on ordinals below 𝜔CK

1 .
Let 𝐹 be a monotone function from P (𝜔) to P (𝜔), i.e. for any 𝑃,𝑄 ⊆ 𝜔,

𝑃 ⊆ 𝑄 =⇒ 𝐹 (𝑃) ⊆ 𝐹 (𝑄).

Then for each 𝑆 ⊆ 𝜔 we can inductively define

𝐹𝛼 (𝑆) :=


𝑆 if 𝛼 = 0,
𝐹

(
𝐹𝛽 (𝑆)

)
if 𝛼 = 𝛽 + 1,⋃

𝛽<𝛼 𝐹
𝛽 (𝑆) if 𝛼 ∈ LOrd \ {0} .

Evidently, the resulting transfinite sequence is monotone as a class function from Ord to P (𝜔),
i.e. 𝛼 ⩽ 𝛽 implies 𝐹𝛼 (𝑆) ⊆ 𝐹𝛽 (𝑆). This observation quickly leads to:

Folklore 2.3.
Let 𝐹 be a monotone function from P (𝜔) to P (𝜔). Then for every 𝑆 ⊆ 𝜔, if 𝑆 ⊆ 𝐹 (𝑆), then
there exists 𝛼 ∈ Ord such that 𝐹𝛼+1 (𝑆) = 𝐹𝛼 (𝑆) — so 𝐹𝛼 (𝑆) is the least fixed point of 𝐹
containing 𝑆.

1Recall that an ordinal 𝛼 is constructive, or computable, iff there exists a computable well-ordering (on a subset
of 𝜔) that has order-type 𝛼; see [21, §§11.7–8] for more information.
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By the closure ordinal of a monotone 𝐹 : P (𝜔) → P (𝜔) we mean the least 𝛼 ∈ Ord such
that 𝐹𝛼+1 (∅) = 𝐹𝛼 (∅). This ordinal indicates how many steps are needed to get the least fixed
point of 𝐹, which exists by Folklore 2.3.

Denote by 𝔑 the standard model of arithmetic. It is convenient to assume that the signature
of 𝔑 contains a symbol for every computable function or relation. We shall be concerned with
monotone operators definable in 𝔑. Let L2 be the language of monadic second-order logic based
on the signature of 𝔑.2 So L2 includes two sorts of variables:

• individual variables 𝑥, 𝑦, . . . (intended to range over 𝜔);

• set variables 𝑋 , 𝑌 , . . . (intended to range over P (𝜔)).

Accordingly one needs to distinguish between individual and set quantifiers, viz.

∃𝑥, ∀𝑥, ∃𝑦, ∀𝑦, . . . and ∃𝑋, ∀𝑋, ∃𝑌, ∀𝑌, . . .

Let 𝑛 ∈ 𝜔 \ {0}. Recall that an L2-formula is in Σ0
𝑛 (Π0

𝑛) iff it has the form

∃®𝑥1 ∀®𝑥2 . . . ®𝑥𝑛︸            ︷︷            ︸
𝑛−1 alternations

Ψ (respectively ∀®𝑥1 ∃®𝑥2 . . . ®𝑥𝑛︸            ︷︷            ︸
𝑛−1 alternations

Ψ)

where ®𝑥1, ®𝑥2, . . . , ®𝑥𝑛 are tuples of individual variables and Ψ is quantifier-free. We say that a
subset of 𝜔 belongs to Σ0

𝑛 (Π0
𝑛) iff it is definable in 𝔑 by a Σ0

𝑛-formula (Π0
𝑛-formula). Further, an

L2-formula is in Σ1
1 (Π1

1) iff it has the form

∃ ®𝑋 Ψ (respectively ∀ ®𝑋 Ψ)

where ®𝑋 is a tuple of set variables and Ψ contains no set quantifiers. Naturally, a subset of 𝜔
belongs to Σ1

1 (Π1
1) iff it is definable in 𝔑 by a Σ1

1-formula (Π1
1-formula).

For each L2-formula Φ (𝑥, 𝑋) (where 𝑥 is an individual variable and 𝑋 is a set variable) we
define the function [Φ] from P (𝜔) to P (𝜔) by

[Φ] (𝑆) := {𝑛 ∈ 𝜔 | 𝔑 |= Φ (𝑛, 𝑆)}.

Now call Φ (𝑥, 𝑋) positive iff no free occurrence of 𝑋 in Φ is in the scope of an odd number of
nested negations, provided → is treated as defined using ¬ and ∨. Obviously,

Φ (𝑥, 𝑋) is positive =⇒ [Φ] is monotone.

We say that a function 𝐹 from P (𝜔) to P (𝜔) is elementary iff 𝐹 = [Φ] for some positive L2-
formula Φ (𝑥, 𝑋) with no set quantifiers.3

Folklore 2.4 (cf. Theorem 1D.3, Corollary 2B.3 and Theorem 8D.1 in [17]).
Let 𝐹 be an elementary function from P (𝜔) to P (𝜔). Then:

2Here the restriction to monadic formulae is not essential because first-order arithmetic allows us to code tuples
of natural numbers as natural numbers.

3For discussion and related results one may consult [17].
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i. the least fixed point of 𝐹 belongs to Π1
1;

ii. the closure ordinal of 𝐹 is less than or equal to 𝜔CK
1 .

Consider L ∈ {!m∇ACT𝜔 , !mCommACT𝜔}. We associate with L its immediate derivability
operator 𝒟L on the sets of sequents as follows: for any sequent 𝑠 and set of sequents 𝑆,

𝑠 ∈ 𝒟L (𝑆) ⇐⇒
𝑠 is an element of 𝑆 or 𝑠 can be obtained from

elements of 𝑆 by one application of some rule of L.

Notice that the least fixed point of 𝒟L coincides with the collection of all sequents derivable in
L. Assuming some effective Gödel numbering for sequents, we can identify 𝒟L with a function
from P (𝜔) to P (𝜔). Finally, it is straightforward to check that this function is elementary.4 So
Folklore 2.4 applies to 𝒟L.

2.3 Hyperarithmetical hierarchy

Given 𝑆 ⊆ 𝜔, take U𝑆 to be one’s favourite partial 𝑆-computable two-place function on 𝜔 that is
universal for the class of all partial 𝑆-computable one-place functions on 𝜔. For each 𝑛 ∈ 𝜔 we
use U𝑆𝑛 to denote the 𝑛-th projection of U𝑆 , i.e.

U𝑆𝑛 := _𝑚.
[
U𝑆 (𝑛, 𝑚)

]
.

If 𝑆 = ∅, the superscript 𝑆 in U𝑆 can be omitted. Further, we write ⩽ for many-one reducibility
and ⩽𝑇 for Turing reducibility. So for any 𝑆, 𝑃 ⊆ 𝜔:

𝑆 ⩽ 𝑃 ⇐⇒ there exists 𝑛 ∈ 𝜔 such that U𝑛 is total and 𝑆 = (U𝑛)−1 [𝑃];
𝑆 ⩽𝑇 𝑃 ⇐⇒ there exists 𝑛 ∈ 𝜔 such that 𝜒𝑆 = U𝑃𝑛 .5

The corresponding equivalence relations are denoted by ≡ and ≡𝑇 respectively.
Take J to be the Turing jump operator on the powerset of 𝜔, which can be defined by

J (𝑆) :=
{
𝑛 ∈ 𝜔 | U𝑆 (𝑛, 𝑛) converges

}
.

The importance of this operator emerges from the following.

4To this end, it suffices to show that for each rule R of L there exists a positive L2-formula ΦR (𝑥, 𝑋) with no set
quantifiers such that for any sequent 𝑠 and set of sequents 𝑆,

𝔑 |= ΦR (𝑠, 𝑆) ⇐⇒ 𝑠 can be obtained from
elements of 𝑆 by one application of R

(where the rule scheme (∗𝑅𝑛) is treated as a single rule). In effect, a perfectly analogous argument was used in the
proof of Proposition 5.1 in [12].

5Here 𝜒𝐴 is the characteristic function of 𝐴.
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Folklore 2.5.
Let 𝑆 ⊆ 𝜔. Then for every 𝑃 ⊆ 𝜔,

𝑃 is computably enumerable in 𝑆 ⇐⇒ 𝑃 is many-one reducible to J (𝑆).

Thus every subset of 𝜔 computably enumerable in 𝑆 is many-one reducible to J (𝑆), and J (𝑆)
itself is computably enumerable in 𝑆.

Among other things, it leads to an alternative characterisation of the arithmetical hierarchy:

Folklore 2.6.
Let 𝑛 ∈ 𝜔 \ {0}. Then for every 𝑆 ⊆ 𝜔,

𝑆 belongs to Σ0
𝑛 ⇐⇒ 𝑆 is many-one reducible to J𝑛 (∅)

where J𝑛 (∅) denotes the result of applying the jump operator 𝑛 times to ∅. Moreover, the sets
belonging to Π0

𝑛 are the complements of those belonging to Σ0
𝑛.

Roughly speaking, the hyperarithmetical hierarchy is obtained by iterating J over COrd. To
do this properly, one needs Kleene’s system of notation for COrd, which consists of:

• a special partial function | · |O from 𝜔 onto COrd;

• a special ordering relation <O on dom | · |O which mimics ∈ on COrd.6

We say that 𝑛 ∈ 𝜔 is a notation for 𝛼 ∈ COrd iff |𝑛|O = 𝛼. All notations of this kind are of the
form 2𝑚 or 3 · 5𝑚. Moreover, | · |O has the following properties:

• the ordinal 0 receives only one notation, namely 1;

• if 𝛼 = |2𝑚 |O where 𝑚 ≠ 0, then 𝛼 ∉ LOrd and 𝛼 = |𝑚 |O + 1;

• if 𝛼 = |3 · 5𝑚 |O , then 𝛼 ∈ LOrd and 𝛼 = sup
{
|𝑘 |O | 𝑘 <O 3 · 5𝑚

}
.

Therefore every finite ordinal receives only one notation, viz.

0 = |1|O , 1 =
��21��

O , 2 =

���221
���
O
, . . .

We shall write 𝑛 ∈ O instead of 𝑛 ∈ dom | · |O and often omit the subscript O in |𝑛|O . Intuitively,
each 𝑛 ∈ O encodes a program that computes some well-ordering having order-type |𝑛|. Please
see [21] or [22] for more about constructive ordinals and systems of notation.

Folklore 2.7.
There exists a computable 𝛾 : 𝜔 → 𝜔 such that for every 𝑛 ∈ O,

dom U𝛾 (𝑛) = {𝑘 | 𝑘 <O 𝑛}.

Thus the restriction of <O to {𝑘 | 𝑘 <O 𝑛} is computably enumerable uniformly in 𝑛.

6As usual, if 𝑓 is a partial function, we write dom 𝑓 for its domain.
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Now at the heart of the hyperarithmetical hierarchy is an indexed family ⟨𝐻 (𝑛) : 𝑛 ∈ O⟩ of
subsets of 𝜔 such that

𝐻 (𝑛) =


∅ if 𝑛 = 1
J (𝐻 (𝑚)) if 𝑛 = 2𝑚 ≠ 1
{c (𝑖, 𝑗) | 𝑖 ∈ 𝐻 ( 𝑗) and 𝑗 <O 3 · 5𝑚} if 𝑛 = 3 · 5𝑚

where c denotes one’s favourite computable bijection from 𝜔 × 𝜔 onto 𝜔 (e.g. the well-known
Cantor pairing function). This family behaves nicely with respect to | · |:

Folklore 2.8.
For any 𝑚, 𝑛 ∈ O, if |𝑚 | = |𝑛|, then 𝐻 (𝑚) ≡𝑇 𝐻 (𝑛).

Let Σ0
0 be the collection of all computable subsets of 𝜔. For each 𝑛 ∈ O \ {1}:

• if |𝑛| < 𝜔, then take Σ0
|𝑛 | to be {𝑆 ⊆ 𝜔 | 𝑆 ⩽ 𝐻 (𝑛)};

• if |𝑛| ⩾ 𝜔, then take Σ0
|𝑛 | to be {𝑆 ⊆ 𝜔 | 𝑆 ⩽ J (𝐻 (𝑛))}.

These are well-defined because of Folklore 2.8. Also, for every 𝛼 ∈ COrd we define

Π0
𝛼 :=

{
𝜔 \ 𝑆 | 𝑆 ∈ Σ0

𝛼

}
and Δ0

𝛼 := Σ0
𝛼 ∩ Π0

𝛼.

This gives us the hyperarithmetical hierarchy. Evidently, its initial segment of type 𝜔 coincides
with the arithmetical hierarchy (by Folklore 2.6). As one would expect, we have:

Folklore 2.9.
For any 𝛼, 𝛽 ∈ COrd:

• Σ0
𝛼 \ Π0

𝛼 ≠ ∅ and Π0
𝛼 \ Σ0

𝛼 ≠ ∅;

• Σ0
𝛼 ∪ Π0

𝛽
⊊ Σ0

𝛼+1 ∩ Π0
𝛽+1.

Call 𝑆 ⊆ 𝜔 hyperarithmetical iff 𝑆 ∈ Δ0
𝛼 for some 𝛼 ∈ COrd.

Folklore 2.10.
For each 𝑆 ⊆ 𝜔 the following conditions are equivalent:

i. 𝑆 is hyperarithmetical;

ii. 𝑆 belongs to Δ1
1, i.e. to both Σ1

1 and Π1
1 .

3 Ranking sequents

In this section we shall prove an upper bound on the closure ordinals for !m∇ACT𝜔 and
!mCommACT𝜔 . We introduce ranking on formulae and sequents. This ranking is not the
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same as the one used by Palka [18], but the idea is similar. Each sequent will receive a rank,
which is an ordinal below𝜔𝜔 , and inference rules (except permutation rules) will strictly increase
the rank (see Lemma 3.1 below). This enables induction on the rank for derivable sequents. The
definition is basically the same as in [12], but now ! is handled in the same way as ∗.

Let N be the set of all sequences of natural numbers that eventually stabilize at zero, i.e.

N = {(𝑚0, 𝑚1, 𝑚2, . . . , 𝑚𝑛, . . .) | ∃𝑖0 ∀𝑖 ≥ 𝑖0 𝑚𝑖 = 0}.

On this set, we define the anti-lexicographical ordering, point-wise sum, lifting, and unit:

(𝑚0, 𝑚1, . . .) ≺ (𝑛0, 𝑛1, . . .) ⇐⇒ ∃ 𝑗0 (𝑚 𝑗0 < 𝑛 𝑗0 and ∀ 𝑗 > 𝑗0 𝑚 𝑗 = 𝑛 𝑗);
(𝑚0, 𝑚1, . . .) ⊞ (𝑛0, 𝑛1, . . .) = (𝑚0 + 𝑛0, 𝑚1 + 𝑛1, . . .);
(𝑚0, 𝑚1, . . .)↑ = (0, 𝑚0, 𝑚1, . . .);
] = (1, 0, 0, . . .).

Now we are ready to rank both formulae and sequents. The following definition is formulated
for !m∇ACT𝜔; for !mCommACT𝜔 , one needs to remove the ∇ case. Given a formula 𝐴, we
define [(𝐴), called the rank of 𝐴, by recursion:

[(𝑝𝑖) = ] for each variable 𝑝𝑖;
[(0) = [(1) = ];
[(𝐴 \ 𝐵) = [(𝐵 / 𝐴) = [(𝐴 · 𝐵) = [(𝐴 ∧ 𝐵) = [(𝐴 ∨ 𝐵) = [(𝐴) ⊞ [(𝐵) ⊞ ];
[(𝐴∗) = [(!𝐴) = ([(𝐴)↑) ⊞ ];
[(∇𝐴) = [(𝐴) ⊞ ].

As for sequents, we take [(𝐴1, . . . , 𝐴𝑛 ⊢ 𝐵) to be [(𝐴1) ⊞ . . . ⊞ [(𝐴𝑛) ⊞ [(𝐵).
The ordering ≺ on N is linear and well-founded, and it is isomorphic to 𝜔𝜔 by the following

isomorphism a : N → 𝜔𝜔:

a((𝑚0, 𝑚1, 𝑚2, . . . , 𝑚𝑛, . . .)) = . . . + 𝜔𝑛 · 𝑚𝑛 + . . . + 𝜔2 · 𝑚2 + 𝜔 · 𝑚1 + 𝑚0.

(The sum here is always finite.)

Lemma 3.1.
All rules of our calculi, except permutation—(∇𝑃1) and (∇𝑃2) for !m∇ACT𝜔 and (𝑃) for
!mCommACT𝜔—have the following property: the rank of each premise is strictly less, in the
sense of ≺, than the rank of the conclusion.

For this lemma, it is important that we do not have cut as an official rule in our systems.
For permutation rules, the rank does not change, so these rules are excluded from the lemma,
and below we shall use special tricks to handle them. In particular, this lemma holds for !𝐿𝑛
and ∗𝐿𝜔 , since for ! and ∗ the rank is multiplied by 𝜔, which is bigger than any natural number.
A formal proof of Lemma 3.1 follows.
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Proof of Lemma 3.1. Let us first notice that ⊞ is commutative and monotone w.r.t. ≺: if 𝛼 ≺ 𝛽,
then 𝛼 ⊞ 𝛾 ≺ 𝛽 ⊞ 𝛾 (here 𝛼, 𝛽, 𝛾 ∈ N ). Moreover, we have 𝛼 ≺ 𝛼 ⊞ 𝛽 if 𝛽 ≠ (0, 0, 0, . . .) (in
particular, this holds if 𝛽 = ] and if 𝛽 = [(𝐴) for some 𝐴).

Therefore, for each rule we may ignore the context (whose rank could only increase) and
compare only the ranks of active formulae. For each binary connective ★ we have [(𝐴 ★ 𝐵) =
[(𝐴) ⊞ [(𝐵) ⊞ ] ≻ [(𝐴) ⊞ [(𝐵), whence [(𝐴 ★ 𝐵) ≻ [(𝐴) and [(𝐴 ★ 𝐵) ≻ [(𝐵). This gives
increasing of rank for the rules introducing binary connectives. For (1𝐿), the rank increases by
[(1) = ].

The interesting case is the case of unary connectives, ∗, !, and ∇ (for !m∇ACT𝜔). For ∇, we
just use the fact that [(∇𝐴) = [(𝐴) ⊞ ] ≻ [(𝐴) and, in the case of (∇𝑅), the same for ∇𝐵.

For ∗ and !, we notice that [(𝐴∗) and [(!𝐴) are greater (in the sense of≻) than [(𝐴)⊞. . .⊞[(𝐴),
𝑛 times, for any natural number 𝑛. Indeed, if [(𝐴) = (𝑚0, 𝑚1, . . . , 𝑚𝑘 , 0, . . .), where 𝑚𝑘 is the
rightmost non-zero element, then [(𝐴)↑ has a non-zero element at the (𝑘 + 1)-st position, which
makes it greater. This consideration yields the necessary result for (∗𝐿𝜔) and (!𝐿𝑛). For (∗𝑅𝑛)
and (!𝑅), we use its particular case: [(𝐴∗) ≻ [(𝐴), and the same for !𝐴 and !𝐵. □

The ranking on sequents and Lemma 3.1 allow us to prove — in a way similar to [12,
Theorem 5.13] — that the closure ordinals for the corresponding operators are less than or equal
to 𝜔𝜔 . We are going to consider both !m∇ACT𝜔 and !mCommACT𝜔 simultaneously, as there
is no significant difference whether permutations may be applied to arbitrary formulae or only to
∇-formulae.

Theorem 3.2.
Let L ∈ {!m∇ACT𝜔 , !mCommACT𝜔}. Then the closure ordinal for 𝒟L is at most 𝜔𝜔 .

The proof is rather straightforward, the only subtle thing is the handling of permutation rules.
This issue is dealt with by reformulating the system using generalised rules. A generalised
rule is a rule which is not permutation, followed by several applications of permutation rules
below. After replacing each rule in the system by its generalised version, permutation rules
themselves become unnecessary, and one can remove them. Indeed, permutation rules could
appear either below other rules (and get absorbed by generalisation) or below axioms, where they
are meaningless.

Proof of Theorem 3.2. If we consider the formulation of L with generalised rules and without
permutation rules, which we denote by L𝐺 , then we readily have, for each derivable sequent 𝑠, that
𝑠 ∈ 𝒟

a ([ (𝑠))
L𝐺

(∅), which gives the 𝜔𝜔 upper bound on the closure ordinal, since a([(𝑠)) < 𝜔𝜔
for any 𝑠.

However, we wish to prove the upper bound for the original formulation (with permutation
rules), and this involves multiplying by 𝜔. Namely, we prove by transfinite induction that
𝑠 ∈ 𝒟

𝜔 ·a ([ (𝑠))
L (∅) for each derivable sequent 𝑠. By definition of rank, [(𝑠) is always an element

of N with 𝑚0 ≠ 0. Thus, a([(𝑠)) is always a successor ordinal, i.e., a([(𝑠)) = 𝛽 + 1 for
some 𝛽. Consider a derivation of 𝑠 in L𝐺 . If 𝑠 is an axiom, it is also an axiom of L, so
𝑠 ∈ 𝒟

1
L(∅) ⊆ 𝒟

𝜔 ·a ([ (𝑠))
L (∅), since a([(𝑠)) > 0.
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Otherwise, consider the lowermost generalised rule in the derivation of 𝑠. Such a generalised
rule consists of two phases: a rule which is not permutation, which derives a sequent 𝑠, and then
a series of 𝑘 permutations, which transform 𝑠 to 𝑠. Here 𝑘 is a natural number, 𝑘 < 𝜔. Since
permutation does not change the rank, we have a([(𝑠)) = a([(𝑠)) = 𝛽 + 1. On the other side, for
each premise 𝑠′ of the rule which derived 𝑠, we have a([(𝑠′)) < a([(𝑠)) by Lemma 3.1, since
this rule is not permutation.

Thus, a([(𝑠′)) ⩽ 𝛽, and by induction hypothesis we have 𝑠′ ∈ 𝒟
𝜔 ·𝛽
L (∅) for each premise

𝑠′. The goal sequent 𝑠 is derived from these premises in 1 + 𝑘 steps (the “main” rule plus 𝑘
permutations), therefore, 𝑠 ∈ 𝒟

𝜔 ·𝛽+1+𝑘
L (∅). We conclude by noticing that 𝜔 · 𝛽 + 1 + 𝑘 <

𝜔 · (𝛽 + 1) = 𝜔 · a([(𝑠)), therefore 𝑠 ∈ 𝒟
𝜔 ·a ([ (𝑠))
L .

Since a([(𝑠)) < 𝜔𝜔 , we see that the closure ordinal is bounded by 𝜔 · 𝜔𝜔 = 𝜔𝜔 . □

4 Cut admissibility

Another usage of sequent ranks and generalised rules, which were introduced in the previous
section, is cut elimination. Since cut was not included in our systems, cut elimination appears
as cut admissibility: the set of derivable sequents is closed under cut. In this section, we again
consider !m∇ACT𝜔 and !mCommACT𝜔 simultaneously.

Theorem 4.1.
Let L ∈ {!m∇ACT𝜔 , !mCommACT𝜔}. Then if Π ⊢ 𝐴 and Γ, 𝐴,Δ ⊢ 𝐶 are derivable in L, then
so is Γ,Π,Δ ⊢ 𝐶.

The proof has much in common with the proof for the finitary system without Kleene star [8],
so we only sketch the proof, omitting routine proof transformations.

Proof. We proceed by nested induction. The outer induction parameter is the complexity of 𝐴,
measured just as the number of connectives. The inner one is the rank of the goal sequent,
a([(Γ,Π,Δ ⊢ 𝐶)).

Let us consider derivations of Π ⊢ 𝐴 and Γ, 𝐴,Δ ⊢ 𝐶 in L𝐺 and the lowermost generalised
rules used in these derivations. If at least one of the sequents is the (id) axiom, cut trivialises.
The same happens if Π ⊢ 𝐴 is the (0𝐿) axiom. The right cut premise, Γ, 𝐴,Δ ⊢ 𝐶, cannot be the
(1𝑅) axiom. As for (1𝑅) as the left cut premise and for (0𝐿) as the right one, it will be more
convenient for us to consider them below as zero-premise rules of inference rather than axioms.

As usual, we call a generalised rule application principal, if it introduces the formula 𝐴 being
cut. In particular, !𝑅 and ∇𝑅 are always principal, since they introduce both formulae, on the
left and on the right.

Now we consider three cases.
Case 1. The lowermost rule application in the derivation of Π ⊢ 𝐴 is a non-principal

one. This means that the rule operates inside Π, and it can be exchanged with cut. More
precisely, since the rule is generalised, Π ⊢ 𝐴 is derived by permutations from Π̃ ⊢ 𝐴, and the
latter is derived from some premises (maybe infinitely many). For each premise 𝑠, we have
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[(𝑠) ≺ [(Π̃ ⊢ 𝐴) = [(Π ⊢ 𝐴). Therefore, for a premise 𝑠 of the form Φ ⊢ 𝐴, we have
[(Φ) ≺ [(Π). If we apply cut with Γ, 𝐴,Δ ⊢ 𝐶, we get the sequent Γ,Φ,Δ ⊢ 𝐶, whose rank is
smaller than that of Γ,Π,Δ ⊢ 𝐶. Thus, we may apply induction hypothesis and establish cut-free
derivability of new premises of the form Γ,Φ,Δ ⊢ 𝐶. (For (/ 𝐿) and (/ 𝑅), there is also an extra
premise with another formula on the right, which is just kept as is.) Applying the original rule,
which is still valid with Γ and Δ added, we get Γ,Π,Δ ⊢ 𝐶.

Case 2. The lowermost rule application in the derivation of Γ, 𝐴,Δ ⊢ 𝐶 is a non-principal
one. Again, we propagate the cut upwards by exchanging it with the non-principal rule.

Case 3. Both rules are principal. Here we have to consider possible cases on the structure of
formula 𝐴. The cases where the main connective in 𝐴 is a MALC connective, or if 𝐴 is constant
1, are rather standard, going back to Lambek’s original paper [14]. The only difference is that
now rules are generalised, i.e., we add permutations. For example, if 𝐴 = 𝐸 / 𝐹, we have

Π̃, 𝐹 ⊢ 𝐸
Π̃ ⊢ 𝐸 / 𝐹

(/ 𝑅)
...

Π ⊢ 𝐸 / 𝐹

Δ̃1 ⊢ 𝐹 Γ̃, 𝐸, Δ̃2 ⊢ 𝐶
Γ̃, 𝐸 / 𝐹, Δ̃1, Δ̃2 ⊢ 𝐶

(/ 𝐿)
...

Γ, 𝐸 / 𝐹,Δ ⊢ 𝐶
Γ,Π,Δ ⊢ 𝐶 (cut)

Here Π̃ is a permutation of Π (in the non-commutative case, permutation is allowed only for
∇-formulae) and Γ̃, 𝐸 / 𝐹, Δ̃1, Δ̃2 is a permutation of Γ, 𝐸 / 𝐹,Δ. Since 𝐸 and 𝐹 are simpler
than 𝐴, we may apply induction hypothesis (outer induction) and get cut-free derivability first of
Γ̃, Π̃, 𝐹, Δ̃2 ⊢ 𝐶 (cutting 𝐸), and then of Γ̃, Π̃, Δ̃1, Δ̃2 ⊢ 𝐶 (cutting 𝐹). Our goal sequent is now
obtained by permutation.

Other MALC connectives are considered similarly. As for constant 0, it has no right principal
rule, so it cannot appear in Case 3.

The interesting cases are those with modalities: ∗, !, and, in the non-commutative case, ∇.
For 𝐴 = 𝐸∗, if the rule introducing Π ⊢ 𝐴 is the generalised version of (∗𝑅𝑘), 𝑘 > 0, we

have the following:

Π̃1 ⊢ 𝐸 . . . Π̃𝑘 ⊢ 𝐸
Π̃1, . . . , Π̃𝑘 ⊢ 𝐸∗ (∗𝑅𝑘)

...

Π ⊢ 𝐸∗

(
Γ̃, 𝐸𝑛, Δ̃ ⊢ 𝐶

)
𝑛∈𝜔

Γ̃, 𝐸∗, Δ̃ ⊢ 𝐶
(∗𝐿𝜔)

...

Γ, 𝐸∗,Δ ⊢ 𝐶
Γ,Π,Δ ⊢ 𝐶 (cut)

Here, again, Π̃1, . . . , Π̃𝑛 is obtained by permutation from Π, the same for Γ̃, 𝐸∗, Δ̃ and Γ, 𝐸∗,Δ.
Out of the premises of (∗𝐿𝜔), we take the one with 𝑛 = 𝑘 and apply the induction hypotheses
(outer induction) 𝑘 times, for the simpler formula 𝐸 . This gives cut-free derivability of Γ̃, Π̃, Δ̃ ⊢
𝐶, and our goal sequent is obtained by permutation.

The case where Π ⊢ 𝐸∗ is the (∗𝑅0) axiom is simpler. Here Π should be empty, so in the
derivation on the right we take the premise with 𝑛 = 0, which is Γ̃, Δ̃ ⊢ 𝐶, and obtain the goal
sequent Γ,Δ ⊢ 𝐶 by permutation.

For 𝐴 = !𝐸 , the left cut premise, Π ⊢ !𝐸 , should be introduced by (!𝑅). This means that
Π = !𝐹 for some 𝐹. For Γ, !𝐸,Δ ⊢ 𝐶, we have two cases, depending on which rule was used for
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deriving this sequent. It could be either (!𝐿) or (!𝑅), both are principal. In the case of (!𝐿), we
have

𝐹 ⊢ 𝐸
!𝐹 ⊢ !𝐸 (!𝑅)

Γ̃, 𝐸𝑛, Δ̃ ⊢ 𝐶
Γ̃, !𝐸, Δ̃ ⊢ 𝐶

(!𝐿𝑛)
...

Γ, !𝐸,Δ ⊢ 𝐶
Γ, !𝐹,Δ ⊢ 𝐶 (cut)

Here, again, Γ̃, !𝐸, Δ̃ is obtained by permutation from Γ, !𝐸,Δ; for !𝐹 ⊢ !𝐸 , no permutations are
possible.

Applying the induction hypothesis (outer induction) 𝑛 times, for formula 𝐸 , we get cut-free
derivability of Γ̃, 𝐹𝑛, Δ̃ ⊢ 𝐶. The generalised version of (∗𝐿𝑛) now yields our goal sequent,
Γ, !𝐹,Δ ⊢ 𝐶.

Now let the lowermost rule in the derivation of Γ, !𝐸,Δ ⊢ 𝐶 be (!𝑅). This means that Γ and
Δ are empty and 𝐶 = !𝐺 for some formula 𝐺:

𝐹 ⊢ 𝐸
!𝐹 ⊢ !𝐸 (!𝑅) 𝐸 ⊢ 𝐺

!𝐸 ⊢ !𝐺 (!𝑅)
!𝐹 ⊢ !𝐺 (cut)

Again, we apply the outer induction, and get cut-free derivability of 𝐹 ⊢ 𝐺; the goal sequent
!𝐹 ⊢ !𝐺 is obtained by (!𝑅).

The case of ∇ is similar to the case of !, since (∇𝑅) has the same form as (!𝑅) and (∇𝐿) has
the same form as (!𝐿1). □

5 Encoding first-order arithmetic

In this section we shall prove a lower bound on the complexity of the derivability problems for
!mCommACT𝜔 and !m∇ACT𝜔 . More precisely, we are going to show that the first-order theory
of 𝔑 (i.e., complete first-order arithmetic) is many-one reducible to each of these problems. This
will be first done in the commutative case, using an encoding of counter (Minsky) machines
developed in [11].

A counter machine operates several counters; also it has its internal state, taken from a finite
set {𝑞0, . . . , 𝑞𝑚}. Let 𝑞0 be the designated initial state, in which the machine starts its operation.
Each of the counters keeps a natural number. The counter machine can perform two kinds of
operations: (1) increase a counter by 1 and change the state; (2) conditionally decrease the
counter. The latter means the following. If the counter is non-zero, it gets decreased by 1 and
the machine changes the state. If the counter is zero, it is not modified, but the state is changed
in a different way.

Counter machines are a Turing-complete model of computation: three counters are sufficient
for computing any computable function on natural numbers [23].7

7One can further restrict to two counters, but in this case the input/output data should be specifically encoded [16,
23], which is less convenient.
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We shall consider counter machines with many inputs. Such a machine has a designated
counter for each input and three additional counters to be used inside the computation. Such
machines, again, are capable of computing any function (with the given number of arguments),
which is computable, e.g. on a Turing machine. Moreover, the translation from the Turing
machine to the counter machine is itself computable. Just as with Turing machines, we may
assume an appropriate coding of counter machines:

M0, M1, M2, . . .

Given a machine M with 𝑠 counters, we write (𝑞; 𝑛1, . . . , 𝑛𝑠) for the configuration of M where
it is in state 𝑞 with values 𝑛1, . . . 𝑛𝑠 of the counters. In effect, we shall be interested only in
checking whether a given machine halts on a given configuration, and not in the value returned.

Now let us fix a natural number 𝑘 and consider an arbitrary machine M with 2𝑘 + 3 counters.
By (∗) let us denote the following condition:

∀𝑛1 > 0∃𝑛2 > 0∀𝑛3 > 0 . . . ∃𝑛2𝑘 > 0 (M does not halt on (𝑞0; 𝑛1, . . . , 𝑛2𝑘 , 0, 0, 0)).

Here the counters with numbers 2𝑘 + 1, 2𝑘 + 2, and 2𝑘 + 3 are used inside the computation, and
the first 2𝑘 ones contain the input of M.

For the given 𝑘 ∈ 𝜔 consider the mass problem

S𝑘 :=
{
𝑗 ∈ 𝜔 | M 𝑗 has 2𝑘 + 3 counters and obeys (∗)

}
.

It is well-known that S𝑘 is Π0
2𝑘-complete (see [21, Chapter 14]). In particular, S0 is simply

the non-halting problem; it has been encoded in CommACT𝜔 in [11]. We shall extend this
encoding to S𝑘 for an arbitrary 𝑘 .

Let Q = {𝑞0, . . . , 𝑞𝑚} be the set of states of M, and let QZ = {𝑞0, . . . , 𝑞𝑚, 𝑧1, . . . , 𝑧2𝑘+3} be
its extension with pseudo-states for zero checks (𝑧𝑖 checks for the 𝑖-th counter to be zero). Then
the configuration (𝑞; 𝑛1, . . . , 𝑛2𝑘+3) of M, where 𝑞 is a state or a pseudo-state, is encoded in our
sequents by 𝑞, 𝑎𝑛1

1 , . . . , 𝑎
𝑛2𝑘+3
2𝑘+3 . Let 𝐷 be the regular expression for well-formed configurations:

𝐷 =
©«
∨
𝑞∈Q

𝑞 · 𝑎∗1 · . . . · 𝑎
∗
2𝑘+3

ª®¬ ∨
(
2𝑘+3∨
𝑖=1

𝑧𝑖 · 𝑎∗1 · . . . · 𝑎
∗
𝑖−1 · 𝑎

∗
𝑖+1 · . . . · 𝑎

∗
2𝑘+3

)
.

Next, each instruction (operation) 𝐼 of M is encoded by a specific formula 𝐴𝐼 [11]. For instructions
of the first kind (increment), 𝐴𝐼 = 𝑞 ⊸ (𝑞′ · 𝑎𝑖), encoding “increase the 𝑖-the counter and change
the state from 𝑞 to 𝑞′.” For instruction of the second kind (decrement), 𝐴𝐼 = ((𝑞 · 𝑎𝑖) ⊸
𝑞′) ∧ (𝑞 ⊸ (𝑞′′ ∨ 𝑧𝑖)), which takes care of both zero and non-zero cases for the 𝑖-th counter: “if
the 𝑖-th counter is non-zero, decrease it and change the state from 𝑞 to 𝑞′; else, change the state
from 𝑞 to 𝑞′′.” Now by 𝐸 we denote the big conjunction of these formulae for all instructions
of M:

𝐸 =
∧
𝐼

𝐴𝐼 .

The main encoding statement can be formulated as follows:
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Theorem 5.1 ([11]8).
MachineM does not halt on (𝑞0; 𝑛1, . . . , 𝑛2𝑘+3) iff the following sequent is derivable in CommACT𝜔:

𝑞0, 𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑘+3
2𝑘+3 , 𝐸

∗ ⊢ 𝐷.

Now let us add the quantifier prefix, ∀𝑛1 ∃𝑛2 ∀𝑛3 . . . ∃𝑛2𝑘 , using a variant of the “key-and-
lock” construction by Lincoln et al. [15].

Let us adopt the standard abbreviation 𝐴+ = 𝐴 · 𝐴∗. For each 𝑚 = 1, . . . , 2𝑘 , let us define

𝐾𝑚 :=

{
𝑝𝑚−1 ⊸ (𝑎+𝑚 · 𝑝𝑚) if 𝑚 is odd;
𝑝𝑚−1 ⊸ !(𝑎𝑚 · !𝑝𝑚) if 𝑚 is even.

(Here 𝑝0, 𝑝1, . . . , 𝑝2𝑘 are fresh variables.) Also let 𝐵 := 𝑞0 · 𝐸∗. Now our main encoding
theorem is as follows:

Theorem 5.2.
Machine M satisfies (∗) iff the following sequent is derivable in !mCommACT𝜔:

𝑝0, 𝐾1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

This theorem will be proved by induction, and for the induction step we formulate the
following lemma:

Lemma 5.3.
(1) The sequent

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑝2𝑖 , 𝐾2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

is derivable iff the following sequent is derivable for any non-zero value of 𝑛2𝑖+1:

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑎

𝑛2𝑖+1
2𝑖+1 , 𝑝2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

(2) The sequent

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑝2𝑖−1, 𝐾2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

is derivable iff the following sequent is derivable for some non-zero value of 𝑛2𝑖:

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑎

𝑛2𝑖
2𝑖 , 𝑝2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

Before proving Lemma 5.3, let us formulate several technical statements. All of them are
based on the following balancing condition. In an axiom, we have one positive and one negative
occurrence of a variable. Therefore, in the goal sequent a positive occurrence of a variable,
unless it is introduced inside the derivation, should correspond to a negative one.

8In fact, this is a slight modification of the construction from [11], using 2𝑘 + 3 instead of 3.
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Lemma 5.4.
For any variable 𝑝, the following two statements hold. If Π ⊢ 𝑝 is derivable, then Π includes a
positive occurrence 𝑝. If Π, 𝑝 ⊸ 𝐹 ⊢ 𝐷 is derivable, then Π includes a positive occurrence of
𝑝. (Here 𝐷 is as defined above.)

Lemma 5.5.
If Π ⊢ 𝐷 is derivable, then Π includes a positive occurrence of a variable from QZ.

Lemma 5.6.
If Π ⊢ 𝑝𝑖 is derivable and Π includes a 𝐾2𝑖+1 (which includes a positive occurrence of 𝑎+2𝑖+1),
then Π should also include a negative occurrence of 𝑎2𝑖+1.

Proof of Lemma 5.3. For the “if” direction, we explicitly construct the derivations of the sequents
in question (recall the definitions of 𝐾2𝑖+1 and 𝐾2𝑖):

(1)

𝑝2𝑖 ⊢ 𝑝2𝑖

(
𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑎

𝑛
2𝑖+1, 𝑝2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

)
𝑛>0

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑎2𝑖+1, 𝑎

∗
2𝑖+1, 𝑝2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

∗𝐿𝜔

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑎

+
2𝑖+1 · 𝑝2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

·𝐿 (2 times)

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑝2𝑖 , 𝐾2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

⊸ 𝐿

(2) Let 𝑛 be the given value of 𝑛2𝑖 .

𝑝2𝑖−1 ⊢ 𝑝2𝑖−1

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑎

𝑛
2𝑖 , 𝑝2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑎

𝑛
2𝑖 , !𝑝2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

!𝐿1

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑎2𝑖 , !𝑝2𝑖 , . . . , 𝑎2𝑖 , !𝑝2𝑖︸                         ︷︷                         ︸

𝑛 − 1 times

, 𝑎2𝑖 , !𝑝2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷
!𝐿0 (𝑛 − 1 times)

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , (𝑎2𝑖 · !𝑝2𝑖)𝑛 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

·𝐿 (𝑛 − 1 times)

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , !(𝑎2𝑖 · !𝑝2𝑖) , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

!𝐿𝑛

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑝2𝑖−1, 𝐾2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

⊸ 𝐿

The interesting direction, both for (1) and (2), is the “only if” one. We start with several
observations, common for both situations. Let us consider the last rule applied in a cut-free
derivation of the sequent in question.

First, we may suppose that this rule is ⊸ 𝐿. Indeed, since 𝐷 is constructed using only ·, ∨,
and ∗, all “right” rules introducing these connectives are interchangable upwards with ⊸ 𝐿. In
the antecedent, the only top-level connectives are⊸ ones.

Second, in the application of ⊸ 𝐿 the rightmost formula 𝑝2𝑘 ⊸ 𝐵, unless it is the active
one, should go to the right premise. Otherwise, the right premise includes no variables from the
set QZ (they are only in 𝐵), and its derivability violates Lemma 5.5. Thus, 𝑝2𝑘 ⊸ 𝐸∗, whether
it is active or not, could never to the antecedent of the left premise.

Let us start with (1). We claim that the active formula of ⊸ 𝐿 should be 𝐾2𝑖+1 = 𝑝2𝑖 ⊸
(𝑎+2𝑖+1 · 𝑝2𝑖+1). Suppose the contrary. Then the left premise of ⊸ 𝐿 is of the form Π ⊢ 𝑝 𝑗 ,
where 𝑗 > 2𝑖. By Lemma 5.4, Π should include a positive occurrence of 𝑝 𝑗 , that is, it includes
𝐾 𝑗 . Since 𝐾 𝑗 is of the form 𝑝 𝑗−1 ⊸ 𝐹, Lemma 5.4 requires Π to include 𝐾 𝑗−1, and so on, until
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𝐾2𝑖 = 𝑝2𝑖 ⊸ (𝑎+2𝑖+1 · 𝑝2𝑖+1). On the other hand, as noticed above, Π does not include 𝑝2𝑘 ⊸ 𝐵.
This violates Lemma 5.6: we have a positive 𝑎+2𝑖+1 inside 𝐾2𝑖+1, but no negative occurrence of
𝑎2𝑖+1 (they are all in 𝐵).

Now we claim that actually the left premise of ⊸ 𝐿 is 𝑝2𝑖 ⊢ 𝑝2𝑖 . From the above we know
that this premise is of the form Π ⊢ 𝑝2𝑖 , and by Lemma 5.4 𝑝2𝑖 should be in Π. Again, 𝑝2𝑘 ⊸ 𝐵

is not in Π, and, moreover, the argument above shows that if 𝐾 𝑗 is in Π for some 𝑗 > 𝑖, then so
is 𝐾𝑖 , which contradicts with the fact that 𝐾𝑖 was the active formula of ⊸ 𝐿. Thus, Π consists
of 𝑝2𝑖 and maybe some 𝑎𝑘’s, and Π ⊢ 𝑝2𝑖 is derivable only for Π = 𝑝2𝑖 .

Now the right premise of⊸ 𝐿 is

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑎

+
2𝑖+1 · 𝑝2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , . . . , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷,

and by invertibility of ·𝐿 and ∗𝐿𝜔 we get derivability of

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖
2𝑖 , 𝑎

𝑛2𝑖+1
2𝑖+1 , 𝑝2𝑖+1, 𝐾2𝑖+2, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷

for any non-zero value of 𝑛2𝑖+1.
The (2) case is a bit trickier. The difference here is that the multiplexing rule !𝐿𝑛 is, in

general, not invertible, so we have to perform deeper proof analysis.
As in (1), the active formula of⊸ 𝐿 should be 𝐾2𝑖 . Indeed, otherwise by descending on 𝑝 𝑗’s

we show that 𝐾2𝑖 should be in the antecedent Π of the left premise, while 𝑝2𝑘 ⊸ 𝐵 should be not.
If 𝐾2𝑖+1 is also in Π, we immediately violate Lemma 5.6. Otherwise 𝐾2𝑖+1 is the active formula,
and the left premise of ⊸ 𝐿 is Φ, 𝑝2𝑖−1, 𝑝2𝑖−1 ⊸ !(𝑎2𝑖 · !𝑝2𝑖) ⊢ 𝑝2𝑖 , where Φ is a sequence of
𝑎𝑘’s. By Lemma 5.6, Φ should be empty. Now we have 𝑝2𝑖−1, 𝑝2𝑖−1 ⊸ !(𝑎2𝑖 · !𝑝2𝑖) ⊢ 𝑝2𝑖 , and
one can explicitly show that this sequent is not derivable.

Next, the left premise is again 𝑝2𝑖−1 ⊢ 𝑝2𝑖−1 (by the same argument as in (1)), and we get the
following right premise:

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

Again, right rules operating 𝐷 can be shifted upwards, so the lowermost rule in the derivation
is ⊸ 𝐿 or !𝐿. Now the same argument as above shows that this rule could not be ⊸ 𝐿. In
particular, ⊸ 𝐿 with 𝐾2𝑖+1 as the active formula would yields !(𝑎2𝑖 · !𝑝2𝑖) ⊢ 𝑝2𝑖 , which is not
derivable. Therefore, the lowermost rule is the multiplexing rule !𝐿, and its premise is

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , (𝑎2𝑖 · !𝑝2𝑖)𝑛2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

for some value 𝑛2𝑖 . Since ·𝐿 is invertible, we get

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑎

𝑛2𝑖
2𝑖 , (!𝑝2𝑖)𝑛2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

In this sequent, we have exactly one positive occurrence of 𝑝2𝑖 , namely, the one in 𝐾2𝑖+1 =

𝑝2𝑖 ⊸ (𝑎+2𝑖+1 · 𝑝2𝑖+1), and several negative occurrences of !𝑝2𝑖 . Let us go up along the derivation
tree. In each sequent, there could be several negative occurrences of !𝑝2𝑖 or 𝑝2𝑖 itself, and one
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or zero positive occurrences of 𝑝2𝑖 . If there are no positive occurrences of 𝑝2𝑖 , by Lemma 5.4
there are also no negative occurrences of 𝑝2𝑖 . As for !𝑝2𝑖’s, let us remove them. For sequents
with one positive 𝑝2𝑖 , let us replace all negative ones with just one copy of 𝑝2𝑖 .

After this transformation, the derivation remains valid (multiplexing rules for !𝑝2𝑖 disappear),
and yields the desired sequent:

𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑖−1
2𝑖−1 , 𝑎

𝑛2𝑖
2𝑖 , 𝑝2𝑖 , 𝐾2𝑖+1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷.

□

Now we are ready to prove the main result.

Proof of Theorem 5.2. Applying Lemma 5.3 2𝑘 times, alternating (1) and (2), we get the follow-
ing. The sequent

𝑝0, 𝐾1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷
is derivable iff the following statement is true:

∀𝑛1 > 0 ∃𝑛2 > 0 ∀𝑛3 > 0 . . . ∃𝑛2𝑘 > 0(
the sequent 𝑎𝑛1

1 , . . . , 𝑎
𝑛2𝑘
2𝑘 , 𝑝2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷 is derivable

)
Derivability of 𝑎𝑛1

1 , . . . , 𝑎
𝑛2𝑘
2𝑘 , 𝑝2𝑘 , 𝑝2𝑘 ⊸ 𝐵 ⊢ 𝐷 is equivalent to that of 𝑎𝑛1

1 , . . . , 𝑎
𝑛2𝑘
2𝑘 , 𝐵 ⊢ 𝐷.

Indeed, the right-to-left direction here is just application of ⊸ 𝐿. For the left-to-right one we
again postpone any right rule applications and consider the⊸ 𝐿whose active formula is 𝑝2𝑘 ⊸ 𝐵

(the only complex formula in the antecedent). The left premise is 𝑝2𝑘 ⊢ 𝑝2𝑘 (otherwise it is not
derivable), so the right premise is 𝑎𝑛1

1 , . . . , 𝑎
𝑛2𝑘
2𝑘 , 𝐵 ⊢ 𝐷, which is equiderivable with

𝑞0, 𝑎
𝑛1
1 , . . . , 𝑎

𝑛2𝑘
2𝑘 , 𝐸

∗ ⊢ 𝐷.

By Theorem 5.1, the derivability of this sequent is equivalent to the fact that M does not halt on
(𝑞0; 𝑛1, . . . , 𝑛2𝑘 , 0, 0, 0). Thus the derivability of the original sequent, 𝑝0, 𝐾1, . . . , 𝐾2𝑘 , 𝑝2𝑘 ⊸
𝐵 ⊢ 𝐷, is equivalent to (∗). □

This yields the desired complexity lower bound:

Theorem 5.7.
The first-order theory of𝔑 is many-one reducible to the derivability problem for !mCommACT𝜔 .

Proof. Take S to be
⋃
𝑘∈𝜔 S𝑘 . It is well-known that S is many-one equivalent to the first-order

theory of 𝔑 — see [21, Chapter 14]. So it remains to reduce S to the derivability problem for
!mCommACT𝜔 , which can be easily done by using Theorem 5.2. □

Finally, since !mCommACT𝜔 can be embedded into !m∇ACT𝜔 by Theorem 2.1, the same
holds for !m∇ACT𝜔:

Corollary 5.8.
The first-order theory of 𝔑 is many-one reducible to the derivability problem for !m∇ACT𝜔 .

Proof. Immediate from Theorems 5.7 and 2.1. □
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6 A hyperarithmetical upper bound

Next, using some machinery of computability theory together with Theorem 3.2, we shall show
that the derivability problems for !mCommACT𝜔 and !m∇ACT𝜔 both belong to the 𝜔𝜔 level
of the hyperarithmetical hierarchy — and hence, in particular, are strictly below Π1

1 .
For any 𝑆, 𝑃 ⊆ 𝜔, let

Index (𝑆; 𝑃) := {𝑘 ∈ 𝜔 | U𝑘 many-one reduces 𝑆 to 𝑃}.

So 𝑘 ∈ Index (𝑆; 𝑃) iff U𝑘 is total and (U𝑘)−1 [𝑃] = 𝑆. We call elements of Index (𝑆; 𝑃) indices
of 𝑆 with respect to 𝑃. Intuitively, each of these encodes a program that computes a function
reducing 𝑆 to 𝑃, and hence provides a way of showing that the complexity of 𝑆 is bounded by
that of 𝑃.

Lemma 6.1.
Let 𝑛 ∈ 𝜔 \ {0} and Φ (𝑥, 𝑋) be a Σ0

𝑛-formula. Then there exists a computable b : 𝜔 → 𝜔 such
that for any 𝑆, 𝑃 ⊆ 𝜔 and 𝑘 ∈ 𝜔,

𝑘 ∈ Index (𝑆; 𝑃) =⇒ b (𝑘) ∈ Index ( [Φ] (𝑆); J𝑛 (𝑃))

where J𝑛 (𝑆) denotes the result of applying the jump operator 𝑛 times to 𝑆.

Proof. It is well-known that there exist a computable function 𝑓𝑛 from 𝜔 to 𝜔 and a computable
function 𝑔𝑛 from the Σ0

𝑛-formulae with only 𝑥 and 𝑋 free to 𝜔 such that:

i. for any 𝑘 ∈ 𝜔 and 𝑆, 𝑃 ⊆ 𝜔,

𝑘 ∈ Index (𝑆, 𝑃) =⇒ 𝑓𝑛 (𝑘) ∈ Index (J𝑛 (𝑆); J𝑛 (𝑃));

ii. for any Σ0
𝑛-formula Ψ (𝑥, 𝑋) and 𝑆 ⊆ 𝜔,

𝑔𝑛 (Ψ) ∈ Index ( [Ψ] (𝑆); J𝑛 (𝑆)).9

It should be remarked that 𝑓𝑛 does not depend on 𝑆 or 𝑃, and 𝑔𝑛 does not depend on 𝑆. Using
𝑓𝑛 and 𝑔𝑛, it is easy to construct b that has the desired property. □

More informally, Lemma 6.1 shows us how, given an index of 𝑆 with respect to 𝑃, to effec-
tively find an index of [Φ] (𝑆) with respect to J𝑛 (𝑃), where 𝑛 is determined by the form of Φ
(cf. Folklore 2.5 and 2.6).

Define succ : 𝜔 × 𝜔 → 𝜔 recursively by

succ (𝑚, 𝑛) :=

{
𝑚 if 𝑛 = 0;
2succ(𝑚,𝑛−1) otherwise.

9In more detail, (i) follows from an effective version of Theorem 13-I(e) in [21] — taking into account that we
have 𝑆 ⩽𝑇 𝑃 whenever 𝑆 ⩽ 𝑃. And (ii) follows from an effective version of Theorem 14-VIII(a) in [21] — taking
into account that if [Ψ] (𝑆) is computably enumerable in J𝑛−1 (𝑆), then [Ψ] (𝑆) ⩽ J𝑛 (𝑆) by Theorem 13-I(d). Cf.
Corollary 13-I(c) and Theorem 14-VIII(c) in [21], which implicitly use our notion of index.
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In this way, for each 𝑚 ∈ 𝜔 we have

succ (𝑚, 0) = 𝑚, succ (𝑚, 1) = 2𝑚, succ (𝑚, 2) = 22𝑚 , . . .

Obviously, succ is computable. At the same time, it is not one-one, i.e. the inverse of succ is not
a function. For instance,

succ (3, 2) = 223
= succ

(
23, 1

)
= succ

(
223
, 0

)
.

However, there are computable base, step : 𝜔 → 𝜔 such that for every 𝑘 ∈ 𝜔,

𝑘 = succ (base (𝑘), step (𝑘)) and log2 (base (𝑘)) ∉ 𝜔 \ {0}.

Let us illustrate how base and step work by examples:

• if 𝑘 is not a power of 2, then base (𝑘) = 𝑘 and step (𝑘) = 0;

• if 𝑘 = 222 , then base (𝑘) = 1 and step (𝑘) = 3;

• if 𝑘 = 223 , then base (𝑘) = 3 and step (𝑘) = 2.

Hence in the case when 𝑘 ∈ O we have

|𝑘 | = |base (𝑘) | + step (𝑘) and |base (𝑘) | ∈ {0} ∪ LOrd.

These functions are useful for keeping track of iterations of positive arithmetical operators over
the constructive ordinals:

Theorem 6.2.
Let 𝑛 ∈ 𝜔 \ {0} and Φ (𝑥, 𝑋) be a positive Σ0

𝑛-formula. Then there is a computable [ : 𝜔 → 𝜔

such that for every 𝑘 ∈ O:

[ (𝑘) ∈ Index
(
[Φ] |𝑘 | (∅), Jstep(𝑘) ·𝑛+1 (𝐻 (base (k)))

)
= Index

(
[Φ] |𝑘 | (∅), 𝐻 (succ (base (𝑘), step (𝑘) · 𝑛 + 1))

)
= Index

(
[Φ] |𝑘 | (∅), J (𝐻 (succ (base (𝑘), step (𝑘) · 𝑛)))

)
.

In particular, if |𝑘 | ∈ LOrd, then [ (𝑘) is an index of [Φ] |𝑘 | (∅) with respect to J (𝐻 (𝑘)).

Proof. For convenience, define lift𝑛 : 𝜔 → 𝜔 by

lift𝑛 (𝑘) := succ (base (𝑘), step (𝑘) · 𝑛 + 1).

Observe that for every 𝑘 ∈ 𝜔,

J𝑛 (𝐻 (lift𝑛 (𝑘))) = J𝑛 (𝐻 (succ (base (𝑘), step (𝑘) · 𝑛 + 1)))
= 𝐻 (succ (base (𝑘), step (𝑘) · 𝑛 + 1 + 𝑛))
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= 𝐻

(
succ

(
base

(
2𝑘

)
, step

(
2𝑘

)
· 𝑛 + 1

))
= 𝐻

(
lift𝑛

(
2𝑘

))
.

Let b be as in the statement of Lemma 6.1. Then for any 𝑘 ∈ O and 𝑖 ∈ 𝜔,

𝑖 ∈ Index
(
[Φ] |𝑘 | (∅), 𝐻 (lift𝑛 (𝑘))

)
=⇒

b (𝑖) ∈ Index
(
[Φ] |2𝑘 | (∅), 𝐻

(
lift𝑛

(
2𝑘

)))
.

Thus we can use b for calculating [ at successor steps.
Limit steps are a bit more complicated. Let 𝛾 be as in the statement of Folklore 2.7, and let

𝑔1 be as in the proof of Lemma 6.1 (dealing with Σ0
1-formulae). Given 𝑒, 𝑘 ∈ 𝜔, take

Ψ𝑒,𝑘 (𝑥, 𝑋) := ∃𝑦
(
𝑦 ∈ dom U𝛾 (𝑘) ∧ c (U (U𝑒 (𝑦), 𝑥), lift𝑛 (𝑦)) ∈ 𝑋

)
— which can be treated as a Σ0

1-formula, of course. Now suppose that 𝑘 ∈ O and 𝑒 ∈ 𝜔 are such
that |𝑘 | ∈ LOrd, and for every 𝑚 ∈ O,

𝑚 <O 𝑘 =⇒ U𝑒 (𝑚) ∈ Index
(
[Φ] |𝑚 | (∅), 𝐻 (lift𝑛 (𝑚))

)
.

Then
[
Ψ𝑒,𝑘

]
(𝐻 (𝑘)) coincides with⋃

𝑚<O𝑘

{𝑖 | c (U (U𝑒 (𝑚), 𝑖), lift𝑛 (𝑚)) ∈ 𝐻 (𝑘)} =
⋃
𝑚<O𝑘

{𝑖 | U (U𝑒 (𝑚), 𝑖) ∈ 𝐻 (lift𝑛 (𝑚))}

=
⋃
𝑚<O𝑘

{
𝑖 | 𝑖 ∈ [Φ] |𝑚 | (∅)

}
=

⋃
𝑚<O𝑘

[Φ] |𝑚 | (∅)

= [Φ] |𝑘 | (∅).

(Note that 𝑚 <O 𝑘 implies lift𝑛 (𝑚) <O 𝑘 because |𝑘 | ∈ LOrd.) Hence 𝑔1
(
Ψ𝑒,𝑘

)
is an index of

[Φ] |𝑘 | (∅) with respect to J (𝐻 (𝑘)), which can also be expressed as 𝐻 (lift𝑛 (𝑘)).
Finally, we fix an index 𝑖0 of ∅ with respect to J (∅), and consider a computable ` : 𝜔 → 𝜔

such that for all 𝑒, 𝑘 ∈ 𝜔,

U` (𝑒) (𝑘) =


b (U𝑒 (𝑚)) if 𝑘 = 2𝑚 ≠ 1,
𝑔1

(
Ψ𝑒,𝑚

)
if 𝑘 = 3 · 5𝑚,

𝑘0 otherwise.

By the recursion theorem, U` (𝑐) = U𝑐 for some 𝑐 ∈ 𝜔. As can easily be verified, the function U𝑐
does the job.10 □

10In particular, U𝑐 turns out to be total. For otherwise let 𝑘 be the least element of 𝜔 \ dom (U𝑐); then 𝑘 = 2𝑚 ≠ 1
and therefore U𝑐 (𝑚) is undefined, which contradicts the choice of 𝑘 .
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Intuitively, Theorem 6.2 shows us how, given any 𝑘 ∈ O (which respesents the constructive
ordinal |𝑘 |), to effectively locate [Φ] |𝑘 | (∅) in the hyperarithmetical hierarchy. In particular, if
[Φ] is 𝒟L where L ∈ {!m∇ACT𝜔 , !mCommACT𝜔}, then for each 𝑘 ∈ O we obtain an upper
bound for 𝒟 |𝑘 |

L (∅), i.e. for the collection of all sequents derivable in L in at most |𝑘 | steps.
Finally, we are ready to prove:

Theorem 6.3.
Let L ∈ {!m∇ACT𝜔 , !mCommACT𝜔}. Then the least fixed point of 𝒟L belongs to Σ0

𝜔𝜔 , i.e. to
the 𝜔𝜔 level of the hyperarithmetical hierarchy.

Proof. As we observed earlier, 𝒟L is elementary. Hence the desired result follows immediately
from Theorems 6.2 and 3.2. □

The semi-formal reasoning behind the last theorem is the following. Among the rules of L
there are (∗𝐿𝜔) and (!𝐿𝑛), which are definable by a Π0

1-formula and a Σ0
1-formula respectively.

Hence each application of 𝒟L may yield yet another quantifier alternation (there may be more
quantifier alternations, but they can, in fact, be merged at limit steps).11 Now by Theorem 3.2,
we need at most 𝜔𝜔 steps to settle the derivability problem, which suggests that Σ0

𝜔𝜔 is an up-
per bound for it. The purpose of Lemma 6.1 and Theorem 6.2 is to fill in the technical gaps in
the foregoing reasoning.

7 Conclusion

In this article, we have considered two subexponential extensions of infinitary action logic. The
first one is non-commutative and involves two subexponentials: one allowing multiplexing, the
other allowing permutation. The second extension is commutative and uses one subexponential
which allows multiplexing. For both systems we have established upper and lower complexity
bounds. The upper bound is hyperarithmetical, namely Σ0

𝜔𝜔 . The lower one is complete first-
order arithmetic. Thus the complexity of each of these systems is strictly between that of infinitary
action logic (which isΠ0

1-complete) and that of infinitary action logic with subexponentials which
allow contraction (which is Π1

1-complete). We have also shown that 𝜔𝜔 is an upper bound for
the corresponding closure ordinals.

However, there is still a gap between our lower and upper bounds. So finding the exact
complexity level and the exact value of the closure ordinal for infinitary action logic with
multiplexing (both in the commutative and in the non-commutative case) is left as an open
problem for future research.

Acknowledgements. This work was supported by the Russian Science Foundation under grant
no. 20-41-05002; see https://rscf.ru/en/project/20-41-05002/.

11This case is very different from that of ACT𝜔 or that of ACT𝜔 expanded with a family of subexponentials for
exchange and weakening (cf. [18, Section 5] and [12, Section 5.4]).
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