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Abstract

Inspired by Hintikka’s ideas on constructivism, we are going to ‘effectivize’ the game-
theoretic semantics (abbreviated GTS) for independence-friendly first-order logic (IF-FOL),
but in a somewhat different way than he did in the monograph ‘The Principles of Mathe-
matics Revisited’. First we show that Nelson’s realizability interpretation — which extends
the famous Kleene’s realizability interpretation by adding ‘strong negation’ — restricted to
the implication-free first-order formulas can be viewed as an effective version of GTS for
FOL. Then we propose a realizability interpretation for IF-FOL, inspired by the so-called
‘trump semantics’ which was discovered by Hodges, and show that this trump realizability
interpretation can be viewed as an effective version of GTS for IF-FOL. Finally we prove
that the trump realizability interpretation for IF-FOL appropriately generalises Nelson’s
restricted realizability interpretation for the implication-free first-order formulas.

1 Introduction

In his famous monograph [6], Hintikka discusses independence-friendly first-order logic (IF-FOL1

for short) and how drastically different the situation in the philosophy of mathematics would
be if classical FOL were replaced by IF-FOL. According to Hintikka, the latter emphasises the
descriptive function of logic, as opposed to its deductive function. More formally, IF-FOL extends
FOL in the following way:

• syntactically, we need to add expressions of the form ∃x\X with {x}∪X a set of individual
variables, called independence quantifiers;

• adopting the standard game-theoretic conventions, we pass from games with perfect infor-
mation to those with imperfect information;

• semantically, for each occurrence of ∃x\X we assume that a choice of value for x does not
depend on a choice of values for X (including the cases when ∃x\X occurs in the scope of
universal quantifiers over variables from X).

Equivalently, IF-FOL can be easily interpreted using skolemisations, so as Skolem terms for oc-
curences of ∃x\X do not contain variables from X. For any given structure — this computably
reduces the problem of determining which IF-FOL-sentences are true to the analogous problem
for existential second-order sentences. Interestingly, the converse holds too, due to Enderton [5]
and Walkoe [18]. Thus

the collection of all IF-FOL-sentences true in A is computably
equivalent to the existential fragment of the second-order theory of A,

1This logic was introduced in [7].
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where A is a structure of signature with equality. It leads to some intriguing consequences:

1. the set of valid IF-FOL-formulas is not computably enumerable, and hence IF-FOL is not
recursively axiomatisable, or non-deductive as one might put it;

2. the set of Gödel numbers2 of IF-FOL-sentences true in the standard model N of arithme-
tic is definable in N by an IF-FOL-formula, in contrast to the case of FOL.

Several other unusual features of IF-FOL are mentioned in [6] as well. However, IF-FOL shares
certain nice model-theoretic properties with FOL, see e.g. [12, Chapter 5]. As for modern deve-
lopments in this area, we refer the reader to [11].

Evidently Hintikka focuses on the game-theoretic semantics (abbreviated GTS) in his book.
Furthermore [6, Chapter 10], entitled ‘Constructivism Reconstructed’, begins as follows:

The approach represented in this book has a strong spiritual kinship with construc-
tivistic ideas. This kinship can be illustrated in a variety of ways. One of the basic
ideas of constructivists like Michael Dummett [3, 4] is that meaning has to be medi-
ated by teachable, learnable, and practicable human activities. This is precisely the
job which semantical games do in game-theoretical semantics. . . .

A great deal of work has gone into understanding the concepts of learning, teaching, reasoning,
belief change, etc. in terms of GTS since the appearance of [6] — see [2] and references therein.
In particular, numerous results have been obtained by computer scientists. Now — inspired by
Hintikka’s ideas on constructivism — we are going to ‘effectivize’ GTS for IF-FOL, but in a
somewhat different way than he did in the book. Here is how, in a nutshell:

i. First we show that Nelson’s realizability interpretation — which extends the famous Kleene’s
realizability interpretation by adding ‘strong negation’ — restricted to the implication-free
first-order formulas can be viewed as an effective version of GTS for FOL.

ii. Then we propose a realizability interpretation for IF-FOL, inspired by the so-called ‘trump
semantics’ which was discovered by Hodges, and show that this trump realizability inter-
pretation can be viewed as an effective version of GTS for IF-FOL.

iii. Finally we prove that the trump realizability interpretation for IF-FOL appropriately gen-
eralises Nelson’s restricted realizability interpretation for the implication-free first-order
formulas.

Surprisingly enough, the relationship between IF-FOL and realizability-like semantics has not
been formally analysed before. There is a natural explanation of this, however. In Kleene’s
realizability interpretation (see [10, § 82]), as well as in intuitionistic logic, ¬φ is defined as
φ → ⊥, i.e. via a reduction to absurdity. On the other hand, here is what Hintikka says about
negation on [6, p. 153]:

All that is involved, so it might seem, is an inversion of truth-values. For instance, in
[19] Wittgenstein held that the negation of a pictorially interpreted sentence is not
only also a picture, but the same picture, only with its polarity reversed.

In a two-player game the role-reversal of the players may be thought of as the process of rever-
sing ‘the polarity’. This agrees perfectly with the concept of ‘strong negation’ (cf. [14]) but not
with that of intuitionistic negation. Actually, the former was developed in order to avoid some
non-constructive features of the latter — it leads to Nelson’s extension of Kleene’s realizability
interpretation in which two kinds of constructive procedures are used, corresponding to verifica-
tion of formulas and falsification of formulas.3 Under Nelson’s approach,

2Assume some Gödel numbering for the IF-FOL-formulas and terms in the signature {0, s,+,×,=}.
3Natural numbers that encode such procedures are called positive and negative realizations respectively.
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to verify (falsify) the negation of a statement, we need
to falsify (respectively verify) the original statement.

So in particular — thinking of verifier and falsifier as ‘polarities’ — one might expect that there
is a close relationship between Nelson’s realizability and effective versions of GTS for FOL, and
hope that it can be expanded to IF-FOL in a suitable way. We shall see that this is indeed the
case.

2 Game-theoretic semantics

This section presents GTS for FOL and IF-FOL (see e.g. [12] for details). We begin by defining
win-lose extensive games with perfect and imperfect information (cf. [15]).

2.1 Two kinds of game

In a (win-lose extensive) game each player may or may not be allowed to see and remember all
previous moves in the play. Roughly speaking, when a player is fully aware of the moves leading
up to the current position, he or she has perfect information.

Formally, plays — or ‘histories’ — are finite sequences in a suitably chosen alphabet Σ (but
not necessarily vice versa). Given {a1, . . . , an, an+1} ⊆ Σ, define

(a1, . . . , an)
_
an+1 := (a1, . . . , an, an+1).

Let ≺ denote the transitive closure of the corresponding successor relation, i.e. for any two finite
sequences w1 and w2 in Σ we have

w1 ≺ w2 ⇐⇒ w2 = w_1 a_1 a
_
2 . . . ak for some {a1, . . . , ak} ⊆ Σ.

Actually, there will be no need to mention Σ in what follows, because it can be easily recovered
from the context.

By a (win-lose extensive) game with perfect information we mean a tuple

〈N,H,Z, P, u〉

where:

• N is a set whose elements are called players.

• H is a set of finite sequences, called histories, with the propery that for all h1, h2, h3,

h1 ≺ h2 ≺ h3 and {h1, h3} ⊆ H =⇒ h2 ∈ H.

• Z is the set of so-called terminal histories, defined by

Z := {h ∈ H | there is no h′ ∈ H for which h ≺ h′}.

Here we require that for every h ∈ H \ Z there exists h′ ∈ Z such that h ≺ h′.

• P is a function from H \ Z to N , called the player function.

• u is a function from Z to N , called the winner function.
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Intuitively, P indicates whose turn it is to move, while u indicates the winner of each terminal
history. We think of the transition from a non-terminal h to one of its successors h_a in H as
being caused by an ‘action’ a. So for any h ∈ H \ Z the player P (h) chooses an a′ from

A (h) := {a | h_a ∈ H}

and the game proceeds from h′ := h_a′. On the other hand, every player p ∈ N acts on the set
of histories where it is p’s turn, i.e.

Hp := {h ∈ H \ Z | P (h) = p}.

By a strategy for p we simply mean a function δ with domain Hp such that δ (h) ∈ A (h) for all
h ∈ Hp. Given a history h′, we say p follows δ during h′ iff for each h,

h ∈ Hp and h ≺ h′ =⇒ h_δ (h) ≺ h′ or h_δ (h) = h′.

Now consider the three sets of histories:

Hδ := {h ∈ H | p follows δ during h},
Zδ := Hδ ∩ Z and Zp := {h ∈ Z | u (h) = p}.

A strategy δ for p is called winning iff Zδ ⊆ Zp — in words, iff p wins in every terminal history
during which he or she follows δ. In fact, we are only interested in how δ acts on Hδ, because
using δ the player p cannot reach any history in H\Hδ . Therefore we shall identify two strategies
δ and δ′ for p whenever Hδ = Hδ′ .

By a (win-lose extensive) game with imperfect information we mean a tuple

〈N,H,Z, P, u, {∼p| p ∈ N}〉

where:

• N , H, Z, P and u are as above (and so constitute a game with perfect information).

• ∼p is an equivalence relation on Hp with the property that for all h1, h2,

h1 ∼p h2 =⇒ A (h1) = A (h2).

(The definitions of Hp and A (h) remain unchanged.)

If h1 ∼p h2, we say h1 and h2 are indistinguishable for p — intuitively, the player p cannot tell
the difference between the histories h1 and h2, and hence p has to act on them in the same way.
Consequently, for this kind of game the class of strategies must be suitably restricted. Call δ a
strategy for p iff it is a strategy for p in 〈N,H,Z, P, u〉 such that for any h1 and h2,

h1 ∼p h2 =⇒ δ (h1) = δ (h2).

The other notions are defined in the same way as before.

2.2 The case of first-order logic

It is convenient to make the following assumptions about FOL:

• the connective symbols are ¬, ∨ and →;
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• the quantifier symbol is ∃.

Take the set V of individual variables to be {vn | n ∈ N}. Readers who wish to employ ∧ and ∀
should use the standard definitions:

ψ ∧ θ := ¬ (¬ψ ∨ ¬θ) and ∀xψ := ¬∃x¬ψ.

Let σ be a signature, i.e. a collection of non-logical symbols, each of which has an arity. Given
a first-order σ-formula φ, define

FV (φ) := the set of individual variables that occur free in φ,

OS (φ) := the set of occurrences of subformulas of φ in φ.

In effect, there are several ways of representing OS (φ), but the details are not really important
here.4 For Ψ, Θ, etc. in OS (φ), we use ψ, θ, etc. to denote the corresponding subformulas, and
in fact, we shall, without danger of confusion, occasionally identify them.

Consider a σ-structure D with domain D. By an assignment in D we simply mean a mapp-
ing s from a finite subset of V (denoted by dom (s), as expected) to M . If x ∈ V and d ∈ D, we
write s (x/d) for the assignment defined by

s (x/d) (y) :=

{
s (y) if y ∈ dom (s) \ {x},
d if y = x

— so in particular, dom (s (x/d)) = dom (s) ∪ {x}. Finally, the expression D, s |= φ is read as φ
is true in D under s, provided that FV (φ) ⊆ dom (s), of course.

Let s be an assignment in D and φ be an implication-free first-order σ-formula with FV (φ)
⊆ dom (s). We define the game G (D, s, φ) with perfect information as follows.5

• There are only two players, Eloise (E) and Abelard (A). Initially one can think of them as
playing the roles of ‘verifier’ and ‘falsifier’ respectively. During the game they may switch
their roles, however — see the next item.

• The set H :=
⋃
{HΨ | Ψ ∈ OS (φ)} of histories is defined by recursion, along with the fun-

ctions ver : H → {E,A} and fals : H → {E,A} determining the roles for each history:

– if Ψ = φ, then HΨ := {(s,Ψ)}, ver ((s,Ψ)) := E and fals ((s,Ψ)) := A;6

– if Ψ = Ψ1 ∨Ψ2, then HΨi := {h_Ψi | h ∈ HΨ} where i ∈ {1, 2}, and for all h ∈ HΨ,

ver (h_Ψi) := ver (h) and fals (h_Ψi) := fals (h);

– if Ψ = ∃xΘ, then HΘ := {h_(x, d) | h ∈ HΨ and d ∈ D}, and for every h ∈ HΨ and
every d ∈ D,

ver (h_(x, d)) := ver (h) and fals (h_(x, d)) := fals (h);

4E.g. φ can be viewed as an ordered tree, in which case every element of OS (φ) becomes a subtree of it.
5This definition as well as the definition of semantic games for IF-FOL given in the next subsection are natural

modifications of respective definitions from [12], where semantics games were defined for formulas in negative
normal form. We define games for arbitrary formulas. This slightly complicates definitions, but explicates the
sense of negation in GTS.

6Naturally we identify the unique occurrence of φ in φ with φ itself.
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– if Ψ = ¬Θ, then HΘ := {h_Θ | h ∈ HΨ}, and for all h ∈ HΨ,

ver (h_Θ) := fals (h) and fals (h_Θ) := ver (h)

(so ¬ indicates the role-reversal of the players).

Furthermore, each history h′ induces an assignment sh′ extending or modifying s:

sh′ :=


s if h′ = (s, φ),

sh if h′ = h_Ψ for some Ψ ∈ OS (φ),

sh (x/d) if h′ = h_(x, d) for some d ∈ D.

• The terminal histories are those which cannot be continued, i.e.

Z :=
⋃
{HΨ | Ψ is an occurrence of an atomic formula}.

• By our choice of logical symbols, we can take P to be ver.7

• If Ψ is an occurrence of an atomic formula ψ in φ, then for all h ∈ HΨ,

u (h) :=

{
ver (h) if D, sh |= ψ,

fals (h) if D, sh 6|= ψ.

(It works because for any h ∈ Z there exists a unique Ψ ∈ OS (φ) such that h ∈ HΨ.)

Finally we write D, s |=+
GTS φ iff Eloise has a winning strategy for G (D, s, φ), and D, s |=−GTS φ iff

Abelard has a winning strategy for G (D, s, φ). Observe that

D, s |=+
GTS ¬φ ⇐⇒ D, s |=−GTS φ, (†)

D, s |=−GTS ¬φ ⇐⇒ D, s |=+
GTS φ.

Rather surprisingly, this semantics turns out to be equivalent to the compositional one. The
following fact is well known.

Theorem 2.1. For every assignment s in D and every implication-free first-order σ-formula φ
with FV (φ) ⊆ dom (s),

D, s |=+
GTS φ ⇐⇒ D, s |= φ.

In particular, the law of excluded middle is valid in the game-theoretic semantics for FOL.

Hence for s and φ as above we have, among other things,

D, s |=+
GTS φ ⇐⇒ D, s 6|=−GTS φ, (‡)

D, s |=−GTS φ ⇐⇒ D, s 6|=+
GTS φ

— in words, either Eloise or Abelard has a winning strategy for G (D, s, φ). In fact, this follows
immediately from a classical result of game theory known as Gale-Stewart theorem, which may
fail if we alter the class of strategies or the notion of a game.

Note, in passing, that GTS does not give a meaning to →, unless we treat φ→ ψ as ¬φ ∨ ψ
(moving away from constructivism).

7Evidently the treatment of ∧ and ∀ in [12] agrees with the use of ψ ∧ θ and ∀xψ as abbreviations.
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2.3 Adding independence-friendly quantifiers

Let σ be a signature. The independence-friendly σ-formulas are built up from the atomic (first-
order) σ-formulas by the following rules, for any finite set X ∪ {x} of individual variables:

• if ψ and θ are independence-friendly σ-formulas, then so are ¬ψ, ψ ∨\X θ and ∃x\X ψ.8

In this context the ‘pure’ ∨ and ∃ can be introduced, via

ψ ∨ θ := ψ ∨\∅ θ and ∃xψ := ∃x\∅ψ.

Given an independence-friendly σ-formula φ, the set SO (φ) is defined as before, whereas the set
FV (φ) for atomic formulas and negations is defined as above and for other cases as follows:

FV (ψ ∨\X θ) = FV (ψ) ∪ FV (θ) ∪X, FV (∃x\X ψ) = (FV (ψ) \ x) ∪X.

Consider a σ-structure D with domain D. For every finite set X of individual variables, if
s1 and s2 are assignments in D such that dom (s1) = dom (s2), we write s1 ≈X s2 to mean that
they coincide on elements of dom (s1) \X — i.e. for all x ∈ dom (s1) \X, s1 (x) = s2 (x).

Now let s be an assignment in D and φ be an independence-friendly σ-formula with FV (φ)
⊆ dom (s). We define the game G? (D, s, φ) with imperfect information as follows.

• Again the only players are Eloise (E) and Abelard (A).

• H, ver and fals are exactly like those in Subsection 2.2, except that Ψ1 ∨Ψ2 and ∃xΘ are
replaced by Ψ1 ∨\X Ψ2 and ∃x\X Θ respectively. Further — for each h ∈ H we get sh.

• Z, P and u are defined in the same way as in the case of FOL.

• The indistinguishability relations ∼E and ∼A are given by the conditions:

– if h1 ∼E h2 or h1 ∼A h2, then {h1, h2} ⊆ HΨ for some Ψ ∈ OS (φ);

– for any {h1, h2} ⊆ HΨ ∩HE with Ψ = Ψ1 ∨\X Ψ2 or Ψ = ∃x\X Θ, we have h1 ∼E h2

iff sh1
≈X sh2

;

– for any {h1, h2} ⊆ HΨ ∩HE with Ψ = ¬Θ, we have h1 ∼E h2 iff sh1
= sh2

;

– for any {h1, h2} ⊆ HΨ ∩HA we have h1 ∼A h2 iff sh1 = sh2 .9

(Recall that HE and HA are the pre-images of E and A under P and that winning strategies
for players E and A must be agreed with ∼E and respectively ∼A.)

Finally we write D, s |=+
GTS? φ iff Eloise has a winning strategy for G? (D, s, φ), and D, s |=−GTS? φ

iff Abelard has a winning strategy for G? (D, s, φ). Observe that the analogue of (†) holds.
On the other hand, the analogue of (‡) fails, because the law of excluded middle is certainly

not valid in the game-theoretic semantics for IF-FOL — for instance, if D = 〈N; =〉, s = ∅ and
φ = ∀x ∃y\ {x}x = y, then neither player has a winning strategy for G? (D, s, φ).

For purposes of this article it will be technically convenient to work with formulas φ satisfy-
ing the following condition:

(X) for every individual variable x, the string ∃x occurs at most once in φ.

Intuitively, one can rename the bound variables of φ without changing its intended meaning, so
we shall henceforth assume all formulas satisfy (X).

8We remark that, by definition, these formulas do not contain →.
9Actually, when the players reach an occurrence of ¬, they do not make choices. Instead, they simply reverse

things according to the rules of the game. Thus it does not matter how we define P , ∼E and ∼A on H¬Θ.
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3 An effective GTS for FOL

Since we aim to study the relationship between GTS and the approach of [14] (cf. also [10, § 82]),
we start by recalling the definition of Nelson’s realizability interpretation.

Assume some effective enumeration {µe}e∈N of the partial computable functions which satis-
fies the s-m-n-theorem.10 Denote by [ , ] your favorite computable pairing function; take π1 and
π2 to be the projection mappings associated with it. Thus for all {n, k} ⊆ N,

π1 ([n, k]) = n, π2 ([n, k]) = k and [π1 (n), π2 (n)] = n.

Let σN and N be the signature of Peano arithmetic and its standard model, i.e.

σN := {0, s,+,×,=} and N := 〈N; 0N, sN,+N,×N,=N〉.

Now for any e ∈ N, assignment s in N and first-order σN-formula φ with FV (φ) ⊆ dom (s), we
inductively define

e P s, φ and e N s, φ

as follows (where α is a meta-variable standing for an atomic formula).

Positive realizability P :

e P s, α i f f e = 0 and N, s |= α;

e P s, ψ ∨ θ i f f either e = [1, k] where k P s, ψ,

or e = [2, k] where k P s, θ;

e P s, ψ → θ i f f for all n ∈ N, if n P s, ψ, then µe (n) P s, θ;

e P s,∃xψ i f f e = [n, k] where k P s (x/n), ψ;

e P s,¬ψ i f f e N s, ψ.

Negative realizability N :

e N s, α i f f e = 0 and N, s 6|= α;

e N s, ψ ∨ θ i f f e = [n, k] where n N s, ψ and k N s, θ;

e N s, ψ → θ i f f e = [n, k] where n P s, ψ and k N s, θ;

e N s,∃xψ i f f for all n ∈ N, µe (n) N s (x/n), ψ;

e N s,¬ψ i f f e P s, ψ.

(Keep in mind that if µe (n) P s, φ or µe (n) P s, φ, then n must be in the domain of µe.)

For e, s and φ as above, e P s, φ is read as e positively realizes φ under s — or e is a positi-
ve realization for φ under s. We call φ positively realizable under s iff n P s, φ for some number
n. Similarly for N , replacing ‘positive(ly)’ by ‘negative(ly)’.

Roughly speaking, each positive (negative) realization of φ under s encodes an effective ver-
ification (respectively falsification) procedure for φ in N under s. In fact, purely for exposition,
the definitions of P and N given here differ in minor details from those in [14]:

i. Instead of first-order σN-sentences, we use pairs s, φ where s is an assignment in N and φ
is a first-order σN-formula with FV (φ) ⊆ dom (s).

10In Sections 4 and 5 this theorem, together with Church’s Thesis, will often be tacitly used. Readers who wish
to know more about enumerations might consult [17, § 1.8].
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ii. Nelson took ∧ and ∀ as primitive — although his conditions for φ ∧ ψ and ∀xφ are easily
seen to be equivalent to those for ¬ (¬φ ∨ ¬ψ) and ¬∃x¬φ.11 We treat them as defined.

Conventionally P and N are interpreted over N. However, one can do the same with any com-
putable structure.

Henceforth we shall restrict ourselves to implication-free formulas — because we are concer-
ned with ‘effectivizing’ game-theoretic semantics, and → is not available in GTS.12

3.1 Strategies revisited

Of course most functions are not computable, and so cannot be expressed in the form µe where
e ∈ N. The reader may well ask:

What happens with P and N if we drop constructivity?

Let σ be a signature and D a σ-structure with domain D. For any assignment s in D and imp-
lication-free first-order σ-formula φ with FV (φ) ⊆ dom (s), we inductively define the sets

S+ (D, s, φ) and S− (D, s, φ)

as follows (where again α stands for an atomic formula).

Set-theoretic analogue of P without →:

S+ (D, s, α) := {0} if D, s |= α, and ∅ otherwise;

S+ (D, s, ψ ∨ θ) :=
(
{1} × S+ (D, s, ψ)

)
∪
(
{2} × S+ (D, s, θ)

)
;

S+ (D, s,∃xψ) :=
{
〈d, t〉 | d ∈ D and t ∈ S+ (D, s (x/d), ψ)

}
;

S+ (D, s,¬ψ) := S− (D, s, ψ).

Set-theoretic analogue of N without →:

S− (D, s, α) := {0} if D, s 6|= α, and ∅ otherwise;

S− (D, s, ψ ∨ θ) := S− (D, s, ψ)× S− (D, s, θ);

S− (D, s,∃xψ) := the set of all functions f with domain D such that

f (d) ∈ S− (D, s (x/d), ψ) for each d ∈ D;

S− (D, s,¬ψ) := S+ (D, s, ψ).

When D = N, we omit D and write simply S+ (s, φ), S− (s, φ).

Actually, one can think of elements of S+ (D, s, φ) and S− (D, s, φ) as winning strategies for
Eloise and Abelard in G (D, s, φ). More precisely, bearing in mind that we identify strategies δ1
and δ2 whenever Hδ1 = Hδ2 , it is not difficult to show the following.

Theorem 3.1. For every assignment s in D and every implication-free first-order σ-formula φ
with FV (φ) ⊆ dom (s), there exist canonical 1-1 functions ι+ and ι− such that:

• ι+ maps S+ (D, s, φ) onto the set of winning strategies for E in G (D, s, φ);

11This does not apply to Kleene’s version in which the only negation is intuitionistic, and which does not deal
with ‘negative realizability’.

12Recall that the implication cann’t be expressed via other connectives in constructive setting.
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• ι− maps S− (D, s, φ) onto the set of winning strategies for A in G (D, s, φ).

Proof. By induction on the complexity of φ.
Suppose φ is atomic. In this case H = {(s, φ)} = Z, so the only possible strategy is ∅. Now

if D, s |= φ, then the empty strategy is winning for Eloise but not for Abelard, and S+ (D, s, φ)
equals {0} while S− (D, s, φ) has no elements at all — thus ι+ and ι− are uniquely determined.
Similarly if D, s 6|= φ.

Suppose φ = ∃xψ. So by the inductive hypothesis, for every d ∈ D there exist 1-1 functions
ι+d and ι−d such that:

• ι+d maps S+ (D, s (x/d), ψ) onto the set of winning strategies for E in G (D, s (x/d), ψ);

• ι−d maps S− (D, s (x/d), ψ) onto the set of winning strategies for A in G (D, s (x/d), ψ).

Let t ∈ S+ (D, s, φ). Then t = 〈d, t′〉 for some d ∈ D and some t′ ∈ S+ (D, s (x/d), ψ). Take

δ′t := ι+d (t′).

Recall that each history of G (D, s, φ) has the form (s, φ) or (s, φ, (x, d′), . . . ) where d′ ∈ D, and
hence the 1-1 function

κd : (s, φ, (x, d), . . . ) 7→ (s (x/d), ψ, . . . )

maps the set of histories of G (D, s, φ) in which Eloise chooses d for (the value of) x on her first
move onto the set of histories of G (D, s (x/d), ψ).13 Define the strategy δt for Eloise by

δt (h) :=

{
(x, d) if h = (s, φ),

δ′t (κd (h)) otherwise.

Evidently δt is winning for G (D, s, φ). Consider the function ι+ with domain S+ (D, s, φ) given
by the equation ι+ (t) = δt. By construction, ι+ is 1-1. We claim that ι+ is onto. For let δ be a
winning strategy for Eloise in G (D, s, φ). Then δ ((s, φ)) = (x, d) for some d ∈ D. Take δ′ to be
the strategy for Eloise in G (D, s (x/d), ψ) defined by

δ′ (h) := δ
(
κ−1
d (h)

)
.

Obviously δ′ is winning, and hence there exists t′ ∈ S+ (D, s (x/d), ψ) for which ι+d (t′) = δ′, i.e.
δ′t = δ′ where t = 〈d, t′〉. From this we get ι+ (t) = δ — because

– if h = (s, φ), then δt (h) = (x, d) = δ (h), and

– if h 6= (s, φ), then δt (h) = δ′t (κd (h)) = δ′ (κd (h)) = δ
(
κ−1
d (κd (h))

)
= δ (h).

Now we move on to the second part. Let f ∈ S− (D, s, φ) — i.e. f is a function with domain D
such that for all d ∈ D we have f (d) ∈ S− (D, s (x/d), ψ). For any d ∈ D, take

δfd := ι−d (f (d)).

Then we build a winning strategy δf for Abelard in G (D, s, φ) as follows:

δf ((s, φ, (x, d), . . . )) := δfd ((s (x/d), ψ, . . . ))

13Here we identify elements of OS (ψ) with those of OS (φ) in the obvious way.
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(notice that in (s, φ) it is Eloise’s turn to move, since φ = ∃xψ). Consider the function ι− with
domain S− (D, s, φ) given by the equation ι− (f) = δf . By construction, ι− is 1-1. Furthermore
we claim that ι− is onto. For let δ be a winning strategy for Abelard in G (D, s, φ). For every d
in D, take δd to be the strategy for Abelard in G (D, s (x/d), ψ) defined by

δd ((s (x/d), ψ, . . . )) := δ ((s, φ, (x, d), . . . )),

which is certainly winning. Obviously the function f that maps each d ∈ D to the pre-image of
δd under ι−d belongs to S− (D, s, φ). And we have ι− (f) = δ, as can be readily checked.

An analogous argument applies if φ = ψ1 ∨ ψ2.
Suppose φ = ¬ψ. Notice that since ¬ indicates the role-reversal of the players, there are 1-1

functions π+ and π− (defined in the obvious way) such that:

• π+ maps the set of winning strategies for E in G (D, s,¬ψ) onto the set of winning strate-
gies for A in G (D, s, ψ);

• π− maps the set of winning strategies for A in G (D, s,¬ψ) onto the set of winning strate-
gies for E in G (D, s, ψ).

The rest is immediate — remembering the definitions S+ (D, s,¬ψ) and S− (D, s,¬ψ).

Recalling Nelson’s approach — let I+ (I−) denote the set of all triples 〈s, φ, e〉 where s is an
assignment in N, φ is an implication-free first-order σN-formula with FV (φ) ⊆ dom (s) and e is
a positive (respectively negative) realization of φ under s. We can turn each such triple into an
‘effectively realizable’ winning strategy, using the functions D+ and D− with domains I+ and I−
respectively, defined by the following conditions.

For every 〈s, φ, e〉 in I+:

– if φ is atomic, then D+ (s, φ, e) = 0;

– if φ = ψ1 ∨ ψ2 and e = [i, k], then D+ (s, φ, e) = 〈i, D+ (s, ψi, k)〉;

– if φ = ∃xψ and e = [n, k], then D+ (s, φ, e) = 〈n, D+ (s (x/n), ψ, k)〉;

– if φ = ¬ψ, then D+ (s, φ, e) = D− (s, ψ, e).

For every 〈s, φ, e〉 in I−:

– if φ is atomic, then D− (s, φ, e) = 0;

– if φ = ψ1 ∨ ψ2 and e = [n, k], then D− (s, φ, e) = 〈D− (s, ψ1, n), D− (s, ψ2, k)〉;

– if φ = ∃xψ, then D− (s, φ, e) is the function that maps each n ∈ N to D− (s (x/n), ψ, µe (n));

– if φ = ¬ψ, then D− (s, φ, e) = D+ (s, ψ, e).

As you would expect, this construction produces winning strategies for Eloise and Abelard:

Proposition 3.2. For ◦ ∈ {+,−} and any 〈s, φ, e〉 ∈ I◦ we have D◦ (s, φ, e) ∈ S◦ (s, φ).

Proof. By an easy induction on the complexity of φ.

In the other direction — each intuitively computable winning strategy for G (N, s, φ) can be
brought to the form D◦ (s, φ, e) with e a suitable realization, as we shall shortly see.
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3.2 Effective winning strategies

For ◦ ∈ {+,−}, let S◦ denote the collection of all triples 〈s, φ, t〉 where s is an assignment in N,
φ is an implication-free first-order σN-formula with FV (φ) ⊆ dom (s), and t ∈ S◦ (s, φ). We are
now ready to ‘effectivize’ the corresponding version of the game-theoretic semantics for FOL —
or rather its implication-free fragment. To this end, we use the functions

E+ : S+ → P (N) and E− : S− → P (N)

defined inductively by the following conditions (recalling those for S±).14

For every 〈s, φ, t〉 in S+:

– if φ is atomic, and so t = 0, then E+ (s, φ, t) = {0};

– if φ = ψ1 ∨ ψ2, and so t = 〈i, t′〉 for appropriate i and t′, then

E+ (s, φ, t) =
{

[i, k] | k ∈ E+ (s, ψi, t
′)
}

;

– if φ = ∃xψ, and so t = 〈n, t′〉 for appropriate n and t′, then

E+ (s, φ, t) =
{

[n, k] | k ∈ E+ (s (x/n), ψ, t′)
}

;

– if φ = ¬ψ, then E+ (s, φ, t) = E− (s, ψ, t).

For every 〈s, φ, t〉 in S−:

– if φ is atomic, and so t = 0, then E− (s, φ, t) = {0};

– if φ = ψ1 ∨ ψ2, and so t = 〈t1, t2〉 for appropriate t1 and t2, then

E− (s, φ, t) =
{

[n, k] | n ∈ E− (s, ψ1, t1) and k ∈ E− (s, ψ2, t2)
}

;

– if φ = ∃xψ, and so t = f for an appropriate f , then

E− (s, φ, t) =
{
e ∈ N | for all n ∈ N, µe (n) ∈ E− (s (x/n), ψ, f (n))

}
;

– if φ = ¬ψ, then E− (s, φ, t) = E+ (s, ψ, t).

In each case being ‘appropriate’ merely means having the properties required by the definitions
of S+ (s, φ) and S− (s, φ).

Let φ be a first-order σN-formula not containing →, and s be an assignment in N, such that
FV (φ) ⊆ dom (s). For ◦ ∈ {+,−}, call a strategy t ∈ S◦ (s, φ) effective iff E◦ (s, φ, t) 6= ∅. Now
we can ‘effectivize’ the relations |=+

GTS and |=−GTS from Subsection 2.2: say φ is true (false) under
s in the effective game-theoretic semantics for FOL, written s |=+

EGTS φ (respectively s |=−EGTS φ),
iff there exists an effective strategy in S+ (s, φ) (respectively S− (s, φ)).

Roughly speaking, if t ∈ S◦ (s, φ) where ◦ ∈ {+,−}, then each number in E◦ (s, φ, t) encodes
an algorithm for computing t. Of course this reminds us of positive and negative realizations of
φ under s. Actually, the two approaches are equivalent (for implication-free formulas):

14As usual, we write P (N) for the powerset of N.
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Proposition 3.3. Let φ be a first-order σN-formula not containing →, and s an assignment in
N, such that FV (φ) ⊆ dom (s). For all e ∈ N we have

e P s, φ ⇐⇒ e ∈ E+ (s, φ, t) for some t ∈ S+ (s, φ),

e N s, φ ⇐⇒ e ∈ E− (s, φ, t) for some t ∈ S− (s, φ).

Moreover, in each case, if the left-hand side holds, then t is uniquely determined by e, s and φ.

Proof. It is straightforward to check that for ◦ ∈ {+,−} and any 〈s, φ, e〉 ∈ I◦,

e ∈ E◦ (s, φ, D◦ (s, φ, e))

— keeping in mind that D◦ (s, φ, e) ∈ S◦ (s, φ) by Proposition 3.2, and hence can be substituted
for t in E◦ (s, φ, t). This immediately gives the implications from left to right. Further, a simple
inductive argument shows that for ◦ ∈ {−,+} and any {t1, t2} ⊆ S◦ (s, φ),

t1 6= t2 =⇒ E◦ (s, φ, t1) ∩ E◦ (s, φ, t2) = ∅.

Thus the uniqueness follows. The right-to-left direction is also straightforward.

So in particular, for φ and s as above we have

s |=+
EGTS φ ⇐⇒ φ is positively realizable under s,

s |=−EGTS φ ⇐⇒ φ is negatively realizable under s.

However, Proposition 3.3 tells us more: the two semantics are not only extensionally equivalent
but also intentionally equivalent.15

It should be remarked that that for every implication-free first-order σN-sentence ψ,

∅ |=+
EGTS ψ =⇒ S+ (∅, φ) 6= ∅ =⇒ ∅ |=+

GTS ψ.

Consequently, if ψ is positively realizable under ∅, then it is true classically. By contraposition,
if ψ is false classically, then it is not positively realizable under ∅ (just because there are no gluts
in classical logic). Let us now consider one curious sentence, suggested by Kleene. Assuming an
appropriate coding M0, M1, M2, . . . of all Turing machines, take β (x) to be an existential first-order
σN-formula with no connective symbols, such that for any e ∈ N,

N |= β (e) ⇐⇒ Me halts on input e

(cf. [13]). We are going to discuss the constructive content of the first-order σN-sentence

χ := ∀x (β (x) ∨ ¬β (x)).

Clearly χ is true classically. However, it is not positively realizable under ∅. For otherwise there
would be a computable function f such that for each e ∈ N exactly one of the following holds:

• π1 (f (e)) = 1 and Me halts on input e;

• π1 (f (e)) = 2 and Me does not halt on input e.

And this would contradict the undecidability of the self-applicability problem for Turing machi-
nes. Here are some futher observations concerning χ:

15Again, one could use any computable structure in place of N.
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i. ¬χ is false classically;

ii. ¬χ is neither negatively nor positively realizable under ∅;

iii. ¬χ becomes positively realizable under ∅ if we treat ¬ intuitionistically.16

In particular, the conjunction of (i) and (iii) reveals somewhat counterintuitive features of intu-
itionistic negation as compared with ‘strong negation’.

4 An effective GTS for IF-FOL

At this point it helps to recall the trump semantics for IF-FOL discovered by Hodges, which is
known to be equivalent to the original game-theoretic semantics for IF-FOL; see [8, 9]. Here we
closely follow the treatment in [12, Chapter 4], adapting it to our framework.

Let σ be a signature and D a σ-structure with domain D. By a team in D is meant a set of
assignments in D that have a common domain. For any team T in D, mapping f from T to D,
and individual variable x, we define

T [x,D] := {s (x/d) | s ∈ T and d ∈ D},
T [x, f ] := {s (x/f (s)) | s ∈ T}.

Let T be a team in D and X a finite set of individual variables. A subteam T ′ of T — in other
words, an element T ′ of P (T ) — is said to be X-closed in T iff for any {s1, s2} ⊆ T ,

s1 ≈X s2 and s1 ∈ T ′ =⇒ s2 ∈ T ′.17

A cover {T1, T2} of T — i.e. a family {T1, T2} ⊆ P (T ) with T1 ∪ T2 = T — is called X-uniform
iff both T1 and T2 are X-closed in T . A mapping f from T to D is said to be X-uniform iff for
any {s1, s2} ⊆ T ,

s1 ≈X s2 =⇒ f (s1) = f (s2).

We write C (T,X) for the collection of all X-uniform two-element covers of T and M (T,X) for
the collection of all X-uniform mappings from T to D. Using these terms, for any team T in D
and independence-friendly first-order σ-formula φ with FV (φ) ⊆ dom (T ), we define

D, T |=+
t φ and D, T |=−t φ

inductively as follows (where α ranges over the atomic formulas, as always).

Teams for Eloise:

D, T |=+
t α i f f D, s |= α for each s ∈ T ;

D, T |=+
t ψ ∨\X θ i f f D, T1 |=+

t ψ and D, T2 |=+
t θ for some {T1, T2} ∈ C (T,X);

D, T |=+
t ∃x\X ψ i f f D, T [x, f ] |=+

t ψ for some f ∈M (T,X);

D, T |=+
t ¬ψ i f f D, T |=−t ψ.

16Formally, this means that ¬θ is interpreted as θ → ⊥, or rather as θ → 0 = s (0) (since our language does not
contain ⊥ explicitly).

17Remember from Subsection 2.3 that s1 ≈X s2 means that s1 and s2 agree on dom (s1) \X.
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Teams for Abelard:

D, T |=−t α i f f D, s 6|= α for each s ∈ T ;

D, T |=−t ψ ∨\X θ i f f D, T |=−t ψ and D, T |=−t θ;

D, T |=−t ∃x\X ψ i f f D, T [x,D] |=−t ψ;

D, T |=−t ¬ψ i f f D, T |=+
t ψ.

Observe that the analogue of (†) for |=±t holds, obviously.

On the other hand, the definition of G? (D, s, φ) given in Subsection 2.3 can be easily exten-
ded to deal with teams. Namely, we define G? (D, T, φ) just as G? (D, s, φ), except that now Hφ

is taken to be {(s, φ) | s ∈ T}, rather than {(s, φ)}. Thus:

• each pair (s, φ) with s ∈ T is an ‘initial’ history of G? (D, T, φ);

• each history of G? (D, T, φ) is a history of G? (D, s, φ) for a suitable s ∈ T .

As one may expect, we write D, T |=+
GTS? φ iff Eloise has a winning strategy for G? (D, T, φ) and

D, T |=−GTS? φ iff Abelard has a winning strategy for G? (D, T, φ).

Theorem 4.1 (see [12, Sections 4.3 and 4.4] for details). For every team T in D and every in-
dependence-friendly first-order σ-formula φ with FV (φ) ⊆ dom (T ),

D, T |=+
GTS? φ ⇐⇒ D, T |=+

t φ.

So in particular, if T = {s}, then D, s |=+
GTS? φ and D, {s} |=+

t φ are equivalent.

Note that a subteam T ′ of T is X-closed in T iff T \ T ′ is so. Further — instead of C (T,X)

one could use the collection Ĉ (T,X) of all disjoint X-uniform two-element covers of T through-
out. This modification looks very natural, because our strategies are deterministic, and IF-FOL
is not sensitive to whether we choose to work with C (T,X) or with Ĉ (T,X).

In fact we can obtain some interesting analogues of S+ and S− for IF-FOL by ‘intentionali-
zing’ the trump semantics.

4.1 Strategies revisited

Let σ and D be as usual. For any team T in D and independence-friendly first-order σ-formula
φ with FV (φ) ⊆ dom (T ), we inductively define the sets

S+
? (D, T, φ) and S−? (D, T, φ)

as follows (where again α ranges over the atomic formulas, and 0T denotes the function from T
to N given by 0T (s) = 0).

Intentional content underlying |=+
t :

S+
? (D, T, α) := {0T } if D, s |= α for each s ∈ T, and ∅ otherwise;

S+
?

(
D, T, ψ ∨\X θ

)
:=

⋃
{T1,T2}∈ Ĉ(T,X)

{T1} × S+
? (D, T1, ψ)× S+

? (D, T2, θ);

S+
? (D, T,∃x\X ψ) :=

{
〈f, t〉 | f ∈M (T,X) and t ∈ S+

? (D, T [x, f ], ψ)
}

;

S+
? (D, T,¬ψ) := S−? (D, T, ψ).
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Intentional content underlying |=−t :

S−? (D, T, α) := {0T } if D, s 6|= α for each s ∈ T, and ∅ otherwise;

S−?
(
D, T, ψ ∨\X θ

)
:= S−? (D, T, ψ)× S−? (D, T, θ);

S−? (D, T,∃x\X ψ) := S−? (D, T [x,D], ψ);

S−? (D, T,¬ψ) := S+
? (D, T, ψ).

When D = N, we omit D and write simply S+
? (T, φ), S−? (T, φ).

It is straightforward to verify the adequacy of this ‘intentionalization’:

Proposition 4.2. For T and φ as above we have

D, T |=+
t φ ⇐⇒ S+

? (D, T, φ) 6= ∅,

and similarly with − in place of +.

Proof. By an easy induction on the complexity of φ.

Moreover, elements of S+
? (D, T, φ) and S−? (D, T, φ) can be thought of as winning strategies

for Eloise and Abelard in G? (D, T, φ), as will be shown shortly. Notice that we again identify
strategies δ1 and δ2 whenever Hδ1 = Hδ2 .

Theorem 4.3. For every team T in D and every independence-friendly first-order σ-formula φ
with FV (φ) ⊆ dom (T ), there exist canonical 1-1 functions ν+ and ν− such that:

• ν+ maps S+
? (D, T, φ) onto the set of winning strategies for E in G? (D, T, φ);

• ν− maps S−? (D, T, φ) onto the set of winning strategies for A in G? (D, T, φ).

Proof. By induction on the complexity of φ.
In the case where φ is atomic the result follows easily (cf. the proof of Theorem 3.1).
Suppose φ = ∃x\X ψ. So by the inductive hypothesis, for every f ∈M (T,X) there exists a

1-1 function ν+
f such that:

• ν+
f maps S+ (D, T [x, f ], ψ) onto the set of winning strategies for E in G? (D, T [x, f ], ψ).

Let t ∈ S+
? (D, T, φ). Then t = 〈f, t′〉 for some f ∈M (T,X) and t′ ∈ S+

? (D, T [x, f ], ψ). Take

δ′t := ν+
f (t′).

Recall that every history of G? (D, T, φ) has the form (s, φ) or (s, φ, (x, d), . . . ) where s ∈ T and
d ∈ D. Hence the 1-1 function

λf : (s, φ, (x, f (s)), . . . ) 7→ (s (x/f (s)), ψ, . . . )

maps the set of histories of G? (D, T, φ) in which Eloise chooses f (s) for (the value of) x on her
first move onto the set of histories of G? (D, T [x, f ], ψ). Define the strategy δt for Eloise by

δt (h) :=

{
(x, f (s)) if h = (s, φ) with s ∈ T,
δ′t (λf (h)) otherwise.
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Clearly δt is winning for G? (D, T, φ). Consider the function ν+ with domain S+
? (D, T, φ) given

by the equation ν+ (t) = δt. By construction, ν+ is 1-1, and we claim that ν+ is onto. For let δ
be a winning strategy for Eloise in G? (D, T, φ). So for each s ∈ T , there exists a unique ds ∈ D
such that δ ((s, φ)) = (x, ds). Furthermore for any {s1, s2} ⊆ T ,

s1 ≈X s2 =⇒ (s1, φ) ∼E (s2, φ) =⇒ δ ((s, φ)) = δ ((s, φ)) =⇒ ds1 = ds2

(remember the definition of ∼E). Thus the mapping f from T to D given by f (s) = ds belongs
to M (T,X). Take δ′ to be the strategy for Eloise in G? (D, T [x, f ], ψ) defined by

δ′ (h) := δ(λ−1
f (h)).

This δ′ is winning, obviously. Hence there exists a t′ ∈ S+
? (D, T [x, f ], ψ) for which ν+

f (t′) = δ′,

i.e. δ′t = δ′ where t = 〈f, t′〉. So we get ν+ (t) = δ — because

– if h = (s, φ) with s ∈ T , then δt (h) = (x, f (s)) = (x, ds) = δ (h), and

– if h is not initial, then δt (h) = δ′t (λf (h)) = δ′ (λf (h)) = δ(λ−1
f (λf (h))) = δ (h).

Now we move on to the second part of the argument for φ = ∃x\X ψ. For present purposes the
inductive hypothesis ensures the existence of a 1-1 function ν−D such that:

• ν−D maps S− (D, T [x,D], ψ) onto the set of winning strategies for A in G? (D, T [x,D], ψ).

Let t ∈ S− (D, T, φ) — i.e. t ∈ S+ (D, T [x,D], ψ). Take

δtD := ν−D (t).

Then we build a winning strategy δt for Abelard in G? (D, T, φ) as follows:

δt ((s, φ, (x, d), . . . )) := δtD ((s (x/d), ψ, . . . ))

(bearing in mind that in every initial history it is Eloise’s turn to move). Consider the function
ν− with domain S−? (D, T, φ) given by the equation ν− (t) = δt. By construction, ν− is 1-1. We
claim that ν− is also onto. For let δ be a winning strategy for Abelard in G? (D, T, φ). Take δD
to be the strategy for Abelard in G (D, T [x,D], ψ) defined by

δD ((s (x/d), ψ, . . . )) := δ ((s, φ, (x, d), . . . )),

which is evidently winning. Further, the pre-image t of δD under ν−D belongs to S−? (D, T, φ),
which is equal by definition to S−? (D, T [x,D], ψ), and we have ν− (t) = δ, as can be readily
checked.

An analogous argument applies if φ = ψ ∨\X θ.
The case φ = ¬ψ is simple (cf. the proof of Theorem 3.1).

Note, in passing, that Theorem 4.1 (about the equivalence of the trump semantics and GTS
for IF-FOL) can now be immediately derived from Proposition 4.2 and Theorem 4.3.

Next, we propose a ‘realizability interpretation’ for IF-FOL, inspired by Hodges’s semantics.
To simplify the exposition we notice that assignments in N can be identified with natural num-
bers (and vice versa).18 Then for any e ∈ N, team T in N and independence-friendly first-order
σN-formula φ with FV (φ) ⊆ dom (T ), let

e P T, φ and e N T, φ

18Here we assume some 1-1 numbering of the collection of all assignments in N, viz. some 1-1 function from N
onto this collection; certainly such numberings exist (remember, assignments have finite domains, by definition).
Further, via such a function, teams in N can be identified with sets of natural numbers.
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be defined inductively as follows (where α ranges over the atomic formulas).

Positive realizability P :

e P T, α i f f for all s ∈ T , µe (s) = 0 and N, s |= α;

e P T, ψ ∨\X θ i f f e = [m, [n, k]] and there exists {T1, T2} ∈ Ĉ (T,X)

such that µm�T is the characteristic function

of T1 in T, n P T1, ψ and k P T2, θ;

e P T, ∃x\X ψ i f f e = [n, k], T ⊆ dom (µn), µn�T ∈M (T,X)

and k P T [x, µn�T ], ψ;

e P T,¬ψ i f f e N T, ψ.

Negative realizability N :

e N T, α i f f for all s ∈ T , µe (s) = 0 and N, s 6|= α;

e N T, ψ ∨\X θ i f f e = [n, k], n N T, ψ and k N T, θ;

e N T, ∃x\X ψ i f f e N T [x,N], ψ;

e N T,¬ψ i f f e P T, ψ.

(Keep in mind that dom (µe) may be thought of as a set of assignments.)

For e, T and φ as above, e P T, φ is read as e positively t-realizes φ under T — or e is a po-
sitive t-realization for φ under T . We call φ positively t-realizable under T iff n P T, φ for some
number n. Similarly for N , replacing ‘positive(ly)’ by ‘negative(ly)’.

By analogy with the case of FOL, let I+? (I−? ) denote the set of all triples 〈T, φ, e〉 where T is
a team in N, φ is an independence-friendly first-order σN-formula with FV (φ) ⊆ dom (T ) and e
is a positive (respectively negative) t-realization of φ under T . Further, define the functions D+

?

and D−? with domains I+? and I−? respectively, by the following conditions.

For every 〈T, φ, e〉 in I+? :

– if φ is atomic, then D+
? (T, φ, e) = 0T ;

– if φ = ψ ∨\X θ and e = [m, [n, k]], then D+
? (T, φ, e) = 〈T1, D

+
? (T1, ψ, n), D+

? (T2, θ, k)〉 where
T1 is the subteam of T with characteristic function µm�T and T2 is T \ T1.

– if φ = ∃x\X ψ and e = [n, k], then D+
? (T, φ, e) = 〈µn�T , D+

? (T [x, µn�T ], ψ, k)〉;

– if φ = ¬ψ, then D+
? (T, φ, e) = D−? (T, ψ, e).

For every 〈T, φ, e〉 in I−? :

– if φ is atomic, then D−? (T, φ, e) = 0T ;

– if φ = ψ ∨\X θ and e = [n, k], then D−? (T, φ, e) = 〈D−? (T, ψ, n), D−? (T, θ, k)〉;

– if φ = ∃x\X ψ, then D−? (T, φ, e) = D−? (T [x,N], ψ, e);

– if φ = ¬ψ, then D−? (T, φ, e) = D+
? (T, ψ, e).
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Not surprisingly, this construction turns each element of I+? or I−? into an (‘effectively realiz-
able’) winning strategy for Eloise or Abelard:

Proposition 4.4. For ◦ ∈ {+,−} and any 〈T, φ, e〉 ∈ I◦? we have D◦? (T, φ, e) ∈ S◦? (T, φ).

Proof. By an easy induction on the complexity of φ.

In the next section we define effective winning strategies for G? (N, T, φ) and prove that every
such strategy is expressible as D◦? (T, φ, e) for some suitable t-realization e.

4.2 Effective winning stategies

For ◦ ∈ {+,−} we let S◦? be the collection of all triples 〈T, φ, t〉 where T is a team in N, φ is an
independence-friendly first-order σN-formula with FV (φ) ⊆ dom (T ), and t ∈ S◦? (T, φ). Now to
‘effectivize’ the corresponding version of GTS for IF-FOL, we use the functions

E+
? : S+

? → P (N) and E−? : S−? → P (N)

defined inductively by the following conditions (recalling those for S±? ).

For every 〈T, φ, t〉 in S+
? :

– if φ is atomic, and so t = 0T , then E+
? (T, φ, t) = {e ∈ N | µe (s) = 0 for all s ∈ T};

– if φ = ψ ∨\X θ, and so t = 〈T1, t1, t2〉 for appropriate T1, t1 and t2, then

E+
? (T, φ, t) = {[m, [n, k]] | µm�T is the characteristic function of

T1 in T, n ∈ E+
? (T1, ψ, t1) and k ∈ E+

? (T \ T1, θ, t2)
}

;

– if φ = ∃x\X ψ, and so t = 〈f, t′〉 for appropriate f and t′, then

E+
? (T, φ, t) =

{
[n, k] | T ⊆ dom (µn), µn�T = f and k ∈ E+

? (T [x, f ], ψ, t′)
}

;

– if φ = ¬ψ, then E+
? (T, φ, t) = E−? (T, ψ, t).

For every 〈T, φ, t〉 in S−? :

– if φ is atomic, and so t = 0T , then E−? (T, φ, t) = {e ∈ N | µe (s) = 0 for all s ∈ T};

– if ψ ∨\X θ, and so t = 〈t1, t2〉 for appropriate t1 and t2, then

E−? (T, φ, t) =
{

[n, k] | n ∈ E−? (T, ψ, t1) and k ∈ E−? (T, θ, t2)
}

;

– if φ = ∃x\X ψ, then E−? (T, φ, t) = E−? (T [x,N], ψ, t);

– if φ = ¬ψ, then E−? (T, φ, t) = E+
? (T, ψ, t).

In each case being ‘appropriate’ merely means having the properties required by the definitions
of S+

? (s, φ) and S−? (s, φ).

Let φ be an independence-friendly first-order σN-formula and T a team in N with FV (φ) ⊆
dom (T ). For ◦ ∈ {+,−}, call a strategy t ∈ S◦? (T, φ) effective iff E◦? (T, φ, t) 6= ∅. The relations
|=+

GTS? and |=−GTS? from Subsection 2.3 can now be suitably ‘effectivized’: we say φ is true (false)
under T in the effective game-theoretic semantics for IF-FOL, written T |=+

EGTS? φ (T |=−EGTS? φ),
iff there exists an effective strategy in S+

? (T, φ) (respectively S−? (T, φ)).
It is straightforward to show that this semantics agrees perfectly with our ‘trump’ realizabi-

lity interpretation:
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Proposition 4.5. Let φ be an independence-friendly σN-formula and T a team in N, such that
FV (φ) ⊆ dom (T ). For all e ∈ N we have

e P T, φ ⇐⇒ e ∈ E+
? (T, φ, t) for some t ∈ S+

? (T, φ),

e N T, φ ⇐⇒ e ∈ E−? (T, φ, t) for some t ∈ S−? (T, φ).

Moreover, in each case, if the left-hand side holds, then t is uniquely determined by e, T and φ.

Proof. Similar to the proof of Proposition 3.3.

So in particular, for φ and T as above we have

T |=+
EGTS? φ ⇐⇒ φ is positively t-realizable under T,

T |=−EGTS? φ ⇐⇒ φ is negatively t-realizable under T.

Finally — notice that one could use any computable structure instead of N throughout.

5 About the connection between these two EGTS’s

Remember, implication-free first-order formulas may be viewed as ‘pure’ independence-friendly
first-order formulas, by thinking of ψ ∨ θ and ∃xψ as ψ ∨\∅ θ and ∃x\∅ψ respectively. Yet the
connection between realizations of such formulas and their t-realizations has to be investigated.
In this section we shall see that the trump realizability interpretation restricted to the pure σN-
formulas is computably equivalent to Nelson’s realizability interpretation restricted to the imp-
lication-free first-order σN-formulas.

This is a good place to bring in some additional notation and terminology. If T is a team in
N, m is a natural number and µm is the characteristic function of T (so T is computable), then
we call m an index of T . The following functions will prove to be useful.19

• Let revA and revE be computable functions such that for any team T in N, index m of T ,
individual variable x not in dom (T ), and natural number e with dom (µe) ⊇ T :

– revA (m,x) is an index of T [x,N];

– revE (m,x, e) is an index of T [x, µe�T ].

• Recall the projection mappings π1 and π2 introduced in Section 3. Using these, we can get
computable functions π̇1 and π̇2 such that for any {e,m} ⊆ N:

µπ̇1(e) (m) = π1 (µe (m));

µπ̇2(e) (m) = π2 (µe (m)).

• Let sub1 and sub2 denote the computable functions such that for all {n, k,m} ⊆ N:

µsub1(n,k) (m) =


1 if µn (m) = µk (m) = 1,

0 if µn (m) = 0,

undefined otherwise;

µsub2(n,k) (m) =


1 if µn (m) = 1− µk (m) = 1,

0 if µn (m) = 0,

undefined otherwise.

19The s-m-n-theorem ensures that they exist and are computable.

20



Thus if n is an index of T , and k is such that T ⊆ dom (µk), then µsub1(n,k) and µsub2(n,k)

are indexes of T1 := {s ∈ T | µk (s) = 1} and T2 := T \ T1 respectively.

• Take π̇ and glue to be computable functions such that for any {i, j, k, n} ⊆ N:

µπ̇(i,j) (n) = [µi (n), µj (n)];

µglue(i,j,k) (n) =


µi (n) if µk (n) = 1,

µj (n) if µk (n) = 0,

undefined otherwise.

Now the proof of the desired equivalence naturally falls into two parts.

5.1 From realizations to t-realizations

Here we describe how t-realizations for ‘pure’ independence-friendly first-order σN-formulas un-
der computable teams in N can be obtained by putting together ordinary — i.e. in the sense of
Nelson — realizations in a uniform effective way:

Theorem 5.1. There exist computable functions r+
t and r−t such that for every e ∈ N, team T

in N, implication-free first-order σN-formula φ with FV (φ) ⊆ dom (T ), and index m of T :

µe (s) P s, φ for each s ∈ T ⇐⇒ r+
t (e,m, φ) P T, φ;

µe (s) N s, φ for each s ∈ T ⇐⇒ r−t (e,m, φ) N T, φ.

In particular, if T = {s}, then the collection of all positive realizations of φ under s is computa-
bly reducible to the collection of all positive t-realizations of φ under {s}, uniformly in φ and s,
and similarly with ‘negative’ in place of ‘positive’.

Proof. Take γt to be a computable function such that for any {e, n} ⊆ N,

µγt(e) (n) =


1 if µe (n) = 1,

0 if µe (n) = 2,

undefined otherwise.

Further — take ξ and η to be computable functions such that for every e ∈ N, individual varia-
ble x and assignment s in N with dom (s) ⊆ V \ {x}:

– µξ(e,x) (s (x/π1 (µe (s)))) = π2 (µe (s));

– µη(e,x) (s (x/n)) = µµe(s) (n).20

Now for any {e,m} ⊆ N and implication-free first-order σN-formula φ, we inductively define

r+
t (e,m, φ) and r−t (e,m, φ)

by the following conditions.

For P and P :

20To understand how ξ and η can be constructed, consider for instance η. By the s-m-n-theorem, it suffices to
provide an algorithm such that, given an e ∈ N, an individual variable x and an assignment s′ in N, if s′ has the
form s (x/n) where dom (s) ⊆ V \ {x}, then the algorithm produces µµe(s) (n). Thus, we only need to effectively
obtain s and n from s′ — provided that s′ has the form required. In order to do this, first check whether x is in
dom (s′) or not, and if ‘yes’, then let n be s′ (x) and s the restriction of s′ to dom (s′) \ {x}. Similarly for ξ.
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– if φ is atomic, then r+
t (e,m, φ) = e;

– if φ = ψ1 ∨ ψ2, then r+
t (e,m, φ) is[

γt (ė1),
[
r+
t (ė2, sub1 (m, γt (ė1)), ψ1), r+

t (ė2, sub2 (m, γt (ė1)), ψ2)
]]

where ė1 and ė2 denote π̇1 (e) and π̇2 (e) respectively;

– if φ = ∃xψ, then r+
t (e,m, φ) =

[
ė1, r

+
t (ξ (e, x), revE (m,x, ė1), ψ)

]
;

– if φ = ¬ψ, then r+
t (e,m, φ) = r−t (e,m, ψ).

For N and N :

– if φ is atomic, then r−t (e,m, φ) = e;

– if φ = ψ1 ∨ ψ2, then r−t (e,m, φ) =
[
r−t (ė1,m, ψ1), r−t (ė2,m, ψ2)

]
;

– if φ = ∃xψ, then r−t (e,m, φ) = r−t (η (e, x), revA (m,x), ψ);

– if φ = ¬ψ, then r−t (e,m, φ) = r+
t (e,m, ψ).

It is more or less straightforward to verify that the pair r+
t , r−t does the job. We check the item

negative realizations of existentialy quantified formulas:

µe (s) N s,∃xψ for each s ∈ T ⇐⇒ r−t (e,m, φ) N T, ∃xψ,

wherem is an index of T . By definition r−t (e,m, φ) N T, ∃xψ if and only if r−t (e,m, φ) N T [x,N], ψ.
Thus, we have to check that

µe (s) N s,∃xψ for each s ∈ T ⇐⇒ r−t (η (e, x), revA (m,x), ψ) N T [x,N], ψ.

By induction hypothesis we have

µe (s) N s, ψ for each s ∈ U ⇐⇒ r−t (e, k, ψ) N U,ψ,

where k is an index of a team U . If m is an index of T , then revA (m,x) is an index of T [x,N].
Therefore, it remains to check that

µe (s) N s,∃xψ for each s ∈ T ⇐⇒ µη(e,x)(s(x/n)) N s(x/n), ψ for all s ∈ T and n ∈ N.

The last equivalence easily follows from the definition of negative realizability and the definition
of η.

5.2 From t-realizations to realizations

On the other hand, t-realizations for ‘pure’ independence-friendly first-order σN-formulas under
computable teams in N can be split into ordinary realizations (viz., in the sense of Nelson) in a
uniform effective way:
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Theorem 5.2. There exist computable functions r+ and r− such that for every e ∈ N, team T
in N, implication-free first-order σN-formula φ with FV (φ) ⊆ dom (T ), and index m of T :

e P T, φ ⇐⇒ µr+(e,m,φ) (s) P s, φ for each s ∈ T ;

e N T, φ ⇐⇒ µr−(e,m,φ) (s) N s, φ for each s ∈ T.

In particular, if T = {s}, then the collection of all positive t-realizations of φ under {s} is com-
putably reducible to the collection of all positive realizations of φ under s, uniformly in φ and s,
and similarly with ‘negative’ in place of ‘positive’.

Proof. Take γ to be a computable function such that for any {e, n} ⊆ N,

µγ(e) (n) =


1 if µe (n) = 1,

2 if µe (n) = 0,

undefined otherwise.

Further — take ζ and ρ to be computable functions such that for every e ∈ N, individual varia-
ble x and assignment s in N with dom (s) ⊆ V \ {x}:

– µζ(i,x,j) (s) = [µi (s), µj (s (x/µi (s)))];

– µµρ(e,x)(s) (n) = µe (s (x/n)).21

Now for any {e,m} ⊆ N and implication-free first-order σN-formula φ, we inductively define

r+ (e,m, φ) and r− (e,m, φ)

by the following conditions.

For P and P :

– if φ is atomic, then r+ (e,m, φ) = e;

– if φ = ψ1 ∨ ψ2, then r+ (e,m, φ) is

π̇
(
γ (e1), glue

(
r+ (π1 (e2), sub1 (m, e1), ψ1), r+ (π2 (e2), sub2 (m, e1), ψ2), e1

))
where e1 and e2 denote π1 (e) and π2 (e) respectively;

– if φ = ∃xψ, then r+ (e,m, φ) = ζ (e1, x, r
+ (e2, revE (m,x, e1), ψ));

– if φ = ¬ψ, then r+ (e,m, φ) = r− (e,m, ψ).

For N and N :

– if φ is atomic, then r− (e,m, φ) = e;

– if φ = ψ1 ∨ ψ2, then r− (e,m, φ) = π̇ (r− (e1,m, ψ1), r− (e2,m, ψ2));

– if φ = ∃xψ, then r− (e,m, φ) = ρ (r− (e, revA (m,x), ψ), x);

– if φ = ¬ψ, then r− (e,m, ψ) = r+ (e,m, ψ).

21To obtain ρ, use the s-m-n-theorem twice: first apply it to µe (s (x/n)), regarded as a function of e, x, s and
n, to get g such that µg(e,x,s) (n) = µe (s (x/n)); then apply it to g to get ρ such that µρ(e,x) (s) = g (e, x, s).
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It is straightforward to verify that the pair r+, r− does the job.

We finish the section by noting that the computable reductions appearing in the statements
of Theorems 5.1 and 5.2 readily establish the computable equivalences between the correspond-
ing collections of t-realizations/realizations. In this way, EGTS for IF-FOL suitably generalises
EGTS for (the implication-free fragment of) FOL. As a bonus, these theorems show that t-rea-
lizations for ‘pure’ independence-friendly σN-formulas under computable teams in N can in fact
be split into t-realizations under smaller teams, or put together if needed.22

6 Conclusion

To sum up, we have established the following:

• Nelson’s realizability interpretation restricted to the implication-free fragment of FOL —
a traditional constructive semantics for this fragment — can be viewed as an effective ver-
sion of GTS for FOL.

• A constructive version of Hodges’s semantics for IF-FOL — what we call the ‘trump reali-
zability interpretation’ — can be developed. Its relationship to GTS for IF-FOL turns out
to be the same as that of Nelson’s restricted realizability to GTS for FOL.

• Actually, we can think of the trump realizability as a generalization of Nelson’s restricted
realizability.

Naturally, it would be interesting to continue the investigation of the trump realizability and its
variations. Let us briefly mention some directions that might profitably be explored.

• We can look at how the set of trump realizations of φ under T varies as T varies, and try
to computably predict it.

• We can compare the expressive power of the original IF-FOL and that of its effective ver-
sion, and more generally, study the difference between them at the meta-level.

• We can consider certain modifications of the definition of the trump realizability interpre-
tation, in which the class of all partial computable functions is replaced by a broader class,
such as that of all arithmetical functions. In fact, the original formulation allows consider-
able freedom: we do not require T be computable, and our realizations are not augmented
with ‘self-verification procedures’ (as in some advanced realizability intepretations).

• We can also try to expand our framework by adding intuitionistic implication (along with
intuitionistic negation) — and we think that a suitable expansion of the trump realizabil-
ity interpretation can indeed be defined.23 However, in this case we will have to deal with
higher-order functions, while strategies are intended to be first-order, so the tight connec-
tion between GTS and realizability will probably be lost.

All these fall beyond the scope of this paper, and are the subject of future work.

22In fact, they can be viewed as providing an effective version of what is knows as the flatness property, which
states that for every team T in D and every implication-free first-order σ-formula φ with FV (φ) ⊆ dom (T ),

D, T |=+
t φ ⇐⇒ D, s |= φ for each s ∈ T

(cf. [16, Section 3.4]); here ‘flatness’ derives from [8], where a ‘flattening operation’ was defined.
23Actually, a version of intuitionistic implication has been studied in the context of dependence logic (which is

another approach to IF-FOL); cf. [1] and [20].
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