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Abstract

The paper contains a survey on the complexity of various truth hierarchies arising
in Kripke’s theory. I present some new arguments, and use them to obtain a number of
interesting generalisations of known results. These arguments are both relatively sim-
ple, involving only the basic machinery of constructive ordinals, and very general.

1 Introduction

In formal theories of truth the first-order language L of Peano arithmetic and its expansion
LT obtained by adding an extra unary predicate symbol T are usually considered. Intuiti-
vely, here T stands for a truth predicate, which — if we assume an untyped glut-free setting
— is somehow doomed to be partial and at least three-valued. In particular, this applies to
Kripke’s approach [8] and subsequent modifications of it (like [6]). In effect, there are also
situations where it is convenient to think of T as a free set variable, thus treating LT as a
fragment of monadic second-order arithmetic.

In [8], Kripke used partial valuation schemes and their jump operators to define various
transfinite hierarchies converging to admissible interpretations of T . Since then a number of
interesting results on the complexity of such constructions have been obtained. Burgess [1]
showed that the least fixed points of the jump operators based on the strong Kleene sche-
me and certain supervaluation schemes are Π1

1-complete. Further, by a somewhat different
argument, Welch [20] proved the same for Leitgeb’s groundedness operator and the associ-
ated truth operator (which may be represented in Kripke’s framework, cf. [17, Section 5]),
along with the Π1

1-hardness of all non-trivial levels of the corresponding hierarchies.1 I refer
readers to [3] for discussion and applications to axiomatisability. However, the weak Kleene
scheme does not necessarily produce a Π1

1-hard interpretation of T — it depends heavily on
the choice of Gödel numbering, as was demonstrated by Cain and Damnjanovic [2].

I shall present some new arguments, and use them to get a number of interesting gene-
ralisations of known results. These arguments will turn out to be relatively simple, involv-
ing only the basic machinery of constructive ordinals, and surprisingly general.

1Earlier Welch mistakenly claimed the ∆1
1-boundedness of these levels (see [9, Subsection 5.5]), but this

situation was corrected by the appearance of [20].
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Section 2 consists of preliminary material on Kripke’s theory of truth, monadic second-
order arithmetic and Kleene’s system of notation for constructive ordinals. Section 3 splits
into three subsections. We now say a bit more about them.

Subsection 3.1 gives an easy application of effective transfinite recursion. It shows how,
for every reasonable valuation scheme V , one can directly obtain complexity upper bounds
for all ‘constructive’ levels of the truth hierarchy for V , in a uniform manner.

Intuitively, we build up an admissible interpretation of T in stages, so that

0 = 0 is true at stage 0 but not at stage 1,

T (p0 = 0q) is true at stage 1 but not at stage 2,

T (pT (p0 = 0q)q) is true at stage 2 but not at stage 3,

...

— thus the closure ordinal of the corresponding jump operator is at least ω. In Subsection
3.2, I describe how to extend this to all constructive ordinals in a uniform effective way. It
follows that each ‘well-behaved’ truth hierarchy requires (at least) ωCK

1 stages to settle the
truth of LT -sentences, and we need a path with limit ωCK

1 to reach the least fixed point —
but a typical such path is not weaker than Π1

1; moreover one easily proves the Π1
1-hardness

of the resulting interpretations of T as a corollary.2 In particular, focusing on some impor-
tant issues raised in [2], I analyse the case of the weak Kleene scheme.3

Subsection 3.3 presents very simple proofs for the results of [20] — including the obser-
vation (made by Hjorth and Meadows) about supervaluation schemes. Like Burgess [1] and
Welch [20], although in a much more direct manner, I’ll exploit suitable definable portions
of T to interpret free unary predicates. We shall finish with a discussion of possible gener-
alisations to reasonable fragments of LT .

In a nutshell, the arguments presented below clarify the structure of various truth hier-
archies, offering new insights into the complexity aspects of Kripke’s approach. Let us now
elaborate on how the ideas involved contribute to a better understanding of the matter.

A. For any valuation scheme V , if the truth hierarchy for V (which we denote by TV ) is
‘well-behaved’, then the argument of Subsection 3.2 establishes the following:

I. the least fixed point of the jump operator for V is Π1
1-hard;

II. the closure ordinal of the jump operator for V is at least ωCK
1 .4

Besides its simplicity and generality, this argument has the advantage that we do not
need to examine (I) and (II) separately because the same construction directly yields
both. So it makes explicit the connection between the two.

B. Recall, Cain and Damnjanovic showed in [2] that

2Among other things, this explains the fact that although all ‘constructive’ levels of the truth hierarchy
for the strong Kleene scheme are uniformly ∆1

1-bounded, their supremum is known to be Π1
1-complete.

3In [12], Meadows employed infinitary tableau systems and well-founded recursive trees (constructed by
means of the diagonal lemma) to get the closure ordinals and the Π1

1-completeness theorems for the strong
Kleene scheme and two supervaluation schemes. His approach is less general and actually more demanding
than that of Subsection 3.2, despite some ‘structural similarity’ between them; for instance, it relies on the
existence of appropriate tableaus and sheds no light on the problems discussed in [2].

4Note in passing that the least fixed point in (I) coincides with the union of TV and the closure ordinal
in (II) is the stage at which TV collapses.
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(I) and (II) for the weak Kleene scheme depend on
the Gödel numbering and the language for N we choose.

The argument of Subsection 3.2 also leads to a deeper understanding of this interest-
ing source of intensionality, which has not been carefully studied after [2], and how it
can be avoided. For instance it will turn out that the problem disappears if we add a
symbol for the proper subtraction to the signature of Peano arithmetic. Furthermore
we shall see that some natural modifications of the weak Kleene semantics (including
the scheme employed by Feferman in [5]) do not suffer from this kind of dependence.

C. Recall that the results of [20] show the Π1
1-hardness of all non-trivial levels of Leitgeb’s

truth and groundedness hierarchies; and the same applies to the truth hierarchies for
supervaluation schemes (as observed by Hjorth and Meadows). In Subsection 3.3, I’ll
provide a simpler and somewhat more direct argument for this, where neither Kleene
normal form nor any coding of sequences is exploited. Then, we shall come across an
intensionality phenomenon, which looks a bit like that of (B): given a relatively weak
fragment F of LT , whether or not an analogous argument works for the relevant hie-
rarchies restricted to F depends on the choice of Gödel numbering.

Remark: Subsection 3.2 suggests a number of formalisations of the informal notion of well-
behaved, used in (A) and implicitly in (B).

2 Preliminaries

2.1 Kripke’s theory of truth

Consider the signature of Peano arithmetic and its expansion obtained by adding an extra
unary predicate symbol T , viz.

σ := {0, s,+,×,=} and σT := σ ∪ {T}.

Throughout this text the following assumptions are in force:

• the connective symbols are ¬, ∧ and ∨;

• the quantifier symbols are ∀ and ∃.

We abbreviate ¬ϕ ∨ ψ to ϕ→ ψ, (ϕ→ ψ) ∧ (ψ → ϕ) to ϕ↔ ψ, etc. Let L and LT be the
first-order languages of σ and σT respectively. Here is some related notation:

For := the collection of all L-formulas;

Sen := the collection of all L-sentences;

ForT := the collection of all LT -formulas;

SenT := the collection of all LT -sentences.

For Kripke’s semantic approach the symbols of σ have their usual meaning, as in the stan-
dard model N of Peano arithmetic. Then if A ⊆ N, we write 〈N, A〉 for the expansion of N
to σT in which T is interpreted as the characteristic function of A.

For each n ∈ N we have a closed L-term n, called the numeral for it:

0 := 0, 1 := s (0), 2 := s (s (0)), . . .
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Assume some Gödel numbering of LT has been chosen. Given ϕ ∈ ForT , define

#ϕ := the Gödel code of ϕ and pϕq := the numeral for #ϕ.

For instance, by diagonalisation one can obtain a liar sentence λ in the language LT , such
that λ↔ ¬T (pλq) is provable in Peano arithmetic (see e.g. [4] for details). In this context
A ⊆ N is said to be consistent iff there exists no φ ∈ SenT for which {#φ,#¬φ} ⊆ A. We
shall sometimes identify LT -formulas with their codes without danger of confusion.

In [8], Kripke employed partial interpretations of T , i.e. pairs of the form S = 〈S+, S−〉
where S+ and S− are disjoint subsets of N — respectively called the extension of S and
the anti-extension of S.5 A partial valuation for σT (or LT ) is a mapping from SenT to a
superset of

{
0, 1

2 , 1
}

.
By a valuation scheme we mean a function from partial interpretations to partial valu-

ations. To begin with, let 6SK and 6WK be the orderings given by

0 6SK
1
2 6SK 1 and 1

2 6WK 0 6WK 1.

Define the strong Kleene valuation scheme VSK by induction as follows:

• for any closed L-terms t1 and t2,

VSK (S) (t1 = t2) :=

{
1 if N |= t1 = t2,

0 if N |= t1 6= t2;

• for every closed L-term t,

VSK (S) (T (t)) :=


1 if 〈N, S+〉 |= T (t),

0 if 〈N, S− ∪ (N \#SenT )〉 |= T (t),
1
2 otherwise;

• VSK (S) (¬ϕ) := 1− VSK (S) (ϕ);

• VSK (S) (ϕ ∧ φ) := min6SK {VSK (S) (ϕ), VSK (S) (φ)};

• VSK (S) (ϕ ∨ φ) := VSK (S) (¬ (¬ϕ ∧ ¬φ));

• VSK (S) (∀xϕ (x)) := min6SK
{VSK (S) (ϕ (t)) | t is a closed L-term};

• VSK (S) (∃xϕ (x)) := VSK (S) (¬∀x¬ϕ (x)).

To get the weak Kleene valuation scheme VWK, replace 6SK by 6WK. Next we turn to the
so-called supervaluation schemes, each of which has the form

V (S) (ϕ) :=


1 if for all A ⊆ N satisfying [*], 〈N, A〉 |= ϕ,

0 if for all A ⊆ N satisfying [*], 〈N, A〉 |= ¬ϕ,
1
2 otherwise.

5Henceforth we shall limit ourselves to partial interpretations of T with consistent extensions. For tech-
nical reasons, it may also be convenient to assume the falsity of T (n) for every n ∈ N \#SenT (i.e. add to
the anti-extension of a given interpretation all natural numbers which are not codes of LT -sentences).
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The best known such schemes are VSV, VVB, VFV and VMC, given by:

V = VSV ⇐⇒ [*] = ‘S+ ⊆ A’;

V = VVB ⇐⇒ [*] = ‘S+ ⊆ A and A ∩ S− = ∅’;

V = VFV ⇐⇒ [*] = ‘S+ ⊆ A and A is consistent’;

V = VMC ⇐⇒ [*] = ‘S+ ⊆ A and A is consistent and complete’.

Here ‘complete’ means that for each φ ∈ SenT we have #φ ∈ A or #¬φ ∈ A.
The last scheme emerges from [9], and although Leitgeb did not state explicitly the de-

finition presented below, one can easily extract it from his article (see [17, Section 5]). Say
that ϕ ∈ SenT depends on A ⊆ N iff for any B,C ⊆ N,

A ∩B = A ∩ C =⇒ ( 〈N, B〉 |= ϕ ⇐⇒ 〈N, C〉 |= ϕ )

— or equivalently, as was observed in [9], iff for every B ⊆ N,

〈N, B〉 |= ϕ ⇐⇒ 〈N, B ∩A〉 |= ϕ.

Remark: naturally the dependence relation induces a monotone operator on P (N), namely
the function D that maps each A ⊆ N to # {ϕ ∈ SenT | ϕ depends on A}. Define Leitgeb’s
valuation scheme VL by

VL (S) (ϕ) :=


1 if ϕ depends on S+ ∪ S− and 〈N, S+〉 |= ϕ,

0 if ϕ depends on S+ ∪ S− and 〈N, S+〉 |= ¬ϕ,
1
2 otherwise.

(Cf. [13] for an interesting connection with VFV.)
Before bringing hierarchies into the picture, let

Ord := the class of all ordinals,

L-Ord := the class of all limit ordinals,

C-Ord := the class of all constructive ordinals,

ωCK
1 := the least element of Ord \ C-Ord.

Every valuation scheme V induces a function JV from partial interpretations to partial in-
terpretations, called the Kripke-jump operator for V , as follows:

JV (S)
+

:= {#ϕ | ϕ ∈ SenT and V (S) (ϕ) = 1},
JV (S)

−
:= {#ϕ | ϕ ∈ SenT and V (S) (ϕ) = 0} ∪ {n ∈ N | n 6∈ #SenT }.

In turn, JV generates a transfinite sequence indexed by ordinals:

J αV (S) :=


S if α = 0,

JV
(
J βV (S)

)
if α = β + 1,

〈
⋃
β<α J

β
V (S)

+
,
⋃
β<α J

β
V (S)

−
〉 if α ∈ L-Ord.

We often write TαV instead of J αV (∅,∅)
+

— these sets, or rather predicates, constitute the
truth hierarchy for V .
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Furthermore, Kripke’s article deals with monotone schemes, i.e. those which satisfy the
condition that for any partial interpretations S1 and S2,

S+
1 ⊆ S

+
2 & S−1 ⊆ S

−
2 =⇒ JV (S1)

+ ⊆ JV (S2)
+

& JV (S)
− ⊆ JV (S)

−
.

For each such V we obtain the least — with respect to the product ordering, as you would
expect — fixed point of JV , by a version of the well-known Knaster–Tarski theorem:

Observation 2.1 (S. Kripke). For any monotone valuation scheme V there exists an ord-
inal α with J αV (∅,∅) = J α+1

V (∅,∅), yielding the least fixed point of JV .

It is easy to verify that each V ∈ {VSK, VWK, VSV, VVB, VFV, VMC, VL} is monotone and,
moreover, has the following properties:6

• if JV (S) = S, then V (S) (T (pϕq)) = V (S) (ϕ);

• #ϕ ∈ J αV (S)
−

iff #¬ϕ ∈ J αV (S)
+

, and #ϕ ∈ J αV (S)
+

iff #¬ϕ ∈ J αV (S)
−

— in this

way J αV (S)
−

can be recovered from J αV (S)
+

, and vice versa;

• JV turns out to be a ‘Π1
1-operator’ — so by a well-know theorem of Spector (consult

[14] for details), J αV (∅,∅) = J α+1
V (∅,∅) already for some α 6 ωCK

1 , and so we may
limit ourselves to constructive ordinals, plus their supremum.

The first two properties are straightforward. The third is a bit more complicated, because
it assumes a knowledge of the basic techniques from monadic second-order arithmetic, and
in fact the Kripke-jump operators for the Kleene valuation schemes are even ∆1

1 (compare
the proof of Corollary 3.2 below). Cf. [8] for a discussion.

Notice also that certain results on the complexity of the corresponding truth hierarchies
quickly imply certain non-axiomatisability results; e.g., if TαV is Π1

1-hard, then there exists
no computably enumerable set A of L-sentences such that for any partial interpretation S,

〈N, S+〉 |= A ⇐⇒ S+ = TαV

— see [3] for a proof of this simple fact and its applications.
Finally, in [9], Leitgeb introduced the groundedness hieararchy Gα along with the asso-

ciated truth hierarchy Θα. However, as was observed in [17, Section 5],

Θα = J αVL
(∅,∅)

+
and Gα = J αVL

(∅,∅)
+ ∪ J αVL

(∅,∅)
−
.

I shall pay specific attention to both of these in Subsection 3.3.

2.2 Monadic second-order arithmetic

Recall that in monadic second-order arithmetic we have

i. individual variables x, y, z, . . . (intended to range over N) and

ii. set variables X,Y, Z, . . . (intended to range over P (N)).

6We use S, α and ϕ to stand for partial valuations, ordinals and LT -sentences respectively.
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Accordingly we distinguish between individual and set quantifiers:

∀x,∃x, ∀y,∃y,∀z,∃z, . . . and ∀X, ∃X, ∀Y , ∃Y , ∀Z,∃Z, . . .

L2-formulas are built up from L-formulas and expressions of the form t ∈ X, where t is an
L-term (in the first-order setting) and X is a set variable, using logical connective symbols
and quantifiers in the customary way. An L2-formula is in Π1

n (Σ1
n) iff it has the form

∀X1 ∃X2 ∀X3 . . . Xn︸ ︷︷ ︸
n−1 alternations

Ψ (respectively ∃X1 ∀X2 ∃X3 . . . Xn︸ ︷︷ ︸
n−1 alternations

Ψ)

with X1, . . . , Xn set variables and Ψ containing no set quantifiers.
Let A ⊆ N and B ⊆ N. We say A is computably reducible to B iff there exists a compu-

table function f : N→ N such that A = f−1 (B), i.e.

A = {k ∈ N | f (k) ∈ B}.

We call A and B computably equivalent iff they are computably reducible to each other. A
is said to be Π1

n-bounded iff there exists a Π1
n-formula Φ (x) in L2 such that

A = {k ∈ N | N |= Φ (k)}.

A is called Π1
n-hard iff any Π1

n-bounded set is computably reducible to it. Finally A is Π1
n-

complete iff it is both Π1
n-bounded and Π1

n-hard. Similarly for Σ1
n. Let

∆ :=
{

Π1
n+1,Σ

1
n+1 | n ∈ N

}
.

We shall be mainly concerned with the complexity classes corresponding to the elements of
∆. In other words, we focus on second-order, excluding the case of Π1

0 = Σ1
0.

Folklore 2.2 (cf. [15, § 16.1]). For every δ ∈ ∆ the following hold:

• if A is computably reducible to B and B is δ-bounded, then A is δ-bounded;

• if A is computably reducible to B and A is δ-hard, then B is δ-hard;

• the set of (codes of) δ-sentences true in N is δ-complete.

In addition, ∆1
n-bounded sets (of natural numbers) are characterised as those which are

both Π1
n-bounded and Σ1

n-bounded. But here no ‘∆1
n-complete set’ exists.

By an L2-formula positive in X we mean an L2-formula in which no free occurrence of
X is in the scope of ¬ (remember that we treat → as defined, not as primitive). Given an
L2-formula Φ (x,X) positive in X and a set A of natural numbers, let

ΓΦ (A) := {n ∈ N | N |= Φ (n,A)};

in this way Φ induces a monotone operator on P (N), namely ΓΦ. Further — starting with
some A ⊆ N, we inductively define

Rα (Φ, A) :=


A if α = 0,

ΓΦ

(
Rβ (Φ, A)

)
if α = β + 1,⋃

β<α Rβ (Φ, A) if α ∈ L-Ord.

Such operators and hierarchies play a central role throughout the paper (the reader should
bear in mind that, using coding techniques, each QiXi with Qi ∈ {∀,∃} in the definition of
Π1
n/Σ1

n-L2-formulas can be replaced by QiX
1
i . . .QiX

ni
i , and vice versa).
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2.3 Kleene’s O
Kleene’s system of notation for C-Ord (see e.g. [15, 16]) consists of:

• a special partial function νO from N onto C-Ord, with domain dom (νO);

• a special ordering relation <O on dom (νO), which mimics < on C-Ord.

Call n ∈ N a notation for α ∈ C-Ord iff νO (n) = α. Fixing one’s favourite universal partial
computable (two-place) function æ, νO and <O are defined simultaneously by induction:

• The ordinal 0 receives the only notation, namely 1. Thus ν−1
O (0) = {1}.

• Suppose all ordinals below α have received their notations. And assume that <O has
been defined on these notations.

– If α = β + 1, then α receives the notations
{

2k | k ∈ ν−1
O (β)

}
. Further, for each

k ∈ ν−1
O (β) we set i <O 2k if i = k or i <O k.

– If α ∈ L-Ord, then α receives the notation 3× 5k for every k such that

æk (0) <O æk (1) <O æk (2) <O . . . and
⋃

i∈N
νO (æk (i)) = α

(so in particular, æk must be total and all æk (i) must belong to
⋃
β<α ν

−1
O (β)).

Further, for each such k we set i <O 3× 5k if i <O æk (j) for some j.

For convenience we often write n ∈ O instead of n ∈ dom (νO).

As a classical application of Kleene’s fixed-point theorem we obtain

Folklore 2.3 (cf. [16, Theorems 2.2(ii) and 3.2]). Suppose f : N→ N is a computable func-
tion with the property that for any e ∈ N and n ∈ O,

æe (k) is defined for all k <O n =⇒ æf(e) (n) is defined.

Then there exists a c ∈ N such that æc = æf(c) and æc (n) is defined for every n ∈ O.

The restriction of <O to {k | k <O n} is computably enumerable uniformly in n:

Folklore 2.4 (cf. [16, Theorem 3.5(i)]). There exists a computable function f : N→ N with
the property that for each n ∈ O, {k | k <O n} = dom

(
æf(n)

)
.

Consequently one can find an L-formula η< (x, y) such that for all n ∈ O and k ∈ N,

k <O n ⇐⇒ N |= η< (k, n).

In Subsection 3.2 we shall exploit η< in encoding Kleene’s O into least fixed-points.

Another basic fact about νO concerns the complexity of the path leading to ωCK
1 .

Folklore 2.5 (cf. [16, Theorems 2.2(i) and 5.4]). dom (νO) is Π1
1-complete.

Readers who want to know more about constructive ordinals and their notations might
consult [15] or [16]. However, for our purposes the above three results will suffice.
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3 Computational aspects

3.1 Upper bounds

Throughout this subsection δ, δ′, etc. stand for elements of ∆, and we also assume that all
formulas are in L2, unless otherwise indicated.

Evidently positive Π1
1- and Σ1

1-operators — recall that for ∆1
1 we need both — play an

important role in Kripke’s theory of truth. Given δ ∈ ∆, take

δΠ :=

{
Π1
n if δ = Π1

n,

Π1
n+1 if δ = Σ1

n

and δΣ :=

{
Σ1
n if δ = Σ1

n,

Σ1
n+1 if δ = Π1

n.

It is now easy to see how these arise in the hierarchies starting with δ-sets.

Proposition 3.1. For any Π1
1-formula Φ (x,X) positive in X and any δ-set A, there exists

a computable function f such that for every n ∈ O,

f (n) is a δΠ-formula defining RνO(n) (Φ, A) in N.

Similarly for Σ1
1 and δΣ.

Proof. We shall only consider the case of Π1
1 and δΠ. An analogous argument will work for

Σ1
1 and δΣ. Notice that each δ-formula can be turned into a logically equivalent δΠ-formula

or δΣ-formula by adding ‘dummy’ quantifiers. Let χ0 be a δΠ-formula defining A in N.
Since X occurs only positively in Φ and the δΠ-sets are closed under effectively enume-

rable unions, we obtain computable functions s and u such that:

• for each formula χ, if χ is a δΠ-formula defining a subset B of N in N, then s (χ) is a
δΠ-formula defining ΓΦ (B) in N;

• for each natural number n, if æn (0), æn (1), . . . are δΠ-formulas defining subsets B0,
B1, . . . of N in N, then u (n) is a δΠ-formula defining

⋃
i∈NBi in N.

Moreover, from the s-m-n theorem we get an injective computable h : N× N→ N with the
property that æh(e,k) (n) = æe (æk (n)) for every {e, k, n} ⊆ N.

Take g to be a computable function satisfying for all {e, n} ⊆ N,

æg(e) (n) =


χ0 if n = 1,

s (æe (k)) if n = 2k 6= 1,

u (h (e, k)) if n = 3× 5k,

x 6= x otherwise.

By Folklore 2.3 there exists c for which æg(c) = æc. Thus f := æc does the job.7

Of course we can identify partial interpretations of T with sets of natural numbers, e.g.
by redefining S = 〈S+, S−〉 as S? = {2× 3n | n ∈ S+} ∪ {3n | n ∈ S−}. So in particular:

7The function æc turns out to be total. For otherwise let n be the least element of N \ dom (æc). Then,
by the construction of g, we conclude that n must be of the form 2k with k 6= 0. Hence æc (k) is undefined
for k = log2 n < n, contradicting the choice of n. This situation is quite typical.
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Corollary 3.2. Let V be a valuation scheme. Then:

V ∈ {VSK, VWK} =⇒ T
νO(n)
V is ∆1

1-bounded uniformly in n ∈ O;

V ∈ {VSV, VVB, VFV, VMC} =⇒ T
νO(n)
V is Π1

1-bounded uniformly in n ∈ O.

Furthermore, GνO(n) and ΘνO(n) are Π1
1-bounded uniformly in n ∈ O.

Proof. It suffices to show that for every scheme V in our list, the function that maps each
S? to JV (S)

?
is induced by a cleverly chosen L2-formula Φ (x,X) positive in X, in which

case Proposition 3.1 applies.
1 Suppose V ∈ {VSK, VWK}. It is straightforward to obtain an arithmetical predicate

C and a ∆1
1-predicate E such that for any {i, n} ∪X ⊆ N:

C (X) ⇐⇒ X = S? for some partial interpretation S of T ;

E (i, n,X) ⇐⇒ C (X) and 2i × 3n ∈ JV (S)
?

where S is the unique

partial interpretation of T satisfying X = S?.8

Since V is monotone, we have:

E (i, n, S?) ⇐⇒ N |= ∀X ((S? ⊆ X ∧ C (X))→ E (i, n,X))

⇐⇒ N |= ∀X (∃x (x ∈ S? ∧ x 6∈ X) ∨ ¬C (X) ∨ E (i, n,X));

E (i, n, S?) ⇐⇒ N |= ∃X (X ⊆ S? ∧ E (i, n,X))

⇐⇒ N |= ∃X (∀x (x 6∈ X ∨ x ∈ S?) ∧ E (i, n,X)).

Hence E can be expressed by a Π1
1/Σ1

1-formula positive in S?. The rest is easy.

2 Assume V ∈ {VSV, VFV, VMC}. Notice that the predicates

R := {〈#ψ,X〉 | ψ ∈ SenT , X ⊆ N and 〈N, X〉 |= ψ} and

U := {〈1,#ψ,X〉 | 〈#ψ,X〉 ∈ R} ∪ {〈0,#ψ,X〉 | 〈#¬ψ,X〉 ∈ R}

are ∆1
1. Moreover, for a suitable arithmetical formula Ψ (X) the following holds:

2i × 3n ∈ JV (S)
? ⇐⇒ N |= ∀X

((
S+ ⊆ X ∧Ψ (X)

)
→ U (i, n,X)

)
⇐⇒ N |= ∀X

(
∃x
(
x ∈ S+ ∧ x 6∈ X

)
∨ ¬Ψ (X) ∨ U (i, n,X)

)
.

So we get a Π1
1-formula positive in S?, as desired.

The argument for V = VVB is the same as for the other supervaluation schemes, except
that we use ‘Ψ (X) ∧X ∩ S− = ∅’ instead of ‘Ψ (X)’. It works because the negation of the
new expression is logically equivalent to

¬Ψ (X) ∧ ∃x
(
x ∈ X ∧ x ∈ S−

)
,

and this again leads us to a Π1
1-formula positive in S?.

3 Now let V = VL. First observe that for every ψ ∈ SenT ,

#ψ ∈ D (X) ⇐⇒ N |= ∀Y ∀Z (Z ⊆ N \X → (R (#ψ, Y \ Z)↔ R (#ψ, Y )))

⇐⇒ N |= ∀Y ∀Z (∃x (x ∈ X ∧ x ∈ Z) ∨ (R (#ψ, Y \ Z)↔ R (#ψ, Y ))).

8Obviously there can be at most one interpretation S for which S? = X.

10



Thus Leitgeb’s dependence operator can be expressed by a Π1
1-formula Φ (x,X) positive in

X. As for the hierarchy of TαV ’s, since V is monotone, we have

2i × 3n ∈ JV (S)
? ⇐⇒ U

(
i, n, S+

)
and n ∈ D

(
S+ ∪ S−

)
⇐⇒ N |= ∀X

(
S+ ⊆ X → U (i, n,X)

)
∧ Φ

(
n, S+ ∪ S−

)
⇐⇒ N |= ∀X

(
∃x
(
x ∈ S+ ∧ x 6∈ X

)
∨ U (i, n,X)

)
∧ Φ

(
n, S+ ∪ S−

)
,

which clearly reduces to a Π1
1-formula positive in S?.

An interesting thing happens when we turn to the first non-constructive ordinal.

Corollary 3.3. For any V ∈ {VSK, VWK, VSV, VVB, VFV, VMC}, T
ωCK

1

V is Π1
1-bounded.

Proof. Remember that dom (νO) is a Π1
1-set, by Folklore 2.5. Certainly

n ∈ T
ωCK

1

V ⇐⇒ there exists k ∈ dom (νO) such that n ∈ T
νO(k)
V .

So using Corollary 3.2, one can write down a Π1
1-formula defining T

ωCK
1

V in N.

Finally consider the case of VL. For notational ease let

Θ := ΘωCK
1

and G := GωCK
1
.

Now we quickly deduce the analogous result for these sets.

Corollary 3.4. Θ and G are Π1
1-bounded.

Proof. The argument for Θ is the same as in the previous proof, using VL for V . Take

Θ′ := # {ψ ∈ SenT | #¬ψ ∈ Θ}.

Obviously Θ′, being computably reducible to Θ, is Π1
1-bounded as well. We also know that

G = Θ ∪Θ′. Thus the Π1
1-boundedness of G follows.

The reader may ask whether Π1
1 is an accurate bound for the Kleene valuation schemes

(since all the lower levels are only ∆1
1). Yes, and roughly speaking, the main reason is that

‘copies of dom (νO)’ cannot be avoided, as we shall see in the next subsection.

3.2 About least fixed-points

Given a valuation scheme V , by the rank of an LT -sentence ψ, denoted by rankV (ψ), we
mean the least ordinal α such that ψ ∈ Tα+1

V . Call V ordinary iff for any α ∈ Ord, χ ∈ Sen,
ψ ∈ SenT and ϕ (x) ∈ ForT the following conditions hold:

1. TαV ⊆ Tα+1
V ;

2. χ ∈ TαV iff α 6= 0 and N |= χ;

3. ψ ∈ TαV iff T (pψq) ∈ Tα+1
V ;

4. ∀xϕ (x) ∈ Tα+1
V iff {ϕ (n) | n ∈ N} ⊆ Tα+1

V ;

5. χ ∧ ψ ∈ TαV iff N |= χ and ϕ ∈ TαV ;

11



6. if χ ∨ ψ ∈ TαV and N |= ¬χ, then ψ ∈ TαV ;

7. if N |= χ and α 6= 0, then χ ∨ ψ ∈ TαV .

Notice that (7) fails for the weak Kleene scheme. However, all the other valuation schemes
considered above are ordinary, as one readily checks.

Proposition 3.5. Let V be a valuation scheme satisfying (3–4). Then for each LT -sentence
ψ and each LT -formula ϕ (x) we have

rankV (T (pψq)) = rankV (ψ) + 1 and

rankV (∀xϕ (x)) = sup {rankV (ϕ (n)) | n ∈ N}.

Proof. Certainly rankV (T (pψq)) cannot be 0 — because T0
V = ∅. Moreover, since TαV =⋃

β<α TβV for all α ∈ L-Ord, it cannot be a limit ordinal, too — for otherwise

rankV (T (pψq)) = α =⇒ ψ ∈ TαV =⇒ ψ ∈ TβV for some β < α

=⇒ T (pψq) ∈ Tβ+1
V =⇒ rankV (T (pψq)) 6 β < α.

The rest is straightforward.

Henceforth we shall make use of this simple fact without explicit mention.9

Proposition 3.6. For any ordinary valuation scheme V there exists a computable function
ρV such that for every n ∈ O, rankV (ρV (n)) = νO (n) + 1.

Proof. Clearly we can find an L-formula ϑ (x, y, z) defining the relation ‘æx (y) = z’ — viz.
the set {(k, i, j) ∈ N× N× N | æk (i) = j} — in N. Given k ∈ N, let

χk := ∀x∀y ∃u∃v (¬x < y ∨ (ϑ (k, x, u) ∧ ϑ (k, y, v) ∧ η< (u, v)))

(with η< as in Subsection 2.3). There are two observations to be made concerning χk:

i. N |= χk implies N |= ∀x∃uϑ (k, x, u), i.e. that æk is total;

ii. N |= χk and æk (N) ⊆ O jointly imply 3× 5k ∈ O, and conversely.10

Next we obtain computable functions s and u such that:

a. s maps each ψ ∈ SenT to T (pψq);

b. u maps each n ∈ N to T (p∀x∀y (¬ϑ (n, x, y) ∨ T (y))q).

Finally let h be as in the proof of Proposition 3.1.

Now take g to be a computable function satisfying for all {e, n} ⊆ N,

æg(e) (n) =


T (p0 = 0q) if n = 1,

s (æe (k)) if n = 2k 6= 1,

χk ∧ u (h (e, k)) if n = 3× 5k,

0 6= 0 otherwise.

By Folklore 2.3 there exists c for which æg(c) = æc; thus it remains to check that ρV := æc
does the job. By induction on α ∈ C-Ord. Consider an arbitrary n ∈ ν−1

O (α).

9Of course, functions like rankV commonly occur in the theory of positive inductive definitions (cf. [14,
Section 2B]) and its applications (for a recent example see [12], where a notion of rank for infinite tableaus
is exploited). They behave similarly, although most of them look more complicated than rankV .

10Remember, by definition 3× 5k ∈ O iff æk (0) <O æk (1) <O æk (2) <O . . .
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• Suppose n = 1, so ρV (n) = T (p0 = 0q). Then rankV (ρV (n)) = 1, as desired.

• Suppose n = 2k 6= 1, so ρV (n) = T (pρV (k)q). Then

rankV (ρV (n)) = rankV (ρV (k)) + 1 = νO (k) + 1 + 1 = νO (n) + 1.

• Suppose n = 3× 5k — in particular æk is total. Then

rankV (ρV (n)) = sup {rankV (T (pρV (æk (i)q))) | i ∈ N}+ 1

= sup {rankV (ρV (æk (i))) + 1 | i ∈ N}+ 1

= sup {νO (æk (i)) | i ∈ N}+ 1 = νO (n) + 1.

Corollary 3.7. For every ordinary valuation scheme V , if TαV = Tα+1
V (or equivalently, if

TαV =
⋃
β∈Ord TβV ), then α > ωCK

1 and TαV is Π1
1-hard.

Proof. Assume TαV = Tα+1
V . Hence Proposition 3.6 immediately gives α > ωCK

1 . As for the
Π1

1-hardness of TαV , it suffices to show that for all n ∈ N,

n ∈ O ⇐⇒ ρV (n) ∈ TαV

— then the result will follow by Folklore 2.5. The implication from left to right is obvious.
In the other direction, consider

S := {n 6∈ O | ρV (n) ∈ TαV }.

Suppose S 6= ∅, and let β be the least ordinal in rankV (ρV (S)). So in particular we have
β = rankV (ρV (n)) for a suitable n ∈ S; thus β must be a successor ordinal and n 6= 1.

• If n = 2k 6= 1, then ρV (n) = T (pρV (k)q), whence k ∈ S. This contradicts the choice
of β, because rankV (ρV (k)) = β − 1 < β.

• If n = 3× 5k, then N |= χk and æk (i) ∈ S for some i ∈ N, as one readily checks. But
rankV (ρV (æk (i))) 6 β − 1 < β, a contradiction.

Since 0 6= 0 does not belong to TαV , we conclude S = ∅, as desired.

This technique can be applied (with minor modifications) in various other situations as
well. Let us see how it works e.g. for the weak Kleene scheme. However, as it was shown in
[2], the reader should be warned:

Actually certain complexity results for the weak Kleene scheme depend on
the Gödel numbering and the language of the ‘standard model’ of N we use.

Of course such facts reveal counter-intuitive features of the construction, so J. Cain and Z.
Damnjanovic suggested adding a special function symbol to resolve the conflict. More pre-
cisely, assuming an appropriate coding M0,M1, . . . of all Turing machines, they introduced
a new symbol u whose interpretation is given by

u (n, i, k, j) :=

{
l if Mn halts on input i at step k with output l,

j if Mn does not halt on input i at step k.

Notice that this function is primitive recursive, and hence representable in Robinson arith-
metic. What can we do with u in our framework?

13



Observation 3.8. If we include u in σ, then Proposition 3.6 and Corollary 3.7 generalise
to arbitrary valuation schemes satisfying (1–5).

Proof. We do not need to exploit disjunctions — simply replace ∀x ∀y (¬ϑ (n, x, y) ∨ T (y))
by ∀x ∀y T (u (n, x, y, p∀xx = xq)) in the description of u. The rest is routine.

Indeed u looks quite peculiar from a number-theoretic viewpoint, and one may well ask
whether a more elegant function has been discovered. Here we propose to add a symbol −·
for the proper subtraction, i.e. i−· j := max {0, i− j}.

Observation 3.9. Similar to Observation 3.8, but with −· instead of u.

Proof. It is known (cf. [11]) that there is an algorithm which finds, for each natural number
n, a pair

(
p1
n (~x) , p1

n (~x)
)

of polynomials with coefficients in N, such that

the range of æn =
{
p1
n (~m)− p2

n (~m) | ~m ∈ N∗ and p1
n (~m) > p2

n (~m)
}

— let t1n and t2n be the corresponding terms in the language {0, s,+,×}. Also, we need the
term tu (x, y, z) := (x−· y) + (z × (s (0)−· (s (x)−· y))). Clearly

(tu (i, k, j))
N

=

{
i−· k if i > k,

j otherwise.

Thus one can replace ∀x ∀y (¬ϑ (n, x, y) ∨ T (y)) by ∀~xT
(
tu
(
t1n (~x) , t2n (~x) , p∀xx = xq

))
in

the description of u in the proof of Proposition 3.6.

Another modification, with L unchanged, concerns existential quantifiers. Consider the
following condition (for any α ∈ Ord, θ (x) ∈ For and ϕ (x) ∈ ForT ):

8. ∃x (θ (x) ∧ T (x)) ∈ TαV iff N |= θ (n) and T (n) ∈ TαV for some n ∈ N.

In the presence of (8) we may omit (6–7), i.e. forget about disjunctions.

Observation 3.10. The analogues of Proposition 3.6 and Corollary 3.7 hold for arbitrary
valuation schemes satisfying (1–5) and (8).

Proof. Use ∀x∃y (ϑ (n, x, y) ∧ T (y)) instead of ∀x ∀y (¬ϑ (n, x, y) ∨ T (y)) throughout.

In effect, (8) fails for the weak Kleene scheme, but the customary treatment of ∃ in the
case of VWK does not seem to be well motivated — see e.g. [10, § 2.3]. Alternatively, we can
define V ∗WK exactly as VWK except that

V ∗WK (∃xϕ (x)) =


1 if V ∗WK (ϕ (t)) = 1 for some closed L-term t,

0 if V ∗WK (ϕ (t)) = 0 for all closed L-terms t,
1
2 otherwise.

(like in VSK). Now V ∗WK satisfies (1–5) and (8), so Observation 3.10 applies.

Remember that we took → as an abbreviation in Subsection 2.1. However, interpreting
ϕ→ ψ as ¬ϕ ∨ ψ is not always the right choice in every situation. To avoid confusion, and
to make things clearer, I add a new connective symbol � to the original three, i.e. to ¬, ∧
and ∨. Note that For , ForT , Sen and SenT are easily modified to accommodate �. Intui-
tively, even when we treat � as the material conditional on {0, 1}, the meanings of ϕ� ψ
and ¬ϕ ∨ ψ may differ on

{
0, 1

2 , 1
}

. Consider the following variation on (6–7):
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6’. if χ� ψ ∈ TαV and N |= χ, then ψ ∈ TαV ;

7’. if N |= ¬χ, then χ� ψ ∈ TαV

— where χ and ψ range over the modified versions of Sen and SenT respectively.

Observation 3.11. If we expand L and LT by adding �, then the analogues of Propositi-
on 3.6 and Corollary 3.7 hold for arbitrary valuation schemes satisfying (1–5) and (6’–7’).

Proof. Replace ∀x∀y (¬ϑ (n, x, y) ∨ T (y)) by ∀x∀y (ϑ (n, x, y)� T (y)) throughout.

This is closely related to a three-valued scheme employed in [5]. Namely, Feferman (see
Section 3 of his article) proposed extending VWK to formulas containing � by setting

V ′WK (ϕ� ψ) :=


1 if V ′WK (ϕ) = 0 or V ′WK (ψ) = V ′WK (ϕ) = 1,

0 if V ′WK (ϕ) = 1 and V ′WK (ψ) = 0,
1
2 otherwise;

the other clauses are the same as in the definition of VWK, using V ′WK for VWK. One easily
checks that V ′WK satisfies (1–5) and (6’–7’). Hence Observation 3.11 applies. The complex-
ity results for V ′WK thus do not depend on the choice of Gödel numbering.

We finish with a few general remarks:

• it is not necessary to start with the empty set, because for a given scheme V one can
take V ′ such that V ′ (S) (ψ) = 1 iff V (S) (ψ) = 1 or #ψ ∈ S+;

• as a matter of fact, valuation schemes need not be three-valued, e.g. almost the same
proofs go through for Fitting’s four-valued version suggested in [6];

• analogous arguments work for other naturally arising hierarchies, like those of sets of
false LT -sentences, or of sets of grounded LT -sentences.

3.3 Some strengthenings

In the case of the supervaluation schemes and Leitgeb’s scheme we can, in effect, recognise
a Π1

1-complete problem already at the first level, and moreover one such problem will work
for all the successive levels (see [20]); however, according to Proposition 3.6, to get the least
fixed-point, we need to continue moving up the ordinals up to ωCK

1 .
We shall provide a somewhat more direct proof of this fact (for instance neither Kleene

normal form nor any coding of sequences will be involved). Indeed, the basic idea could be
extracted from [20] or [1], and is quite simple: use an appropriate collection of ungrounded
LT -sentences to interpret a second-order universal quantifier.

But before doing that, let us make a few remarks. Clearly we can view any LT -formula
as an arithmetical L2-formula whose only second-order variable is T , and vice versa. Next,
given an LT -sentence ψ and an L-formula χ (x), construct

ψχ := the result of replacing every T (t) in ψ by χ (t) ∧ T (t).

Then N |= ∀T (ψχ (T )↔ ψ (T ∩A)) where A denotes {n ∈ N | N |= χ (n)}.

Observation 3.12. Let χ (x) be an L-formula which defines an infinite computable subset
of N in N. Then Πχ := {ψχ | ψ ∈ SenT and N |= ∀T ψχ (T )} is Π1

1-complete.
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Proof. Take A := {n ∈ N | N |= χ (n)}. Remember — the set of all true L2-sentences of the
form ∀X Ψ with Ψ arithmetical is Π1

1-complete.
Obviously Πχ is Π1

1-bounded. To obtain Π1
1-hardness, we consider an L-formula ξ (x, y)

defining some one-one function f from N onto A in N. For ψ ∈ SenT , let

ψ′ := the result of replacing each T (t) in ψ by ∃y (ξ (t, y) ∧ T (y))

where y is the first individual variable not ocurring in ψ. Thus

N |= ∀T ψ (T ) ⇐⇒ N |= ∀T ψ′ (f (T )) ⇐⇒
N |= ∀T (T ⊆ A→ ψ′ (T )) ⇐⇒ N |= ∀T (ψ′ (T ))χ

(here we identify T (t) with t ∈ T , so f (T ) (t) stands for t ∈ f (T )).

It gives probably the quickest way to get the desired results.

Theorem 3.13 (P. D. Welch, G. Hjorth, T. Meadows). For every ordinal α > 0 and every
valuation scheme V ∈ {VSV, VVB, VFV, VMC, VL}, TαV is Π1

1-hard.

Proof. Assume V = VL. Take A := # {µ, T (pµq) , T (pT (pµq)q) , . . . }, where µ denotes the
truthteller. Let χ be an L-formula defining A in N. Then since A ∩G = ∅, we obtain

#ψχ ∈ Tβ+1
V ⇐⇒ #ψχ ∈ Gβ+1 and 〈N,TβV 〉 |= ψχ

⇐⇒ N |= ∀T (ψχ (T ∩Gβ)↔ ψχ (T )) ∧ ψχ(TβV )

⇐⇒ N |= ∀T (ψχ (∅)↔ ψχ (T )) ∧ ψχ(∅)

⇐⇒ N |= ∀T ψχ (T ).

Obviously TαV =
⋃
β<α Tβ+1

V , and so for each α > 0 we have: #ψχ ∈ TαV iff ψχ ∈ Πχ. Thus

the Π1
1-hardness of TαV follows by Observation 3.12. (Notice that one may use any suitable

collection of ungrounded sentences instead of A.)
Perfectly analogous arguments apply to the other schemes.

Now we quickly deduce the same for Leitgeb’s groundedness hierarchy.

Corollary 3.14 (P. D. Welch). For every ordinal α > 0, Gα is Π1
1-hard.

Proof. Let A and χ be as in the previous proof. By construction, Θα ∩ {ψχ | ψ ∈ SenT } is
Π1

1-hard (for α > 0). Choose n 6∈ G ∪A, say n = #λ. One readily checks that

#ψχ ∈ Θα ⇐⇒ N |= ∀T ψ (T ∩A) ⇐⇒
N |= ∀T (ψ (T ∩A) ∨ T (n)) ⇐⇒ # (ψχ ∨ T (n)) ∈ Gα.

Consequently the corresponding bounds from Subsection 3.1 turn out to be exact.

Further — the Π1
1-hardness proofs in this subsection do not seem to rely heavily on the

strength of N, so the reader might well ask:

What will happen if we restrict ourselves to a reasonable fragment of LT ?

E.g. consider V = VL. Clearly, for a particular ordinal α > 0, in the proof of Theorem 3.13
we can replace A by any infinite computable Bα ⊆ N with the property that Bα ∩Gβ = ∅
for all β < α. Let our language be, say, the ×-free fragment of LT , i.e. {0, s,+,=, T}. Now
by taking B1 = N and using the result of [7], it is easy to show that
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•
{
ψ ∈ T1

V | ψ does not contain ×
}

is Π1
1-complete.

Obviously for α > 1, Bα must be a proper subset of N. And if some one-one function from
N onto Bα is first-order definable in 〈N; +,=〉, then the same argument goes through; this,
however, depends on the Gödel numbering, because each Gβ consists of codes of sentences.
Similarly for certain other reducts of the standard model of N, using results of [18, 19].
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