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Abstract. Many important achievements of formal logic have been con-
cerned with the discovery of incomputability — and thus firmly rooted
in the undecidability of the halting problem and its complement. Also,
the latter produce influental examples of Σ0

1- and Π0
1-complete sets, in

modern terminology. Changing the focus from modelling computations
to measuring complexity of theories, the paper describes how to obtain
Σ0

1- and Π0
1-completeness results for a wide range of fragments of theo-

ries in a very uniform way, and the reasoning will employ the following
concepts. Let σ be a first-order signature and V alσ the collection of all
valid σ-sentences. For C ∈

{
Π0

1,Σ
0
1

}
, call a set Γ of σ-sentences heredi-

tarily C-complete iff for any C-set ∆, whenever V alσ ∩Γ ⊆ ∆ ⊆ Γ, then
∆ is C-complete. Both notions are closely connected with that of being
hereditarily undecidable, but unlike their common predecessor, serve the
purpose of getting computational complexity results, via employing the
two most fundamental levels of the arithmetical hierarchy. This paper
presents major tools and main examples in the study of hereditary Π0

1-
and Σ0

1-completeness, with a discussion of various applications.
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1. Introduction and motivation

Many important achievements of formal logic have been concerned with the
discovery of incomputability, and with distinguishing its different kinds, viz.
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what become known as degrees of unsolvability/undecidability (readers may
consult [7, 10], for instance). The traces clearly go back to the halting prob-
lem and its complement which, in turn, give prominent examples of Σ0

1- and
Π0

1-complete sets — and so correspond to the two most understood ‘undeci-
dable’ (associated to incomputable sets) levels of the arithmetical hierarchy.
The paper is devoted to revising the classical technique of elementary defin-
ability — which has played an important part in establishing undecidability
results — for getting computational Π0

1- and Σ0
1-compexity results in a very

uniform way. Here it is helpful to recall some terminology.
Let A and B be subsets of the collection N of all natural numbers. We

say that A is effectively reducible — or many-one reducible — to B iff there
exists a (total) computable function f : N→ N such that for every n ∈ N,

n ∈ A ⇐⇒ f (n) ∈ B.

Further, A and B are effectively equivalent — or many-one equivalent — iff
they are effectively reducible to each other. Now we define:

A is Σ0
1-bounded (a Σ0

1-set) iff A is computably enumerable;

A is Π0
1-bounded (a Π0

1-set) iff A is computably enumerable

where A denotes N \A, viz. the complement in N of A. For C ∈
{

Π0
1,Σ

0
1

}
, a

C-bounded A is called C-complete iff every C-bounded B is effectively redu-
cible to A — in a sense, A shall be ‘the hardest among the C-bounded sets’.
Viewing programs for one-place partial computable functions (say, in terms
of Turing machines) as natural numbers in a reasonable manner, consider

Halt := {n ∈ N | the program coded by n halts on input zero},

i. e., the halting problem. As is well-known, we have:

A is Σ0
1-complete iff A is effectively equivalent to Halt;

A is Π0
1-complete iff A is effectively equivalent to Halt.

As we shall see, such sets arise very naturally in the investigation of undeci-
dable theories — for this purpose, we introduce the notions of being heredi-
tarily Π0

1- and Σ0
1-complete, which are central to our exposition, and can be

viewed as rooted in the standard concept of effective inseparability. Further,
the two are closely related to the familiar notion of being hereditarily unde-
cidable, which can be described in terms of a significantly weaker (but more
popular) concept of computable inseparability. And so switching to effective
inseparability — whose role in elementary theories seems underestimated —
reflects a shift of interest from undecidability to complexity issues.

Some old methods of the area have been modified and adapted to deal
with hereditary Π0

1- and Σ0
1-completeness, and it should be no surprise that

some results may be intuitively ‘expected’ by particular specialists. The aim
is not to derive unexpected new results — but to provide a uniform method
for obtaining (hereditary) Π0

1- and Σ0
1-completeness results, and so fill a gap

between ‘intuitively expected . . . ’ and ‘formally proved’. For practically any
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undecidability proof, the most involved part is to ‘invent’ an effective trans-
lation reducing some known undecidable problem to the one in question. At
the same time, the main advantage of the proposed method is that it incor-
porates the possibility of employing translations from many works on unde-
cidable (fragments of) theories — since the latter often use (variants of) the
technique of elementary definability — and it gives us a way to get new Π0

1-
and Σ0

1-completeness results, and avoid the above-mentioned ‘most involved
part’. Hopefully, the old proofs can start a new life in this context.

Still, the subject is delicate and should be treated formally — thus the
reader may need some time to get used to the machinery we are exploiting,
even when the arguments are more or less straightforward. For instance, the
idea of interpretability of one class in another is quite simple but its formal
analogue — i. e., the notion of elementary definability — is rather technical.
The exposition assumes a familiarity with basic computability-theoretic ap-
paratus (e. g., see [10]); of course, a knowledge of the first-order definability
technique and related issues (cf. [3]) will also be helpful.

The remainder of this paper is organised as follows. Section 2 provides
a review of the formal machinery underlying the approach to hereditary un-
decidability of first-order theories and their prefix fragments via elementary
definability. Section 3 presents major tools and main examples in the study
of hereditary Π0

1- and Σ0
1-completeness, including also many applications to

fragments of first-order theories. We end up with a few words about further
applications to languages other than first-order ones.

2. Preliminaries on elementary definability

Let σ be a (first-order) signature. A piece of notation:

Kσ := the class of all σ-structures;

K◦σ := the class of all finite σ-structures;

|A| := the domain of A ∈ Kσ;

Senσ := the set of all σ-sentences;

V alσ := the set of all valid σ-sentences.

Also, for any n ∈ N and Γ ⊆ Senσ, we write

Σn–Γ := {Φ ∈ Γ | Φ is a Σn-sentence},
and similarly with Πn–Γ. And for ease of reading, we henceforth assume all
signatures to be relational and finite (but note that essentially the same will
hold with ‘decidable’ in place of ‘relational and finite’).

The technique employed deals with prefix fragments, and thus involves
a portion of the terminology appearing in [9] — which is a variation on the
earlier formalisations (cf. [5, 7]), and its traces go back to [13]. By a Σk-σ2-
scheme S in σ1 we mean a list of Σk-σ2-formulas, namely

• ΦU (x, y);
• ΦR (x1, . . . , xn, y), Φ¬R (x1, . . . , xn, y) for each n-ary symbol R in σ1;
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• Φ= (x1, x2, y) when the equality symbol = does not belong to σ1.

Now K1 ⊆ Kσ1
is said to be Σk-elementarily definable with parameters (Σk-

e. d. p. for short) in K2 ⊆ Kσ2
iff some Σk-σ2-scheme S in σ1 fulfills the con-

dition: for any A ∈ K1, there exist B ∈ K2 and a tuple p in |B| such that

1. the set B := {b | b ∈ |B| and B � ΦU (b, p)} is non-empty;
2. for every R ∈ σ1, the n-ary relation

{(b1, . . . , bn) | {b1, . . . , bn} ⊆ B and B � ΦR (b1, . . . , bn, p)}

is the complement in Bn of the n-ary relation

{(b1, . . . , bn) | {b1, . . . , bn} ⊆ B and B � Φ¬R (b1, . . . , bn, p)};

3. the set of pairs E := {(b1, b2) | {b1, b2} ⊆ B and B � Φ= (b1, b2, p)} is a
congruence relation on the σ1-structure B′ with domain B, where each
R ∈ σ1 is interpreted via

B′ � R (b1, . . . , bn, p) ⇐⇒ B � ΦR (b1, . . . , bn, p);

4. the quotient structure B′/E is isomorphic to A.

Whenever y in the scheme is empty — and therefore p becomes empty, too
— we omit the phrase ‘with parameters’. In the present context, ‘elementa-
rily definable (with parameters)’ would stand for ‘Σk-elementarily definable
(with parameters) for some k’. Remark: this description can be easily gene-
ralised to allow for the possibility of viewing elements of A ∈ K1 as l-tuples
of elements of B ∈ K2 (cf. [5, pp. 271–272]) and it will not affect the results
below, but the given version demonstrates the idea a bit more explicitly.

Suppose K1 ⊆ Kσ1 is e. d. p. (or e. d.) in K2 ⊆ Kσ2 . So — making use
of a suitable σ2-scheme S in σ1 — we can construct an effective translation
τ which transforms every σ1-sentence Φ into a σ2-sentence τ (Φ) such that

Φ ∈ V alσ1
=⇒ τ (Φ) ∈ V alσ2

,

Φ ∈ Th (K∗1) ⇐⇒ τ (Φ) ∈ Th (K2)

where K∗1 := {A ∈ Kσ1
| A satisfies Items 1–4 for S, with some B ∈ K2 and

p in |B|} (see [5, pp. 272–273] for details). Thus

τ (V alσ1) ⊆ V alσ2 , K1 ⊆ K∗1, and

τ (Senσ1 \ Th (K1)) ⊆ τ (Senσ1 \ Th (K∗1)) ⊆ Senσ2 \ Th (K2).

Moreover, in case K1 is Σk-e. d. p. in K2, a simple analysis shows — cf. the
proof of [9, Lemma 3.1] — how to choose τ so that for any Φ ∈ Senσ1 and
r ∈ {2, 3, . . . }, we have

Φ ∈ Πr+1–Senσ1
⇐⇒ τ (Φ) ∈ Πr+k–Senσ2

,

whence

τ (Πr+1–V alσ1
) ⊆ Πr+k–V alσ2

,

τ (Senσ1 \Πr+1–Th (K1)) ⊆ Senσ2 \Πr+k–Th (K2).
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Similarly, if K1 ⊆ Kσ1
is Σk-e. d. in K2 ⊆ Kσ2

(without parameters), we get
τ for which

Φ ∈ Σr–Senσ1
⇐⇒ τ (Φ) ∈ Σr+k−1–Senσ2

,

whence

τ (Σr–V alσ1
) ⊆ Σr+k−1–V alσ2

,

τ (Senσ1
\ Σr–Th (K1)) ⊆ Senσ2

\ Σr+k−1–Th (K2).

Further, the technique just described can be readily applied to investi-
gate issues of decidability in first-order logic. Call two disjoint sets A and B
of natural numbers computably inseparable (or c. i. for short) iff there exists
no computable set C satisfying A ⊆ C ⊆ B — e.g., see [10, p. 93]. A well-
known and quite easily verified property is that for each (total) computable
function f : N→ N,

A and B are c. i., C ∩D = ∅,
f (A) ⊆ C and f (B) ⊆ D

}
=⇒ C and D are c. i.

As usual, we identify σ-sentences with natural numbers by means of an ap-
propriate Gödel numbering. Remark that the next notion makes sense both
for theories and their fragments: a set Γ of σ-sentences is said to be heredi-
tarily undecidable (h. u. for short) iff for every ∆,

V alσ ∩ Γ ⊆ ∆ ⊆ Γ =⇒ ∆ is undecidable,

i. e., V alσ ∩ Γ and Senσ \ Γ are computably inseparable. Now the foregoing
observations about τ suggest a uniform way to transfer hereditary undecid-
ability (cf. [9, Lemma 3.1]): for any r ∈ {2, 3, . . . },

K1 is Σk-e. d. p. in K2,
Πr+1–Th (K1) is h. u.

}
=⇒ Πr+k–Th (K2) is h. u.;

K1 is Σk-e. d. in K2,
Σr–Th (K1) is h. u.

}
=⇒ Σr+k−1–Th (K2) is h. u.

Indeed, in the first case, the disjoint sets

V alσ1
∩Πr+1–Th (K1) = Πr+1–V alσ1

and Senσ1
\Πr+1–Th (K1)

are c. i. Hence, taking

f := τ, A := Πr+1–V alσ1
, B := Senσ1

\Πr+1–Th (K1),

C := Πr+k–V alσ2 , D := Senσ2 \Πr+k–Th (K2),

with τ a suitable translation, we conclude that

Πr+k–V alσ2
= V alσ2

∩Πr+k–Th (K2) and Senσ2
\Πr+k–Th (K2)

are c. i., as desired. In the second case, an analogous argument suffices.

Of course, the elementary definability approach has already played an
important role in establishing hereditary undecidability (e. g., see [4, 5, 9]) —
but here what we are concerned with is to characterise Π0

1- and Σ0
1-complete

problems arising in the above framework.
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3. Hereditarily Π0
1- and Σ0

1-complete fragments of theories

The underlying idea for proving hereditary undecidability is to view certain
collections of sentences as computably inseparable sets. Still, to provide Π0

1-
and Σ0

1-complexity results for various theories and their fragments, we shall
employ a significantly stronger notion of being ‘effectively inseparable’.

Let ν : n 7→Wn (with n ranging over N) be the standard numbering of
the family of all Σ0

1-bounded subsets of N — viz. Wn denotes the domain of
the partial computable function æn : ⊆ N → N whose program is coded by
n. Call two disjoint sets A and B of natural numbers effectively inseparable
(e. i. for short) iff there exists a (total) computable function f : N × N → N
such that for any {n, k} ⊂ N,

A ⊆ Wn, B ⊆ Wk, Wn ∩Wk = ∅ =⇒ f (n, k) 6∈ Wn ∪Wk

— e. g., see [1, p. 37]. Actually, this precise description won’t be crucial, but
we do need the five properties:

(i) A and B are e. i. iff B and A are so;
(ii) if A and B are e. i., then A and B are c. i.;

(iii) if A ⊆ C ⊆ B, A and B are disjoint and e. i., then B and C are e. i.;
(iv) if A and B are disjoint and Σ0

1-bounded e. i. sets, then each of them is
Σ0

1-complete;
(v) for every computable function f : N→ N,

A and B are e. i., C ∩D = ∅,
f (A) ⊆ C and f (B) ⊆ D

}
=⇒ C and D are e. i.

Here the items (i–iii) are obvious (by the definition); a proof of (iv) may be
found, say, in [10, §§ 7.7, 11.3]; and (v) is straightforward, given some equi-
valent characterisations of Σ0

1-bounded sets (see [10, §§ 5.1–5.2] for details).
Note: the last property is just like that of computably inseparable sets from
Section 2, though these two, of course, hold for different reasons. And adop-
ting the common practice, given a decidable σ, we identify σ-sentences with
natural numbers, up to an appropriate Gödel numbering.

As a direct consequence of Kalmar–Suranyi result in conjunction with
Gurevich’s theorem — cf. [1, Corollary 3.1.24] and [1, Theorem 2.1.39], re-
spectively — we obtain the following

Basic fact (Kalmar, Suranyi, Gurevich). For σ :=
{
R2

}
, let

Fin-sat := {Φ ∈ Senσ | ¬Φ 6∈ Th (K◦σ)},
Non-sat := {Φ ∈ Senσ | ¬Φ ∈ V alσ}.

Then Π2–Fin-sat and Π2–Non-sat are effectively inseparable.

Now we formally present the pair of central notions. Call a set Γ of σ-
sentences hereditarily Π0

1-complete (h. Π0
1-c. for short) iff for every ∆,

V alσ ∩ Γ ⊆ ∆ ⊆ Γ, ∆ is Π0
1-bounded =⇒ ∆ is Π0

1-complete;

and similarly for Σ0
1 in place of Π0

1. Not very surprisingly, elementary defin-
ability (with parameters) preserves hereditary Π0

1- and Σ0
1-completeness.
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Proposition 3.1. For any r ∈ {2, 3, . . . }, C ∈
{

Π0
1,Σ

0
1

}
, K1 ⊆ Kσ1

and K2

⊆ Kσ2 , we have:

K1 is Σk-e. d. p. in K2,
Πr+1–Th (K1) is h. C-c.

}
=⇒ Πr+k–Th (K2) is h. C-c.;

K1 is Σk-e. d. in K2,
Σr–Th (K1) is h. C-c.

}
=⇒ Σr+k−1–Th (K2) is h. C-c.

Proof. Consider the first implication. Suppose K1 is e. d. p. in K2. Then the
observations provided in Section 2 ensure the existence of an effective trans-
lation τ : Senσ1

→ Senσ2
such that

Φ ∈ Πr+1–V alσ1 =⇒ τ (Φ) ∈ Πr+k–V alσ2 ,

Φ ∈ Πr+1–Th (K∗1) ⇐⇒ τ (Φ) ∈ Πr+k–Th (K2).

Now let ∆ be C-bounded with Πr+k–V alσ2 ⊆ ∆ ⊆ Πr+k–Th (K2). Clearly,
we get

τ−1 (Πr+k–V alσ2
) ⊆ τ−1 (∆) ⊆ τ−1 (Πr+k–Th (K2))

and, in addition,

Πr+1–V alσ1
⊆ τ−1 (Πr+k–V alσ2

),

τ−1 (Πr+k–Th (K2)) = Πr+1–Th (K∗1) ⊆ Πr+1–Th (K1).

Hence
Πr+1–V alσ1

⊆ τ−1 (∆) ⊆ Πr+1–Th (K1)

where τ−1 (∆) turns out to be C-bounded, since the obvious equivalence

Φ ∈ τ−1 (∆) ⇐⇒ τ (Φ) ∈ ∆

shows how to effectively reduce this set to ∆. So τ−1 (∆) is C-complete on
the assumption that Πr+1–Th (K1) is h. C-c. — thus ∆ will be C-hard, and
therefore also C-complete.

The same sort of argument works for the second implication. �

On the other hand, hereditary Π0
1- and Σ0

1-completeness (as well as he-
reditary undecidability or computable inseparability, discussed in Section 2)
arise naturally when analysing effective inseparability.

Proposition 3.2. For every Γ ⊆ Senσ, whenever Senσ \ Γ and V alσ ∩ Γ are
effectively inseparable, we have:

V alσ ∩ Γ is Σ0
1-bounded =⇒ Γ is hereditarily Π0

1-complete;

Γ is Π0
1-bounded =⇒ Γ is hereditarily Σ0

1-complete.

Proof. For the first implication, assume that V alσ ∩ Γ is Σ0
1-bounded. Now

if V alσ ∩ Γ ⊆ ∆ ⊆ Γ and ∆ is Π0
1-bounded, then

Senσ \ Γ ⊆ Senσ \∆ ⊆ Senσ \ (V alσ ∩ Γ),

and hence the Σ0
1-sets V alσ ∩ Γ and Senσ \∆ are effectively inseparable by

the property (iii) of e. i. sets. And by (iv) this implies the Σ0
1-completeness

of Senσ \∆ — i. e., ∆ turns out to be Π0
1-complete.
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For the second implication, assume Γ is Π0
1-bounded. If V alσ ∩ Γ ⊆ ∆

⊆ Γ and ∆ is Σ0
1-bounded, then ∆ separates V alσ ∩ Γ and Senσ \ Γ, and

hence the Σ0
1-sets ∆ and Senσ \ Γ are e. i. by (iii). And by (iv) this implies

the Σ0
1-completeness of ∆. �

Remark that (hereditary) Π0
1-completeness seems slightly more natural

than Σ0
1-completeness, because for all K ⊆ Kσ and n, the set

V alσ ∩ Σn–Th (K) = Σn–V alσ

is contained in V alσ, and so turns out to be Σ0
1-bounded. And, in contrast,

Σn–Th (K) does not necessarily have to be Π0
1-bounded — thus, intuitively,

Σ0
1-completeness is harder to guarantee. However, in many important cases,

K will consist of suitably chosen finite structures and, indeed, the Π0
1-boun-

dedness of its theory can be established. Moreover, as we shall see later, one
may often avoid the requirement ‘Γ is Π0

1-bounded’ in practice.

An example comes from Basic fact, namely

Corollary 3.3. For σ :=
{
R2

}
, the set Σ2–Th (K◦σ) is hereditarily Π0

1-complete

and hereditarily Σ0
1-complete.

Proof. For an obvious translation θ : Φ 7→ ¬Φ (acting on Senσ), we have

θ (Π2–Fin-sat) ⊆ Senσ \ Σ2–Th (K◦σ) and θ (Π2–Non-sat) = Σ2–V alσ,

and hence Senσ \ Σ2–Th (K◦σ) and V alσ ∩ Σ2–Th (K◦σ) = Σ2–V alσ are e. i.
by Basic fact and (v). Since Σ2–Th (K◦σ) is easily shown to be Π0

1-bounded,
it only remains to apply Proposition 3.2. �

And further, by looking at effective inseparability from the perspective
of elementary definability we get an analogue of Proposition 3.1.

Proposition 3.4. For any r ∈ {2, 3, . . . }, K1 ⊆ Kσ1 and K2 ⊆ Kσ2 , we have:

K1 is Σk-e. d. p. in K2, Πr+1–V alσ1 and Senσ1 \Πr+1–Th (K1) are e. i.

=⇒ Πr+k–V alσ2
and Senσ2

\Πr+k–Th (K2) are e. i.;

K1 is Σk-e. d. in K2, Σr–V alσ1 and Senσ1 \ Σr–Th (K1) are e. i.

=⇒ Σr+k−1–V alσ2
and Senσ2

\ Σr+k−1–Th (K2) are e. i.

Proof. For the first implication, assume K1 is e. d. p. in K2. As in Section 2,
there exists a suitable translation τ , and taking

f := τ, A := Πr+1–V alσ1
, B := Senσ1

\Πr+1–Th (K1),

C := Πr+k–V alσ2 , D := Senσ2 \Πr+k–Th (K2),

we conclude that

Πr+k–V alσ2
and Senσ2

\Πr+k–Th (K2)

are e. i. by (v). The second implication is similar. �
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To help us familiarise ourselves with the machinery, we turn to a fairly
simple fact, which shall occasionally be kept in mind. Consider the smallest
binary relation 4 on

L := {Σr,Πr+1 | r = 2, 3, . . . }
with the property that for any {k, l} ⊂ {2, 3, . . . },

k 6 l =⇒ Σk 4 Σl, Σk 4 Πl+1, Πk+1 4 Πl+1, Πk+1 4 Σl+2.

Proposition 3.5 (almost folklore). Let

{C1,C2} ⊂ L, K1 ⊆ Kσ1
and K2 ⊆ Kσ2

be such that

C1 4 C2, σ1 ⊆ σ2 and K1 ⊆ {A | A is the σ1-reduct of some B ∈ K2}.
Suppose C1, σ1 and K1 meet one of the following conditions:

• the sets C1–V alσ1
and Senσ1

\ C1–Th (K1) are e. i.;
• the set C1–Th (K1) is h. u.;
• the set C1–Th (K1) is h. Π0

1-c.;
• the set C1–Th (K1) is h. Σ0

1-c.

Then C2, σ2 and K2 meet the corresponding condition.

Proof. The verification would add nothing new, and is left as an exercise for
the interested reader. Idea: one can easily produce an effective translation τ
which maps Senσ1

into Senσ2
and such that for every Φ ∈ Senσ1

,

Φ and τ (Φ) are logically equivalent (viz. Φ↔ τ (Φ) ∈ V alσ2
),

Φ ∈ C1–Senσ1
⇐⇒ τ (Φ) ∈ C2–Senσ2

,

and hence

τ (C1–V alσ1
) ⊆ C2–V alσ2

,

τ (Senσ1
\ C1–Th (K1)) ⊆ Senσ2

\ C2–Th (K2),

τ−1 (C2–Th (K2)) = C1–Th (K?
1)

where K?
1 := {A | A is the σ1-reduct of some B ∈ K2}; the rest is straight-

forward — cf. Section 2 and the proofs of Propositions 3.1 and 3.4. �

Combining the previous observations with various contributions to he-
reditarily undecidable theories, we can derive a bunch of principal and useful
results about some well-known classes of models. And while the precise des-
criptions of these classes are not essential for the proofs below, one of them
is provided as an example and because it will be mentioned again in Section
4. Remark that a key role in the argument of the next theorem is played by
the translations found by different authors — see [2, 4, 5, 7, 9] — as well
as by Basic fact and the above observations, of course. Accordingly, the old
translations may be employed for obtaining new complexity results.

Let σ? be
{
R2

}
and G the class of all finite σ?-structures satisfying

∀x, y (¬R (x, x) ∧ (R (x, y)→ R (y, x))),
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i. e., the finite undirected irreflexive graphs. Hereafter, where k ∈ {1, 2, . . . }
and K ⊆ Kσ, we write K>k as an abbreviation for

{A ∈ K | the domain |A| contains at least k elements}.

Theorem 3.6. For any i ∈ {1, . . . , 10}, the sets

Ci–V alσi
and Senσi

\ Ci–Th (Ki),

with Ki ⊆ Kσi
, are effectively inseparable, where:

• C1 = Σ2, K1 is the class of all finite undirected irreflexive graphs;
• C2 = Σ3, K2 is the class of all finite models of the theory of two equiva-

lences;
• C3 = Σ2, K3 is the class of all finite lattices (viewed as partial orders);
• C4 = Σ2, K4 is the class of all finite partial orders;
• C5 = Π6, K5 is the class of all free distributive lattices with finitely ma-

ny generators;
• C6 = Σ2, K6 is the class of all finite bipartite graphs;
• C7 ∈ {Σ3,Π3}, K7 is the class of all finite distributive lattices;
• C8 = Π6, K8 is the class of all finite permutation groups;
• C9 = Σ3, K9 is the class of all finite commutative associative rings of

a (fixed) prime characteristic p in which any product of three elements
equals zero — so K9 is in fact one of the countably many classes;

• C10 = Π4, K10 is {Ek | k = 1, 2, . . .} where for each k ∈ {1, 2, . . . }, Ek
denotes the lattice of all equivalence relations on {1, . . . , k}.

Proof. Warning: at the last step of the proof of every item, Proposition 3.4
must be applied.

i = 1 By [9, Theorem 4.2], K◦σ?
is Σ1-e. d. in K

>3
1 and so in K1 = G

(notice: the Σ4-definability was shown earlier by I. A. Lavrov, cf. [4, Theo-
rem 3.3.3]). It remains to observe that

Senσ? \ Σ2–Th
(
K◦σ?

)
and V alσ? ∩ Σ2–Th

(
K◦σ?

)
= Σ2–V alσ?

are e. i. (from Basic fact — recall the proof of Corollary 3.3).

i = 2 As was established in [5, pp. 273–274], G is Σ2-e. d. in K2.

i = 3, 4 In view of [7, Appendix A], G>3 is Σ1-e. d. in K3 (notice: the

Σ2-definability was shown earlier by M. A. Taitslin, cf. [4, Theorem 3.3.4]),
and therefore in K4 ⊇ K3.

i = 5 As was established in [5, pp. 279–281], G is Σ4-e. d. p. in K5.

i = 6 By [9, Corollary 4.5], K◦σ?
is Σ1-e. d. in K∗6, where K∗6 is the

collection of all finite bipartite graphs containing at least three elements in
each of the two parts, and so in K6.

i = 7 For Σ3, one can easily verify that K4 is Σ2-e. d. in K7 (see [9,
Proposition 4.1]). For Π3, by [9, Theorem 4.8], K∗6 is Σ1-e. d. p. in K7.

i = 8 As was established in [5, pp. 283–285], K2 is Σ3-e. d. p. in K8.
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i = 9 By [4, Theorem 3.3.5] (of M. A. Taitslin and Yu. L. Ershov), G
is Σ2-e. d. in K9. Remark that K9 depends on a chosen prime p.

i = 10 By [9, Theorem 4.9], K∗6 is Σ2-e. d. p. in K10 (notice: the de-
finability of K2 in K10 was shown earlier in [2, § 3] but it will not, in effect,
give a smaller prefix class). �

Certainly much more results can be obtained in this way — whenever
an undecidability proof has been provided by means of the elementary defin-
ability technique (cf. bibliography in [4] for examples), tracing backwards to
its root, we usually end up with K◦σ?

.

Corollary 3.7. For any i ∈ {1, . . . , 10} (and any prime p, if i = 9), the set
Ci–Th (Ki) is hereditarily Π0

1-complete and hereditarily Σ0
1-complete.

Proof. Fix i (and p if needed). The set

V alσi
∩ Ci–Th (Ki) = Ci–V alσi

⊂ V alσi

is clearly Σ0
1-bounded. In addition, Ki consists of finite objects with suitable

properties, and we can effectively check whether a finite σi-structure belongs
to Ki; hence Ci–Th (Ki) is Π0

1-bounded. Now the desired conclusion follows
from Proposition 3.2. �

To be more precise, we pass to concrete fragments of interest.

Corollary 3.8. For any i ∈ {1, . . . , 10} (and any prime p, if i = 9), the sets
Ci–Th (Ki) and Ci–Th (K′i) are, respectively, Π0

1-complete and Σ0
1-complete,

where K′i is the non-finite analogue of Ki — i. e., obtained by removing the
words ‘finite’ and ‘with finitely many generators’ in the description of Ki.

Proof. Fix i (and p if needed). As has been already mentioned, Ci–Th (Ki) is
Π0

1-bounded. In view of Corollary 3.7, it remains to observe that since K′i is
computably axiomatisable, Ci–Th (K′i) ⊂ Th (K′i) will be Σ0

1-bounded. �

Also, taking into account what has been said in Section 2, Theorem 3.6
immediately implies the hereditary undecidability of any Ci–Th (Ki) in the
list — and though the cases with i ∈ {1, 6, 7, 10} were previously proved by
A. Nies in [9], and those with i ∈ {3, 4} are due to J. H. Schmerl (see [9,
Theorem 4.3]), this is still new for i ∈ {2, 5, 8, 9} (and all primes p).

Let us finish with a few remarks which are mainly about Σ0
1-complete-

ness. If K ⊆ Kσ and the hereditary undecidability of Th (K) was proved via
elementary definability, one can very often derive that

C–V alσ and Senσ \ C–Th (K)

are e. i. for an appropriate prefix C. But suppose C–Th (K) turns out to be
Σ0

1-bounded — then it, being undecidable, is not Π0
1-bounded. And thus we

cannot get its (hereditary) Σ0
1-completeness from Proposition 3.2. The situ-

ation may be saved by Proposition 3.1, however. The next example emerges
from the proof of [6] (whose concern was the full theory).
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Corollary 3.9. Let K be the class of all projective planes and σ its intended
signature. Then:

• the sets Π4–V alσ and Senσ \Π4–Th (K) are e. i.;
• the set Π4–Th (K) is h. u., h. Π0

1-c. and h. Σ0
1-c.

In particular, Π4–Th (K) is Σ0
1-complete.

Proof. By [6, Theorem 5], G is Σ2-e. d. p. in K, and thus the effective insep-
arability of the two sets follows from Theorem 3.6 and Proposition 3.4.

Clearly, Π4–Th (K) is h. u. (by the property (ii) of e. i. sets). In view of
Proposition 3.2, Π4–Th (K) is h. Π0

1-c. On the other hand, Corollary 3.7 and
Proposition 3.1 imply that it is h. Σ0

1-c. as well.
And finally, since Th (K) is computably axiomatisable (cf. [6, § 5]), the

set Π4–Th (K), being Σ0
1-bounded, is Σ0

1-complete. �

Yet it seems that for a wide range of such situations, we can replace K

by K′ ⊆ K consisting of suitably chosen finite structures, with the theory of
K′ compelled to be Π0

1-bounded — and Proposition 3.2 will then suffice.

In exactly the same way, by applying the above method to the proof of
[8] we obtain a bunch of additional examples. Recall that a cancellative gro-
upoid is a

{
Q3,=2

}
-structure A satisfying the following conditions:

• ∀x∀y ∃uQ (x, y, u) ∧ ∀x∀y ∀u∀v (Q (x, y, u) ∧Q (x, y, v)→ u = v);
• ∀x∀y ∀u∀v (Q (x, u, y) ∧Q (x, v, y)→ u = v);
• ∀x∀y ∀u∀v (Q (u, x, y) ∧Q (v, x, y)→ u = v).

Note: the first item says ‘QA represents a function from |A| × |A| into |A|’.

Corollary 3.10. Let σ :=
{
Q3,=2

}
and σ′ := σ ∪

{
U1

}
. For K ⊆ Kσ, take

K′ := {A ∈ Kσ′ | the σ-reduct of A belongs to K};
T ′ := the set of all σ′-sentences deducible from Th (K).

Suppose that some A ∈ K has a substructure B which is an infinite cancella-
tive groupoid. Then:

• the sets Π3–V alσ′ and Senσ′ \Π3–Th (K′) are e. i.;
• the set Π3–Th (K′) is h. u., h. Π0

1-c. and h. Σ0
1-c.

Consequently, we have:

• the sets Π3–V alσ′ and Senσ′ \Π3–T ′ are e. i.;
• the set Π3–T ′ is h. u., h. Π0

1-c. and h. Σ0
1-c.

And in particular, whenever the theory Th (K) is computably axiomatisable,
Π3–T ′ is Σ0

1-complete.

Proof. By [8], G is Σ1-e. d. p. in K′, and so the effective inseparability of the
two sets follows from Theorem 3.6 and Proposition 3.4.

Clearly, Π3–Th (K′) is h. u. In view of Proposition 3.2, it is h. Π0
1-c. On

the other hand, Corollary 3.7 and Proposition 3.1 imply that Π3–Th (K′) is
also h. Σ0

1-c.
A simple (and standard) argument shows that

T ′ = Th (K?)
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where
K? := {A ∈ Kσ′ | T ′ is true in A}

— because T ′ is a σ′-theory. Since K′ ⊆ K?, we can easily replace K′ by K?

in the previous considerations.
Finally, if Th (K) is computably axiomatisable, then so is T ′, and thus

Π3–T ′, being Σ0
1-bounded, must be Σ0

1-complete. �

Of course, one can immediately get more by expanding prefixes, signa-
tures and classes (remember Proposition 3.5). For instance, if C-Th (K) is a
fragment which we have already shown to be Π0

1- or Σ0
1-complete, then each

element of the family

{C′-Th (K) | C′ ∈ L and C 4 C′} ∪ {Th (K)}
is again Π0

1- or Σ0
1-complete, respectively.

Some further discussion

An issue not touched on here concerns applications to languages other than
first-order ones. It turns out that the machinery developed so far can, in ef-
fect, be used to provide complexity (lower) bounds for decision problems in
quantified probability logics, and in particular, for those dealing with prefix
fragments of the logic from [11] or its finite-model version — improving the
classification in terms of (un)decidability from [12]. But for various reasons,
we should leave the formal details for a different paper. And certainly more
applications ought to be expected — simply because interpreting classes like
G is a common tool for proving undecidability results in logic.
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